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ABSTRACT
In recent years a considerable amount of work in graphics and ge-
ometric optimization used tools based on the Laplace-Beltrami op-
erator on a surface. The applications of the Laplacian include mesh
editing, surface smoothing, and shape interpolations among others.
However, it has been shown [13, 24, 26] that the popular cotan-
gent approximation schemes do not provide convergent point-wise
(or evenL2) estimates, while many applications rely on point-wise
estimation. Existence of such schemes has been an open ques-
tion [13].

In this paper we propose the first algorithm for approximating
the Laplace operator of a surface from a mesh with point-wise con-
vergence guarantees applicable to arbitrary meshed surfaces. We
show that for a sufficiently fine mesh over an arbitrary surface, our
mesh Laplacian is close to the Laplace-Beltrami operator on the
surface at every point of the surface.

Moreover, the proposed algorithm is simple and easily imple-
mentable. Experimental evidence shows that our algorithm exhibits
convergence empirically and compares favorably with cotangent-
based methods in providing accurate approximation of the Laplace
operator for various meshes.

Categories and Subject Descriptors
G.2 [Mathematics of Computing]: Discrete mathematics

General Terms
Algorithms, Theory, Experimentation

Keywords
Laplace-Beltrami operator, Surface mesh, Approximation algorithm

1. INTRODUCTION
A broad range of topics in geometric modeling and computer

graphics is concerned with processing two-dimensional surfaces in
a three-dimensional space. These surfaces are typically represented
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by a mesh, which is given by the coordinates of its vertices and
the connectivity information. Thus, manipulating, deforming and
analyzing meshed surfaces is a crucial area within these subjects,
with the usual implicit assumption that processing of a mesh corre-
sponds to analogous processing of the underlying surface.

In recent years a class of methods based on discrete differen-
tial geometry of surfaces [1] and the discrete Laplace operator has
been used for various tasks of geometric processing. For exam-
ple, the state-of-the-art report on Laplacian Mesh Processing [21]
discusses surface reconstruction, mesh editing, shape representa-
tion and shape interpolation among other applications of Laplacian-
based mesh processing methods. Such applications of the Lapla-
cian can be found in [3, 10, 12, 22, 23, 27] among others.

The Laplace-Beltrami operator (manifold Laplacian) is a funda-
mental geometric object associated to a Riemannian manifold and
has many desirable properties. The Laplacian can be used as a
smoothness penalty to choose functions varying smoothly along the
manifold [23] or to smooth the surface itself via themean curvature
flow [10], which is determined by applying the Laplace operator to
coordinate functionsx, y, z considered as functions on the surface.
Moreover, eigenfunctions of the Laplacian form a natural basis for
square integrable functions on the manifold analogous to Fourier
harmonics for functions on a circle (i.e. periodic functions). There-
fore, computing eigenfunctions of a Laplacian allows one to con-
struct a basis reflecting the geometry of the surface [12]. Finally,
the Laplace operator is intimately related to diffusion and the heat
equation on the surface, and is connected to a large body of classi-
cal mathematics, relating geometry of a manifold to the properties
of the heat flow (see, e.g., [20]).

Several discretizations of the Laplacian for an arbitrary mesh
have been proposed [9, 10, 14, 19, 23, 25]. Most of the pro-
posed methods are variants of thecotangent scheme[19], which
is a form of the finite element method, applied to the Laplace oper-
ator on a surface. Suppose we have a surface with a fine mesh. We
expect that the discretization computed from such a mesh would
be an accurate representation of the underlying surface Laplacian.
However, a detailed theoretical analysis of existing discretizations
in [25, 26] shows that while point-wise convergence can be estab-
lished for special classes of meshes, such as certain meshes with
valence6, or for linear functions over a sphere inR

3, none of these
methods can be expected to converge for surface meshes in gen-
eral, a finding, which is borne out by experimental results in Sec-
tion 5 and [26]. A notable recent work is [13, 24], where the au-
thors analyze convergence of various geometric invariants, includ-
ing Laplace-Beltrami operators. They apply their analysis to the
popular cotangent scheme showingweak convergence(in the dis-
tribution sense) for the solution of the Dirichlet’s problem, assum-
ing the aspect ratio of mesh elements is bounded. The authors also



demonstrate that under the cotangent scheme, convergence inL2

(which is weaker than point-wise convergence) does not generally
hold.

The results presented in our paper provide the first discretization
scheme that guarantees convergence at each point (i.e,L∞ and thus
alsoL2 convergence). Moreover, by using some recent results [2],
it can be shown that convergence of eigenfunctions also follows.

We note that whileL∞ convergence is required in many applica-
tions, where various quantities, e.g., mean curvature, need to be es-
timated at each node of the mesh, the construction of such a scheme
is not trivial. For example, in [13] (Section 4.3.2) the authors con-
jecture that no such discretizations may exist.

We summarize the contributions of the paper as follows:

1. We propose a simple method for approximating integrals over
a surface using a mesh and analyze the quality of the result-
ing approximation in terms of the parameters of the surface
and the mesh.

2. Combining the integral approximation results with the idea
of approximating the heat flow on a mesh, we present and an-
alyze the first algorithm for approximating Laplace-Beltrami
operator on a surface with point-wise convergence guaran-
tees for arbitrary meshes.

3. The resulting algorithm is simple and straightforward to im-
plement. We provide experimental results showing that it
outperforms the cotangent scheme in approximation quality
and robustness to noise.

We note that the algorithm for computing the surface Laplacian
is related to the set of algorithms for computing Laplacian of point
clouds in data analysis and machine learning [7, 8] by using the
heat equation. We observe that in machine learning, the samples
are usually believed to be drawnindependentlyfrom a probabil-
ity distribution and the convergence occurs in probability. On the
other hand, in surface modeling, the nodes of a mesh are typically
not sampled independently from a probability distribution but are
generated by some deterministic process, e.g. scanning. Hence in
the case of mesh Laplacian, approximation guarantees need to be
made forall sufficiently fine meshes, and probabilistic techniques
based on the law of large numbers (usually used in the case of ran-
domly sampled point clouds) cannot be applied.

2. ALGORITHM AND OVERVIEW OF THE
RESULTS

2.1 Mesh Laplacian Algorithm
We start by describing our algorithm for computing the Laplace

operator on a meshed surface. LetK be a mesh inIR3. We denote
the set of vertices of the meshK by V . Given a face, a mesh, or a
surfaceX, let Area(X) denote the area ofX. For a facet ∈ K,
the number of vertices int is denoted by#t, andV (t) is the set of
vertices oft.

Our algorithm takes a functionf : V → IR as input and pro-
duces another functionLh

Kf : V → IR asoutput. Lh
K , themesh

Laplace operator, is computed, for anyw ∈ V , as follows:

Lh
Kf(w) =

1

4πh2

X

t∈K

Area(t)

#t

X

p∈V (t)

e−
‖p−w‖2

4h (f(p) − f(w))

(1)

Theparameter h is a positive quantity, which intuitively corre-
sponds to the size of the neighborhood considered at each point. In
many applications and for the theoretical analysis in this paperh is

taken to be independent of the pointw. However, in general,h can
be taken to be a function ofw, which will allow the algorithm to
adapt to the local mesh size.

The theoretical results in this paper show that whenK is a suffi-
ciently fine mesh of a smooth underlying surfaceS, Lh

K is close to
the surface Laplacian∆S (the formal definition will be introduced
shortly). Indeed, our preliminary experimental results demonstrate
the converging behavior of this operator, and show that our algo-
rithm outperforms currently available discrete Laplace operators in
the approximation quality.

In the remainder of this section, after introducing necessary no-
tations, we give an outline of the theoretical results, which also
explains the derivation of this algorithm.

2.2 Objects and Notations

Surface Laplace operator∆S . In this paper, we consider a smooth
compact2-manifold S without boundary isometrically embedded
in some Euclidean spaceIR3 with geometry induced by the embed-
ding. (Note that any such surface is necessarily orientable.) The
correspondingvolume form, denoted byν, determines the area of a
surface element. We assume thatS is connected — surfaces with
multiple components can be handled by applying our results in a
component-wise manner.

Given a twice continuously differentiable functionf ∈ C2(S),
let ∇Sf denote the gradient vector field off on S. The Laplace-
Beltrami operator∆S of f is defined as the divergence of the gra-
dient; that is,∆Sf = div(∇Sf). For example, ifS is a domain in

IR2, then the Laplacian has the familiar form∆IR2f = ∂2f

∂x2 + ∂2f

∂y2 .

Functional Laplacian Fh
S . To connect the mesh Laplace operator

Lh
K , as defined in Eqn (1), with the surface Laplacian∆S , we need

an intermediate object, called thefunctional Laplace operatorFh
S .

Given a pointw ∈ S and a functionf : S → IR, it is defined as
follows:

Fh
Sf(w) =

1

4πh2

Z

x∈S

e−
‖x−w‖2

4h (f(x) − f(w)) dν(x). (2)

Definition of (ε, η)-approximation. We also need a quantitative
measure of how well a mesh approximates the underlying surface.
Let themedial axisM of S be the closure of the set of points inIR3

that have at least two closest points inS. For anyw ∈ S, thelocal
feature size atw, denoted bylfs(w), is the distance fromw to the
medial axisM . The reach(also known as the condition number)
ρ(S) of S is the infinum of the local feature size at any point inS.
At each pointp ∈ S, np denotes theunit outward normal ofS atp
and for each facet ∈ K, nt is the unit outward normal of the plane
passing throught.

In the paper, we assume that the vertices of the meshK lie on
the surfaceS. Let ρ be the reach ofS. We say thatK is an(ε, η)-
approximationof S, if the following conditions hold:

1. For a facet ∈ K, its diameter (maximum distance between
any two points ont) is at mostερ.

2. For a facet ∈ K and a vertexp ∈ t, the angle between
vectorsnt andnp, ∠(nt, np), is at mostη.

Intuitively, the first condition ensures that the mesh is sufficiently
fine. On the other hand, a very fine mesh can still provide a poor
approximation to the underlying surface, as, for example, is seen in
the Schwarz lantern. Thus the second condition is also necessary
to ensure the closeness betweenK andS.



In many cases, we work with triangular meshes. Note the ap-
proximation conditions do not require that the triangles inK are
well-shaped, for instance having small aspect ratio. However the
second condition can be implied if we assume that there exists at
least one angle whose sin is bounded from below for each trian-
gle [16], which is a much weaker condition than small aspect ratio.
Note that many surface reconstruction algorithms (see [11]) pro-
duce meshes that satisfy these conditions.

Our technical results use the analysis of the mapφ : K → S
defined as follows: For anyp ∈ K, φ(p) is defined as the closest
point top on the surfaceS. φ is well-defined whenK avoids the
medial axis ofS, which will be the case in our setting. The map
φ connects the meshK with the surfaceS, and is widely used in
analyzing surface reconstruction algorithms [4, 11], as well as in
approximating various quantities for smooth surfaces [13, 16].

2.3 Overview of the Main Results
Our main result is Theorem 2.1. Intuitively, as the mesh approx-

imating the surfaceS becomes denser, the mesh Laplace operator
onK converges to the Laplace-Beltrami operator ofS.

Theorem 2.1 Let the meshKε,η be an(ε, η)-approximation ofS.

Puth(ε, η) = ε
1

2.5+α + η
1

1+α for an arbitrary fixed positive num-
berα > 0. Then for anyf ∈ C2(S)

lim
ε,η→0

sup
Kε,η

‚‚‚L
h(ε,η)
Kε,η

f − ∆Sf
‚‚‚
∞

= 0 (3)

where the supremum is taken over all(ε, η) approximations ofS.

It is important to note that for a triangular mesh, we can obtain
the following corollary which says that the convergence result still
holds if we replace the second condition in(ε, η)-approximation
by requiring the triangles to be well-conditioned, which is an easily
verifiable condition.

Corollary 2.2 LetKε be a triangular mesh with all the vertices on
S and the diameter of each triangle less thanερ. In addition, let
s(t) = maxp∈V (t) sin(θp) whereθp is the angle of the trianglet
at vertexp, and assume thats(K) = mint∈Ks(t) is bound from

below by some constant. Puth(ε) = ε
1

2.5+α for an arbitrary fixed
positive numberα > 0. Then for anyf ∈ C2(S)

lim
ε→0

sup
Kε

‚‚‚L
h(ε)
Kε

f − ∆Sf
‚‚‚
∞

= 0 (4)

where the supremum is taken over all such triangular meshes.

Corollary 2.2 follows immediately from Theorem 2.1 and Corol-
lary 1 in [16] which sayssin ∠(nt, np) < ( 4

s(K)
+ 2)ε for any

trianglet ∈ K and anyp ∈ V (t). The proof of Theorem 2.1 it-
self relies on the following two results, connecting the mesh Lapla-
cian operator to the functional Laplace operator and the functional
Laplacian to the Laplace-Beltrami operator, respectively.

Theorem 2.3 Let K be an(ε, η)-approximation of the surfaceS,
and ε, η < 0.1. Given a functionf ∈ C1(S), let ‖f‖∞ =
supx∈S |f(x)|, ‖∇f‖∞ = supx∈S ‖∇f(x)‖ and ρ denote the
reach of surfaceS. We have that for any pointw ∈ S,

˛̨
˛Fh

Sf(w) − Lh
K(w)

˛̨
˛ ≤ Area(S)

πh2
„`

(1 +
2ρ√
h

)ε + 6εη + 2η2´
‖f‖∞ + ρε‖∇f‖∞

«
.

Theorem 2.4 (See [8])For a functionf ∈ C2(S), we have that
limh→0

‚‚Fh
Sf(w) − ∆Sf(w)

‚‚
∞

= 0.

It is easy to see that Theorem 2.1 follows from the two theorems
above. Theorem 2.4 was shown in [8], and provides an approxi-
mation to the Laplace operator based on heat diffusion. To make
it more transparent we give a brief outline of the ideas involved
below in Section 2.4. In the remaining of the paper, we focus on
the proof of Theorem 2.3. The proof relies on the following result
on approximating integrals over a surface, which is of independent
interest. LetdS(x, y) denote the geodesic distance between two
pointsx, y ∈ S.

Theorem 2.5 Given a Lipschitz functiong : S → IR, let L =
Lip(g) be the Lipschitz constant of function g, i.e.,|g(x)−g(y)| ≤
Lip(g)dS(x, y). Set‖g‖∞ = supx∈S |g(x)|. We can approximateR

S
gdν by the discrete sumIKg =

P
t∈K

Area(t)
#t

P
v∈V (t) g(v),

so that the following inequality holds:
˛̨
˛̨
Z

S

gdν − IKg

˛̨
˛̨ ≤ 3

`
ρLε + ‖g‖∞(2ε + η)2

´
Area(S). (5)

Moreover, suppose thatg is twice differentiable, with the norm
of the Hessian ofg bounded byH. Then, for some constantC,
depending only onS, the following inequality holds:
˛̨
˛̨
Z

S

gdν − IKg

˛̨
˛̨ ≤

`
CHε2 + 3‖g‖∞(2ε + η)2

´
Area(S) (6)

Note that the second part of the above theorem provides a higher-
order approximation, while the first part only requires the function
g to be Lipschitz.

Finally, we remark that by using some very recent results on the
convergence of Laplace spectrum [2], it can be shown that the dis-
crete eigenfunctions under this framework also converge to eigen-
functions of the Laplace-Beltrami operator ofS.

2.4 Functional approximation of the Laplace-
Beltrami operator

In this section we attempt to demystify Theorem 2.4 by explain-
ing the underlying idea for the functional approximation of the
Laplacian. The core of the approximation theorem lies in the con-
nection of the Laplace-Beltrami operator to the heat equation.

The heat equationon the surfaceS is the partial differential
equation

∆Su(x, t) =
∂u

∂t
(x, t)

The heat equation describes the diffusion of the initial heat dis-
tribution u(x, 0) at time t. To obtain an integral approximation
for the Laplace operator, we use a functional approximation tech-
nique from [7]. The approximation is based on the properties of
heat propagation with the initial distributionu(x, 0) = f(x). It
is well known (e.g., [20]) that the solution to the heat equation
u(x, t) can be written asu(x, t) =

R
S

Ht
S(x, y)f(y) dν(y), where

Ht
S(x, y) is theheat kernelof the surfaceS, i.e. the measure of

how much heat propagates fromx to y in time t. The quantityR
S

Ht
S(x, y)f(y) dν(y) can be thought of as the sum of all heat

coming to pointx from every other pointy after timet.
Thus the heat equation can be rewritten as follows:

∆Su(x, t) =
∂

∂t

Z

S

Ht
S(x, y)f(y) dν(y).



Taking the limit ast → 0 and recalling thatu(x, 0) = f(x) and
that

R
Ht

S(x, y) dν(y) = 1, yields

∆Sf(x) = lim
t→0

Z

S

Ht
S(x, y)f(y) dν(y) =

lim
t→0

1

t

„Z

S

Ht
S(x, y)f(y) dν(y) − f(x)

«
=

lim
t→0

1

t

Z

S

Ht
S(x, y) (f(y) − f(x)) dν(y)

For the case whenS is IRN the heat kernel can be written ex-
plicitly Ht

IR2(x, y) = 1√
(4πt)

exp
“
− ‖x−y‖2

4t

”
, yielding the func-

tional approximation in Eqn (2).
For a general manifold, the heat kernel cannot usually be written

explicitly. However the heat kernel can be shown to be close to a
Gaussian in the geodesic coordinates (e.g., [20]). By considering
the asymptotes of the heat kernel ast → 0, the result in Theo-
rem 2.4 can still be established (see [8]).

3. PROPERTIES OF MESHED SURFACES
In this section, we present several results on the relations be-

tween a smooth surfaceS and an(ε, η)-approximationK of S.
For simplicity of the exposition, we assume from now on thatK
is a triangular mesh. However the same analysis works verbatim
for arbitrary(ε, η)-approximation meshes. Letρ be the reach ofS,
andφ : K → S is the closest-point map introduced in Section 2.2.

3.1 Closeness BetweenS and K

Given any pointp ∈ IR3, let d(p, X) denote the smallest dis-
tance fromp to any point in the setX ⊂ IR3, andnp the unit
normal ofS atp. The following result from [6] bounds the surface
normal variation between nearby points.

Lemma 3.1 ([6]) Given two pointsp, q ∈ S with ‖p − q‖ ≤ ρ/3,
the angle betweennp andnq satisfies that∠(np, nq) < ‖p−q‖

ρ−‖p−q‖
.

We will later need the following result bounding the geodesic
distancedS(p, q) between two pointsp, q ∈ S, in terms of the
Euclidean distance‖p − q‖. Note that the differencedS(p, q) −
‖p − q‖ is of order3 in ‖p − q‖, which significantly improves the
quadratic bound from [17].

Lemma 3.2 Given two pointsp, q ∈ S, let d = ‖p − q‖ < ρ/2.

Then we have thatd ≤ dS(p, q) ≤ d + 4d3

3ρ2 .

Proof: Let γ be the shortest geodesic curve betweenp andq and
setl = dS(p, q). By Proposition6.3 in [17] we have thatl ≤ 2d.
For anyx ∈ γ, let tx = tx(γ) be theunit tangent vector ofγ atx,
andγ[p, x] the portion ofγ from p to x. Setlx = dS(p, x).

Sinceγ is a geodesic, the unit normal ofγ at a pointx ∈ γ ⊆ S
is the same as the unit surface normalnx at x, and the curvature
of γ is upper bounded by1/ρ. It then follows from the Frenet
Formulas that‖dtx/dlx‖ ≤ ‖nx/ρ‖ = 1/ρ. Hence we have that

‖tx − tp‖ = ‖
Z

γ[p,x]

dty‖ ≤
Z

γ[p,x]

1

ρ
dly ≤ lx

ρ

⇒ sin
∠(tp, tx)

2
≤ lx

2ρ
.

Furthermore, letu · v denote the dot-product between vectorsu
andv. Then we have that
Z

γ

tx · tp dlx =

Z

γ

cos ∠(tx, tp) dlx =

Z

γ

(1 − 2 sin2 ∠(tx, tp)

2
)dlx

≥
Z

γ

„
1 − l2x

2ρ2

«
dlx = l − l3

6ρ2

On the other hand, observe that
R

γ
tx ·tp dlx measures the length

of the (signed) projection ofγ along the directiontp. That is,
Z

γ

tx · tp dlx = (q − p) · tp.

Hence we have that

d = ‖p − q‖ ≥ (q − p) · tp ≥ l − l3

6ρ2

⇒ l ≤ d +
l3

6ρ2
≤ d +

4d3

3ρ2
.

The last inequality follows from the fact thatl ≤ 2d. This proves
the lemma.

Lemma 3.3 If a meshK (ε, η)-approximatesS with ε, η < 0.1
then the following conditions hold:

(i) For any pointk ∈ K, d(k, S) ≤ (ε2 + εη)ρ.

(ii) For any pointx ∈ S, d(x, K) ≤ (ε2 + εη)ρ.

(iii) φ : K → S is a homeomorphism.

p

np

Tp

k

x

o

y

B

B′Proof: To show (i), consider the
figure on the right. Suppose the point
k is contained in the trianglet ∈ K
andp is any vertex oft. Let Tp de-
note the tangent plane atp. Assume
that B and B′ are the two balls of
radiusρ tangentially touchingS atp
on each side ofTp, and the centers
of B andB′ areo ando′, respectively.

Recall thatnt is the normal of the trianglet andnp is the unit
surface normal ofS atp. Since∠(np, nt) < η, the angle between
Tp and the plane passing throught is smaller thanη, implying that
the angle betweenTp and the line passing throughpk is at mostη.
Let x denote the projection ofk onTp. We have that

‖x − p‖ ≤ ‖k − p‖ ≤ ερ, and

‖k − x‖ ≤ ‖p − k‖ sin η ≤ εηρ.

Furthermore, observe that one of the segmentsxo andxo′ must
intersectS. Assume without loss of generality that it isxo. SinceB
does not contain any point fromS, we have thatd(x, S) ≤ ‖x−y‖
wherey is the intersection betweenxo andB. This implies that

d(x, S) ≤
p

ρ2 + ‖x − p‖2 − ρ ≤ ε2ρ.

Sinced(k, S) ≤ ‖k − x‖+ d(x, S) by the triangle inequality, Part
(i) then follows.

We now show claim (iii), and claim (ii) follows easily from (i)
and (iii). Note that by (i),K does not intersect the medial axis of
S. Hence the mapφ is well-defined and actually continuous. Since
K is compact, to show (iii), it suffices to show thatφ is bijective.



nx

t
′

t

S

l

k

k
′

x
First, assume thatφ is not injective, and

it maps two pointsk, k′ ∈ K to the same
point, sayx ∈ S. In this case, bothk andk′

are on the linel passing throughx in direc-
tion nx. Without loss of generality, assume
that k andk′ are two consecutive intersec-
tion points betweenl and K. Let t and t′ be the triangles that
containk andk′, respectively. See the right figure for an example.
By (i), we have that both‖k− x‖ and‖k′ −x‖ are upper-bounded
by (ε2 + εη)ρ.

Consider any vertexp of t. We have that‖x− p‖ ≤ ‖x− k‖+
‖k − p‖ ≤ (ε + ε2 + εη)ρ, by triangle inequality. Since both
x andp are inS, we have that∠(nx, np) ≤ 2ε by Lemma 3.1. It
then follows that

∠(nx, nt) and∠(nx, nt′) ≤ 2ε + η . (7)

The above equation implies thatt 6= t′, as otherwise,l lies in
the plane passing throught and as such∠(nx, nt) = π/2, which
is not possible. Sincek andk′ are two consecutive intersection
points betweenL and K, nx must point to the inside ofK at
one of these two points, sayk. If k lies in the interior oft, then
∠(nx, nt) ≥ π/2. Otherwise,k is on the boundary oft, in which
case∠(nx, nt) ≥ π/2 − 2η because it follows from the definition
of (ε, η)-approximation that the neighboring triangle oft forms an
angle of at most2η with t. Either case contradicts Eqn (7) since
ε, η < 0.1 by hypothesis. Hence we cannot have two such pointsk
andk′ and the mapφ must be injective.

Finally, note that the image ofK under the mapφ, φ(K) ⊆ S,
is a compact surface as well. SinceS is connected, by Theorem
(7.6) [18], φ(K) = S. It then follows thatφ : K → S is a
homeomorphism.

3.2 Approximating Integrals on the SurfaceS

Lemma 3.3 implies that the meshK is close to the underlying
surfaceS both geometrically and topologically. Intuitively, quan-
tities defined onS are closely related to their analogs defined on
K (i.e, the pre-images underφ). Indeed, consider an arbitrary but
fixed trianglet ∈ K. Note that although the mapφ is not differen-
tiable on the entire domainK, its restriction to the interior oft is
differentiable. We now present a result (Lemma 3.5) which states
thatJ(x), theJacobianof the mapφ at an interior pointx ∈ t, is
close to1. First, for any pointx ∈ t, let n̂x be the surface nor-
mal atφ(x); that is,n̂x = nφ(x). We need the following lemma
from [6], saying that the rate that̂nx changes asx moves around in
t is bounded.

Lemma 3.4 Let K be a triangular mesh that(ε, η)-approximates
S with ε, η < 0.1. Given any trianglet ∈ K, for anyx in the
interior of t, and for any unit vectorv in the plane passing through
t, we have that

˛̨
˛̨ lim
δ→0

∠(n̂x+δv, n̂x)

δ

˛̨
˛̨ ≤ 1

(1 − ε)ρ
,

We now present our result on bounding the Jacobian of the map
φ. Note that by a nice differential geometric argument, Morvan and
Thibert [16] and Hildebrandtet. al. [13] analyze the Jacobian ofφ
when the meshed surfaceK is close toS under the Hausdorff dis-
tance and normal variation. A bound similar to that in Lemma 3.5
can be derived by combining Lemma 3.3 with their results. For
completeness of the exposition we include an elementary geomet-
ric proof here.

Lemma 3.5 Let K be a triangular mesh that(ε, η)-approximates
S with ε, η < 0.1. For any pointx in the interior of an arbitrary
trianglet ∈ K, we have that|J(x)−1| ≤ 2(2ε+η)2. In particular,
this implies that the areas ofS andK satisfies:

˛̨
˛̨ Area(S)

Area(K)
− 1

˛̨
˛̨ ≤ 2(2ε + η)2.

Proof: Let P be the plane where the trianglet lies, andTφ(x)

be the tangent plane ofS at φ(x). Setα denote the angle between
the planesP andTφ(x). Note thatα < 2ε + η by Eqn (7). Easy to
see that there exists an orthogonal coordinate system(u, v) on P
such that∠(u, Tφ(x)) = α and∠(v, Tφ(x)) = 0. Let φu(x) and
φv(x) be the partial derivatives ofφ at a pointx = (u0, v0) in the
interior of t, respectively. The JacobianJ(x) = J(u0, v0) of φ at
x then equals

√
EG − F 2, whereE = φu · φu, G = φv · φv and

F = φu · φv.

y
x

φ(x) φ(y)
z

θ

nx ny

ly

b
To boundφu, consider the pointy = (u0+

δ, v0), whereδ is a real number. Note that
by the choice of the directionu, the angle
∠((y − x), Tφ(x)) betweeny − x and the
planeTφ(x) is α. Let z be the projection
point ofy ontoTφ(x) andb be the projection
of φ(y) onto the lineyz. See the right figure. Setθ = ∠(n̂x, n̂y);
note thatθ ≤ δ

(1−ε)ρ
by Lemma 3.4. Since‖φ(y) − y‖ ≤ (ε2 +

εη)ρ by Lemma 3.3, we have that

‖φ(y) − b‖ = ‖φ(y) − y‖ cos θ <
ε2 + εη

1 − ε
|δ|

φ(x)

x y

φ(y)
b

z

B

B
′

Now let B andB′ be the two balls of ra-
diusρ that tangentially touchS at φ(x). By
the definition of the reachρ, the surfaceS
has to lie outside these two balls.

First we show‖z − b‖ is of orderδ2. Let
z′ be the projection ofφ(y) ontoTφ(x); ‖z−
z′‖ = ‖φ(y) − b‖ is of orderδ. Hence by triangle inequality,

‖φ(x) − z′‖ ≤ ‖φ(x) − z‖ + ‖z − z′‖
is of orderδ. Furthermore, sinceφ(y) has to lie in betweenB and
B′, we can show that‖φ(y) − z′‖, thus‖z − b‖, is of orderδ2.
Hence we have that:

lim
δ→0

‖z − φ(y)‖
|δ| ≤ lim

δ→0

‖z − b‖ + ‖b − φ(y)‖
|δ|

≤ ε2 + εη

1 − ε

(8)

By definition,
√

E = limδ→0
‖φ(x)−φ(y)‖

|δ|
. Consider the triangle

consisting ofφ(x), φ(y) andz. Since

‖φ(x) − z‖ = ‖y − x‖ = δ cos α,

it follows from the triangle inequality and Eqn (8) that

|
√

E − 1| ≤ (1 − cos α) +
ε2 + εη

1 − ε
.

Furthermore, letαu be the angle between the vectorsz −φ(x) and
φu (i.e,φ(y) − φ(x)). We have for small enoughδ that

sin αu ≤ ‖z − φ(y)‖
‖z − φ(x)‖ ≤ ε2 + εη

(1 − ε) cos α
.

Similarly, letw = (u0, v0 + δ) andz′ the projection ofw onto the
planeTφ(x). Let αv = ∠((z′ − φ(x)), φv). Similar argument can



show that

|
√

G − 1| ≤ ε2 + εη

1 − ε
and

sin αv ≤ ‖z − φ(y)‖
‖z − φ(x)‖ ≤ ε2 + εη

(1 − ε)
.

Finally, observe that by the triangle inequal-
ity,

|∠(φu, φv) − π/2| ≤ (αu + αv).

Since|F | =
√

EG| cos ∠(φu, φv)|, it follows that
√

EG (1 − cos2 ∠(φu, φv)) ≤
p

EG − F 2 ≤
√

EG

and the lemma follows from the bounds derived forE, G, au, av.

3.3 Proof of Theorem2.5
We now prove one of our main results on approximating inte-

gral on a meshed surface. Letg : S → IR be a function de-
fined onS. We wish to approximate the integral

R
S

g(x) dν(x)
using the valuesg(v) at verticesv of the meshK. Specifically,
we construct a discrete version of the integral

R
S

gdν by setting

IKg =
P

t∈K

Area(t)
#t

P
v∈V (t) g(v), where#t is the number of

vertices in the facet (3 for a triangulation). Each face of the mesh
contributes the amount equal to its area multiplied by the average
value of its vertices. It can be shown that, for a triangular mesh, the
above discretization of the integral is the same as the one obtained
by intepolating a functiong linearly on each triangle.

First part of Theorem 2.5. We prove Theorem 2.5 via the map
φ. Sinceφ is a homeomorphism, the set of surface mesh faces
{φ(t), t ∈ K} partitions the surfaceS. Therefore from the change
of variable formula we have

Z

S

g(x) dν(x) =
X

t∈K

Z

φ(t)

g(x) dν(x)

=
X

t∈K

Z

t

g(φ(u, v))J(u, v) du dv ,

where(u, v) is any orthogonal coordinate system on the plane pass-
ing through the facet. It then follows from Lemma 3.5 that

˛̨
˛̨
˛

Z

S

g(x) dν(x) −
X

t∈K

Z

t

g(φ(u, v)) dudv

˛̨
˛̨
˛

≤
˛̨
˛̨
˛
X

t∈K

Z

t

g(φ(u, v))2(2ε + η)2 dudv

˛̨
˛̨
˛

≤ 2(2ε + η)2Area(K)‖g‖∞

(9)

On the other hand, for any vertexp of t and any pointx =
(u, v) ∈ t, we have that‖p − x‖ ≤ ερ by definition of (ε, η)-
approximation. It then follows from Lemma 3.3 (i) and the triangle
inequality that

‖p − φ(x)‖ ≤ (ε + ε2 + εη)ρ.

Sinceε, η < 0.1, we have thatdS(p, φ(x)) ≤ 2ερ by Lemma 3.2.
Therefore

|g(φ(x)) − g(p)| ≤ 2ρLε,

whereL = Lip(g) is the Lipschitz constant ofg. This implies that
˛̨
˛̨
Z

t

g(φ(u, v)) − g(p) dudv

˛̨
˛̨ ≤ 2ρLεArea(t).

Combining it with Eqn (9) and noticing thatp is an arbitrary vertex
of t, we have that
˛̨
˛̨
Z

S

gdν − IKg

˛̨
˛̨ ≤ 2ρLεArea(K) + 2(2ε + η)2Area(K)‖g‖∞

Since by Lemma 3.5, we have thatArea(K) ≤ 1.5Area(S). This
thus proves the first part of Theorem 2.5.

Second part of Theorem 2.5.In the case when we have a triangu-
lar mesh and the functiong is twice differentiable, this analysis can
be improved to show higher-order convergence. Below we provide
a sketch of the proof.

Consider a twice-differentiable functionh : t → IR on a triangle
t ∈ K, and letp, q, r be the vertices oft. As above, letx = (u, v)
be an orthonormal coordinate system on the plane oft. Consider
the unique linear functionl(x) defined on the plane of the triangle,
s.t. l(p) = h(p), l(q) = h(q), l(r) = h(r). The first observation
is that1

Z

t

l(u, v)dudv =
1

3
(h(p) + h(q) + h(r))Area(t).

Now without loss of generality assume thatp is the originO of
the coordinate system and thath(p) = 0 (additive constants will
not change the computation). Letq = (u1, v1), r = (u2, v2).
Sincel is a linear function, straightforward calculations show that

l(u, v) = (u v)

„
u1 v1

u2 v2

«−1 „
h(q)
h(r)

«
. (10)

Writing the Taylor expansion forh with a quadratic remainder
term, and recalling thath(0) = 0, we have that

|h(u, v) − hu(0)u − hv(0)v| < H(u2 + v2),

whereH is maximum of the norm of the Hessian ofh on the trian-
gle, andhu (resp. hv) is the partial derivative ofh alongu (resp.
v). Now based on the observation that the function value of a linear
function inside a triangle is bounded by the sum of its (absolute)
values on the vertices, and that the length of each side oft is at
mostερ, it can be shown that

|l(u, v) − hu(0)u − hv(0)v| ≤ 4H(ερ)2 .

Combining this with Eqn (10) leads to that

|h(u, v) − l(u, v)| < 5H(ερ)2.

Finally, seth(x) = g(φ(u, v)). Note thatφ is infinitely differen-
tiable outside of the medial axis. Thus by a standard compactness
argument, the second derivative ofφ, and thus ofg(φ(x, y)) (from
the chain rule), is bounded. Hence

|g(u, v) − l(u, v)| < CHε2,

whereC is some constant depending on the geometry ofS. Inte-
grating, and using Eqn (9) we obtain
˛̨
˛̨
Z

S

gdν − IKg

˛̨
˛̨ ≤ CHε2Area(K)+2(2ε+ η)2Area(K)‖g‖∞

1We remark that this implies that, for a triangular mesh, we have
IKg =

R
ĝ, where the integral is taken over the mesh (considered as

a piece-wise linear manifold) and̂g is a (unique) piece-wise func-
tion obtained by linearly interpolating the values ofg on vertices of
each trianglet to the interior oft.



SinceArea(K) ≤ 1.5Area(S), the second part of Theorem 2.5
then follows.

4. DISCRETE LAPLACE OPERATOR
We now show our main result (Theorem 2.1) which states that the

mesh Laplacian approximates the surface Laplacian well. We first
prove Theorem 2.3; that is, given a meshK (ε, η)-approximating
a surfaceS, for any pointw ∈ S, the difference between the
mesh and the functional Laplace operators|Fh

Sf(w) − Lh
K(w)| is

bounded, and converges to zero asε andη go to0. Theorem 2.1
then follows from this theorem and Theorem 2.4.

Proof of Theorem 2.3. First, setg(x) = 1
4πh2 e−

‖x−w‖2

4h (f(x)−
f(w)). Comparing Eqn (2) and Eqn (1), we obtain that

˛̨
˛Lh

Kf(w) − Fh
Sf(w)

˛̨
˛ =

˛̨
˛̨
Z

S

gdν − IKg

˛̨
˛̨ (11)

By (the first part of) Theorem 2.5, to bound the above quantity, it
suffices to bound‖g‖∞ and the Lipschitz constantLip(g) of g.
Easy to verify that‖g‖∞ ≤ 1

2πh2 ‖f‖∞. For Lip(g), sincef ,
and thusg, is C1-continuous, it is upper bounded by‖g′‖∞ =
supx∈S ‖g′(x)‖. Notice thatg′(x) is a map from the tangent space
Tx to IR. By definition, g′(x)(v) = ∇Sg(x) · v for any vector
v ∈ Tx and hence‖g′(x)‖ = ‖∇Sg(x)‖. On the other hand, it is
easy to verify that

‖∇Sg(x)‖ ≤ 1

4πh2
(2‖f‖∞ · ‖∇Se−

‖x−w‖2

4h ‖ + ‖∇Sf(x)‖).

SinceS is a surface embedded inIR3 with the induced Riemannian
metric, it holds that

‖∇Se−
‖x−w‖2

4h ‖ ≤ ‖∇IR3e−
‖x−w‖2

4h ‖

= e−
‖x−w‖2

4h ‖x − w‖/(2h) ≤ 1√
h

,

where the last inequality holds asy/ey2 ≤ 1 for any real number
y. It then follows that

‖g′‖∞ = ‖∇Sg(x)‖ ≤ 1

4πh2

`2‖f‖∞√
h

+ ‖f ′‖∞
´
.

Combining with Theorem 2.5, and putting everything together, we
conclude with Theorem 2.3.

Proof of Theorem 2.1. Now letKε,η denote an(ε, η)-approximation
of S with ε, η < 0.1, andh(ε, η) an appropriate constant depend-
ing onε andη. We have that for any pointw ∈ S,

˛̨
˛Lh(ε,η)

Kε,η
f(w) − ∆Sf(w)

˛̨
˛ ≤

˛̨
˛Lh(ε,η)

Kε,η
f(w) − F

h(ε,η)
S f(w)

˛̨
˛

+
˛̨
˛Fh(ε,η)

S f(w) − ∆Sf(w)
˛̨
˛ .

By choosingh(ε, η) = ε
1

2.5+α + η
1

1+α , whereα > 0 is an arbi-
trary fixed positive number, it follows from Theorem 2.3 that

˛̨
˛Lh(ε,η)

Kε,η
f(w) − ∆Sf(w)

˛̨
˛ ≤ O(ε

α
2.5+α ) + O(η

α
1+α )

+ |Fh(ε,η)
S f(w) − ∆Sf(w)|

The big-O notation above hides terms linear in the areaArea(S),
the reachρ(S), ‖f‖∞ and‖f ′‖∞. On the other hand, the limit
limt→0 |Fh(ε,η)

S f(w)−∆Sf(w)| = 0 by Theorem 2.4( [8]). Hence

by taking the limit, we see thatlimε,η→0 L
h(ε,η)
Kε,η

f(w) = ∆Sf(w),
which proves Theorem 2.1.

5. EXPERIMENTS
In this section, we apply our algorithm of computing the mesh

Laplacian to different surfaces and show its convergence as the
mesh becomes finer. One currently widely used mesh Laplace
operator is thecotangent(COT)n scheme, originally proposed by
Pinkall and Polthier [19]. We compare our algorithm with its modi-
fied version [15, 25], which produces better results than the original
method. Our experiments show that the COT scheme does not pro-
duce convergence for functions other than linear functions, while
our method, in addition to exhibiting convergence behavior, is also
much more robust with respect to noisy data.

Experimental setup. To analyze the convergence behavior, we
need the “ground truth”, that is, we need to know the Laplace-
Beltrami operator for the underlying surface approximated by in-
put meshes. This somewhat limits the type of surfaces that we can
experiment with. In this paper, we consider two types of surfaces:
planar surfaces and spherical surfaces.

For the planar surface, we uniformly sample the region[−1, 1]×
[−1, 1] with different density, and construct the Delaunay triangu-
lation for the resulting sample points. For the spherical surface,
we sample a unit sphere, either uniformly or non-uniformly, with
different density, and then use the COCONE software [5] to gen-
erate the triangular meshes. The goal of the non-uniform sampling
is to create “bad” meshes, such as those with skinny triangles and
triangles of different sizes. We also produce noisy data from the
uniform sampling of the sphere, by perturbing each sample point
randomly by a small shift. Some examples of these three types of
spherical meshes are shown in Figure 1.

uniform

non-uniform

uniform with noise

Figure 1: Meshes for spherical surface with 500 sample points
and 8000 sample points.

Error measure. Given a meshK approximating a surfaceS and
an input functionf : S → IR, we evaluate the surface Laplacian
and the mesh Laplacian at each of then vertices ofK, and obtain



two n dimensional vectorsU and bU , respectively. To measure the
error between the mesh Laplacian and the surface Laplacian, we

consider the commonly used normalizedL2 errorE2 = ‖U−bU‖2

‖U‖2
.

We remark that our theoretical result is that our mesh Laplacian
converges under theL∞ norm(i.e, point-wise convergence), which
is a stronger result than theL2-convergence(asL∞-convergence
implies L2-convergence for compact spaces). Such convergence
is indeed observed for all types of meshes that we have conducted
experiments on. However, since the COT scheme does not show
any convergence under theL∞ error metric, we will mainly show
results under theL2 error metric from now on — our method com-
pares even more favorably under theL∞ error. We will show re-
sults under theL∞ error for one data set (Table 3), and the perfor-
mances over other data sets are similar.

Results for planar surface. Given a functionf : IR2 → IR on the
plane, its surface Laplacian is simply:∆IR2f(x, y) = ∂2f

∂x2 + ∂2f

∂y2 .

Specifically,∆IR2f(x, y) = 0 if f is a linear function. It turns
out that the COT scheme produces exactly0 for a linear function
on a planar mesh. Hence we compare the mesh Laplacians for two
non-linear functions:f(x, y) = x2 and f(x, y) = ex+y. The
results under the normalizedL2 error metric are shown in Table
1. For both functions, for different values of the parameterh, our
method always presents convergence behavior; while finer mesh
does not lead to lower approximation error by the COT scheme.
Note that we obtain better approximation even when the number
of sample points is small (500). Since different values ofh show
similar behavior, from now on, we fix the parameter at4h = 0.04.

Method Param 500 2000 8000 16000
COT non 0.220 0.173 0.197 0.207

4h=0.01 0.450 0.146 0.040 0.022
OUR 4h=0.04 0.126 0.038 0.010 0.005

4h=0.09 0.069 0.017 0.004 0.002
f = x2

COT non 0.198 0.188 0.190 0.202
4h=0.01 0.875 0.128 0.055 0.027

OUR 4h=0.04 0.189 0.037 0.022 0.016
4h=0.09 0.099 0.033 0.027 0.025

f = exp(x + y)

Table 1: Normalized L2 error for planar mesh. We show the
results of our method with there different h values.

Spherical surfaces. Given a functionf : S
2 → IR defined on

the unit sphereS2, wheref is parametrized by the spherical coor-
dinatesθ andφ, its spherical surface Laplacian is:

∆S2f(θ, φ) =
1

sin θ

∂

∂θ

`
sin θ

∂f

∂θ

´
+

1

sin2 θ

∂2f

∂φ2
.

Xu [25] proved that his modification of the COT scheme can pro-
duce convergent result for linear function defined on spheres. In-
deed, this is observed in our experimental results as shown in Table
2, where we also compare the mesh Laplacians for two non-linear
functionsf(x, y, z) = x2 andf(x, y, z) = ex for a uniformly
sampled spherical mesh. However, while our method converges for
all the three functions, the COT scheme only converges under the
linear function. In Table 3, we also show the approximation error
of the two mesh Laplacians under theL∞ error metric. Note that
compared to the case of normalizedL2 error, the numerical values
of L∞ error can be big, as it is the absolute error and not normal-
ized.

We also test the COT scheme and our mesh Laplacian for meshes

Method 500 2000 8000 16000
COT 0.058 0.030 0.015 0.011
OUR 0.606 0.142 0.034 0.017

f = x
COT 0.171 0.157 0.158 0.155
OUR 0.488 0.115 0.013 0.005

f = x2

COT 0.124 0.101 0.102 0.099
OUR 0.613 0.140 0.028 0.015

f = exp(x)

Table 2: Normalized L2 error for spherical meshes with uni-
form sampling.

Method 500 2000 8000 16000
COT 0.229 0.185 0.083 0.062
OUR 2.097 0.492 0.081 0.037

f = x
COT 1.147 1.577 1.478 1.375
OUR 2.915 0.838 0.062 0.025

f = x2

COT 0.798 0.887 0.928 0.849
OUR 4.000 0.873 0.112 0.054

f = exp(x)

Table 3: Normalized L∞ error for spherical meshes with uni-
form sampling.

constructed from points non-uniformly sampled from the unit sphere.
The error obtained for both methods are fairly similar to that on the
regular mesh (as reported in Tables 2 and 3).

Finally, in Table 4, we show how our method and the COT scheme
perform for noisy data. Note that even though the COT scheme has
been proven to converge for linear functions on a sphere, once the
mesh becomes noisy, such convergence behavior is lost; while the
approximation error by our algorithm stays almost the same as be-
fore. This is not too surprising as our scheme considers a much
larger neighborhood than COT scheme when evaluating the mesh
Laplacian at a point, which has the “smoothing” effect. However, it
is not clear how to extend COT scheme to incorporate larger neigh-
borhood than its current one-ring neighborhood.

Method 500 2000 8000 16000
COT 0.398 1.532 3.015 0.936
OUR 0.599 0.155 0.051 0.022

f = x
COT 0.267 0.914 1.840 0.545
OUR 0.484 0.128 0.028 0.006

f = x2

COT 0.308 1.271 2.631 0.817
OUR 0.612 0.153 0.043 0.018

f = exp(x)

Table 4: NormalizedL2 error for the experiments on the sphere
with noise.

Remark. Finally, we remark that we have also compared our mesh
Laplacian with the graph Laplacian. Graph Laplacian has been
shown to converge forpoints randomly sampled from the uniform
distribution on the underlying manifold[8], which is also observed
in our experiments when points are randomly sampled. However,
our mesh Laplacian produces consistently smaller errors. For non-
uniformly sampled meshes, graph Laplacian is not expected to con-
verge to the surface Laplacian.



6. CONCLUSIONS
In this paper, we have developed the first algorithm for approx-

imating the Laplace operator on a meshed surface with point-wise
convergence guarantee. Such convergence is required in many ap-
plications, where quantities, such as mean curvature, need to be
estimated at each node of the mesh. The convergence result does
not require the aspect ratio of mesh elements to be bounded. Ex-
perimental results show that our algorithm indeed exhibits conver-
gence empirically, and outperforms current popular methods both
in accuracy and in its robustness with respect to noisy data. To
provide theoretical analysis of our algorithm, we also established a
general result to compare integrals over a smooth surface and their
discretization on a mesh.

In conclusion we would like to make several points about differ-
ent aspects of our algorithm and future directions.

Adaptivity. The algorithm as stated can be easily adapted to the
size of the mesh. For example a sensible heuristic is to takeh to be
a multiple (say,3) of the average edge length at a point. However,
our analysis is not yet adapted to the local feature size. It seems
promising to develop a version of Theorem 2.3 and Theorem 2.5
using the local feature size. It may be more difficult to develop an
adaptive version of Theorem 2.4 as somewhat subtle analysis of the
heat kernel on a surface may be needed.

Higher dimensions.The algorithms in this paper can be straight-
forwardly modified to work with high dimensional meshes or sim-
plicial complexes. It seems that the analogues of Theorem 2.5 and
Theorem 2.1 will hold. However the exact conditions are likely to
be different and the proofs may need to be significantly modified.

Orientability and boundary. The orientability condition and
no-boundary condition, although necessary for our current proofs,
seems to be not essential. One future direction is to extend our
results to non-orientable surfaces and/or surfaces with boundary.
Note that our current results hold for interior points of a surface
with boundary.

Noisy data. Due to the averaging nature of the mesh Lapla-
cian, the method seems to demonstrate good stability with respect
to noise in the input mesh, as shown in our experiments. However,
theoretical analysis for this case still needs to be developed.

Point clouds. Another future direction is the analysis of point
clouds, where no mesh is given. A particular interesting case is
when intrinsic dimension of the manifold is much small than the
dimension of the ambient space, and we wish that our algorithm
depends on the intrinsic dimension. This direction seems to have
interesting connection with the body of work on surface reconstruc-
tion (see, e.g. [11]). We note that [7] also deals with reconstructing
the Laplace operator from point clouds. However the probabilistic
nature of data in machine learning allows one to use large devi-
ations methods, while in surface reconstruction, the probabilistic
assumption cannot usually be made.
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