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ABSTRACT by a mesh, which is given by the coordinates of its vertices and

In recent years a considerable amount of work in graphics and ge- € connectivity information. Thus, manipulating, deforming and
ometric optimization used tools based on the Laplace-Beltrami op- a12lyzing meshed surfaces is a crucial area within these subjects,
erator on a surface. The applications of the Laplacian include meshWith the usual implicit assumption that processing of a mesh corre-
editing, surface smoothing, and shape interpolations among others SPONds to analogous processing of the underlying surface.
However, it has been shown [13, 24, 26] that the popular cotan- In recent years a class of method; based on discrete differen-
gent approximation schemes do not provide convergent point-wise tial geometry of surfaces [1] and the discrete Laplace operator has

(or evenL,) estimates, while many applications rely on point-wise been used for various tasks of geometric processing. For exam-

estimation. Existence of such schemes has been an open qued2!€: the state-of-the-art report on Laplacian Mesh Processing [21]

tion [13]. discusses surface reconstruction, mesh editing, shape representa-

In this paper we propose the first algorithm for approximating tion and shape interpqlation among other appligatigns of Laplacian-
the Laplace operator of a surface from a mesh with point-wise con- b_ased meshf processing methods. Such appllcatlonhs of the Lapla-
vergence guarantees applicable to arbitrary meshed surfaces. wéian can be found |rﬂﬂfﬁ22—\@ .27] among Qt ers.
show that for a sufficiently fine mesh over an arbitrary surface, our 1€ Laplace-Beltrami operator (manifold Laplacian) is a funda-
mesh Laplacian is close to the Laplace-Beltrami operator on the mental geometric object associated to a Riemannian manifold and
surface at every point of the surface has many desirable properties. The Laplacian can be used as a

Moreover, the proposed algorithm is simple and easily imple- smopthness penalty to choose functior_ls vary_ing smoothly along the
mentable. Experimental evidence shows that our algorithm exhibits manifold @] or_to smooth the surface |Fself via tiean curvature
convergence empirically and compares favorably with cotangent- 10W[10], which is determined by applying the Laplace operator to

based methods in providing accurate approximation of the Laplace coordinate fgnctlons,'y, z considered as functions on the surfgce.
operator for various meshes Moreover, eigenfunctions of the Laplacian form a natural basis for

square integrable functions on the manifold analogous to Fourier
. . . harmonics for functions on a circle (i.e. periodic functions). There-
Categories and Subject Descriptors fore, computing eigenfunctions of a Laplacian allows one to con-
G.2 [Mathematics of Computing]: Discrete mathematics struct a basis reflecting the geometry of the surface [12]. Finally,
the Laplace operator is intimately related to diffusion and the heat
equation on the surface, and is connected to a large body of classi-

General Terms cal mathematics, relating geometry of a manifold to the properties

Algorithms, Theory, Experimentation of the heat flow (see, e.g., [20]).
Several discretizations of the Laplacian for an arbitrary mesh
Keywords have been proposed [9, 10, 14, 19, 23, 25]. Most of the pro-

posed methods are variants of tbetangent schemf.9], which
Laplace-Beltrami operator, Surface mesh, Approximation algorithm s a form of the finite element method, applied to the Laplace oper-

ator on a surface. Suppose we have a surface with a fine mesh. We
1. INTRODUCTION expect that the discretization computed from such a mesh would
be an accurate representation of the underlying surface Laplacian.

A broad range of topics in geometric modeling and computer However a detailed theoretical analvsis of existing discretization
graphics is concerned with processing two-dimensional surfaces in. Owever, a detalled theoretical analysis of existing discretizations

athree-dimensional space. These surfaces are typically repr(elasente'.n [25, 26] shovys that while point-wise convergence can be estab.-
lished for special classes of meshes, such as certain meshes with
valences, or for linear functions over a spherelt?, none of these
methods can be expected to converge for surface meshes in gen-
Permission to make digital or hard copies of all or part of thaknfor e_ral, a finding, which is borne out by experimental results in Sec-
personal or classroom use is granted without fee providatidbpies are tion[5 and [26]. A notable recent work is [13, 24], where the au-
not made or distributed for profit or commercial advantage aatidbpies thors analyze convergence of various geometric invariants, includ-
bear this notice and the full citation on the first page. Toyooiherwise, to ing Laplace-Beltrami operators. They apply their analysis to the
republish, to post on servers or to redistribute to listguiees prior specific popular cotangent scheme showingak convergencén the dis-
permission andfor a fee. tribution sense) for the solution of the Dirichlet's problem, assum-

gg&,ﬁgﬁuzn(fogféngggf ggg%g_g?rlii’s%%%ih%; gé ' ing the aspect ratio of mesh elements is bounded. The authors also



demonstrate that under the cotangent scheme, convergere in taken to be independent of the point However, in generah can
(which is weaker than point-wise convergence) does not generally be taken to be a function af, which will allow the algorithm to
hold. adapt to the local mesh size.

The results presented in our paper provide the first discretization ~ The theoretical results in this paper show that whéis a suffi-
scheme that guarantees convergence at each poirt{i.end thus ciently fine mesh of a smooth underlying surfafeL.”. is close to
alsoL, convergence). Moreover, by using some recent results [2], the surface Laplacian s (the formal definition will be introduced
it can be shown that convergence of eigenfunctions also follows.  shortly). Indeed, our preliminary experimental results demonstrate

We note that whileC . convergence is required in many applica- the converging behavior of this operator, and show that our algo-
tions, where various quantities, e.g., mean curvature, need to be esrithm outperforms currently available discrete Laplace operators in
timated at each node of the mesh, the construction of such a scheméhe approximation quality.
is not trivial. For example, in [13] (Section 4.3.2) the authors con-  In the remainder of this section, after introducing necessary no-
jecture that no such discretizations may exist. tations, we give an outline of the theoretical results, which also

We summarize the contributions of the paper as follows: explains the derivation of this algorithm.

1. We propose a simple method for approximating integrals over 5 o Objects and Notations
a surface using a mesh and analyze the quality of the result-
ing approximation in terms of the parameters of the surface

and the mesh. Surface Laplace operatorAs. In this paper, we consider a smooth

. . o ) . compact2-manifold S without boundary isometrically embedded

2. Comblnln_g th_e integral approximation results with the idea i, some Euclidean spad@® with geometry induced by the embed-
of approximating the heat flow on a mesh, we presentand an- ging - (Note that any such surface is necessarily orientable.) The

alyze the first algorithm for approximating Laplace-Beltrami o respondingolume formdenoted by, determines the area of a

operator on a surface with point-wise convergence guaran- g rface element. We assume tisais connected — surfaces with

tees for arbitrary meshes.

3. The resulting algorithm is simple and straightforward to im-
plement. We provide experimental results showing that it

multiple components can be handled by applying our results in a
component-wise manner.
Given a twice continuously differentiable functighe C?(S),

outperforms the cotangent scheme in approximation quality let Vs f denote the gradient vector field ¢fon S. The Laplace-

and robustness to noise.

Beltrami operatoA s of f is defined as the divergence of the gra-

We note that the aldorithm § ind th ; Laplaci dient; that isAs f = div(Vsf). For example, ifS is a domain in
e note that the algorithm for computing the surface Laplacian : - 02 o2t
is related to the set of algorithms for computing Laplacian of point IR, then the Laplacian has the familiar fodtyz. f = aTé + Byg'
clouds in data analysis and machine learning [7, 8] by using the

heat equation. We observe that in machine learning, the samplesFunctional Laplacian F'. To connect the mesh Laplace operator
are usually believed to be dravindependentlyirom a probabil- L', as defined in Eqn (1), with the surface Laplaciag, we need
ity distribution and the convergence occurs in probability. On the an intermediate object, called thenctional Laplace operatoF's.
other hand, in surface modeling, the nodes of a mesh are typically Given a pointw € S and a functionf : S — IR, itis defined as
not sampled independently from a probability distribution but are follows:

generated by some deterministic process, e.g. scanning. Hence in 1 llz—w]?

F f(w):m/zese ah

(f(z) = f(w))dv(z). (2)

the case of mesh Laplacian, approximation guarantees need to be *s
made forall sufficiently fine meshes, and probabilistic techniques
based on the law of large numbers (usually used in the case of ran-

domly sampled point clouds) cannot be applied. Definition of (e, n)-approximation. We also need a quantitative

measure of how well a mesh approximates the underlying surface.
Let themedial axisM of S be the closure of the set of pointsIR®
that have at least two closest pointsinFor anyw € S, thelocal
feature size atv, denoted byifs(w), is the distance fronw to the
medial axisM. Thereach (also known as the condition number)
p(S) of S is the infinum of the local feature size at any pointSin
At each pointp € S, n, denotes thenit outward normal ofS atp
and for each face € K, n, is the unit outward normal of the plane
passing through.

In the paper, we assume that the vertices of the niédte on
the surfaceS. Let p be the reach of. We say thaf< is an(e, n)-
approximationof S, if the following conditions hold:

2. ALGORITHM AND OVERVIEW OF THE
RESULTS

2.1 Mesh Laplacian Algorithm

We start by describing our algorithm for computing the Laplace
operator on a meshed surface. [Eéthe a mesh iflR®. We denote
the set of vertices of the medh by V. Given a face, a mesh, or a
surfaceX, let Area(X) denote the area oX. For a facel € K,
the number of vertices itis denoted by#t, andV/ () is the set of
vertices oft.

Our algorithm takes a functiofi : V' — IR asinput and pro-
duces another functioh’ f : V' — IR asoutput. L%, themesh
Laplace operator, is computed, for anw € V, as follows:

Area(t) Z - sz;fuz 2. For a facet € K and a vertexp € t, the angle between

; 1h2 Z o (f(p) — f(w)) vectorsn; andn,, Z(n:, ny), is at most).
4 teK pEV (L)

1. For aface € K, its diameter (maximum distance between
any two points ort) is at mostp.

Li f(w) =

Intuitively, the first condition ensures that the mesh is sufficiently
1) : , . _
fine. On the other hand, a very fine mesh can still provide a poor
Theparameter h is a positive quantity, which intuitively corre-  approximation to the underlying surface, as, for example, is seen in
sponds to the size of the neighborhood considered at each point. Inthe Schwarz lantern. Thus the second condition is also necessary
many applications and for the theoretical analysis in this papr to ensure the closeness betwéérmand.S.



In many cases, we work with triangular meshes. Note the ap- Theorem 2.4 (Se€ [8])For a functionf € C?(S), we have that
proximation conditions do not require that the trianglegkinare limp, 0 ||F’§f(w) — Asf(w)Hoo =0.
well-shaped, for instance having small aspect ratio. However the
second condition can be implied if we assume that there exists at |t is easy to see that Theorem 2.1 follows from the two theorems
least one angle whose sin is bounded from below for each trian- above. Theorer 2.4 was shown [if [8], and provides an approxi-
gle [16], which is a much weaker condition than small aspect ratio. mation to the Laplace operator based on heat diffusion. To make
Note that many surface reconstruction algorithms (see [11]) pro- it more transparent we give a brief outline of the ideas involved

duce meshes that satisfy these conditions. below in Section 2.4. In the remaining of the paper, we focus on
Our technical results use the analysis of the mlap K — S the proof of Theorem 2.3. The proof relies on the following result

defined as follows: For any € K, ¢(p) is defined as the closest  on approximating integrals over a surface, which is of independent

point top on the surfaces. ¢ is well-defined whenk avoids the interest. Letds(x,y) denote the geodesic distance between two

medial axis ofS, which will be the case in our setting. The map pointsz,y € S.
¢ connects the mesR with the surfaceS, and is widely used in
analyzing surface reconstruction algorithms/[4, 11], as well as in

approximating various quantities for smooth surfaces [13, 16]. Theorem 2.5 Given a Lipschitz functioy : S — IR, let L =
. . Lip(g) be the Lipschitz constant of function g, ije(z) — g(y)| <
2.3 Overview of the Main Results Lip(g)ds(z,y). Set||g|lsc = sup,cs |g(x)|. We can approximate

Our main result is Theorem 2.1. Intuitively, as the mesh approx- fs gdv by the discrete sufikg = >, A%at(t) ZvEV(t) g(v),
imating the surface' becomes denser, the mesh Laplace operator so that the following inequality holds:
on K converges to the Laplace-Beltrami operatoSof
/ gdv — kg
S

Euth(e, ) :hsz'?ra + n1+acf20rsan arbitrary fixed positive num- Moreover, suppose that is twice differentiable, with the norm
era > 0. Then for anyf € C°(5) of the Hessian of; bounded byH. Then, for some constaut,
Lf;{(:,?f - AsfH —0 ®) depending only o, the following inequality holds:

/ gdv — kg
s

Note that the second part of the above theorem provides a higher-
order approximation, while the first part only requires the function
g to be Lipschitz.

Finally, we remark that by using some very recent results on the
convergence of Laplace spectrum [2], it can be shown that the dis-
crete eigenfunctions under this framework also converge to eigen-
functions of the Laplace-Beltrami operator.f

<3 (pLe + ||gllsc(2e +1)?) Area(S).  (5)

Theorem 2.1 Let the meslK. ,, be an(e, n)-approximation ofS.

lim sup
g,n—0 Ke

< (CH€2 + 3||g|lo (26 + 17)2) Area(S) (6)

where the supremum is taken over @lln) approximations of.

It is important to note that for a triangular mesh, we can obtain
the following corollary which says that the convergence result still
holds if we replace the second condition (i n)-approximation
by requiring the triangles to be well-conditioned, which is an easily
verifiable condition.

Corollary 2.2 Let K. be a triangular mesh with all the vertices on
S and the diameter of each triangle less thgm In addition, let
s(t) = max,cv ) sin(6p) whered, is the angle of the triangle
at vertexp, and assume that(K) = min;cxs(t) is bound from
below by some constant. Phte) = e757a foran arbitrary fixed
positive numbee. > 0. Then for anyf € C?(S)

2.4 Functional approximation of the Laplace-
Beltrami operator

In this section we attempt to demystify Theorlem 2.4 by explain-
ing the underlying idea for the functional approximation of the

lim su HL*IL{(E)f _ ASfH —0 @) Laplacian. The core of the approximation theorem lies in the con-
=0 K. ° oo nection of the Laplace-Beltrami operator to the heat equation.
where the supremum is taken over all such triangular meshes. Th? heat equationon the surface5 is the partial differential
equation

Corollary 2.2 follows immediately from Theorem 2.1 and Corol- u
lary 1 in [16] which sayssin Z(n¢, np) < (53 + 2)e for any Asu(z,t) = a(x,t)
trianglet € K and anyp € V(¢). The proof of Theorer 2.1 it- . . . o i
self relies on the following two results, connecting the mesh Lapla- 1he heat equation describes the diffusion of the initial heat dis-
cian operator to the functional Laplace operator and the functional {fibution u(z, 0) at time¢. To obtain an integral approximation

Laplacian to the Laplace-Beltrami operator, respectively. for the Laplace operator, we use a functional approximation tech-
nique from [7]. The approximation is based on the properties of
Theorem 2.3 Let K be an(e, n)-approximation of the surfac§, heat propagation with the initial distribution(z,0) = f(z). It
ande,n < 0.1. Given a functionf € C(S), let | f]e — is well known (e.g., [20]) that the solution to the heat equation
sup, s |f (@), [Vfllse = sup,cq||Vf(z)|| and p denote the u(z,t) can be written as(z, t) = [4 Hs(z,y)f(y) dv(y), where

reach of surfaces. We have that for any point € 3, H(z,y) is theheat kernelof the surfaces, i.e. the measure of
how much heat propagates framto y in time t. The quantity
Js Hs(x,y) f(y) dv(y) can be thought of as the sum of all heat

’Fgf(w) - L}}’((w)’ < MLZE,S) coming to pointz from every other poiny after timet.
9 g Thus the heat equation can be rewritten as follows:
(4 2ge + 6cn 200U + pel 1)

Asu(z,t) = % /s Hs(z,y) f(y) dv(y).



Taking the limit ast — 0 and recalling that:(z,0) = f(z) and
that [ H§ (z, y) dv(y) = 1, yields

Asf(@) = lim, [ HA@0) 1) dvl) =

1
lim —
t—0 t

(/S H(z,y)f(y) dv(y) — f(x))

lim
t—0

: / H () (f(y) — f(z)) du(y)

For the case whef is R the heat kernel can be written ex-

plicitly Hy» (z,y) = \/(jlit) exp —“3”173“2), yielding the func-

tional approximation in Eqn (2).

For a general manifold, the heat kernel cannot usually be written
explicitly. However the heat kernel can be shown to be close to a
Gaussian in the geodesic coordinates (e.g., [20]). By considering
the asymptotes of the heat kerneltas- 0, the result in Theo-
rem 2.4 can still be established (see [8]).

3. PROPERTIES OF MESHED SURFACES

In this section, we present several results on the relations be-

tween a smooth surfacg and an(e, n)-approximationk™ of S.

For simplicity of the exposition, we assume from now on that

is a triangular mesh. However the same analysis works verbatim
for arbitrary(, n)-approximation meshes. Lgtbe the reach of,
and¢ : K — S is the closest-point map introduced in Section 2.2.

3.1 Closeness Betweenand

Given any pointp € IR?, let d(p, X) denote the smallest dis-
tance fromp to any point in the seiX ¢ R?, andn, the unit
normal of S atp. The following result from [6] bounds the surface
normal variation between nearby points.

Lemma 3.1 ([6]) Given two point®, ¢ € S with ||p — q|| < p/3,

the angle between,, andn, satisfies that’ (n,, n,) < pﬂﬁl;ﬂzu .

We will later need the following result bounding the geodesic
distanceds(p, ¢) between two pointg,q € S, in terms of the
Euclidean distancép — ¢||. Note that the differencés(p,q) —
|lp — ¢l| is of order3 in ||p — ¢||, which significantly improves the
guadratic bound from [17].

Lemma 3.2 Given two pointy, ¢ € S, letd = |lp — ¢|| < p/2.
Then we have that < ds(p,q) < d+ %.

Proof: Let~ be the shortest geodesic curve betwgamdq and
setl = ds(p,q). By Proposition6.3 in we have that < 2d.
For anyzx € ~, lett, = t,(v) be theunit tangent vector of; at x,
and~|[p, z] the portion ofy from p to . Setl, = ds(p, z).

Sincex is a geodesic, the unit normal ¢fat a pointr € vy C S
is the same as the unit surface normalat =, and the curvature
of ~ is upper bounded by /p. It then follows from the Frenet
Formulas thaf|dt, /dl.|| < |n./p|| = 1/p. Hence we have that

1 le
It — ] =|\/ dtyns/ La, <t
y[p,x] ylp,z] P P

= sinié(t’;’tz) < é—;

Furthermore, let: - v denote the dot-product between vectors
andv. Then we have that

/tz tp dly :/Cosé(tz,tp) dl, = /(1 — 2sin? M)dzz
vy vy Y 2
12 &
2/ (1——I>dlI:l——
- 2p? 6p?

On the other hand, observe trfgttz -tp dl, measures the length
of the (signed) projection of along the direction,. That is,

/tw'tpdlw =(q—p) tp.
~
Hence we have that

d lp—qll > (g —p) -

l3
Il <d+—-— < d
S d+gs < d+

4d3

3p2 "

The last inequality follows from the fact thak 2d. This proves
the lemma. [ ]

Lemma 3.3 If a meshK (e, n)-approximatesS with e, < 0.1
then the following conditions hold:

(i) Forany pointk € K, d(k,S) < (% + en)p.
(ii) Forany pointz € S, d(z, K) < (¢ +en)p.
(i) ¢ : K — S'is a homeomorphism.

Proof:  To show (i), consider the B
figure on the right. Suppose the point
k is contained in the triangle € K
andp is any vertex oft. LetT), de-
note the tangent plane at Assume
that B and B’ are the two balls of
radiusp tangentially touching atp
on each side of},, and the centers
of B andB’ areo ando’, respectively.

Recall thatn, is the normal of the trianglé andn,, is the unit
surface normal of atp. SinceZ(n,,n:) < n, the angle between
T, and the plane passing througls smaller tham, implying that
the angle betweefi, and the line passing througik is at most).
Let = denote the projection df onT,,. We have that

[z —pl <k —pl <ep, and

Ik — || < |lp — k| sinn < enp.

Furthermore, observe that one of the segmentandzo’ must
intersectS. Assume without loss of generality that itis. SinceB
does not contain any point fro$, we have thatl(z, S) < ||z —yl|
wherey is the intersection betweerv and B. This implies that

d(z,8) < /p*+llz—pl?—p < .

Sinced(k, S) < ||k — z|| 4+ d(z, S) by the triangle inequality, Part
(i) then follows.

We now show claim (iii), and claim (ii) follows easily from (i)
and (iii). Note that by (i), does not intersect the medial axis of
S. Hence the map is well-defined and actually continuous. Since
K is compact, to show (iii), it suffices to show thats bijective.



First, assume thap is not injective, and Ny
it maps two pointsk, k' € K to the same S
point, sayx € S. In this case, bottt andk’ Y

are on the lind passing through in direc-
t ;u

tion n,. Without loss of generality, assume
that k£ and k&’ are two consecutive intersec-
tion points betweert and K. Lett and¢’ be the triangles that

containk andk’, respectively. See the right figure for an example.

By (i), we have that bottj{k — x|| and||k¥" — z|| are upper-bounded
by (¢* + en)p.

Consider any vertey of t. We have thafjz — p|| < ||z — k| +
Ik — pll (e + &2 4 en)p, by triangle inequality. Since both
x andp are inS, we have that/ (n,,n,) < 2¢ by Lemma 3.1. It
then follows that

Z(ng,ny) andZ(ng,ny) < 2e+mn. )

The above equation implies that£ ¢', as otherwise] lies in
the plane passing throughand as such’(n,,n:) = 7/2, which
is not possible. Sincé and k’ are two consecutive intersection
points betweenl, and K, n, must point to the inside of< at
one of these two points, say If k lies in the interior oft, then
Z(nz,nt) > w/2. Otherwisek is on the boundary of, in which
case/(ng,nt) > 7/2 — 2n because it follows from the definition
of (g, n)-approximation that the neighboring triangletdbrms an
angle of at mos®n with ¢. Either case contradicts Edn| (7) since
e,n < 0.1 by hypothesis. Hence we cannot have two such pdints
andk’ and the mag must be injective.

Finally, note that the image df under the map, ¢(K) C S,
is a compact surface as well. SinSeis connected, by Theorem
(7.6) [18], p(K) = S. It then follows thatp : K — Sis a
homeomorphism. [ |

3.2 Approximating Integrals on the Surfaces

Lemmd 3.3 implies that the medhi is close to the underlying
surfaceS both geometrically and topologically. Intuitively, quan-

tities defined onS are closely related to their analogs defined on

K (i.e, the pre-images undej). Indeed, consider an arbitrary but
fixed trianglet € K. Note that although the mapis not differen-
tiable on the entire domaif, its restriction to the interior of is

differentiable. We now present a result (Lemma 3.5) which states

that J(z), the Jacobianof the mapg at an interior pointc € ¢, is
close tol. First, for any pointz € ¢, let n, be the surface nor-
mal at¢(z); that is,n. = ne). We need the following lemma
from [6], saying that the rate that, changes as moves around in
t is bounded.

Lemma 3.4 Let K be a triangular mesh thaf, n)-approximates
S with e,7 < 0.1. Given any trianglet € K, for anyz in the
interior of ¢, and for any unit vectov in the plane passing through
t, we have that

Z(ﬁz+6v7ﬁx) < 1
T (=g’

I
(sll% 1

We now present our result on bounding the Jacobian of the map
¢. Note that by a nice differential geometric argument, Morvan an

Thibert [16] and Hildebrandit. al. [13] analyze the Jacobian of
when the meshed surfaéé is close toS under the Hausdorff dis-

tance and normal variation. A bound similar to that in Lemma 3.5
can be derived by combining Lemma 8.3 with their results. For

Lemma 3.5 Let K be a triangular mesh thaf, n)-approximates
S with e, < 0.1. For any pointz in the interior of an arbitrary
trianglet € K, we have that] (z)—1| < 2(2e+n)?. In particular,
this implies that the areas ¢f and K satisfies:

’ Area(S)

P )< 2,
Area(K) 1’ <202 +m)

Proof:  Let P be the plane where the triangldies, andT},,
be the tangent plane & at ¢(z). Seta denote the angle between
the planes” andT, .. Note that < 2¢ + n by Eqn (7). Easy to
see that there exists an orthogonal coordinate sy$tem) on P
such thatZ(u, Ty(,y) = aandZ(v, Ty(,y) = 0. Let ¢, () and
¢»(x) be the partial derivatives af at a pointz = (uo, vo) in the
interior of ¢, respectively. The Jacobiak{z) = J(uo,vo) of ¢ at

x then equals/EG — F?, whereE = ¢y, - ¢u, G = ¢y - ¢, and
F = ¢y do.

To boundp.,, consider the poing = (uo+ "= Ty
d,v0), whered is a real number. Note thatqj(m) !
by the choice of the direction, the angle
Z((y — x), Ty(s)) betweeny — x and the
planeTy,) is c. Let z be the projection |
point of y ontoT () andb be the projection  z
of ¢(y) onto the |Ineyz See the right figure. Sét= A(ﬁ -
note that) < -5 by Lemma 3.4. Sincés(y) — yl| < (¢

en)p by Lemmé:3 we have that

7gy):
+

2
I6() = bll = llé(y) — yllcos§ < =115

Now let B and B’ be the two balls of ra-
dius p that tangentially toucts at ¢(x). By
the definition of the reaclp, the surfaceS
has to lie outside these two balls.

First we show||z — b|| is of orders®. Let
z' be the projection of(y) ontoTs(,); ||z —
2'|| = ||#(y) — b]| is of orderd. Hence by triangle inequality,

lp(z) = 2'll < ll¢(x) — 2l + [lz — &'l

is of orders. Furthermore, sincé(y) has to lie in betweers and
B’, we can show thafjé(y) — 2’||, thus||z — b|, is of orders?.
Hence we have that:

i 12 =0 2= bl 4116 = ()
5—0 0] 5—0 0]
) ®
< e"+en
- 1—¢

By definition, VE = lims_.o Wﬂ”)w;l‘m)”. Consider the triangle
consisting of¢(z), ¢(y) andz. Since

l¢(z) — 2| = |ly — z|| = d cos
it follows from the triangle inequality and Eghn|(8) that

VE -1

52+5n
1—¢°

(1 —cosa)+

d Furthermore, letv,, be the angle between the vecters ¢(x) and

ou (i.e,0(y) — ¢(x)). We have for small enoughthat
: 1z — o)l e +en
= 6@ T (T-e)cosa’

completeness of the exposition we include an elementary geomet-Similarly, letw = (uo,vo + §) andz’ the projection ofw onto the

ric proof here.

planeTy .. Letaw, = Z((2' — ¢(x)), ¢»). Similar argument can



show that

2
VG -1 < Eltin and

. [l e’ +en

sina, < .
|z — ()] (I-¢)

Finally, observe that by the triangle inequal-
ity,
|£(Gus dv) —=7/2] < (0w + o).

Since|F| = VEG)| cos Z(¢u, ¢v)|, it follows that
VEG (1 —cos® Z(¢u, b)) < VEG—-F? < VEG

and the lemma follows from the bounds derived forG, a.,, a,.
|

3.3 Proof of Theorem2.5

We now prove one of our main results on approximating inte-
gral on a meshed surface. Let: S — IR be a function de-
fined onS. We wish to approximate the integrgl, g(z) dv(x)
using the valueg(v) at verticesv of the meshK. Specifically,
we construct a discrete version of the integfglgdu by setting

Ikg = > ,cx Ar;at(t) > vev ) 9(v), wheregt is the number of
vertices in the face (3 for a triangulation). Each face of the mesh

whereL = Lip(g) is the Lipschitz constant gf. This implies that

/9(<25(u7 v)) — g(p) dudv| < 2pLeAreaf(t).

t

Combining it with Eqn[(9) and noticing thatis an arbitrary vertex
of ¢, we have that

/ gdv — kg
s

Since by Lemma 315, we have thatea(K) < 1.5Area(S). This
thus proves the first part of Theorem 2.5.

< 2pLeArea(K) + 2(2¢ 4 n)*Area(K) || g/l

Second part of Theorem 2.5In the case when we have a triangu-
lar mesh and the functionis twice differentiable, this analysis can
be improved to show higher-order convergence. Below we provide
a sketch of the proof.

Consider a twice-differentiable functidn: ¢ — IR on a triangle
t € K, and letp, ¢, r be the vertices of. As above, let: = (u,v)
be an orthonormal coordinate system on the plane @onsider
the unique linear functiof(z) defined on the plane of the triangle,
s.t. l(ﬁ = h(p),l(q) = h(q),l(r) = h(r). The first observation
is tha

/l(u,v)dudv = %(h(p) + h(q) + h(r))Area(t).

t
Now without loss of generality assume thais the originO of

contributes the amount equal to its area multiplied by the average ihe coordinate system and thiatp) = 0 (additive constants will

value of its vertices. It can be shown that, for a triangular mesh, the ot change the computation). Let= (

ui,v1),r = (u2,v2).

above discretization of the integral is the same as the one obtainedgincej s a linear function, straightforward calculations show that

by intepolating a functior linearly on each triangle.

First part of Theorem We prove Theorem 2.5 via the map

¢. Since¢ is a homeomorphism, the set of surface mesh faces

{#(t),t € K} partitions the surfacé. Therefore from the change
of variable formula we have

/S CLICEDY /¢ S

=3 [ ato(w )3t o) duds,

te K

where(u, v) is any orthogonal coordinate system on the plane pass-

ing through the face. It then follows from Lemma 3.5 that

9(d(u,v)) dudv

‘ / g(@) dv(a) - 3

tek V't

9)

IA

Z g(op(u,v))2(2 + 77)2 dudv

tek /'t

< 2(2¢ +n)*Area(K)| gl

On the other hand, for any vertgxof ¢ and any pointz =
(u,v) € t, we have thaf|p — z|| < ep by definition of (¢, n)-
approximation. It then follows from Lemma 3.3 (i) and the triangle
inequality that

lp = é()|| < (e +&* +enp.

Sincee,n < 0.1, we have thatls (p, ¢(z)) < 2ep by Lemma 3.2.
Therefore

lg(@(x)) — g(p)| < 2pLe,

v\ (h(g)
V2 h(r)) -
Writing the Taylor expansion foh with a quadratic remainder

term, and recalling thdi(0) = 0, we have that
|h(u,v) — hu(0)u — hy ()] < H(u2 + v2),

I(u,v) = (u v) (“1

u2

(10)

whereH is maximum of the norm of the Hessian/obn the trian-

gle, andh,, (resp. h,) is the partial derivative of alongu (resp.

v). Now based on the observation that the function value of a linear
function inside a triangle is bounded by the sum of its (absolute)
values on the vertices, and that the length of each sidei®fat
mostep, it can be shown that

[1(u; v) — ko (0)u — hy (0)v| < 4H (ep)? .
Combining this with Eqn (10) leads to that
|h(u,v) — l(u,v)| < 5H(ep)>.

Finally, seth(z) = g(¢(u,v)). Note thatp is infinitely differen-
tiable outside of the medial axis. Thus by a standard compactness
argument, the second derivativeg@fand thus of;(¢(z, y)) (from
the chain rule), is bounded. Hence

|9(u,v) = I(u,v)| < CHE?,

whereC' is some constant depending on the geometrg.ofnte-

grating, and using Eqn (9) we obtain

gdv —Ixg| < CHe*Area(K)+2(2¢+n)*Area(K)|| gl
s

We remark that this implies that, for a triangular mesh, we have
Ixg = [ g, where the integral is taken over the mesh (considered as
a piece-wise linear manifold) argdis a (unique) piece-wise func-
tion obtained by linearly interpolating the valuesgadn vertices of
each triangle to the interior oft.



SinceArea(K) < 1.5Area(S), the second part of Theorém 2.5
then follows.

4. DISCRETE LAPLACE OPERATOR

5. EXPERIMENTS

In this section, we apply our algorithm of computing the mesh
Laplacian to different surfaces and show its convergence as the
mesh becomes finer. One currently widely used mesh Laplace

We now show our main result (Theorém 2.1) which states that the Operator is theotangent(CoT)n schemeoriginally proposed by
mesh Laplacian approximates the surface Laplacian well. We first Pinkall and Polthier [19]. We compare our algorithm with its modi-

prove Theorem 2.3; that is, given a mekh(e, n)-approximating
a surfaceS, for any pointw € S, the difference between the
mesh and the functional Laplace operatd#$ f(w) — L’ (w)| is
bounded, and converges to zerosaandn go to0. Theorem 2.1
then follows from this theorem and Theorem 2.4.

2
Proof of Theorem(2.3. First, sety(z) = ze™ e 2wl
f(w)). Comparing Eqn (2) and Eqnl(1), we obtain that

Lief () ~Fhf)| = | [ adv 1o

By (the first part of) Theorem 2.5, to bound the above quantity, it
suffices to bound|g||- and the Lipschitz constartip(g) of g.
Easy to verify that||g||cc < 57z[/fll. ForLip(g), sincef,

x) —

(11)

and thusg, is C*-continuous, it is upper bounded Bly)'||
sup,cg ||¢'(z)]]. Notice thaty’ () is a map from the tangent space
T, to R. By definition, ¢’(z)(v) = Vsg(z) - v for any vector

v € T, and hencd|g'(z)|| = [|[Vsg(z)|]. On the other hand, it is
easy to verify that

flz—

T ||+ Vs (@),

IVsg(@)l| <

1
2 0o * -
7 @l - [1Vse
SinceS is a surface embeddediR® with the induced Riemannian
metric, it holds that

2 2
|z —w]| ||z —w]|
h

[Vsem || < [Vgrse™ 7 ||

llz—w|? 1

T lz —wll/(2h) < N

where the last inequality holds @$ey2 < 1 for any real number
y. It then follows that

=€

1 <2|\f|\oo
dwh?* /b

Combining with Theorem 2|5, and putting everything together, we
conclude with Theorem 2.3.

19'lle = IV sg(2)]| < 1 lloe)-

Proof of Theorem 2.1. Now let K. ,, denote arfe, )-approximation
of S with ¢, < 0.1, andh(e, n) an appropriate constant depend-
ing one andn. We have that for any point € S,

Ly f(w) = Asfw)] < [LIEP f(w) = FEE f(w)|

e,m &,m

4 ‘Fg(sm)f(w) _ Asf(w)‘ .

By choosingh(e, n) = eTHFE 4 nﬁ, wherea > 0 is an arbi-
trary fixed positive number, it follows from Theorém 2.3 that

LiE? fw) = Asf(w)] < O(E7) + 0(n777)

+F" f(w) = Asf(w)]

The big-O notation above hides terms linear in the axsay(.S),
the reachp(S), |||l and||f'|l«~. On the other hand, the limit
limy o [FA™ f(w)—As f(w)| = 0 by Theorem 2.4([8]). Hence
by taking the limit, we see théitm. ,,_.o L?((:j:)f(w) = Asf(w),
which proves Theorem 2.1.

fied version [15, 25], which produces better results than the original
method. Our experiments show that the1Gcheme does not pro-
duce convergence for functions other than linear functions, while
our method, in addition to exhibiting convergence behavior, is also
much more robust with respect to noisy data.

Experimental setup. To analyze the convergence behavior, we
need the “ground truth”, that is, we need to know the Laplace-
Beltrami operator for the underlying surface approximated by in-
put meshes. This somewhat limits the type of surfaces that we can
experiment with. In this paper, we consider two types of surfaces:
planar surfaces and spherical surfaces.

For the planar surface, we uniformly sample the redien, 1] x
[—1, 1] with different density, and construct the Delaunay triangu-
lation for the resulting sample points. For the spherical surface,
we sample a unit sphere, either uniformly or non-uniformly, with
different density, and then use the COCONE software [5] to gen-
erate the triangular meshes. The goal of the non-uniform sampling
is to create “bad” meshes, such as those with skinny triangles and
triangles of different sizes. We also produce noisy data from the
uniform sampling of the sphere, by perturbing each sample point
randomly by a small shift. Some examples of these three types of
spherical meshes are shown in Figure 1.

uniform with noise

Figure 1: Meshes for spherical surface with 500 sample points
and 8000 sample points.

Error measure. Given a meshik approximating a surfacé and
an input functionf : S — IR, we evaluate the surface Laplacian
and the mesh Laplacian at each of thgertices of K, and obtain



two n dimensional vector&’ and 7 , respectively. To measure the Mgg‘fd 058g8 g%%% g%(i% %)6833
error between the mesh Laplacian and the surface Laplacian, we OUR 10606 10142 100341 0.017
consider the commonly used normalizéd error E; = ”lﬁ;ﬁé”?. =z

We remark that our theoretical result is that our mesh Laplacian Cot [ 0.1717] 0.157] 0.158] 0.155
converges under the., norm(i.e, point-wise convergence), which Our [0.488] 0.115] 0.013] 0.005
is a stronger result than thie;-convergencéas L..-convergence =z’

implies Ly-convergence for compact spaces). Such convergence Cor ]0.124]0.101] 0.102] 0.099
is indeed observed for all types of meshes that we have conducted Our | 0.613] 0.140] 0.028] 0.015
experiments on. However, since th@Cscheme does not show f = exp(z)

any convergence under tle, error metric, we will mainly show
results under thé, error metric from now on — our method com-
pares even more favorably under the, error. We will show re-
sults under thd . error for one data set (Takle 3), and the perfor-
mances over other data sets are similar.

Table 2: Normalized L, error for spherical meshes with uni-
form sampling.

Method | 500 | 2000 | 8000 | 16000
Cot [ 0.229] 0.185] 0.083| 0.062

. . 5 OUR 2.0971 0.492] 0.081 0.037
Results for planar surface. Given a functionf : IR — IR on the T=2z

plane, its surface Laplacian is simplxg: f(z,y) = g%ﬁ + giy;. Cotr [ 1.147]1577]1.478] 1.375
Specifically, Ag2 f(z,y) = 0 if fis a linear function. It turns Our | 2.915] 0.838] 0.062] 0.025
out that the ©T1 scheme produces exactlyfor a linear function

on a planar mesh. Hence we compare the mesh Laplacians for two
non-linear functions:f(x,y) = z* and f(z,y) = ¢”™¥. The Our | 4.000 0'87_3 0.112] 0.054
results under the normalizefh, error metric are shown in Table J = exp(z)

1. For both functions, for different values of the paraméieour Table 3: Normalized L., error for spherical meshes with uni-
method always presents convergence behavior; while finer mesh¢grm sampling.

does not lead to lower approximation error by thetGscheme.
Note that we obtain better approximation even when the number
of sample points is small (500). Since different valued ahow
similar behavior, from now on, we fix the parametet/at= 0.04.

2

f=x
CoT 0.7987] 0.887] 0.928] 0.849

constructed from points non-uniformly sampled from the unit sphere.
The error obtained for both methods are fairly similar to that on the
regular mesh (as reported in Tablés 2 ahd 3).

Mgg]'l'o c Pr?é?]m 05220 g %g% g %%% %)6389 Finally, in Tablé 4, we show how our method and thetGcheme
ZR=0.011 0.450 1 0.146 1 0.0401 0.022 perform for noisy data. Note that even though therGcheme has
OUR [Z4h=0.04] 0.126] 0.038] 0.010[ 0.005 been proven to converge for linear functions on a sphere, once the
4h=0.09] 0.069| 0.017| 0.004| 0.00Z mesh becomes noisy, such convergence behavior is lost; while the
f=a° approximation error by our algorithm stays almost the same as be-
Cot non 0.1987] 0.188] 0.190] 0.202 fore. This is not too surprising as our scheme considers a much
4nh=0.01] 0.875] 0.128] 0.055| 0.027 larger neighborhood thand3 scheme when evaluating the mesh
Our  [14h=0.0410.189] 0.037] 0.0227 0.016 Laplacian at a point, which has the “smoothing” effect. However, it
4h=0.09] U.099] 0.033] 0.027] 0.025 is not clear how to extend@r scheme to incorporate larger neigh-
f = exp(z +y) borhood than its current one-ring neighborhood.
Table 1: Normalized L- error for planar mesh. We show the
results of our method with there different i values. Method | 500 | 2000 | 8000 | 16000

Cot 0.398] 1.532[ 3.015| 0.936
OUR 0.599[ 0.155| 0.051| 0.022
[=z
Cot 0.267] 0.914] 1.840| 0.545
OUR 0.4841 0.128| 0.028| 0.006

Spherical surfaces. Given a functionf : S?> — IR defined on
the unit spher&?, wheref is parametrized by the spherical coor-

dinatesy and¢, its spherical surface Laplacian is: =22
1 9,. ,0f 1 8*f Cotr [0.308] 1.271] 2.631| 0.817
B2 f(0.0) = G556 (500%5) T srgag OUR [ 0.612 oflisexg.(%s 0.018

Xu [25] proved that his modification of thed@ scheme can pro-
duce convergent result for linear function defined on spheres. In- Table 4: Normalized L error for the experiments on the sphere
deed, this is observed in our experimental results as shown in Tablewith noise.

[2, where we also compare the mesh Laplacians for two non-linear

functions f(z,y, z) = z* and f(z,y,z) = €° for a uniformly

sampled spherical mesh. However, while our method converges forRemark. Finally, we remark that we have also compared our mesh
all the three functions, the @ scheme only converges under the Laplacian with the graph Laplacian. Graph Laplacian has been
linear function. In Table 3, we also show the approximation error shown to converge fapoints randomly sampled from the uniform

of the two mesh Laplacians under the, error metric. Note that distribution on the underlying manifol@], which is also observed
compared to the case of normalizég error, the numerical values  in our experiments when points are randomly sampled. However,
of L. error can be big, as it is the absolute error and not normal- our mesh Laplacian produces consistently smaller errors. For non-
ized. uniformly sampled meshes, graph Laplacian is not expected to con-

We also test the 6T scheme and our mesh Laplacian for meshes verge to the surface Laplacian.



6. CONCLUSIONS remeshing. I'BIGGRAPH '02: Proceedings of the 29th

In this paper, we have developed the first algorithm for approx- annual conference on Computer graphics and interactive
imating the Laplace operator on a meshed surface with point-wise techniquespages 347-354, New York, NY, USA, 2002.
convergence guarantee. Such convergence is required in many ap- ~ ACM Press.
plications, where quantities, such as mean curvature, need to be [4] N. Amenta and M. Bern. Surface reconstruction by voronoi
estimated at each node of the mesh. The convergence result does filtering. Discr. Comput. Geom22:481-504, 1999.
not require the aspect ratio of mesh elements to be bounded. Ex- [5] N. Amenta, S. Choi, T. K. Dey, and N. Leekha. A simple

perimental results show that our algorithm indeed exhibits conver- algorithm for homeomorphic surface reconstruction.
gence empirically, and outperforms current popular methods both Internat. J. Comput. Geom. & Applicationk2:125-141,
in accuracy and in its robustness with respect to noisy data. To 2002.

provide theoretical analysis of our algorithm, we also established a [6] N. Amenta and T. K. Dey. Normal variation with adaptive
general result to compare integrals over a smooth surface and their feature size.

discretization on a mesh. http://www.cse.ohio-state.edtamaldey/papers.htmP007.
In conclusion we would like to make several points about differ- [7] M. Belkin and P. Niyogi. Laplacian eigenmaps for

ent aspects of our algorithm and future directions. dimensionality reduction and data representatiteural
Adaptivity. The algorithm as stated can be easily adapted to the Computation 15(6):1373-1396, 2003.

size of the mesh. For example a sensible heuristic is to/takee [8] M. Belkin and P. Niyogi. Towards a theoretical foundation

a multiple (say;3) of the average edge length at a point. However, for laplacian-based manifold methods. @OLT, pages

our analysis is not yet adapted to the local feature size. It seems 486-500, 2005.

promising to develop a version of Theorem 2.3 and Theorem 2.5 9] | pemanet. Painless, highly accurate discretizations of the

using the local feature size. It may be more difficult to develop an laplacian on a smooth manifold. Technical report, Stanford

adaptive version of Theorém 2.4 as somewhat subtle analysis of the University, 2006.

hea; kerne! on a;urface may b.e nee(.jed.. . [10] M. Desbrun, M. Meyer, P. Schréder, and A. H. Barr. Implicit
Higher dimensions.The algorithms in this paper can be straight- fairing of irregular meshes using diffusion and curvature

forwardly modified to work with high dimensional meshes or sim- flow. Computer Graphics33(Annual Conference

plicial complexes. It seems that the analogues of Theprem 2.5 and Seriés)'317—324 1999

Theorem 2.1 will hold. However the exact conditions are likely to : ' )

be different and the proofs may need to be significantly modified.
Orientability and boundary. The orientability condition and

no-boundary condition, although necessary for our current proof

seems to be not essential. One future direction is to extend our

results to non-orientable surfaces and/or surfaces with boundary.[12]

Note that our current results hold for interior points of a surface ACM SIGGRAPH 2006 Papersages 1057—1066, New

with boundary. - '
Noisy data. Due to the averaging nature of the mesh Lapla- York., NY, USA, 2006. AQM Press.

cian, the method seems to demonstrate good stability with respect13] K. Hildebrandt, K. Polthier, and M. Wardetzky. On the

[11] T. K. Dey.Curve and Surface Reconstruction: Algorithms
with Mathematical Analysis (Cambridge Monographs on
Applied and Computational Mathematic€ambridge
University Press, New York, NY, USA, 2006.

S. Dong, P.-T. Bremer, M. Garland, V. Pascucci, and J. C.
Hart. Spectral surface quadrangulationSliGGRAPH '06:

to noise in the input mesh, as shown in our experiments. However, convergence of metric and geometric properties of
theoretical analysis for this case still needs to be developed. polyhedral surfaceszeometriae Dedicatel 23(1):89-112,
Point clouds. Another future direction is the analysis of point December 2006.

clouds, where no mesh is given. A particular interesting case is [14] U. F. Mayer. Numerical solutions for the surface diffusion

when intrinsic dimension of the manifold is much small than the flow in three space dimensiormput. Appl. Math

dimension of the ambient space, and we wish that our algorithm 20(3):361-379, 2001.

depends on the intrinsic dimension. This direction seems to have[15] M. Meyer, M. Desbrun, P. Schroder, and A. H. Barr. Discrete

interesting connection with the body of work on surface reconstruc- differential geometry operators for triangulated 2-manifolds.

tion (see, e.g. [11]). We note that [7] also deals with reconstructing In Proc. VisMath’02 Berlin, Germany, 2002.

the Laplace operator from point clouds. However the probabilistic [16] J.-M. Morvan and B. Thibert. Approximation of the normal

nature of data in machine learning allows one to use large devi- vector field and the area of a smooth surfd2iscrete &

ations methods, while in surface reconstruction, the probabilistic Computational Geometr2(3):383-400, 2004.

assumption cannot usually be made. [17] P. Niyogi, S. Smale, and S. Weinberger. Finding the
homology of submanifolds with high confidence from

Acknowledgement:  The authors would like to thank anony- random samplediscrete and Computational Geometry

mous reviewers for helpful feedbacks. This work was supported in 2006.

part by the Department of Energy (DOE) under grant DE-FG02- [18] B. O’Neil. Elementary Differential Geometrjcademic
06ER25735, DARPA under grant HR0011-05-1-0007 and by the Press, New York, NY, USA, 1966.
National Science Foundation under grants CCF-0747082 and 11S-[19] U. Pinkall and K. Polthier. Computing discrete minimal

0643916. surfaces and their conjugat&xperimental Mathematics
2(1):15-36, 1993.
7. REFERENCES [20] S. Rosenberglhe Laplacian on a Riemannian Manifold: An
. ) ) o . Introduction to Analysis on Manifold€ambridge University
[1] Discrete differential geometry: An applied introduction. Press, 1997.

SIGGRAPH 2005/ 200_6 cogrse notes. ) [21] O. Sorkine. Differential representations for mesh processing.
[2] Convgrgence of Laplacian Eigenmaps. Prepr_lnt, 2008. Computer Graphics Forun®25(4):789-807, 2006.
[3] P. Alliez, M. Meyer, and M. Desbrun. Interactive geometry



[22] O. Sorkine, Y. Lipman, D. Cohen-Or, M. Alexa, C. Rossl,
and H.-P. Seidel. Laplacian surface editingPoceedings
of the Eurographics/ACM SIGGRAPH Symposium on
Geometry Processingages 179-188. ACM Press, 2004.

[23] G. Taubin. A signal processing approach to fair surface
design. INSIGGRAPH '95: Proceedings of the 22nd annual
conference on Computer graphics and interactive techniques
pages 351-358, New York, NY, USA, 1995. ACM Press.

[24] M. Wardetzky. Convergence of the cotangent formula: An
overview. In A. |. Bobenko, J. M. Sullivan, P. Schréder, and
G. Ziegler, editorsDiscrete Differential Geometrypages
89-112. Birkh&user, to appear.

[25] G. Xu. Discrete laplace-beltrami operators and their
convergenceComput. Aided Geom. De21(8):767—-784,
2004.

[26] G. Xu. Convergence analysis of a discretization scheme for
gaussian curvature over triangular surfacgsmput. Aided
Geom. Des.23(2):193-207, 2006.

[27] K. Zhou, J. Huang, J. Snyder, X. Liu, H. Bao, B. Guo, and
H.-Y. Shum. Large mesh deformation using the volumetric
graph laplacianACM Trans. Graph.24(3):496-503, 2005.



	Introduction
	Algorithm and Overview of the Results
	Mesh Laplacian Algorithm
	Objects and Notations
	Overview of the Main Results
	Functional approximation of the Laplace-Beltrami operator

	Properties of Meshed Surfaces
	Closeness Between S and K
	Approximating Integrals on the Surface S
	Proof of Theorem 2.5

	Discrete Laplace Operator
	Experiments
	Conclusions
	References

