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The ‘social brain hypothesis’ for the evolution of large brains in primates has led to evidence for the coevolu-

tion of neocortical size and social group sizes, suggesting that there is a cognitive constraint on group size

that depends, in some way, on the volume of neural material available for processing and synthesizing infor-

mation on social relationships. More recently, work on both human and non-human primates has suggested

that social groups are often hierarchically structured. We combine data on human grouping patterns in a

comprehensive and systematic study. Using fractal analysis, we identify, with high statistical confidence, a

discrete hierarchy of group sizes with a preferred scaling ratio close to three: rather than a single or a continu-

ous spectrum of group sizes, humans spontaneously form groups of preferred sizes organized in a geometri-

cal series approximating 3–5, 9–15, 30–45, etc. Such discrete scale invariance could be related to that

identified in signatures of herding behaviour in financial markets and might reflect a hierarchical processing

of social nearness by human brains.
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1. INTRODUCTION
Attempts to understand the grouping patterns of humans

have a long history in both sociology (Coleman 1964) and

social anthropology (Kottak 1991; Scupin 1992). While

these approaches have been largely sociological in focus,

attempts to understand grouping patterns in non-human

primates have had a largely ecological focus (see Dunbar

1988). However, there has been recent interest in the

extent to which group size and grouping patterns in

primates might be constrained by cognitive factors

(Dunbar 1992, 1998). The latter interests arise out of what

has become known as the ‘social brain hypothesis’.

The social brain hypothesis (Byrne & Whiten 1988;

Barton & Dunbar 1997) argues that the evolution of

primate brains was driven by the need to coordinate and

manage increasingly large social groups. Since the stability

of these groupings is based on intimate knowledge of other

individuals and the ability to use this knowledge to manage

social relationships effectively, the computational capacity

of the brain (presumed to be broadly a function of its size)

is assumed to impose a species-specific limit on group size.

Attempts to increase group size beyond this threshold must

inevitably result in reduced social stability and, ultimately,

group fission. Dunbar (1992, 1998; Joffe & Dunbar 1997;

also Sawaguchi & Kudo 1990) showed that there is a log-
linear relationship between social group size and relative

neocortex volume in primates, and argued that this

relationship reflected the computational capacity that any

given species could bring to bear on its social relationships.

Extrapolating these findings to humans led to the predic-

tion that humans had a cognitive limit of approximately

150 on the average number of individuals with whom

coherent personal relationships could be maintained (Dun-

bar 1993). Evidence to support this prediction has come

from a number of ethnographic and sociological sources

(Dunbar 1993). The fact that these relationships are not

simply a matter of memory for individuals but, rather, of

integrating and managing information about the constantly

changing relationships between individuals within a group,

is indicated by the fact that relative neocortex size corre-

lates with a number of core aspects of social behaviour and

socialization in primates (Byrne 1995; Pawlowski et al.

1998; Joffe 1997; Lewis 2000; Byrne & Corp 2004).

It has, however, always been recognized that both

human and non-human primate groups are internally

highly structured (e.g. Dunbar 1988). Further analyses

(Kudo & Dunbar 2001) have indicated that at least one

level of structuring (the grooming clique) also correlates

with neocortex size. While the significance of these tiered

groupings is not always apparent, there is strong prima facie

evidence to suggest that human social groups (like those of

other primates) consist of a series of sub-groupings
#2005 The Royal Society
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arranged in a hierarchically inclusive sequence (Hill &

Dunbar 2003).

In this sequence, the core social grouping is the support

clique, defined as the set of individuals from whom the

respondent would seek personal advice or help in times of

severe emotional and financial distress; its mean size is

typically 3–5 individuals (Dunbar & Spoor 1995). Above

this may be discerned a grouping of 12–20 individuals

(often referred to as a sympathy group) that characteristi-

cally consists of all the individuals with whom one has

special ties; these individuals are typically contacted at least

once per month (Dunbar & Spoor 1995; Hill & Dunbar

2003). The ethnographic data on hunter-gatherer societies

(summarized in Dunbar 1993) point to a grouping of

30–50 individuals as the typical size of overnight camps

(sometimes referred to as bands); these groupings are often

unstable, but their membership is always drawn from the

same set of individuals, who typically number ca. 150 indi-

viduals. This last grouping is often identified in small-scale

traditional societies as the clan or regional group. Beyond

these, at least two larger-scale groupings have been

identified in the ethnographic literature: the megaband of

ca. 500 individuals and the tribe (a linguistic unit,

commonly of 1000–2000 individuals) (Dunbar 1993).

In this paper, we provide the first systematic analysis of

human grouping patterns, using data collated from the

literature. Using spectral analysis, we show that there is a

consistent pattern in the size of these groupings and, more

importantly, that successive groupings in the hierarchy

have a constant ratio.
2. MATERIAL AND METHODS
There is no universally accepted procedure for analysing human

social groups, and all methods attempting to identify group sizes

suffer from at least some sources of bias (small sample size, large

inter-individual variability or differences in the criteria used to

include individuals). Our strategy is to include all reasonable data

and attempt to extract useful signals above the noise level by a

careful analysis of the global dataset. We therefore searched the

sociological and other literatures for quantitative data on social

group and social network sizes in humans. For these purposes, we

sought studies that provided quantitative data on the size of indivi-

duals’ social networks, irrespective of how the social network itself

was defined.

Most such studies focus on a particular kind of network (among

those defined above in x 1). In addition to the data listed in

Dunbar (1993), Dunbar & Spoor (1995) and Kudo & Dunbar

(2001), we add the following data. The USA 1998 General Social

Survey reports a mean size of 3.3 for support cliques in the USA

(Marsden 2003). The mean sizes of sympathy groups are reported

by Buys (1992) to be 14.0 in Egypt, 15.1 in Malaysia, 13.5 in

Mexico, 13.8 in South Africa and 10.2 in the USA (Latkin et al.

1995). In separate samples in The Netherlands, they were repor-

ted to be 15.0 in 1995 (Kef 1997; Kef et al. 2000), 15.0 in 1992,

14.3 in 1992–1993, 14.8 in 1995–1996 and 14.2 in 1998–1999

(van Tilburg & van Groenou 2002), finally, Adams et al. (2002)

reported them to be 14.4 in Mali (West Africa). Although a num-

ber of these studies have been carried out in the same country, we

have considered each study to be an independent sample since

they involve different datasets; nevertheless, averaging

The Netherlands samples and treating them as a single data point

does not alter the conclusions drawn.
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Only one study sought to estimate the size of successive social

groupings for individual subjects (Hill & Dunbar 2003). These

data were obtained from an analysis of Christmas card

distribution lists, in which 42 UK-domiciled subjects logged the

identities of all individuals in the households to which cards were

sent and their relationships to these individuals. Participants were

asked both to list everyone in the household to which they were

sending a card and to state the quality of their relationship with

each individual (using two metrics: how often they contacted the

individual, and the emotional intensity of the relationship scored

on a 0–10 Likert-type scale: for details, see Hill & Dunbar

(2003)). Because this study uniquely provides data on the differ-

ent grouping levels of which any one individual is a member, we

treat these data separately from the census data obtained from the

literature search.
3. RESULTS
We begin by analysing the data on groupings reported in

the social networks literature. (The Christmas card distri-

bution data will be dealt with separately: see below.)

Figure 1 plots the sizes of the different grouping levels

identified in the various studies.

We begin with a qualitative analysis of the data in figure

1, using the groupings that have conventionally been

defined (see x 1). First, we denote S1 as the mean support

clique size, S2 the mean sympathy group size, S3 the mean

band size, S4 the mean community group size, and S5 and

S6 the mean sizes of mega-bands and large tribes, respect-

ively. Averaging across these grouping levels, the data give

mean values of S0 ¼ 1 (individual or ego), S1 ¼ 4:6,

S2 ¼ 14:3, S3 ¼ 42:6, S4 ¼ 132:5, S5 ¼ 566:6 and S6 ¼
1728. To determine the possible existence of a

discrete hierarchy, we construct the series of ratios Si/Si�1
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Figure 1. Presentation of our dataset of 61 group sizes. The
ordinate is an arbitrary ordering of data sources and the
abscissa gives the group sizes reported in each source. The
symbols refer to the classification used in each of the studies:
circles (support cliques), triangles (sympathy groups),
diamonds (bands), stars (cognitive groups), and squares
(small and large tribes). This classification is not used in our
systematic analysis summarized in the other figures, to avoid
any bias.



Social group size organization W.-X. Zhou and others 441
of successive mean sizes:

Si=Si�1 ¼ 4:58, 3:12, 2:98, 3:11, 4:28, 3:05,

for i ¼ 1, . . . , 6: ð3:1Þ

This suggests that humans form groups according to a

discrete hierarchy with a preferred scaling ratio between 3

and 4 (the mean of Si /Si�1 is 3.52).

To avoid any biases that might be present in

the published census data, we next undertake a more

systematic analysis that uses all the available data rather

than just their means. The sample in figure 1 has 61 group-

ing clusters (including the ego) with estimates of mean size

si available for i ¼ 1,2, . . . ,61 clusters. We consider this

sample to be a realization of a distribution whose sample

estimation can be written as:

f sð Þ ¼
X61

i¼1

d s � sið Þ, ð3:2Þ

where d is Dirac’s delta function. Figure 2 shows the prob-

ability density function f(s) obtained by applying a Gaus-

sian kernel estimation approach (Silverman 1986).

Our challenge is to extract a possible periodicity in this

function in the ln(s) variable, if any. If the grouping clusters

form a series of harmonics, the harmonics will have a con-

stant ratio, and we would expect a periodic oscillation of

f(s) expressed in the variable ln(s) (known as its ‘log-period-

icity’; Sornette 1998).

Standard spectral analysis applied to f(s) is dominated

by the trend seen in figure 2, with a peak at a very low log-

frequency corresponding to the whole range of the group

sizes. We thus turn to generalized q-analysis or (H, q )-

analysis (Zhou & Sornette 2002a), which has been shown

to be very sensitive and efficient for such tasks. The q-

analysis is a natural tool to describe discrete scale invar-

iance (DSI) in fractals and multifractals (Erzan 1997;

Erzan & Eckmann 1997). The (H, q )-analysis consists in

constructing the (H, q)-derivative

DH
q f sð Þ ¼ f sð Þ � f qsð Þ

1 � qð Þs½ �H
: ð3:3Þ
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Introducing an exponent H different from 1 allows us to

detrend f(s) in an adaptive way (that is, detrend it with dif-

ferent values of [(1 � q)s]H at different s values). Note that

the limit H ¼ 1 and q ! 1 retrieves the standard definition

of the derivative of f. A value of q strictly less than 1 makes it

possible to enhance possible discrete scale structures in the

data. To keep a good resolution, we work with

0:65 6 q 6 0:95, because smaller values of q require more

data for small values of s. To put more weight on the small

group sizes (which are probably more reliable since they are

obtained by conducting general surveys in larger represen-

tative populations), we use 0:5 6 H 6 0:9. A typical (H,

q)-derivative with H ¼ 0:5 and q ¼ 0:8 is illustrated in a

semi-log plot in figure 3.

We then use a Lomb periodogram analysis (Press et al.

1996) to extract the log-periodicity in f(s). Figure 4

presents the normalized Lomb periodograms of DH
q f sð Þ for

different pairs of (H, q) with 0:5 6 H 6 0:9 and

0:65 6 q 6 0:95. This figure illustrates the robustness of

our result. For the specific values H ¼ 0:5 and q ¼ 0:8
shown in figure 4, the highest peak is at x1 ¼ 5:40 with

height PN ¼ 8:67. The preferred scaling ratio is thus

k ¼ exp 2p=x1ð Þ 
 3:2. The confidence level is 0.993

under the null hypothesis of white noise (Press et al. 1996).

If the underlying noise decorating the log-periodic struc-

ture is correlated with a Hurst index of 0.6, the confidence

level decreases to 0.99; if the Hurst index is 0.7 (which cor-

responds to an unreasonably large noise correlation), the

confidence level falls to 0.85 (Zhou & Sornette 2002b).

The Lomb periodograms also exhibit a second peak at

x2 ¼ 9:80 with height PN ¼ 5:48. This can be interpreted

as the second harmonic component x2 
 2x1 of the funda-

mental component at x1 ¼ 5:40. The amplitude ratio of

the fundamental and the harmonic is 1.26. The coexistence

of the two peaks at x1 and x2 
 2x1 strengthens the stat-

istical significance of a log-periodic structure. To see this,

we constructed 104 synthetic sets of 61 values uniformly

distributed in the variable ln(s) within the interval [0,

ln(2000)]. By construction, these 104 sets, which are

exactly of the same size as our data and span the same

interval, do not have log-periodicity and thus have no

characteristic sizes. We then applied the same procedure as
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Figure 2. Probability density function f(s) of size s estimated
with a Gaussian kernel estimator in the variable ln(s) with a
bandwidth h ¼ 0:14. Varying h by 100% does not change f(s)
significantly.
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Figure 3. Typical (H, q)-derivative DH
q f(s) of the probability

density f(s) as a function of size s with H ¼ 0:5 and q ¼ 0:8.
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Figure 5. Average Lomb periodogram PN(x) of the (H, q)-
derivative DH

q f(s) with respect to the number of receivers of
the residual contact frequency for each individual in the
Christmas card experiment, as a function of the angular log-
frequency x of the (H, q)-derivative, over the 42 individuals
and different pairs of (H, q) with �16H 6 1 and
0:806 q6 0:95.
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for the real dataset to these synthetic datasets and obtained

104 corresponding Lomb periodograms. Finally, we per-

formed the following tests on these Lomb periodograms:

find the highest Lomb peak (x, PN). If PN > 8:5, check if

there is at least another peak at 2x^1 with its PN larger

than 5.5. A total of 238 sets among the 104 passed the test,

suggesting a probability that our signal results from chance

equal to 0.024. The probability that there are at least two

peaks (one in 4:9 < x < 5:9 with PN > 8:5 and the other in

9:5 < x < 11:5 with PN > 5:5) is found equal to 77/104,

giving another estimation of 0.992 for the statistical confi-

dence of our results.

Another metric consists in quantifying the area below the

significant peaks found in the Lomb periodogram of our

data and comparing them with those in the synthetic sets.

We count the area of the main peak of the Lomb period-

ogram at x and add to it the areas of its harmonics whose

local maxima fall in the intervals [(k � ð1=5ÞÞx,

ðk þ ð1=5ÞÞx] for k ¼ 2,3, . . ., around all its harmonics.

The area associated with a peak is defined as the region

around a local maximum delimited by the two closest local

minima bracketing it. The fraction of synthetic sets which

give an area thus defined larger than the value found for the

real data is 6–7%, depending on the specific values H and q

used in the analysis.

We applied the same analysis to individual social

networks based upon the exchange of Christmas cards

(Hill & Dunbar 2003). This study indicated that contem-

porary social networks might be differentiated based on the

frequency of contact between individuals, but that both

‘passive’ and ‘active’ factors may determine contact

frequency. Controlling for the passive factors (distance

apart, and whether the contact was overseas or a work

colleague) allowed the hierarchical network structure to be

examined based on the residual (active) contact frequency.

Starting from the residual contact frequencies, we

constructed their (H, q )-derivative with respect to the num-

ber of people contacted for each individual, obtained the

Lomb spectrum of the (H, q)-derivative and then averaged

them over the 42 individuals in the sample (figure 5). The
Proc. R. Soc. B (2005)
very strong peak at x ¼ 5:2 is consistent with the previous

results with a preferred scaling ratio from the expression k
¼ exp 2p=x1ð Þ 
 3:3 (Sornette 1998) for the smaller

grouping levels in this study (i.e. group sizes below 150).

In summary, all these tests suggest that the evidence in

support of our hypothesis is significantly unlikely to result

from chance, but rather reflects the fact that human group

sizes are naturally structured into a discrete hierarchy with

a preferred scaling ratio close to 3.

4. DISCUSSION
Collating a variety of measures collected under a wide

range of conditions and in different countries, we have

documented a coherent set of characteristic group sizes

organized according to a geometric series with a preferred

scaling ratio close to three. The fact that the signature of

this scaling ratio comes through so strongly despite the fact

that the data derive from a variety of different small- and

large-scale societies suggests that it is very much a universal

feature. Were it the case that scaling ratios differed between

societies, pooling data would have tended to obscure any

relationships that might have been present.

Indeed, it turns out that similar hierarchies can be found

in other types of human organizations, although the

consistency of the patterning has not previously attracted

comment. Of these, the military probably provides the best

examples. In the land armies of many countries, one

typically finds sections (or squads) of ca. 10–15 soldiers,

platoons (of three sections, ca. 35), companies (3–4

platoons, ca. 120–150), battalions (usually 3–4 companies

plus support units, ca. 550–800), regiments (or brigades)

(usually three battalions, plus support; 2500þ), divisions

(usually three regiments) and corps (2–3 divisions). This

gives a series with a multiplying factor from one level to the

next close to three. Could it be that the army’s structures

have evolved to mimic the natural hierarchical groupings of

everyday social structures, thereby optimizing the cognitive

processing of within-group interactions?
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Figure 4. Normalized Lomb periodograms PN(x) as a
function of angular log-frequency x of the (H, q )-derivative

DH
q f(s) for different pairs of (H, q) with 0:56H 6 0:9 and

0:656 q6 0:95.



Social group size organization W.-X. Zhou and others 443
Stock market behaviour provides another example of the

same kind of phenomenon (and one that we happen to

have investigated). The existence of a discrete hierarchy of

group sizes may provide a key ingredient in rationalizing

the reported existence of DSI in financial time series in so-

called ‘bubble’ regimes characterized by strong herding

behaviours between investors (Sornette 2003). Johansen et

al. (1999, 2000) have proposed a model to explain the

observed DSI in stock market prices as resulting from a dis-

crete hierarchy in the interactions between investors.

Recent analyses of DSI in market regimes with a strong

herding component have also identified the presence of a

strong harmonic at 2x, similar to the findings reported here

( Johansen & Sornette 1999; Sornette & Zhou 2002).

Strong herding behaviour occurs only when groups of

investors coordinate their buy and sell orders; the coordi-

nated buy and sell orders that occur during a strong herd-

ing market phase thus expresses, better than at any other

time, the natural inner structure of the community of tra-

ders. By contrast, herding is absent when investors disagree

on what will be the next market move; as a result, the aggre-

gate market orders do not express the inner hierarchical

structure of the community.

The fact that DSI is found only during stock market

regimes associated with a strong herding behaviour sug-

gests that it may reflect the fact that a discrete hierarchy of

naturally occurring group sizes characterizes human inter-

actions whether they be hunter-gatherers or traders. The

findings reported here suggest that this discrete hierarchy

may have its origins in the fundamental organization of any

social structure and be deeply rooted within the cognitive

processing abilities of human brains.

When dealing with discrete hierarchies, it may be impor-

tant to distinguish between the specific group sizes and

their successive ratios. It may be that the absolute values of

the group sizes are less important than the ratios between

successive group sizes. If the ratio of group sizes is inter-

preted as a fractal dimension (specifically, the ratio is

related to the imaginary part of a fractal dimension: see

Sornette (1998) and references therein), this would imply

that, depending on the social context, the minimum

‘nucleation’ size (in the range 3–5 in previous examples)

may vary, but the ratio (close to three) might be universal.

The fundamental question, then, is to determine the origin

of this discrete hierarchy. At present, there is no obvious

reason why a ratio of three should be important.

Equally, however, we have little real understanding of

what mechanisms might limit the nucleation point to a

particular value. We do not even know, for example,

whether the constraint is a cognitive one (e.g. memory for

individual identities versus capacity to manage information

about relationships); or a time budgeting one (how much

time has to be invested in interaction with an individual to

create a bond of a particular strength, and then how many

such bonds can be fitted into a given time-scale). Nor do

we know much about how larger-scale groupings are built

up out of smaller ones. A hierarchical structure could, for

example, be built up by each individual interacting with,

say, three new individuals in an expanding network, or it

might be the result of rather discrete small subgroups held

together through a subset of individuals who act as ‘weak

links’ in the small-worlds sense—although there is some

evidence for the latter in respect of both primate social
Proc. R. Soc. B (2005)
groups (Kudo & Dunbar 2001) and at least some aspects of

human behaviour (Stiller et al. 2004). Considerable

additional work will need to be done on both these compo-

nents if we are to understand why these constraints on

human grouping patterns exist and exactly what their sig-

nificance might be.
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