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C h a p te r 1

In tr o d u c t io n

In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe last few decades, several types of latent variable models have
been proposed.It is assumed in some of these models (for example,
factor analysis) that the observed variables are essentially continuous.
Other latent variable models, on the other hand, deal explicitly with
discrete observed variables. Both latent class models and latent trait
models belong to the latter category.In this book, attention is focused
on these two models. The relationship between latent class analysis
and latent trait models is explored in depth. By doing so, theresults
achieved in the one field of research can be utilized in the other.

Latent variable models have achieved great popularity in the social
sciences. Bartholomew (1987) mentioned two reasons for theacceptance
of models with latent variables. Firstly, measurement in the social sci-
ences is hampered by the nature of the concepts which are of interest
to researchers in this field. Many concepts that play a crucial role in
social and behavioral theories cannot be observed directly. There is
no way to infer directly how intelligent a certain person is or what the
socio-economic status of a particular family is. The only way empirical
knowledge can be obtained about these concepts is to look forvariables
thatzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcanbe observed directly and which contain some information about
the theoretical concepts. Hence, in many cases the theoretical concepts
themselves are not measured directly. Rather, some observable vari-
ables that are thought to represent certain aspects of the theoretical
concepts, or are believed to be influenced by those theoretical variables
are observed empirically. Intelligence, for instance, canbe measured by
posing specific problems that can be solved through abstract reason-
ing because it is believed that individuals who are more intelligent will
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show greater ability at solving these problems correctly. In other words,
the probability of responding correctly to these problems is believed to
be influenced by a person's intelligence. In the case of socio-economic
status, one observable variable that could be used is the income of
the head of the family since this variable is thought to be an impor-
tant aspect of the theoretical variable "socio-economic status". Such a
measurement process is, for obvious reasons, sometimes calledzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAindirect

observation. The theoretical variables that are not observed directly are
then denoted by the termlatent variables, while the variables which are
observed directly and contain information on the latent variables are
called manifest variablesor indicators.

The second rationale Bartholomew (1987) gave for using latent vari-
able models is more pragmatic. In many examples of social research,
so many different variables are measured that it becomes necessary to
compress this data into a smaller set of variables which are assumed to
reflect the common substance of a number of original variables. The use
(and misuse) of factor analysis is an excellent example of this practical
use of latent variable models.It should, however, be stressed that when
latent variable models are used for mere data reduction, theresulting
clusters of observed variables are interpreted substantively. This is also
true in the case at hand in which directly observed variablesare used to
indicate theoretical concepts, albeit in a more exploratory manner. As
Clogg (1988) noted, many applications in latent class analysis also aim
at this more exploratory data reduction. The use of latent class mod-
els for confirmatory analyses, i.e., the testing of explicit measurement
models, has only recently received more attention.

The distinction between latent and manifest variables is, of course,
essential to latent variable models. When, however, this distinction is
used as the only defining element of latent variable models,the resulting
class of latent variable models is so broad that further structuring is
required. Furthermore, by organizing the great variety of latent variable
models through the introduction of a number of classification principles,
the scope of this book can be indicated more precisely.

This book concentrates on two types of latent variable models,
namely, latent class and latent trait models. An attempt is made to
indicate what the common elements of both types of models are; the
situations in which these two types of models will yield the same results
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or comparable results are also investigated. Both models are often con-
sidered as members of a broader set of latent variable models, namedzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

latent structure analysis.In the following sections classification criteria
are introduced which can be used to determine whether latentvari-
able models belong to the class of latent structure models. The class
of latent structure models are also internally structured by making a
distinction according to the measurement level of both the latent and
the manifest variables. Furthermore, examples of the different latent
structure models that can be distinguished according to theproposed
classification criteria are presented. In this way, it willbecome clear
which types of models are discussed in this book and which models
will not be dealt with. Finally, some remarks are made regarding the
differences between latent class models and latent trait models. This
highlights some of the issues that will be explored more deeply in the
chapters to come.

1.1 Latent structure models

Most principles for classifying latent variable models that have thus
far been proposed in the literature are based on a distinction between
types of manifest and latent variables. Bartholomew (1987), for ex-
ample, classifies both the latent and the manifest variables as either
metrical or categorical. The term metrical is reserved for variables that
can take on values in the set of real numbers. These variablescan be
continuous or discrete. Categorical variables are always discrete as they
allocate subjects to one of a set of exclusive categories. Inother words,
categorical variables are variables measured on a nominal scale. If both
the latent variable and the manifest variable can be either metrical or
categorical, four types of latent variable models can be distinguished.
Furthermore, Bartholomew reserves the phraselatent structure analysis
for all models which use categorical latent variables, regardless of the
nature of the manifest variables.

This latter definition differs from the position originally taken by
Lazarsfeld and Henry (1968), who were the first to study latent struc-
ture analysis in depth. In their view, latent structure models are models
which introduce latent variables to account for the observed pattern of
association between the manifest variables. This is done byformulat-
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ing a mathematical model that relates the latent variable toscores or
categories of the manifest variables. Furthermore, these relations be-
tween the latent and the manifest variables are stochastic.The fact
that the indicators contain only partial information regarding the the-
oretical concept, which makes the relationship between these two types
of variables not unequivocal, is accounted for by stating a stochastical
or probabilistical relation between these variables. The most important
assumption of latent structure models is that these stochastic relations
are governed by the axiom ofzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlocal independence(Lazarsfeld and Henry,
1968, p.22).1 Lord and Novick(1968) and Langeheine and Rost(1988)
also consider local independence as the defining characteristic of latent
structure analysis. The significance of this axiom will be made clear in
the next section, after the type of models that belong to the class of
latent structure models have been more precisely defined.

As was stated before, the definition given by Bartholomew will not be
used in this study. Bartholomew's method of defining latentstructure
models excludes latent variable models with continuous latent variables.
This type of model was, however, explicitly dealt with by Lazarsfeld
and Henry (1968); examples are the latent content model, polynomial
trace line models and test theory models. These latter models (i.e.,
test theory models) were only briefly touched upon in the book by
Lazarsfeld and Henry, but they have become very popular since then
under the headinglatent trait models, and nowadays it is very common
to regard the class of latent trait models as members of the family of
latent structure models. Therefore, the definition of latent structure
models given by Lazarsfeld and Henry has been adopted in thisstudy.
This includes models for both continuous and discrete variables at the
latent and the manifest level.

This book deals with only certain specific latent structuremodels,
namely, latent class models and latent trait models. A common el-
ement of these models is that they treat the manifest indicators as
discrete variables, though they can be measured at every measurement
level (i.e., nominal, ordinal and metric level). Thisexcludescovariance-
structure models (also called structural equation models)such as fac-
tor analysis and the more "traditional" LISREL models. Of course,

1Local independence can be stated both as an axiom oras an assumption. See, for example,

Andersen (1988) for further details.
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more recent developments in covariance structure analysisalso allow
for the analysis of discrete manifest data by analyzing the matrix of
polychoric correlations with weighted least squares methods (Joreskog
and Sorbom, 1988). As covariance structure models will not be dealt
with, these more recent LISREL models will likewise not be discussed
in this book.

The restriction of dealing only with discrete manifest dataalso ex-
cludes the latent profile model proposed by Lazarsfeld and Henry
(1968). The latent structure models that are of interest cannow be
classified by taking the measurement level into account forboth the
latent and the manifest variables. This is done in Table 1.1,where a
number of cells are filled with names of already known latentstructure
models. Other cells are empty as no models have yet been suggested
that belong to the combination of measurement levels for thelatent and
the manifest variables.It should be noted that distinguishing between
different levels of measurement for the manifest variablesis especially
relevant when these manifest indicators are polytomous, i.e., take more
than two different values, because, when the manifest variables are di-
chotomous, it does not make much sense to distinguish between nominal

and metrical measurement levels.
Despite the fact that latent variables can only be observed indirectly,

it makes sense to discuss the measurement level of latent variables since
the measurement level assumed for these latent variables has direct con-
sequences for the structure of the measurement model.It is necessary
to know what the characteristics are of the numerical valuesthat the
latent variable can take in a specified situation for the latent structure
models that will be discussed.

The various entries in Table 1.1 will be discussed very briefly in Sec-
tion 1.3. A more thorough treatment of the majority of the models
mentioned in this table will be presented in the following chapters. Be-
fore this is done, however, the principle of local independence will be

outlined.

1.2 Local independence

All latent structure models assume the existence of a latentvariable.
Sometimes the focus is restricted to one single latent variable, as is
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Table 1.1: A typology oflatent structure models with discrete manifest
variables

Manifest variable

Nominal Ordinal Metrical

Nominal
LCA for

LCA rating data
(Rost)

LCA with
ordered classes

(Croon)

LCA with
LCA with linear by linear

linear restrictions Graded Response restrictions
(Haberman) Model (Haberman)

Nominal Response (Samejima) Partial Credit
Model (Bock) Model (Masters)

Rating Scale
Model (Andrich)

Latent Ordinal
Variable

Metrical

the case in most latent trait models. In other latent structure models,
the existence of several latent variables is postulated; this is the case in
many latent class models. In every latent structure model, however, the
association between the manifest variables is assumed to depend on the
relationship between the manifest and the latent variables. Thus, it is
assumed that all the associations among the manifest variables can be
explained by the dependence of these manifest variables upon the latent
variable(s). In other words, when the latent variable is held constant,
the manifest variables should be statistically independent. This basic
assumption of the latent structure model as developed by Lazarsfeld
and Henry is known as the assumption of local independence.

This assumption can easily be formalized. Assume thatzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn different
manifest indicators are measured and that, for the sake of convenience,
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these indicators all are dichotomous.j Each itemj can take only the
values 0 or 1 andj = 1, ... ,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn. Furthermore, it is assumed that there
is a latent variable () which can be continuous or discrete. When this
variable is metrical and continuous, the latent score for subject i on
this latent variable will be denoted by()i' When the latent variable is
discrete, the number of categories for the latent variable will be equal
to T and an arbitrary category will be indicated ast. When the latent
variables are discrete, the latent structure models will beparameterized
using a fixed number of latent classes (equal tozyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT), instead of the indi-
vidual latent scores()i. The notation ()t is used to indicate an arbitrary
latent class.ZYXWVUTSRQPONMLKJIHGFEDCBAIn some cases, these latent classes are only nominal, then
the numberst (with t = 1, ... T) only serve to assign an arbitrary in-
teger to these nominal latent classes.In other circumstances, however,
() is thought to be discrete but metrical.In those situations, theT
different numbers()t should be interpreted as metrical values. When a
subject responds to then different items, there are of course2n different
response patterns that could result. An arbitrary responsepattern is
denoted by the symbol1/.

The probability that individuali with latent score()i will obtain score
1 on item j is denoted byPj1Io;. When () is discrete, this response prob-
ability for all individuals belonging to the latent class()t is written as
Pj1It1r. For the two situations that are distinguished here (() continu-
ous or discrete), the conditional probability that response pattern 1/ is
observed is denoted byPvlo; and PvlOt respectively. Finally, a set of in-
dicator variablesXvj is introduced. If in response pattern1/ item j is
responded to in category 1 , thenXvj = 1; otherwise Xvj = O.

Because the assumption of local independence states that the man-
ifest items are statistically independent for individualswith the same
position on the latent variable, the conditional probability for observ-
ing response pattern1/ can now be expressed as the product of the
conditional response probabilities for the separate items:

n

- I I ( )XVj (1 )l-xvjPvlo; - Pj110; . - Pj110; ,

j=l

(1.1)

2The assumption of dichotomous indicators is only made because it leads to convenient

notation. The same principles hold for polytomous items. The formal expressions that result

from the more general polytomous situation can be found in Chapter 2.
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inzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase ()is continuous, andas:
n

PvlOt = II(PjllOtYYj . (1 - PjlloY-xYj
j=l

for the situation where () is discrete.

Thus, when local independence holds, knowledge of the conditional
response probabilitiesPjllO; or PjllOt is sufficient for calculating the con-
ditional probability of observing an arbitrary response pattern u,

As Clogg (1988) has shown, when local independence holds forthe
set of n indicators, it will also hold for any subset of these manifest
variables. Collapsing response categories of the manifestvariables will
also not distort the pattern of local independence. However, the reverse
need not be true. When local independence holds for variables with
certain categories collapsed, the assumption need not necessarily be
satisfied for the original variables.

The observation that collapsing categories of manifest variables has
no impact on the local independence cannot, however, be generalized
to collapsing values of the latent variable. In general, when local in-
dependence holds for a continuous latent variable (), it is not possible
to group or condense () without distorting local independence. But
as Clogg (1988) stated, in many cases it should be possible to divide
the latent continuum into disjoint sets, such that the original relation
between () and the manifest variables will be approximatelyretained.
This practice of discretizing the latent space into a set of discrete latent
classes will be used intensively for the remainder of this study.

The principle of local independence can be used in both unidimen-
sional and multidimensional latent structure models. Thisis not always
recognized, as a number of authors, in particular in the literature on
latent trait models are inclined to define local independence as a special
case of unidimensionality of the latent space (see, for example, Ham-
bleton & Swaminathan, 1985; Lord& Novick, 1968; and Kelderman,
1984). Thecase of multidimensional latent trait models is one of the
topics covered in Chapter 5. How local independence works ina multi-
dimensional latent structure model will be indicated here briefly.

In Figure 1.1, a multidimensional latent structure model with two
latent variables is shown. The line connecting the two latent vari-
ables indicates that these two variables are correlated. The question of

(1.2)



9zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

whether one latent variable is causally dependent on the other is left
open. The arrows between the latent variables and the manifest indi-
cators signify that the manifest variables are dependent onthe latent
variables. These arrows can be interpreted as direct effects of the latent
variables on the indicators.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A czyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADB

Figure 1.1: A multidimensional latent structure model

According to the relations sketched in Figure 1.1., the manifest in-
dicators A and B serve only as indicators for the latent variable0(1),

while the latent variable0(2) is measured through the manifest variables
C and D. It is clear that for the subset of variables0(1), A and B, the
principle of local independence will hold becauseA and B are only de-
pendent on0(1), so if this latent variable is held constant, the manifest
variables A and B will be independent. Of course, the same is true
for the other part of this multidimensional model, i.e., forthe variables
0(2), C and D. Thus, the association betweenA and B is explained by
0(1), while the association betweenC and D is accounted for by0(2).

It is also possible to look at the association between manifestvariables
that indicate different latent variables, for example,A and C. Because
A is only "caused" by0(1) and the only variable having a causal in-
fluence onC is 0(2), holding either 0(1) or 0(2) constant will make all

association betweenA and C disappear. Finally, if manifest variables
depend on two or more latent variables, all these latent variables must
be held constant in order to make the association between theindicators

disappear.ZYXWVUTSRQPONMLKJIHGFEDCBA
In general, the association between manifest indicators willdisappear

if the relevant latent variables (i.e., latent variables that have a causal
influence on the manifest variables under consideration) are held con-
stant. It follows that the association between indicators will also vanish



10

if all latent variables (relevant or not) are held constant.Although these
observations are common knowledge among those who are familiar with
structural equation models, these facts are hardly ever stressed by item
response theorists as item response theory is strongly dominated by
models for the analysis of unidimensional latent traits.

1.3 Latent structure models for discrete data

In Table 1.1, a number of latent structure models were presented that
can be used for the analysis of discrete manifest data. In this section,
these models will be looked at more closely. As stated earlier, a more
thorough treatment is postponed until Chapters 2 and 3.

The starting point for this discussion will be the top-left cell in Table
1.1. Situated in this cell is the standardzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlatent class analysis(LCA)
model, in which it is assumed that latent and manifest variables are
nominal. This model was originally proposed by Lazarsfeld and Henry
(1968), but its great popularity is due mainly to the work of Goodman,
Haberman and Clogg (see, for example, Goodman, 1974a; Haberman,
1979; Clogg, 1981).

1.3.1 The unrestricted latent class model

The latent class model assumes that the population of subjects is di-
vided into a number ofT exclusive and exhaustive latent classes. Each
individual belongs to one and only one latent class. Within each latent
class, the manifest variables are statistically independent. This as-
sumption is the assumption of local independence. In other words, the
association between the manifest indicators is assumed to be caused by
the fact that people belong to different latent classes and that different
classes have different conditional response probabilities. The member-
ship in a particular latent class defines the probabilitiesfor responding
to items in specific categories. All individuals who belongto the same
latent class have equal probabilities for responding to theitems in cer-
tain categories. In this sense, the latent class model is a finite-mixture
model (McLachlan& Basford, 1988), because the total population is
a mix of a finite number of latent classes, which differ not only with
respect to the conditional response probabilities, but also with respect



11zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

to their relative sizes. This latter aspect will be taken into account in
the notation used here by symbolizing the probability for observing a
subject that belongs to latent classzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt by pf. The latent class model can
now be parameterized by using the conditional response probabilities
and the latent proportions. The probability that a subject will respond
in category 9 of the manifest itemA, given that this subject belongs
to latent classzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt, will be denoted byp;~,with the bar above the super-
script indicating that this probability is aconditional probability and
not a probability in the joint distribution of 8 and the manifest item.l
The superscripts pertain to the variable labels, while the subscripts de-
note the specific categories of the variables.It will now be assumed
that there are three manifest variablesA, Band C. Arbitrary response
categories for these three variablesA, Band C will be denoted byg,

k and f respectively. For this simple situation, the basic equation for
the probability of responding to these three itemsA, Band C in the
categoriesg, k and f, respectively, is (Goodman, 1974a):

T
ABC "ABC£}

Pgkl = ~Pgkit'

t=l

(1.3)

where:

P
ABC£}

gklt P
£}pABC£}
t gkltA
£} It£} B£} C£}

PtPgtPktPU· (1.4)

The first of these two equations reflects the assumption that the popula-
tion consists of a number of different and internally homogenous latent
classes which are mutually exclusive. Therefore, the probability of ob-
serving a specific response pattern/J can always be found by summation
of the probabilities for observing this response pattern inthe various
latent classes. Owing to the assumption of local independence, these
latter probabilities (in this example,P"'if1f) can be expressed as a very

simple function of the latent proportions (sopf) and the conditional
response probabilities (for example,p;~).

3Note that a slightly different notation for the conditional response probabilities has been
used here, because the latent class model has been denoted for a hl'}>otheticalsituation with
three manifest variablesA, Band C. In due time, the expressionP:~will be replaced by the

more general notationPjglet·
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This method of expressing the latent class model has the advan-
tage that only parameters which have an intuitive meaning, and can
therefore be interpreted very directly, are used. These parameters are
the latent distribution in terms of proportions and the probabilities
for observing specific responses on each of the different manifest items
conditional upon the latent classes.

Another (equivalent) way of parameterizing the latent class model in
terms of the log-linear model was suggested by Haberman (1979). ThezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

joint probability that a subject belongs to latent classt and responds
to itemszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, Band C in the categoriesg, k and i, respectively, is written
as:

InpABce
gklt

(1.5)

The interpretation of the parameters in log-linear models will be post-
poned until Chapter 2.It suffices here to remark that the most inter-
esting parameters are the two-variable interactions (for example, u:~),
because these parameters describe the relationship between the latent
variable ()and the manifest items. Furthermore, Equation 1.5 describes
a nonsaturated (i.e., restricted) log-linear model, in which the restric-
tions that have been imposed all result from the assumption of local
independence. The appeal of the log-linear formulation of the latent
class model lies in the possibility of putting additional restrictions on
the two-variable interactions. Some examples of such restricted latent
class models will be presented later in this section.

The standard latent class model is a very flexible tool for analyzing
structural relationships between categorical variables with both uni-
dimensional and multidimensional latent variables (Hagenaars, 1990).
It can be seen as a natural extension of the log-linear model in order
to take measurement error into account.It has become very popular
among social scientists as an instrument for data reduction(see, for ex-
ample, Formann, 1985 and Aitkin, Anderson and Hinde, 1981).In the
literature, the value of latent class analysis for measurement purposes,
i.e., the possibility of assigning quantitative scores to subjects, has been
questioned. As Clogg (1988) noted:
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. .. a careful examination of the latent class models now

available shows that none deal in a direct way with measure-
ment, particularly if exacting standards are used to define
how measurement should take place.

This statement rests on the premise that it is desirable to develop mea-
surement models which can be used to assign subjects scores on the
latent variable. However, assigning scores to individualsis not without
problems. One objection that can be raised against such a procedure
is that the process of assigning subjects scores on a latent variable is
hampered both by the presence of measurement error and by a number
of identification problems. This topic will be explored further in Chap-
ter 5. Secondly, if one would like to assign scores on a latentvariable
just to be able to explore the relationship between latent variables and
some external variables, it should be noted that these relations can be
explored quite satisfactorilywithout this assignment. This topic also
will be dealt with in Chapter 5.

Examining the relations between latent variables and external vari-
ables without assigning scores to individuals becomes possible when
measurement models are formulated in which both the relations be-
tween the latent variables and the manifest indicators, andthe rela-
tions between the latent variables and external variables are included.
Putting restrictions on the conditional response probabilities or the log-
linear parameters will result in a class of restricted latent class models
which are valuable in this respect. These models will be studied exten-
sively in Chapter 2. However, one set of possible restrictions will be
introduced in this chapter as it leads to a number of latent class models
which are mentioned in Table 1.1. By using the restrictions pointed out
here one tries to take the order information in the observed variables
into consideration by linearizing the relationship between the latent and
the manifest variables. Some of these models will be presented below.ZYXWVUTSRQPONMLKJIHGFEDCBA

1 .3 .2 L in e a r r e la t io n s b e tw e e n th e la te n t a n d th e m a n ife s t

v a r ia b le s

The log-linear formulation of the latent class model as expressed in
Equation 1.5 uses two-variable interactions (such aszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu~~) to describe
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the relation between the latent and the manifest variables.The defi-
nition of these interactions, as well as the method by which they can
be interpreted substantially, will be postponed until Chapter 2 but it
is necessary to discuss here some characteristics of these log-linear pa-
rameters in order to make clear how the relation between the latent and
the manifest variables can be linearized. Restricted latent class models
with linear relations between the latent and the manifest variables can
be found in the bottom row and the far right-hand column of Table 1.1.

Suppose that the categories for itemzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA have been labeled with succes-
sive integers0, ... ,g, ... ,mA, so that itemzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA has (mA + 1) distinct cat-
egories. As was done before, the latent classes are numbered1through
T, so there areT different latent classes. When both the latent and the
manifest variables are measured at a nominal level, the relation between
A and () is described by a set of(mA +1) x T different two-variable inter-
actions u:~.Because the number of non-redundant parameters equals
mA X (T -1), certain restrictions are necessary in order to make this set
of parameters identifiable. The analogy between the log-linear model
in Equation 1.5 and the usual ANOVA model should be clear. As in
ordinary ANOVA, the set of two-variable interactions can besubmitted
to the following restrictions:

"" All "" All 0Z:: Ugt = Z:: Ugt = .

9 t

In the literature these restrictions are known under the heading effect

coding. However, other restrictions on the set of u:~-parameters are
also possible. In regression analysis with dummy-variables, for exam-
ple, identifiability restrictions are usually imposed by setting the pa-
rameters pertaining to one particular category equal to zero. This is
called dummy coding.In dummy coding, the effect of falling in a spe-
cific category is expressed as a deviate from the reference category (i.e.,
the category for which the parameters are set equal to zero).In effect
coding, effects are represented by deviations from the overall mean. In
the following, it is assumed that the identifiability restrictions are im-
posed by dummy coding, so that for the set of two-variable interactionsu:~the following holds:

uA8
gl

, AO
UOt

o
o

for all g = 0, ,mA

for all t = 1, ,T.
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Hence, for itemzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA and latent variable (), categories 0 and 1, respectively,
serve as the reference categories.

Although a more detailed study of the log-linear model is postponed
until Chapter 2, some concepts have to be defined here as the linearizing
restrictions are based upon these concepts. When the relation between
the latent variable () and a manifest indicatorA is studied and dummy
coding is used, a natural question is in what manner the probability of
scoring in categoryg instead of in category0 (the reference category)
of itemzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA depends on the latent class to which an individual belongs.
To answer such questions, the log-linear model uses as building blocks
the oddsof answering in categoryg instead of categoryO. The odds are

defined as:
P~

odds - A'
Po

Because these odds are assumed to depend on the latent class to which
an individual belongs, it makes sense to study theconditional odds,
which are defined as the ratio of two conditional response probabilities:

AD

diti I dd· Pgtcon itiona 0 s = AD'

POt

The logarithm of a conditional odds is called thelogit. If there is asso-
ciation between the variables () andA, these conditional odds differ for
two different latent classest and tf. This can be expressed in theodds

ratio:

AD AD
Pgt • Pgt'

AD -;- AD
POt POt'

All All
Pgt X POt'

All AD
POt X Pgt'

Because it is assumed that the manifest variable is causallyinfluenced
by the latent variable, the log-linear model in Equation 1.5is often re-
placed by a logit model. Such a model expresses how the logit for a
particular category of the manifest item depends on the latent variable.
As stated above, the logits are defined by taking the ratio ofthe proba-
bility for responding in categoryg on the one hand, and the probability
for responding in the reference category 0 on the other hand,because

odds ratio
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a dummy coding scheme is proposed in the presentexample." As will
be shown in Chapter 2, this logit can be expressed as:

In [pl~l=zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A + uAU (1.6)

AU 9 gt·

POt

The logits represent the tendency to answer itemA in category9 rather
than in category 0, and they are assumed to depend on the latent classt.
Thus, there areT different logits that can be defined for each category
9 of item A, and the variation between theseT different logits can be
explained by(T - 1) u:~-parameters.

More parsimonious models can be obtained by assuming specific con-
trasts with regard to theseT different logits. For example,if it is be-
lieved that the latent classes are ordered, then the logits could linearly
increase or decrease with the class numbert. Other sets of polynomial
weights (quadratic, cubic, etc.) could also be used.It is clear that
the maximum order for these polynomial weights is equal to(T - 1),
and that when(T - 1) different contrast are used, the model gives the
same solution as the "full" logit model given in Equation 1.6. The logit
model becomes more parsimonious as fewer contrasts are used.

A very important subset of latent class models arises when only the
linear contrast is used. The restrictions imposed on the two-variable
interactions in this model can be expressed by:

AU *A () (1 7)Ugt=UgX t, .

where the valuesOt are chosen such that they satisfy the requirements
of a set of weights for a linear contrast. This restriction isreferred to
when it is said that the relationship between the latent variable and the
manifest indicator is linearized.

When the restrictions as given in Equation 1.7 are imposed onthe
two-variable interactions, the latent variable0 is actually treated as a
variable on the interval level.5 The scores()t are equally spaced and

4With dichotomous dependent variables, only one relevant logit can be defined. However,

for polytomous dependent variables several ways of defining the relevant logits are possible.
See, for example, Fienhcrg (1980) for more details.

!iFrom this point. on the phrases "metrical variables" and "variables on an interval level" will

be used interchangeably. One could object that this is not entirely correct because variables

on a ratio level are also metrical. However, a ratio level is not relevant in the context of latent
variables because the metric of these variables is always arbitrarily fixed. As regards manifest

indicators, a ratio level will in practice only be relevant in a small number of situations.
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should be interpreted as metrical values. All latent structure models
mentioned in the bottom left-hand cell of Table 1.1 assume that the la-
tent variable is measured on an interval scale. Some of thesemodels (the
latent class models with linear restrictions) consider thelatent variable
as discrete.ZYXWVUTSRQPONMLKJIHGFEDCBAIn the context of log-linear analysis with directly observed
variables, these linear restrictions are applied rather frequently (see, for
example, Haberman, 1979 and Goodman, 1984). Within the framework
of latent class analysis, these linear restrictions have only recently been
applied (for instance, by Clogg, 1988). Using the linearizing restrictions
as defined in Equation 1.7, the expression for the response probabilityzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

p;~can now be rewritten as:

exp(u*Ag .zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAat + u
A

g)
pAD _ =----=-...:.....-.2.--.,--_---'!....:......,.,...

9 t - Lh exp(u*t . at + u1)"

At this point, it is not necessary to show how this expressionfor the
conditional response probabilities can be derived. Equation 1.8 is only
needed here to illustrate the remarkable resemblance to Bock's Nominal

Response model.
While latent class models using linear restrictions on the relation

between the latent and the manifest variables treat the latent variable
as a discrete variable on a metrical scale, it is also possible to link a
metrical continuous latent variable to manifest indicators on a nominal
scale. A well known latent structure model that does this is the Nominal
Response modelproposed by Bock (1972). One can easily get a first
intuitive grasp of this model by looking at a picture of the so-called trace
lines as is given in Figure 1.2. These trace lines, also called category-
characteristic curves, picture the conditional response probabilities as
a function of the latent variablea. It can clearly be seen from Figure
1.2 that in the Nominal Response model for one category, thisresponse
probability is monotonically declining, while for one other category the
conditional response probability is a monotonically increasing function
of a. The other two categories in Figure 1.2 seem to take an intermediate
position as up to a given a-value, the conditional response probability
increases while past this particular a-value the probabilities consistently

decrease. The mathematical expression for the conditionalresponse

(1.8)
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Figure 1.2: Trace lines in the Nominal Response model
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probabilities in the Nominal Response model is:

exp (ajg . ()i + Cjg)

PjglOi = "mj ). (1.9)
L.Jh=O exp (ajh . ()i + Cjh

Note that in this equation the notation()i is used instead of()t to stress
the continuous character of the latent variable. Furthermore, the num-
ber of categories of the manifest variables may vary over items. There-
fore, the last numbered category is denoted bymj instead of just m.

Finally, the more general notationPjglO, is used for the conditional re-
sponse probabilities because a unique identification of certain manifest
variables (such asA, B and C) is no longer needed here.

When Equation 1.9 is compared with the expression for conditional
response probabilities in the linear restricted latent class model (see
Equation 1.8), the resemblance is quite remarkable, despite the differ-
ences in notation. Both models use the same functional form.The only
difference seems to be that the Nominal Response model assumes the
latent variable to be continuous, while () is discrete in thecase of the
linear restricted latent class model. These differences will be further
explored in the following chapters.

In the restricted LeA-models in the bottom left-hand cell ofTable
1.1, log-linear parameters are linearized so that only the latent vari-
able is considered metrical. The manifest variable is stillthought of as
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measured on a nominal level. However, it is also possible to do just
the reverse. The latent variable remains a set of nominal latent classes,
while the log-linear parameters are linearized in a way thatassumes
that the manifest variables are metrical. This type of latent structure
model was proposed by Rost (1985, 1988a and 1988b). Using Rost's
original notation, the expression for the response probabilities in Rost's
latent class model is:

• _ expzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[g.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAjlflt - L~=oTjx]

Pjglflt - m [ h] .
Lh=O exp h· AjlOt - Lx=o Tjx

The LCA model proposed by Rost uses the same linearizing restrictions
as the LCA models in the bottom left-hand cell, with the role of latent
and manifest variables reversed. This means that if a logit is defined
using conditional probabilities for belonging to a given latent classt
rather than to another classt', given that the response to itemj was
in category g, this logit will be linear related to the categories9 of the
manifest item. This model will be studied in some detail in Chapter
2. For now it suffices to take an overall view of the expression of the
conditional response probabilities. Firstly, it should benoted that the
notation used for the conditional response probability isPjglOt' indicating
that this probability is the same for all individuals belonging to the same
latent classt. Secondly, when the two-variable interaction pertaining
to the latent variable () and a given manifest indicatorj is denoted by
UjgOt 6, these interactions are restricted by:

(1.10)

UjgOt = 9 X AjlOt·

Each two-variables interaction is assumed to equal the product of a
class-specific item weight (i.e.,Ajlo.) and the category number involved
(i.e., g). The fact that the weights are multiplied by thecategory num-

bers implies that the manifest variables are seen as variables measured
on an interval level, since otherwise there would be no sensible founda-
tion for this restriction. On the other hand, no restrictions are put on
the class-specific item parametersAjlOt' thus indicating that the differ-
ent latent classes can be seen as categories of a nominal level variable.

6The notation Ujg8t is more general than the previously given notation (for example, u:~)
and will be used from this point on, except when it is necessary to label the manifest indicators

in a more specific manner.
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With this latent class model only one class-specific parameterzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAj18! will
be estimated for each item, while in the unrestricted LeA model, m
different independent parameters are estimated per item.

Finally, the one-variable parameters (for which the general notation
Ujg can be used) are rewritten in the Rost model as a function of a set
of r-parameters. This reparameterization has the following form:

9

Ujg = - LTjx.

x=o •
The reparameterization is a direct consequence of the fact that Rost de-
veloped his LCA model using the so-calledthreshold formulation, origi-
nally proposed by Andrich (1978a) in the context of latent trait models
for polytomous data. The T-parameters actually represent points on
a latent continuum between two successive categories.ZYXWVUTSRQPONMLKJIHGFEDCBAIn the formu-
lation of Rost's model for ordered data as given in Equation 1.10, the
set of threshold parameters is assumed to be the same for all latent
classes. This reparameterization of the log-linear one-variable parame-
ters is not very interesting for the present discussion, butthis topic will
be explored further in Chapter 3. Rost's latent class model itself will be
explored in greater detail in Chapter 2. This model does not,however,
play a crucial role in this study because it cannot be relateddirectly
to latent trait models. And, as said before, the relations between la-
tent class analysis and latent trait models are the major subject of this
book.

Until now, three corner cells in Table 1.1 have been discussed. The
top left-hand cell contains the ordinary latent class models, linking a
latent variable on a nominal level to manifest indicators that are also
measured on a nominal scale. This model was discussed briefly in the
former section. The bottom left-hand cell and the top right-hand cell
treat either the latent variable or the manifest variable asa variable on
an interval scale. The last corner cell, the bottom right cell, contains a
number of models with latent and manifest variables measured on an
interval scale. The latent structure models for this situation are again
restricted LCA models if the latent variable is discrete, and certain
latent trait modelsif the latent variable is considered continuous.

In order to obtain a latent class model in which both the latent and
the manifest variables are treated as variables on an interval scale, the
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following restrictions must be imposed on the two-variables interactions
in the unrestricted latent class model (see Equation 1.5):zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

U*Ag(}t

U*BzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk(}t

u*c se; (1.11)

The log-linear parameters reflecting the association between the latent
and the manifest items are written as a weighted product of the latent
and manifest scores. The weights may vary depending on the item.
The model defined by this set of restrictions is called a linear-by-linear
interaction model.It was first applied in the context of log-linear anal-
ysis for observed variables by Haberman (1978) and Goodman (1979).
The parametersu*A, u*B and u*c are often interpreted as coefficients
reflecting the degree of association between () and the manifest indica-
tors. This interpretation prevails in the tradition of latent class anal-
ysis. However, there is yet another interpretation. As willbe shown
in Chapter 3, the parametersu*A, u*B and u*c can also be regarded as
scaling parameters, which take into account the fact that the metric of
the latent and manifest variables,as reflected by the quantities 9 and
t, is arbitrarily chosen. This interpretation is frequently encountered in

latent trait analysis.
With the restrictions given by Equations 1.11, the expression of the

response probabilityP~~ now becomes:

A6 exp(u*A . g. (}t + u:)

Pgt = Eh exp(u*A . h· (}t + u1)·
(1.12)

This LCA model is more restricted than the model in Equation 1.8 as
in Equation 1.12 the two-variable interactions are restricted by:

There are also fewer parameters to estimate in 1.12 than in 1.8. In the
unrestricted latent class model (see Equation 1.5), the total number of
non-redundant parameters that is used to describe the relation between
() and A is equal tornA x (T -1). When the relation between the latent
and the manifest variable is linearized, only one parameteris needed
to describe the linear relation between the latent classes and the logit
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for categoryzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg of itemzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA (i.e. the slope parameter). SincernA different
relevant logits can be defined for itemA when dummy coding is used,
the number of non-redundant parameters in the LCA model given by
Equation 1.8 drops tomAo Finally, the model expressed by Equation
1.12 needs only one parameter (i.e.,u*A) to characterize the relation
betweene and A.

There are also a number of latent trait models for polytomousman-
ifest items which assume that both latent and manifest variables are
measured on an interval level. One example of such a latent trait model
is the Partial Credit modelproposed by Masters (1982). In this model,
the response probabilities are modelled as follows:

exp (g. ()i + Cjg)

PjglO; = "m ( ).
L-h=O exp h -ei + Cjh

(1.13)

When the expression for the conditional response probabilities, as given
in Equation 1.13, is compared to the one in Equation 1.9 (the Nominal
Response model), it becomes clear that the Partial Credit model sets
the following restriction on the ajg-parameters:

One noticeable difference between the LCA model in Equation1.13
and the Partial Credit model is that the LCA model allows for one
separate association parameter for each manifest item (i.e., u*A), while
the Partial Credit model assumes that the strength of the association
betweene and the manifest variables is the same for all indicators. The
Partial Credit model, as well as a number of other interesting latent
trait models, will be studied in Chapters 3 and 4.

1.3.3 Latent structure models for ordinal data

If only nominal and metrical measurement levels were distinguished,
then Table 1.1 would be a complete picture of the known latentstruc-
ture models. This is, as a matter of fact, what is done in many articles
on the analysis ofordered data (see, for example, Andrich, 1978a and
1978b; Clogg, 1982; and Goodman, 1984). In the view of many authors,
ordered data are simply metrical data, and the way they are dealt with
in latent structure models nearly always amounts to the linearization
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of certain parameters. This, in turrr, leads to the assumption that the
distances between the values of the latent and/or manifest variables
are equal or at least known. When, however, data is interpreted in
this manner, quite a bit more is assumed than is allowed for variables
that are trulyzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAordinal, i.e., variables for which only the order relations
among the numerical values assigned to the various categories can be
interpreted in a meaningful fashion. There are, however, a number of
latent structure models that have been developed for the analysis of
ordinal data. These models can all be located in the middle row or
middle column of Table 1.1.

The five cells in the middle row and middle column of Table 1.1will
be dealt with consecutively, starting with the middle cell in the first
column. In this cell, an ordinal latent variable is linked tomanifest
indicators measured on a nominal scale. Though at present nomod-
els have been discussed that belong to this category, it is possible to
indicate how such models could be developed. Keeping in mindthat
the top left-hand cell assumes that both the latent and the manifest
variables are measured on a nominal scale, it is possible to transform
this LCA model into a LCA model with latent variables on an interval
scale by imposing certain linear restrictions on the log-linear parame-
ters. These restrictions would imply that the relationshipbetween the
set of relevant logits for the manifest variable on the one hand, and
the lit-values for successive latent classes on the other hand, are lin-
ear. A model which assumes that the latent variable is measured on an
ordinal scale while the manifest indicators are measured ona nominal
scale would depart from the assumption that, for each categoryzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 of a
manifest indicator, the relationship between the set of logits and the
successive class numbers is monotonically increasing (or decreasing).

If it is possible to develop models which link an ordinal latentvari-
able to nominal indicators along the lines outlined here, then it must
also be possible to formulate models for the middle cell in the top row
by reversing the role of the manifest and the latent variable. The rel-
evant logits are now defined in terms of the conditional probabilities
for belonging to latent classt rather than latent classt', given that
item j is responded to in categoryg. A latent class model that links
ordinal manifest variables to a latent variable assumed to be measured
on a nominal scale assumes that the relation between these logits and
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the categorieszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg for the manifest itemj is monotonically increasing (or
decreasing). The middle cell in the top row is also empty as nosuch
models have yet been developed.

The cell in the center of Table 1.1 combines ordinal latent variables
with ordinal manifest variables. A latent class model for these combina-
tions of variables was proposed by Croon (1990). This model is a LCA
model using certain inequality restrictions imposed upon the response
probabilities. The idea of latent class models for ordered latent classes
can be illustrated very easily for the situation with dichotomous mani-
fest indicators. Suppose there arezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT different latent classes, numbered
1, ... ,T, which are ordered according to a given criterion. Assuming
a proper ordering of the latent classes, the probability of a"positive"
response (indicated byPjll8J should increase with the class number,
thus:

Pjll8 t+! ~ Pjll8 t•

The same idea can be used to model ordered relations between latent
and manifest variables for polytomous indicators. There are, however, a
number of ways of defining a "positive response" for polytomous items.
Croon (1990) tackled this problem by dichotomizing the polytomous
item in a number of different ways. This ordinal latent classmodel will
be studied in more detail in the following chapter.

The last model mentioned in Table 1.1 is theGraded Response model

suggested by Samejima (1969). This model is a genuine latenttrait
model, because it assumes a metrical continuous latent variable. As it
models thecumulaiiue response probabilities and not the original re-
sponse probabilities (thus, the probabilities for responding in certain
response categories, given a specific position on the latent continuum),
the Graded Response model deals more explicitly with the ordinal infor-
mation in the manifest indicators, without assuming an interval metric
for these indicators. This model be reviewed only briefly inthis chap-
ter. The reason for not discussing this model more extensively is that
the Graded Response model cannot be brought within the same general
log-linear framework as the other latent trait and latent class models.
Because this general log-linear framework makes it possible to link la-
tent trait models to latent class models, the Graded Response model
is not very interesting from the perspective central in thisstudy. This



25zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

model falls in the category of what Thissen and Steinberg (1986) callzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

difference models.

The model can be expressed as follows.If the probability of an
individual i responding to itemj in category9 or larger is denoted byzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

PigIB;' then this probability can be written as:

pig If); = .<I>(ajg . ()i + Cjg), (1.14)

where the function<I> must have the properties of a cumulative distri-
bution function. Often,<I> is the normal ogive or the cumulative logistic
distribution. For the latter choice the resulting equationis:

* exp(ajg . ()i + Cjg)
P I - (1.15)

jgB; - 1+ exp(ajg' ()i + Cjg)"

The term difference modelsis derived from the fact that the usual re-
sponse probabilities for the intermediate categories can be derived by
taking the difference between the complements of two cumulative prob-
abilities. So:

PjglB; = PiglB; - Pig+IIB;' (1.16)

for 1 ~ 9 ~ m - 1, where m denotes the number of the "highest"
category of item j. For the two extreme categories, the conditional
response probabilities can, of course, be found by:

PjOIB;

PjmlB;

1- PiIIB;

*
PjmIB;'

There are some important restrictions that must be imposed upon the
parametersajg and Cjg. First, the slopesajg should be equal for each
item j, i.e. ajO = ... = ajmj' The reason for this is quite obvious.
If the slopes were not equal, the curves representing the relationship
between the probabilitiesPjglB; on the one hand and the latent variable
()on the other hand would intersect at a given point. This means that

for some values of () the differencePiglB; - Pjg+IIB; will become negative,
which is of course not allowed.If the slopes are all equal, the resulting
model is denoted as the homogeneous case of the Graded Response
model. Second, the intercept-parametersCjg should satisfy the following
inequality constraints:

Cjl ;::::Cj2 ;:::: ... ;::::Cjg ;:::: Cjg+l ;:::: ... ;::::Cjmj'
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These constraints are necessary in order to guarantee thatzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPjglB; 2: O.
When the two sets of restrictions are satisfied, the curves describing

the relationship betweenPjglBzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i

and the latent variable () run parallel
and they are ordered frompj liB; (located at the extreme left) toPjmlB

i

(located at the extreme right). An example for an item with four cate-
gories (i.e.,9 = 0, ... ,3) is depicted in Figure 1.3.

<J)

~ o.
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.0e 0.7
0..
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~ 0.5
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~ 0.3
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80.1

Prob(Resp. cat ~ 2)

Prob(Resp. cat ~ 1)

Prob(Resp. cat ~ 3)

·5 -4 -3 ·2 ·1 0 1 2 3 4 5

e

Figure 1.3: Graded Response model: curves describing the comple-
ments of the cumulative probabilities

When the proper restrictions are imposed on the slopesajg and the
intercept-parametersCjg, the Graded Response model thus accounts for
thc ordering of the categories of the polytomous indicators. Moreover,
as McCullagh and Nelder (1989) noted, models for ordinal data which
are based on cumulative probabilities are also advantageous because
conclusions based on such a model are not affected by the number of
response categories. This means that the combination of certain cate-
gories of the manifest indicators will not lead to substantially different
conclusions on the relation between the latent and the manifest vari-
ablos, i.e., the item parameters in this model.7 In general, this cannot
be said of the latent trait models presented in Chapter 3.

The Graded Response model has a number of intuitively appealing
characteristics (that is, for the homogeneous case and given that the

7This is, however, not true for estimates of()i as was shownby Jansen and Roskam (1986).
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inequality restrictions mentioned above have been fulfilled). Firstly,
the probability of a response in the highest category (i.e.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPjmjl9,) is
a monotonically increasing function of the latent variable. Secondly,
the probability of a response in the lowest category is a monotonically
decreasing function of the latent variable. Finally, the curves describing
Pjgl9; for all intermediate values ofzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 in function of () are unimodal with
the maxima ordered according to the ordering of the categories of j.
An example for an item with four categories is pictured in Figure 1.4.

Prob(Resp. cat 2)

Prob(Resp. cat 1)

Prob(Resp. cat 0)

Prob(Resp. cat 3)

~ 4 ~ ~ ~ 0 1 234 5

e

Figure 1.4: Graded Response model: curves describing the response

probabilities

Despite all these interesting properties, difference models have not be-
come very popular among applied researchers. This is probably partly
due to the fact that some influential statisticians and methodologists
have strongly propagated the use of Rasch-likemodels.f The existence
of sufficient statistics for both item and person parameters is seen as
an important advantage of these types of models. The advantage of the
existence of known sufficient statistics for the parameters does not per-
tain to latent trait models for polytomous data which are based on the
Birnbaum model, such as Bock's Nominal Response model. However,
these models share with the Rasch-like models the benefit ofbearing a
very clear resemblance to restricted latent class models, as was noted

8This type of modelswill be dealt with extensively in Chapter 3.
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in the previous section. Because it is this relationship between latent
trait models and latent class analysis that is of interest inour study,
the Graded Response model will not be discussed any further in this
study,

A final question that can be raised is whether it is possible to link an
ordinal latent variable to metrical indicators (the right-hand cell in the
middle row of Table 1.1). In the context ofzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgraphical models,a number
of models have been developed in which (observed) ordinal and met-
rical variables are related to each other (see, for example,Whittaker,
1990). However, such models do not (presently) exist for ordinal latent

variables. Therefore, the right-hand cell in the middle rowhas been left
empty.

Having reviewed all the cells in Table 1.1, this introductory chapter
will be concluded with some comments on the differences between latent
trait models and latent class models and a preview of the chapters to
come.

1.4 Latent class analysis versus latent trait models

In this chapter a number of different latent structure models were sur-
veyed. The latent structure models for discrete manifest data surveyed
in this chapter were either latent class models or latent trait models.
The criterion that was used to impose some order on this set oflatent
structure models was based upon the measurement scale for both the
latent and the manifest variables. An overview of this arrangement of
latent structure models was given in Table 1.1.It was noted that some
cells in this table (i.e., the categories with latent variables on an inter-
val scale) cover both latent class models and latent trait models. This
raises the question of what distinguishes these two types ofmodels.

Andersen (1990) mentioned two main points of difference. Firstly,
the latent trait model assumes a continuous latent variable, while the
latent class model postulates the existence of a number of mutually
exclusive latent classes. The latent variable in the latentclass model
is thus discrete and not even necessarily unidimensional.?Secondly,
the manner in which the conditional response probabilitiesare linked

9Latent trait models can also be multidimensional, but the latent trait models that are

most frequently applied in practice are all unidimensional.
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. 0 values or categories of the latent variable is different. Inlatent trait
models explicit functional relations are used to model the dependence of
the response probabilities on the latent values; in latent class analysis
such explicit functional relations are not used. The most frequently
used functional forms are the logistic distribution and sometimes the
normal ogive. This difference is seen by Masters (1985) as the most
significant difference between the two types of models.

The latter point is of some importance. The unrestricted models esti-
mate the conditional response probabilitieszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPjgl9t in such a way that they
give the best fit to the data, whereas the latent trait modelspropose
a functional relationship between these probabilities andthe values on
the latent continuum. Hence, the latent class model uses many more
parameters to fit a certain data set than the latent trait model does.
When latent trait models fit the data, they should be preferred since
they use much fewer degrees of freedom. For the case in which standard
non-restricted latent class models are compared with latent trait mod-
els, the difference mentioned by Andersen and Masters is very relevant.

However, in this chapter a number of restricted latent classmod-
els were described which also specify an exponential form for the re-
lationship between the response probabilities and the latent classes.
Examples are the latent class models with linear restrictions on the
relationship between the latent and the manifest variables. Hence, in
a number of restricted latent class models, explicit functional relation-
ships are also used to model the response probabilities. This means that
the point mentioned by Andersen and Masters is not always relevant.
Whenever linearizing restrictions are imposed upon the two-variables
interactions reflecting the relations between the latent variable and the
manifest indicators, the response probabilities are necessarily function-

ally related to the latent scores.
So, the only important difference that remains between latent class

and latent trait models is the difference with respect to thediscrete or
continuous character of the latent variable. From a conceptual point of
view, this difference may be relevant. Thissen and Mooney (1989) also

stressed this point.
It is, however, doubtful whether this difference between continuous

and discrete latent traits is important from a more pragmatic point
of view. Firstly, there are a number of latent trait models that can
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be expressed as log-linear models. This means that the estimation of..
the parameters in the log-linear model will lead to the same results
as estimation of the parameters in the (continuous) latent trait model.
Secondly, when one tries to estimate the latent scoreszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfh on the basis of
the estimated parameters in some latent trait model and the observed
response patterns, the maximum number of different()i values that can
be estimated is equal to the number of different response patterns that
can be observed. For an important number of latent trait models, the
maximum number of()i values that can be estimated is much smaller,
namely,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(n - 1) with n equal to the number of manifest indicators. So,
the "measurement" of the latent variable is in practice always discrete.
These observations raise doubts about the assertion that the difference
between continuous and discrete latent traits is always relevant.

Besides these practical considerations, an important question is
whether latent class models and latent trait models will yield differ-
ent results when applied to the same set of data. A number of au-
thors have noticed the similarity between the results of both kinds of
analyses when the same set of data is evaluated with the two differ-
ent models (see, for example, Bock& Aitkin, 1981 and Haertel, 1990).
The equivalence of the estimated parameters has been recognized for
some time with respect to those latent trait models that can be ex-
pressed as certain kinds of log-linear models (Tjur, 1982 and Cressie&
Holland, 1983). However, important results can also be obtained for
latent trait models that do not fall in this category. So far,only vague
comments have been made with respect to the agreement of fit statis-
tics and predicted response probabilities for the two typesof models.
Haertel (1990) obtained some results regarding this agreement using
restricted latent class models for manifest dichotomous data and latent
trait models based upon the normal ogive. The reason Haerteldid not
obtain very rigorous results concerning the identity of results obtained
with both types of latent structure models is twofold. Firstly, Haertel
used a normal ogive to model the trace lines instead of the cumula-
tive logistic distribution. Secondly, Haertel uses a parameterization for
the latent class model in terms of latent proportions and conditional
response probabilities instead of log-linear parameters.When the log-
linear parameterization is used for the latent class model and the latent
trait models are based upon the cumulative logistic distribution, some
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firm results can be achieved regarding the equivalence of latent class
models and latent trait models. The relation between both types of
models will be explored in more depth in the following chapters.

1.5 An outline of this book

This book is a study of the differences and similarities between latent
trait models and latent class models. In this chapter, the latent trait
models and latent class models that can be of interest withinthis per-
spective were ordered according to classification criteria based upon the
measurement level of both the latent and the manifest variables. Chap-
ter 2 starts with a discussion of log-linear models. Next, latent class
analysis will be studied in detail. Various ways of parameterizing this
model will be explored. Also, the procedures that can be usedfor the
estimation of the parameters in these models will be reviewed, as well
as methods for model selection. Chapter 3 concentrates on latent trait
models. In this chapter a number of known latent trait modelswill be
studied. Attention is given to the correspondence between latent trait
models and certain types of restricted latent class models.This ap-
proach leads to new insights for both kinds of latent structure models.
Estimation of the parameters in latent trait models is one ofthe topics
that is of great interest with respect to the discussion regarding the cor-
respondence between latent class and latent trait models. Therefore,
Chapter 4 will be dedicated entirely to a discussion of the estimation
procedures for parameters in latent trait models from this perspective.
Finally, Chapter 5 will explore two important extensions ofthe latent
trait model from the very same perspective. One concerns therelation
between the latent variable and some other exogenous variables. The
other extension concentrates on multidimensional latent trait models.



C h a p te r 2

L a te n t C la s s A n a ly s is

2 .1 In tr o d u c t io n

In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis chapter attention is focussed on latent class analysis. The latent
class model, which was introduced briefly in Chapter 1, can be parame-
terized in several ways. One parameterization uses conditional response
probabilities, while another parameterization is possible through appli-
cation of the log-linear model. This second parameterization is instru-
mental to the present study, because the log-linear formulation makes
it possible to link specific latent class models to certain latent trait
models. For this reason, log-linear models are dealt with inSection
2.2. Topics that are reviewed are the estimation of parameters in this
model (Section 2.2.1) and the problem of testing and selecting models
(Section 2.2.2).

Afterwards, latent class analysis (LCA) will also be reviewed in Sec-
tion 2.3. In this section the different methods of parameterizing the
latent class model are discussed and compared. Several procedures that
can be employed for obtaining maximum likelihood estimatesfor the
parameters in the latent class model are also reviewed (Section 2.3.1).
The problem of testing and selecting models in LCA is comparable to
the same kind of problem in the context of log-linear analysis. One
complicating aspect of latent class models, however, is theproblem of
identifiability. This topic is considered in Section 2.3.2.

Whether a specific latent class model leads to a better understanding
of the relations between the latent variable and the manifest indicators
not only depends on the identifiability of that model and theoutcome
of formal statistical tests, but also on the strength of the association
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between the latent variable and the manifest indicators. Measures for
the strength of this association are, as shown in Section 2.3.3, to a large
extent related to the question of whether individuals can beallocated to
certain latent classes on the basis of their observed response patterns.

In Section 2.4, restricted latent class models are studied.Restrictions
can be applied to parameters in the different parameterizations of the
latent class model. While unrestricted latent class modelsare not the
most suitable class of models when the analysis is aimed at measure-
ment rather than mere data reduction, a number of LCA models that
are interesting from this measurement point of view can be obtained by
restricting the parameters. Firstly (Section 2.4.1), a number of models
are reviewed which have their roots in Guttman's scalogram analysis
(Guttman, 1950). These models all make use of restrictions on the
conditional response probabilities. Secondly (Section 2.4.2.), a number
of latent class models suitable for Likert-type data that were suggested
by Clogg (1977, 1981) are reviewed briefly. These models also impose
restrictions on the conditional response probabilities. Thirdly, ordinal
latent class analysis is examined (Section 2.4.3). This technique uses in-
equality restrictions on the conditional response probabilities. Finally,
a category of restricted latent class models can be formulated by re-
stricting thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlog-linear parameters. In this study, the most important
restrictions on the log-linear parameters are restrictions that linearize
the relationship between the latent and the manifest variables. Models
that use these restrictions are explored in depth in Section2.4.4. This
class of LCA models is of particular interest in this book, because LCA
models with linear restrictions can be compared to some known latent
trait models. This topic will be explored in more depth in Chapter 3.

The last two sections of this chapter discuss extensions of the latent
class model. Firstly (Section 2.5), latent class model withtwo or more
latent variables are examined briefly. Afterwards (Section 2.6), atten-
tion is focussed on the relations between latent variables and exogenous
manifest variables. Both topics are explored in detail in Chapter 5.

2.2 Log-linear models

Although the first discussion of the log-linear model can betraced back
to Birch (1963), the popularity of this model is largely due to the work
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done by Goodman.ZYXWVUTSRQPONMLKJIHGFEDCBAIn a series of articles, which were reprinted in
Goodman (1978), the formulation of the model as well as methods
for estimating parameters and assessing the fit of the modelto the
data were discussed. These articles were a major breakthrough in the
analysis of discrete data. Until then this type of analysis was based
on the classic elaboration procedures which were not well suited to the
analysis of more than four variables and did not provide for statistical
tests for specific hypotheses about the association between the variables.
It is without doubt Goodman's greatest contribution that he formulated
a firm statistical basis for the analysis of discrete data. This section on
log-linear models is not meant to reconsider all aspects of the log-linear
model, but only those topics necessary for understanding the latent
class model.

Suppose there are three discrete variableszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, Band C. Arbitrary
categories on these three variables will be denoted byg,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk and £, respec-
tively. Furthermore, letP~f1denote the joint probability for observing
an individual who responded to the itemsA, Band C with categories
g, k and £, respectively. The general log-linear model states that the
natural logarithms of these probabilities can be decomposed as follows:

(2.1)

The various terms in the equation at the right can be interpreted as
follows. The u-term is merely a normalizing constant to ensure that
the sum of the probabilities over all possible combinationsof g, k and
£ is equal to 1. The one-variable terms (i.e.,u~, u~ and uCjJ indicate
the partial skewness of a variable.'

At first sight, there is a strong similarity between the model in Equa-
tion 2.1 and the well-known ANOVA model. However, in ANOVA the
dependent variable is an individual score, while in the log-linear model
the dependent variable is a probability of observing a particular re-
sponse pattern. As a result, the one-variable parameters (i.e., the "main
effects") are not very interesting in the log-linear model,as opposed to
analysis of variance, where these effects are considered highly relevant.
However, as will be shown in Chapter 3, these one-variable parame-

1As Davis (1974) has noted, these one-variable parameters donot indicate the skewness

of the variables per se, hut they could be interpreted as indices of mean skewness within the

combined categories of the other variables.
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ters have a clear substantive interpretation in the contextof specific
restricted latent class models.

The two-variable interactions (i.e.,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu:f, u:~and uf~)can be taken as
measures of the strength of the (partial) statistical relationship between
two variables. Because the log-linear model assumes that the variables
are measured on a nominal level, the partial association between two
variableszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA and B (the "mean" association betweenA and B over
categories of variableC) is indicated by a differentu:f parameter for
each different combination of the categories9 and k. These two-variable
interactions are defined in terms of log-odds ratios.

Insofar as the logarithm of the joint probabilities Inp:ff cannot be
reproduced by the grand meanu, the partial skewness parameters (the
one-variable interactionsu:' uf and u~) and the partial association
parameters (i.e., the two-variable interactionsu:f, u:~ and uf~),a set
of three-variable interactions u:ff is introduced to guarantee a perfect
reproduction. These three-variable interactions denote how the log-
odds ratios for two specified variables vary at different levels of the
third variable.

It should be noted that the log-linear model in Equation 2.1 is not
identified unless certain restrictions are imposed on the parameters.
This point was already noted in Chapter1. The restrictions can be
imposed in several ways. First, it can be required that the sum of the
u-terms over any subscript is equal to zero, i.e.

L u: = L uf = Lu~= 0,
9 k l

'""' AB ~ AB '""' AC ~ AC ~ BC '""' BC 0
~Ugk = ~Ugk = ~Ugl = ~Ugi = ~ukl = ~ukl = ,

9 k 9 e k l

'""' ABC '""' ABC '""' ABC - 0Z:: Ugke = Z:: UgH = Z:: UgH - .

9 k e

This is called effect coding. In the literature on log-linear models, effect
coding is the most frequently used method of putting identifiability re-
strictions on the parameters. Effect coding implies that the interactions
measure partial skewness or partial association in terms ofdeviations
from the mean log-probabilities.

A second method of making the model in Equation 2.1 identifiable
is to use dummy coding. With this coding scheme, the parameters
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for one particular category (in the case of one-variable parameters)
or one particular combination of categories (in the case of all other
parameters) are set equal to zero. In this case, thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu-terms for the
other (combinations of) categories are defined as departures from the
fixed u-terms. This parameterization is used in Section 2.4.3 of this
chapter as well as in Chapter 3.

Both effect coding and dummy coding are arbitrary methods ofim-
posing the necessary identifiability restrictions. Both coding schemes
lead to the same estimated expected frequencies and thus to the same
model fit indices which are presented later on in this chapter. An excel-
lent introduction to these two coding schemes can be found inKerlinger
and Pedhazur (1973). Long (1984), however, focuses on the differences
which arise when interpreting parameter estimates obtained under the
two different coding schemes.

It is possible to obtain maximum likelihood estimates for the pa-
rameters in model 2.1 using data obtained under a number of possible
sampling schemes (see, for instance, Fienberg, 1980). One of the most
frequently encountered sampling schemes is derived from the multi-
nomial distribution. The total sample sizeN is fixed and each unit is
assigned to a cell of the cross-classification according toits values on the
observed variables. Another possible sampling scheme is derived from
the product multinomial distribution. In this case there isa multino-
mial distribution for each joint category of the variables for which the
distributions are fixed in advance.

Both of the coding schemes mentioned earlier (dummy coding and
effect coding) make it possible to estimate the values of thenon-
redundant parameters in the log-linear model using the cross-classified
countszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf::f observed in a sample. Details about the various methods
that can be employed to obtain maximum likelihood estimatesfor the
parameters in a log-linear model will be presented later. The estimated
parameters can be used to obtain estimated expected frequencies J::f
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using the same expression as in Equation2.1:2

IzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAjzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAABC A AA AB AC AAB AAC ABC AABC ()
n gkl = U+Ug +Uk +Ut +Ugk +Ugl +Ukl +ugkl' 2.2

In the example presented in Equations 2.1 and 2.2, the numberof non-
redundant parameters in2.2 is equal to the number of independent
observedfrequencies.l Therefore, this log-linear model gives a perfect
fit to the data. So the estimated expected frequencies are equal to the
observed counts and there are no degrees of freedom left to test the fit
of the model. This log-linear model is called asaturated model. For
most practical applications this model is not very interesting because
this model in fact does nothing more than reparameterize theobserved
counts in terms of functions of the various u-parameters.

More interesting models can be obtained by specifying models with
fewer parameters, in other words, by fixing some u-parameters equal
to zero. In this respect the difference between hierarchical and non-
hierarchical models is important. A hierarchical model is an unsatu-
rated model in which, if any u-parameter is set equal to zero,all other
u-parameters of higher order in which the same subscripts appear as
in the restricted u-parameter are also set equal to zero. Forexample,
the model obtained by setting only the three-variable parameter u;f1'
equal to zero is a hierarchical model. The model in which the two-
variable u-parameteru;f is set equal to zero is only hierarchical when
the three-variable u-parameter is also set equal to zero. When this last
parameter is not zero, the resulting model is non-hierarchical. The dif-
ference between hierarchical and non-hierarchical modelsis important
because some of the estimation procedures can only be employed in
the case of hierarchical log-linear models. This is also thereason why
not every author in this field takes up the study of non-hierarchical
log-linear models. The estimation procedures that can be used in the
context of log-linear models are presented in the next section.

<Equation 2.1 expressed the probabilitiesp;ff as a function of a set of u-parameters,

whereas Equation 2.2 is in terms of estimated expected frequencies. This difference will be

reflected in the value of the overall u-parameter. In Equation 2.1 the parameteru ensures that

the slim of the! probabilities is equal to 1, while in Equation 2.2it merely serves to guarantee

that the sum of the estimated expected frequencies is equal to the sample sizeN under the

multinomial sampling scheme.
3The number of non-redundant parameters will not always equal the number of indepen-

dent observed frequencies. Especially in the case of incomplete tables, specific complications

can arise. However, we will not deal with these more complicated situations in this chapter.
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2.2.1 Estimation in the log-linear model

The parameters of log-linear models can be estimated in a number
of ways. The most common estimation procedures are methods that
yield maximum likelihood estimates. In this chapter only maximum
likelihood methods are discussed. The popularity of the maximum like-
lihood (=ML) procedures can be explained by the attractive statistical
properties of the resulting estimators: under relatively mild regularity
conditions (see, for example, Bishop et aI., 1975), ML estimators are
consistent and asymptotically unbiased and efficient. Moreover, ML
estimators are asymptotically normally distributed.It is also possible
to obtain estimates for the asymptotic variance-covariance matrix of
the ML estimators so that interval estimates for the model-parameters
are relatively simply obtained and statistical tests on hypotheses with
regard to these model parameters can be carried out readily.

There are two numerical procedures that are widely used for obtain-
ing ML estimates in log-linear models, namely,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAiterative proportional

jitting and the Newton-Raphson procedure.These procedures will be
discussed and compared briefly.

Iterative proportional fitting (=IPF) is used mostly in thecontext
of hierarchical log-linear models. IPF takes advantage of the fact that
hierarchical log-linear models offer extremely simple expressions for the
sufficient statistics which can be used to estimate the parameters in
such a model. This can easily be illustrated for a simple model with
three variables,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, Band C. The log-linear model for which the pa-
rameters are to be estimated assumes that there are no three-variable
interactions, but that all possible two-variable interactions are present.
So, the parametersu~f1are all set equal to zero. Because the model
is hierarchical, this model can also be denoted by mentioning only the
highest possible interaction terms or the corresponding marginal tables,
i.e., (AB), (AC) and (BC). All the other (lower) parameters are im-
plied by the hierarchical nature of this log-linear model. Now it can be
shown that the likelihood equations for estimating the parameters sim-
ply state that the marginal expected frequencies corresponding to the
three interaction terms mentioned should equal the matching marginal
observed frequencies, i.e.

f
AABC fABC
gk+ = gk+'
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fzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ABC
g+l'

fABC
+kl'

(2.3)

The observed marginal two-way tables(AB), (AC) and (BC) are ex-
actly reproduced by the model and the corresponding marginal observed
frequencies are the sufficient statistics that can be used to estimate the
parameters in the model (Bishop et al., 1975: 64). This result is used
in the IPF procedure. In an iterative process the estimated expected
frequencies are adjusted to the observed marginals that areto be repro-
duced until they converge. Details about this procedure canbe found in
many books on this subject (for instance, Bishop et al, 1975;Fienberg,
1980; Hagenaars, 1990; Andersen, 1990).

The main advantage of IPF is that the procedure is very simpleto
implement and that in those cases in which direct estimates?exist, the
iterative procedure takes only two cycles to converge. Although in some
situations it takes many iterations before convergence is reached, the
total amount of computing time does not have to be excessive since each
iteration takes very little time. The main drawback of this method is
rather obvious: one has to restrict oneself to the estimation of param-
eters in hierarchical log-linear models.

Most known programs which use IPF are based upon likelihood equa-
tions in terms of complete marginal tables. With these programs it is
not easy to estimate parameters in non-hierarchical models, although
some non-hierarchical models can be transformed into hierarchical mod-
els using particular tricks (see, for instance, Duncan, 1975). Darroch
and Ratcliff (1972) have proposed a generalized variant of IPF that can
be used to estimate the parameters in non-hierarchical log-linear mod-
els. And, as Vermunt (1992) has shown, it is also possible to use IPF
on the level of individual cells in the jointA x B x C cross-classification,
instead of on the level of complete marginal tables. With such an esti-
mation scheme, IPF can easily be employed to estimate the parameters
in a number of non-hierarchical models. So, IPF's frequently mentioned
drawback of not being able to handle non-hierarchical log-linear models
applies more to existing computer programs which use IPF than to the
IPF method per se.

4Direct estimates are estimates for which closed form expressions exist.
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Another frequently reported disadvantage is thatZYXWVUTSRQPONMLKJIHGFEDCBAIP F does not auto-
matically generate estimates for the variance-covariancematrix of the
parameter estimates. Although this is true, it should be realized that
this also implies that computations withIP F are relatively simple in
contrast to the calculations that must be performed when using the
Newton-Raphson procedure. Moreover, nothing in the procedure in-
hibits the calculation of an estimated variance-covariance matrix, but it
takes some extra programming and calculations; indeed, thesame kind
of calculations that are required by Newton-Raphson. But even these
calculations can be circumvented if one is willing to settlefor estimates
for the standard errors of the parameter estimates, and one does not
require estimates for the covariances between the parameter estimates.
In this situation, it is very easy to calculate the standard errors for
the parameter estimates in a saturated model (see Goodman, 1972b).
Because these standard errors can be regarded as the upper bounds
for the standard errors of the corresponding parameter estimates in
any unsaturated model, in the context of unsaturated log-linear models
this procedure will lead to conservative testing procedures which favor
the null hypotheses. As the number of parameters in log-linear models
tends to grow fast, one could hardly object to these conservative tests.
If these inflated standard errors are not acceptable, it is still necessary
to compute the variance-covariance matrix of the parameterestimates

separately.
In order to describe how ML estimates can be found using the

Newton-Raphson procedure, the notation for the log-linearmodel has
to be modified slightly. This facilitates the derivations and also clearly

shows how that algorithm works.
In Equation 2.1, the logarithms of the probabilities for observing

some response pattern were written as a sum of a number of u-terms.
The distinction made between one-variable, two-variable and three-
variable interaction-terms will now be dropped, and each ofthesezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu-

parameters will be denoted byzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUs, wheres = 1, ... ,q, so that the num-
ber of independent u-terms, for a particular model without counting the
overall u-term is equal toq. Assuming that the variablesA, Band C

are all dichotomous, there are seven independent u-terms and so q = 7
for the example in Equation 2.1. Using this new notation:u~ = Ul,

u~ = U2 and, finally, u~ff = U7. Furthermore, an arbitrary response
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pattern will again be denoted by the symbolzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt/, Now the logarithm of
the probability of observingv can be written as:

q

ln p, = u +zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL us· Xvs· (2.4)
8=1

The z-variables are the elements in the design matrix specifying the
log-linear model under study. These x-variables define theweight for
the various u-terms for each response pattern. The x-variables could be
defined such that dummy-coding is applied, or alternatively they can
provide an effect-coding scheme. In these two cases, the z-variables
merely indicate the absence or presence of specific effects. But it is
also possible for the x-variables to represent polynomial weights. The
polynomial weights that are used most frequently are linearweights.
Linear weights are, for example, used in a number of latent class models
that were introduced briefly in Chapter1. These models are studied in
more detail in Section 2.4.3. Representing log-linear models with the
aid of design matrices is clearly very flexible and also allows for the
inclusion of non-hierarchical models. For more information regarding
the use of design matrices, the reader is referred to Evers& Namboodiri
(1978).

Maximum likelihood estimation of the us-parameters requires finding
estimates of those parameters that minimize the log-likelihood function.
As shown in Appendix A, this log-likelihood can be expressedas:

In L = C +L Iv lnpv, (2.5)
v

where C is some normalizing constant andIv denotes the observed fre-
quency for response pattern1/. Minimization ofthis function means that
the first derivative of the log-likelihood to the unknown us-parameters
must be set equal to zero. This leads to the following expression (see
Appendix A for details):

8lnL '"-8- = Z:: (Iv - N· Pv)xvs.
Us v

(2.6)

As there is no closed form solution for this set of equations,the prob-
lem may be solved using the Newton-Raphson procedure. The Newton-
Raphson procedure for calculating ML estimates solves likelihood equa-
tions which do not have explicit solutions by using a Taylor expansion
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for the first derivatives of these equations up to the first term (see, for
example, Rao, 1973). This means that it is necessary to also derive
second derivatives of the log-likelihood to the parametersof the model.
The second derivatives can be expressed as follows:

:::~~ =zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-NzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[~x., ·x~·P. - (~>..'P.) . (~X~ 'P.)] .
(2.7)

Now the us-parameters are written in a vectoru of order q:

(2.8)

Using the first derivatives, the gradient vector g is defined, and using
the second derivatives, a matrixH is defined:

g
8lnL
---a:;;:- ,
82lnL

8u8u"
(2.9)H

New estimates for the parameters can be obtained by solving iteratively
the following equation:

H-1
u(new) = U(old) - (old)' g(old)' (2.10)

As has been shown by many authors (see, for example, Haberman,
1978, or Andersen, 1990) this is equivalent to an iterated weighted least
squares solution for Equation 2.4. This method was first proposed by

Nelder and Wedderburn (1972).
Although the Newton-Raphson procedure is computationallymore

complex than IPF, Newton-Raphson is a very flexible tool forobtain-
ing ML estimates in both hierarchical and non-hierarchicalmodels. The
choice of the xvs-variables in 2.4 makes it possible to estimate param-
eters in a great number of different log-linear models." TheNewton-
Raphson algorithm, when employed in the context of log-linear models,

5The choice of the x-variables is, however, not completely free because the design matrix

should be of full rank.
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is also relatively insensitive to the specific choice of a set of initial es-
timates for the parameters, just as IPF is. When Newton-Raphson
is used for estimating parameters in latent class models, however, the
algorithm is much more sensitive to the choice of the initialestimates.

Computing time may be saved by calculating the inverse of thema-
trix H in only the first two or three steps and working in the remainder
of the iterations with this inverse matrix. This has the disadvantage
that at the end of the computations one does not have a correctma-
trix of second derivatives. This is an important point because the in-
verse of this matrix can be shown to be the estimate of the asymptotic
variance-covariance matrix of the parameter estimates." In the case of
unsaturated log-linear models, the standard errors of the parameter es-
timates are not inflated, as was the case with IPF. Another time saving
possibility is to calculate only the diagonal elements of the matrix H.
Because the inverse of a diagonal matrix is calculated very easily, this
saves lots of time. However, with this modification of the algorithm a
multivariate Newton-Raphson procedure is broken down to a series of
univariate Newton-Raphson procedures, which in some situations can
have a negative influence on the stability of the algorithm." Moreover,
the advantage of an automatic calculation of the estimated variance-
covariance matrix of the parameter estimates is then also given up.

The final practical problem concerning the use of Newton-Raphson
is that with most computer programs that use Newton-Raphson, it is
necessary to supply a design matrix with the xlIs-variables. In some
instances this can be a tedious job. Some programs offer moreor less
automated facilities to generate design matrices.

2.2.2 Testing and assessing model fit

After estimates of the model parameters are obtained with one of the
methods described in the previous section, the question is whether the

6In the case of log-linear models with direct observations (Le., no latent variables) the

variance-covariance matrix of the parameter estimates canbe estimated by either the inverse of

the matrix of second derivatives or by the inverse of the information matrix. Both procedures

will give the same numerical results (see Haberman, 1977a and 1977b).
7Replacing the multivariate Newton-Raphson procedure by aseries of univariate Newton-

Raphson procedures is for a number of models in fact identical to the modified IPF strategy
proposed by Vermunt. See Vermunt (1992) for details.
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model fits the data in an acceptable way. There are several possible
ways to answer this question. First, one could try to solve the prob-
lem by carrying out an unconditional statistical test. One of the most
important tests that could be applied is an overall goodnessof fit test.
A specific log-linear model is specified for the population. The null hy-
pothesis states that the sample is drawn from a population for which
the specified model holds. This null hypothesis is tested against the
alternative that the observed response patterns stem from ageneral
multinomial distribution.ZYXWVUTSRQPONMLKJIHGFEDCBAIn other words, the alternative hypothesis
specifies a saturated model so that under this hypothesis, the observed
frequencies are identical to the frequencies that would have b~en ex-
pected when this alternative hypothesis is true.If the likelihood of the
data under the optimal solution for the specified model is denoted byzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Lo, and the likelihood under the general multinomial distribution by
LzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg, then the test statistic (the log-likelihood ratioG2

) is:

-2 x In (~;)

- 2 x ~ f II • In (N; II

PII

) •• (2.11)

Provided that some regularity conditions are satisfied (see Bishop et al.
1975, p. 510 and pp. 513-518), it can be proven that the log-likelihood
ratio test statistic has an asymptoticX2 distribution with degrees of
freedom equal to the number of independent observed counts minus the
number of independent parameters that have to be estimated according
to the model under study. Another test statistic that could be used to
test the same null hypothesis is the well-known Pearson teststatistic,
which is defined as:

(2.12)

This test statistic also approximately follows aX2 distribution with the
same number of degrees of freedom as the log-likelihood ratio. Because
both test statistics have the same asymptotic distribution, the values
of these both statistics should be nearly the same. However,in practice
one may observe that the values of both statistics are quite different.



46zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

This is specially true when the observed counts are relatively small.
The problem also occurs in the analysis of sparse tables, i.e., tables
in which some cells have observed frequencies equal to zero.These
observations have led to a discussion concerning the question of how
well the two test statistics approximate the theoreticalzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 distribution
in the problematic situations of small frequencies and sparse tables if
the null hypothesis is true.

In the case of small observed counts, some Monte Carlo studies have
indicated that in certain situations the Pearson statisticseems to behave
well in this respect, while the log-likelihood ratio systematically yields
values that are too high and thus underestimates the p-values, i.e., the
probability of a type I error (Fienberg, 1980; Read and Cressie, 1988).
Very little is known about how both test statistics behave inthe analysis
of very large sparse tables. One of the specific problems encountered
in the analysis of these kinds of tables is that some of the marginal
cells which are necessary for obtaining estimates of the parameters are
empty. In this case, one frequently adjusts the number of degrees of
freedom (Bishop et al. 1975, pp. 114-116). However, the way these
adjustments are made seems to be based on intuiti arguments as a
formal foundation is lacking (Kreiner, 1987).

All these objections against the use of the two test statistics have
raised the question whether it is possible to replace the asymptotic
tests by exact tests. However, the numerical difficulties which arise
with exact tests have been a serious drawback. Recently, there have
been some attempts to tackle these problems (Kreiner, 1987). Unfor-
tunately, these efforts have only been made in the context ofso-called
graphical models (Whittaker, 1990), which are a subset of specific log-
linear models. Hence, a general solution for this problem isstill lack-
ing. A recent survey of exact tests for contingency tables was given by
Agresti (1992).

Besides performing an unconditional overall test on the goodness of
fit, it is also possible to test more specific hypotheses by using con-
ditional tests. Conditional tests make use of the fact that the log-
likelihood ratio can be partitioned into components which can be at-
tributed directly to specific effects, i.e., u-parameters. Therefore, pre-
cise hypotheses can be tested concerning the need to retain specific
u-parameters in the model. For that purpose two models are spec-
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ified. The first model contains certain parameters (for instance, all
main effects) and, in addition, the particular parameters in which one
is interested (for example, certain association parameters). The sec-
ond model is nested in the first model, because it uses only a subset
of the parameters of the first model (for instance, only the main ef-
fects). Then a conditional test can be carried out with the difference
in G2 values for the two models as the test statistic. This statistic also
approximately follows azyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX2 distribution with degrees of freedom equal
to the difference in degrees of freedom for the two models. The null
hypothesis tested states that all u-parameters that are present in the
extended model, but are missing in the restricted model, arezero in
the population. Of course, these conditional tests can alsobe used to
test hypotheses concerning one specific parameter insteadof a subset of
several parameters. Conditional tests, however, can only be carried out
if the extended model is true. Readers familiar with regression analysis
will note the similarity to testing hypotheses pertaining to differences
in the proportion variance explained by different nested models.

When the hypothesis formulated concerns just one specific parame-
ter, an alternative for the conditional testing procedure is performing a
test using the standard error for the parameter. Because these standard
errors can be estimated and the ML estimates of the parameters are
asymptotically normally distributed, a simple test for thesignificance
of each u-parameter can be carried out which is comparable tothezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt

test for regression parameters in regression analysis.
When the hypothesis of interest pertains to a subset of u-parameters

rather than just one single parameter, the conditional testing proce-
dures should be preferred because the inflation of the type Ierror-rates
can be reduced by using conditional tests. In the case of unconditional
tests, this can only be achieved by making use of special simultaneous
testing procedures (Goodman, 1964) or by adapting the significance
level according to a Bonferroni procedure (see, for example, Ander-
sen, 1990). Bonferroni procedures are, however, very conservative and
therefore not very powerful. Holm (1979) has developed a sequential
Bonferroni procedure which has more power than the originalproce-
dure. Simultaneous testing of several restrictions can, however, best be
done using conditional tests.

Both testing procedures which use the estimated standard errors for
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the parameters, and the conditional tests that are based upon differ-
ences in the log-likelihood ratios for nested models, can beemployed in
step-wise procedures to search for the "best" model in an exploratory
way. Both "backward" procedures (which start from the saturated
model) and "forward" procedures (that use some baseline model as a
starting point) have been proposed in the literature. Detailed guidelines
for these exploratory stepwise procedures can be found in Goodman
(1971, 1973a) and Bishop et al. (1975, pp. 165-175).

There are two reasons to prefer the conditional testing procedures to
the unconditional tests. First, conditional tests are relatively robust.
Even in the case of very sparse tables, conditional test statistics seem to
behave very well in the sense that the approximation of the actual sam-
pling distribution of the test statistic by the theoreticalzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX2 distribution
is still satisfactory. Second, conditional tests have morepower than
the corresponding unconditional tests (Goodman, 1981) because the
alternative hypothesis in a conditional test specifies a more restricted
model than the alterative hypothesis for an unconditional test (where
the specified model for the alternative hypothesis is always the unre-
stricted saturated model).

Another guideline in the exploratory log-linear analysis is given by
inspecting the residuals, i.e., the differences between the expected and
the observed frequencies. In most cases these residuals arestandardized
by dividing them by the square root of the expected frequencies:

Standardized residual=zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfv;:;;;v.r»; (2.13)

These standardized residuals are the building blocks for the Pearson
statistic. Another frequently developed method is to calculate adjusted
residuals, i.e., residuals divided by there respective standard errors.
Formulas for these adjusted residuals can be found in Haberman (1978;
78-79). These adjusted residuals are asymptotically standard normally
distributed.

Assessment of model fit has until now been discussed in the con-
text of statistical tests which are, with a few exceptions, asymptotic
tests. This leads to some serious problems because, as stated before,
with relatively small sample sizes, the expected frequencies will also
be small and the approximation of the sampling distributionby the
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theoreticalzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 distribution will often not be very satisfactory. On the
other hand, when the sample size is large, almost any difference be-
tween the observed and the expected counts will lead to rejection of the
null hypothesis. In addition, when stepwise procedures areused, the
number of tests that will be carried out can increase very rapidly. This,
of course will inflate the actual error rates. These problems have led
some researchers to use the test statistics in a purely descriptive sense.
However, the log-likelihood ratio and the Pearson statistic are not very
good descriptive indices since the values that these two quantities take
depend heavily on the sample size. This effect can easily be eliminated
by dividing these measures by that sample size, which results in the
so-called effect sizes:

X~
and e2 = N. (2.14)

It should be noted that these effect sizes not only have a descriptive
meaning but are also used in determining the power of both conditional
and unconditionalX2 tests (Bonnet and Bentler, 1983; Cohen, 1977).

Another objection that can be made against the use of the log-
likelihood ratio and the Pearson statistic is that the values of these
statistics depend on the number of parameters in a model. Both statis-
tics will take smaller values as the number of parameters in amodel
grows. So parsimonious models will nearly always be in an unfavorable
position when compared to less parsimonious models. Moreover, there
is no clear criterion that can be used to decide when a specific model
has to be rejected or not. These problems can be resolved by dividing
the statistics through the corresponding number of degreesof freedom:

G
2

X~
Fl = df and F2 = df· (2.15)

Both F, and F2 are asymptotically distributed asF variables with de-
grees of freedomdfI = df and dh = 00 (Goodman, 1971 and 1975;
Haberman, 1978; Wheaton, 1987). When the null hypothesis istrue,
the expected value of theF statistics is equal to one, so that models
with large F values are not likely to be accepted.

Another descriptive use that can be made of theX2 statistics is in
terms of the improvement of the fit of a model by adding one or more
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parameters to the log-linear model. Goodman (1972a, 1972b)has devel-
oped measures that were originally interpreted as having some analogy
to partial and multiple correlations. The general expression in terms of
the log-likelihood ratio for these measures is as follows:zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

G2-G2
r u

G2zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r

(2.16)

whereG; and G; are defined as before, i.e.,G; is the log-likelihood ratio
for a restricted model andG; is the same statistic for an unrestricted
model. These measures always take values in the interval between 0
and 1. Because bothG; and G; are based on the same sample sizeN,

the value of this index is not affected by changes in the sample size.
This may suggest that the value of these coefficients is not influenced
by any sample size effects, but this is not true, as was provenby Bollen
(1990). He showed that there is a relation between the mean ofthe
sampling distribution of this statistic and sample size. Inother words,
for the valid population model different sample sizes will lead to other
expected values for the statistic presented above.

When the restricted and the unrestricted models differ fromeach
other in just one parameter, this measure is called the coefficient of
partial determination. High values of this measure indicate that the
parameter that is missing in the restricted model is responsible for an
important improvement in the fit of the unrestricted model,whereas
low values demonstrate that it can be left out in the restricted model.
When the restricted and the unrestricted models differ withrespect to
several parameters, the measure is called the coefficient of multiple de-
termination; the coefficient then indicates whether including this set of
parameters in the restricted model leads to a substantial improvement
of t.hc fit.of this unrestricted model.

In the context of log-linear modelling the use of these measures has
become obsolete in the past few years because the values theytake on
depend on the chosen baseline model. The question whether baseline
models should contain prior information has been extensively studied
by Sobel and Bohrnstedt (1975). In some applications the coefficient
of multiple determination has been calculated with an equi-probability
model as the restricted baseline model. In other examples, the baseline
model is defined as the model in which all two-variable parameters and
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all higher-order interactions are set equal to zero. With such restricted
baseline models, the coefficient of multiple determination will be ap-
proximately one for almost any model that is less restrictive. As such,
these measures are not very informative. Further, it shouldbe noted
that these measures reflect differences in the fit of two nested models,
but sometimes they have been incorrectly interpreted as measures of
explained variation. As a number of authors have pointed out(see, for
example, Hagenaars, 1990), the analogy with multiple and partial corre-
lations is rather weak. High values of these fit indices do not necessarily
indicate a strong association between the variables.

The coefficient of multiple determination has also been widely used
in the context of structural equation modelling. Bentler and Bonnet
(1980) introduced the namezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnormed fit index for the very same co-
efficient. They also presented some modifications of this index, for
example, thenon-normed fit index:

G;/dfr - G;/dfu

G~/dfr - 1
(2.17)

The adjustment for the degrees of freedom is made to insure that the
index can obtain a value equal to 1.0. This improvement is relevant
because it can be proven that the original normed fit index does not
reach 1.0 even when the unrestricted model is the correct model. This
is especially true for small samples. The non-normed fit index does
however have the disadvantage that it can fall outside the range of
permitted values, i.e., 0 - 1. Moreover, the non-normed fit index has
a larger standard error than the normed fit index. In an attempt to
solve these problems, Bentler (1990) developed another modification of
these indices by assuming that the test statistics for both the restricted
and the unrestricted model approximate a noncentralzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX2 distribution
in large samples. This modified index is then defined in terms of the
estimated noncentrality parameters of the two models beingcompared.
This index, which has been named thecomparative fit index, has the
advantage of a small standard error and its value can range from 0 to
1. McDonald and Marsh (1990) also prefer an index which makesuse
of the noncentrality parameters. Still other fit indices can be found in

Bollen (1989).
The next approach for model selection that will be discussedhere
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was proposed by Akaike (1974, 1987). Akaike discussed the problems
of both estimation and model selection from an information theoreti-
cal viewpoint. From a set of models, that model will be chosenthat
contains the greatest amount of information. In such a selection proce-
dure, the goodness-of-fit of a particular model is weightedagainst the
parsimony of that model. That can be done by calculating the Akaike's
information criterion (AIC) for each of the models.

(2.18)

The model that will be preferred is the one with the lowest AICvalue.
The correction for degrees of freedom can be seen as a penaltyfor
choosing models with too many parameters. Bozdogan (1987) proposed
a modification of AIC in order to obtain a more stringent penalty for
overfitting and to get an index which is asymptotically consistent (as
contrasted with AIC, which is not asymptotically consistent). ThiszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

consistent Akaike information criterion(CAlC) is defined as:

CAlC = C2 - (InN + 1) x df. (2.19)

Another variation of AIC was proposed by Raftery (1986a, 1986b) and
is also discussed by Schwarz (1978) and Sclove (1987). This index, the
Baysian information criterion (BIC), can be computed by:

BIC = G2 -InN x df. (2.20)

The BIC statistic may be interpreted within a Baysian context. It
is directly related to the posterior odds for the model specified under
the null hypothesis against the model under the alternativehypothesis.
Like CAlC, BIC favors models with fewer parameters than doesAIC,
except for very small samples. One of the benefits of the information
criteria is that they permit the comparison of models which are not
nested. As such, they can be used in a much broader context than the
fit indices presented earlier. A typical characteristic ofthis approach is
that one questions the idea of a "true" model. There is a set ofmodels
which are in principle acceptable and from this set that model is chosen
that contains the most information. This strategy of not searching for
the "true" model, but instead selecting one or more models from a
subset of relevant models that provide an acceptable approximation to
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reality is advocated by more authors (see, for example, McCullagh &

Nelder, 1989, and Cudeck& Browne, 1983).
The main objection to the use of these information criteria is the

fact that model selection will depend on the sample size (McDonald
and Marsh, 1990). The model that yields the smallest AIC value will
be more complex for larger sample sizes. At some given samplesize the
saturated model will necessarily be selected. The adjustments made by
CAlC and BIC just seem to slow down the rate at which the saturated
model will be selected.

The conclusion then should be that there is still no reasonable method
available for model selection in exploratory analyses. Neither the in-
formation criteria nor the fit indices presented earlier seems to be sat-
isfactory. Almost all indices suffer from sample size effects, while the
fit indices also raise the problem of selecting a useful baseline model.
As such, they are not necessarily better alternatives than the classical
asymptotic testing procedures. The approach based upon exact tests
proposed by Kreiner (1987) may be very promising, but needs to be
worked out for other than graphical models.

All methods reviewed in this section can help in selecting models to
understand the structure of the observed data. It goes without saying
that this understanding should always be based upon some theoretical
notions about the relations between the variables. An inspection of the
magnitude and sign of the estimated parameters will give a first impor-
tant impression of the correctness of these global notions.Statistical
tests, descriptive statistics and information criteria can only help to
gain a more firmly based idea about the theoretical hypotheses.

In this and subsequent chapters a number of illustrative analyses will
be presented. Because Chapters 3 and 4 focus upon a comparison of
different latent trait models and of various ML estimation procedures,
the values of the likelihood ratios that are found in these examples
are always interesting for this reason. Moreover, some of the latent
trait models studied in Chapters 3 and 4 are compared with certain
latent class models reviewed in this chapter. Hence, in thischapter the
value of G2 will also be reported for each analysis. The first impression
concerning the goodness-of-fit of all these models will therefore also
be based upon conditional and unconditional log-likelihood ratio tests.
To better understand these models in the context of the examples, the
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estimated parameters will also be reported in many cases.

2.3 Latent class models

The latent class model was developed by Lazarsfeld (1950a, 1950b) as a
measurement model for categorical data." Latent class analysis may be
seen as a qualitative version of the factor analytic models for the anal-
ysis of quantitative data. However, the use of latent class models was
severely hampered by the lack of good estimation proceduresfor the
parameters of these models. The work of Lazarsfeld and Henry(1968)
and of Wiggins (1955, 1973) did not solve these problems. Goodman
(1974a; 1974b) and Haberman (1974a, 1976, 1979) were the first to for-
mulatc maximum likelihood estimat.ion procedures which could be used
in the field of latent class analysis. In the following section some of these
ML methods are considered. First, however, the basic assumptions of
latent class analysis as well as the basic equations for the model will be
presented. The core of these matters was presented in Chapter 1, but a
brief introduction will probably elucidate the kind of restrictions that
can be imposed on the parameters in order to develop some interesting
latent class measurement models.

A central assumption in latent class analysis is that the population
consists of a set of mutually exclusive and exhaustive homogeneous
subpopulations. Together these subpopulations make up a latent clas-
sification which is by definition discrete. The notation used here is the
same as that used in Chapter 1. The latent variable will be denoted by
the Greek characterzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO. The number of latent classes is equal toT and
the probability that a subject drawn at random from the population
belongs toBU bpopulation (=latent class)Ot is written aszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPo,. Because
the latent classification is exclusive and exhaustive, it is obvious that
Lt POt = 1. The subpopulations are homogeneous in the sense that
the probability for giving some particular response on a particular item
given that one belongs to latent classOt is the same for all individ uals
belonging to that specific latent class.

8Although latent class analysis was developed as a measurement model and the accent ill

this chapter isOil measurement models, the use of latent class analysis has reached a much

more broader scope. Clogg (1981) and Hagenaars (1990) have given many examples of the

use of latent class models ill the analysis of causal relations.
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The second central assumption is the assumption of local indepen-
dence. This assumption states that the association betweenthe man-
ifest variables can be explained by their dependence upon the latent
classification. Consequently, within a given latent subpopulation, all
manifest indicators will be statistically independent.

Assume that subjects are measured on three variableszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, Band C,
and let arbitrary categories for these three variables be denoted byg, k

. andE, respectively. The conditional probabilities are written byzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP~~' P~~

and P~:' Using the assumption of local independence, the probability
for observing response patternt/, given that a subject belongs to latent
classOt, can be written as:

AO BO co
PvlOt = P 9 t . P k t . Pit· (2.21 )

The probability that a randomly chosen subject will come up with
response patternl/ is given by:

T

Pv = LPvlOt . POt'
t=l

(2.22)

Only two sorts of intuitive parameters appear in the preceding expres-
sion; the latent proportionsPOt and the conditional response probabili-

. AOties Pgt, etc.
This simple unrestricted latent class model will be illustrated using

data from a Dutch study of socio-cultural developments in the Nether-
lands. Information about this project can be found in Felling et al.
(1987). The data were gathered in 1985 using a sample of the Dutch
adult population. For this analysis, the data of a subsampleconsisting
of respondents with at least some years of secondary education were
used." The analysis in this section uses the answers to five items which
formulate different opinions about male and female role patterns. The

9To be more specific, all respondents who had only primary education or who had only

attended a lower vocational school were excluded. The reason for this is that analyses for

the total sample yielded rather unsatisfactory results forthe latent trait models presented

in Chapter 3. Because it is very frustrating to present a set of analyses, in which all null

hypotheses must be rejected, that part of the sample that seemed to be responsible for the

bad fit was excluded.
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items were stated as follows:

1. Women's liberation sets women against men.

2. It's better for a wife not to have a job because that always poses
problems in the household, especially if there are children.

3. The most natural situation occurs when the man is the bread-
winner and the woman runs the household and takes care of the
children.

4. It isn't really as important for a girl to get a good education as it
is for a boy.

5. A woman is better suited to raise small children than a man.

The responses on all of these items were rated on a five-pointscale. For
the illustrative analyses in this section, a dichotomy is used in which
the two categories have the following meaning:

• category 0 : agree entirely, agree or neutral(= don't agree, don't
disagree)

• category 1 : don't agree or don't agree at all

The percentage of respondents who did not agree (at all) withthe
items is presented in Table 2.1. These data are given for boththe male
and the female respondents, who satisfied the educational condition
mentioned above. Also given are the data for the male and female re-
spondents together.l" The reason for presenting the data for the male
and the female respondents separately is that in some later subsection,
a comparative analysis for the male and the female samples will be pre-
sented. Looking at the data for the male respondents, it is obvious
that item 5 is the most difficult, in the sense that the smallest percent-
age of men takes a pro-women's lib position on this item. The next
most difficult item is item 3. Item 4 however is an easy item; nearly 9
out of every 10 men do not agree with this item. The order of difficulty

10All respondents who hadit missing value on at. least one of the items were excluded in
order uot to complicate the analyses. However, if certain assumptions are met, it is possible

to perform latent class analysis with missing data. See Hagenaars (1990, pp. 249-263) for
more details.
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Table 2.1: Percentage of category 1 responses

Item 1
Item 2
Item 3
Item 4
Item 5zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N

50.4
71.6
46.7
89.1
33.9
542

59.8
77.7
51.7
93.6
57.1
592

55.3
74.8
49.3
91.4
46.0
1134

Male Female Total

is somewhat different for the female respondents. Here item3 is the
most difficult one, followed by item 5. The remainder of the order in
difficulty is the same for male and female respondents. Further, it is
very clear that women are in general more pro-women's lib than men
are.ZYXWVUTSRQPONMLKJIHGFEDCBA

In order to perform a latent class analysis it is necessary to know
with what frequency each of the 25 = 32 response patterns occurs.
This information is given in Table 2.2, both for male and for female
respondents who satisfy the educational conditions mentioned earlier.

Table 2.2: Response patterns with frequencies

Item Male Female Item Male Female
12345 12345
00000 30 23 10000 5 4
00001 1 a 10001 2 1
00010 48 49 10010 28 13
00011 7 14 10011 3 10
00100 a a 10100 1 a
00101 a a 10101 a 1
00110 10 4 10110 7 7
00111 1 3 10111 11 3
01000 8 3 11000 3 2
01001 1 a 11001 a 1
01010 68 45 11010 51 45
01011 19 29 11011 15 47
01100 2 2 11100 2 a
01101 2 0 11101 2 1
01110 36 15 11110 59 42
01111 36 51 11111 84 177

First, the results of the latent class analyses for the entire subsample
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(i.e., for male and female respondents together) is presented. A very
intuitive starting point is given by the assumption that theassociation
between the five items can be explained by a twofold latent variable;
one latent class consisting of people who take a pro-women'slib point of
view and one latent class for those who have more traditionalpositions
concerning male and female role patterns.

The subject of testing and model selection in latent class models is
discussed in Section 2.3.2. With these models, the same hypothesis
can be tested that can be tested with log-linear models. Thisnull hy-
pothesis states that the sample is drawn from a population for which
the specified model is valid. Again, two test statistics canbe used
whose distribution approximates a theoreticalzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 distribution, namely,
the Pearson's statistic and the log-likelihood ratio02

. The values found
for these two test statistics in the present example, the number of de-
grees of freedom and the corresponding probability levels for the present
example are given in Table 2.3.11

Table 2.3: Testing results for unrestricted latent class analyses with 2
and 3 latent classes

T=2 T=3
p P

PearsonX2 40.66 .004 14.68 .474

Male GA2 42.20 .003 15.14 .442

df 20 15
PearsonX2 54.30 .000 19.31 .311

Female G2 53.78 .000 17.53 .419

df 20 17
PearsonX2 66.82 .000 14.26 .506

Total G2 67.90 .000 13.37 .574
df 20 15

The latent class model with two latent classes has to be rejected. The
same is true for the analyses carried out separately on the male and fe-
male subsamples. Obviously the assumption that the population can
be divided in two homogeneous subpopulations which explainthe asso-
ciation between the five indicators is not correct. In otherwords, the

llThe computations were carried out with the program LCAG. See Hagenaars& Luijkx
(1987) for more details.
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hypothesis that a dichotomous latent variable can explain the observed
association between the manifest indicators has to be rejected.

Next, an unrestricted latent class model with three latent classes is
considered. One justification for the assumption that there are three
latent classes could be that the items differ with respect todifficulty.
Then it is possible that there is a latent class of people who take a
medium position in the sense that they agree with the easier items (i.e.,
the items 1, 2 and 4), but do not agree with the more difficult items (i.e.,
item 3 and item 5). This model does not have to be rejected (seeTable
2.3). The number of degrees of freedom for this model is 14. However,
one estimated conditional response probability had a boundary value
of 0.0 (see Table 2.4).If this parameter had been restricted a priori
to that value, the number of degrees of freedom would have been 15.
Of course, it is not entirely correct to impose this restriction after the
parameters have been estimated, but it is a practical way outof the
problem encountered here, and it is also a widely adopted practice.
Therefore, that particular conditional response probability has been
set equal to zero, although it is acknowledged that this restriction is
somewhat problematic.

Since there is some difference between men and women with respect
to the order of difficulty for the five items, the unrestricted model with
three latent classes was also tested for male and female respondents
separately. The results for both the male and the female subsamples
are given in Table 2.3.12

How the three latent classes should be characterized depends on the
pattern of conditional response probabilities. For male and female re-
spondents separately, and for the total subsample the values of the
estimated probabilities of answering in category 1 (i.e., apro-women's
lib point of view) are given in Table 2.4 (these conditional probabilities
are symbolized byzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPjgllJt; this notation will be introduced in Equation
2.26). Also reported are the estimated latent proportionsPlJt and the
log-linear two-variable parameters for the relations between the latent
and the manifest variables, indicated byUjglJt• These log-linear param-
eters will be interpreted substantively in Section 2.3.3.

The pattern of conditional probabilities shows that there is one class

12For the men there was one estimate with a boundary value of 1.0, but for the women

there were three such estimates. Hence, the difference in the number of degrees of freedom.
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Table 2.4:Latent proportions, conditional probabilities for scoring in
category 1 and log-linear two-variable interactions for a model with
three latent classes

Male Female Total
t 1 2 3 1 2 3 1 2 3zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
POt 0.12 0.48 0.40 0.11 0.43 0.46 0.11 0.44 0.45

Item 1 PjglOt 0.16 0.41 0.72 0.09 0.50 0.81 0.11 0.44 0.77

UjgOt l.34 2.61 2.38 3.80 l.83 3.29

Item 2 PjglOt 0.13 0.69 0.93 0.07 0.72 1.00a 0.08 0.69 0.97

UjgOt 1.48 4.46 3.55 3.31 5.83

Item 3 PjglO, o.oo- 0.20 0.94 o.oo- 0.24 0.90 o.oo- 0.21 0.88
-I'l.jgO,

Item 4 PjglO, 0.41 0.95 0.97 0.59 0.96 0.99 0.49 0.94 0.99

Ujg8, 3.29 3.87 2.82 5.73 2.82 4.50

Item 5 pjgl8, 0.05 0.17 0.63 o.oo- 0.41 0.86 0.01 0.26 0.76

{l.jgO, 3.87 3.46 3.38 5.59

"These values are restricted according to boundary conditions. See the text for further
details.

consisting of people who take a pro-women's lib point of viewand a
class of people who are more traditional in this respect. Thefirst group
consists of about 45% of the population, whereas the second group
contains some 11%. Between these two extremes there is another class
in which people take a pro-women's lib position with respectto the
easier items (item 2 and 4), but they express traditional views when
responding to the more difficult items (especially item 3 and 5). The
estimated proportion of people belonging to this latent class is about
44%. A comparison of the response probabilities patterns for men and
women shows that the differences between the latent classesare more
pronounced for the female subsample.

The pattern of response probabilities among the three latent classes
seems to indicate a dimension along which these latent classes could
be ordered. Whether this is the case can, however, not be decided on
the basis of the unrestricted latent class analyses presented here. This
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topic will be returned to later on in this chapter.ZYXWVUTSRQPONMLKJIHGFEDCBA

In this example the traditional latent class model yields results that
can be interpreted rather easily. This parameterization also leads to a
number of possible restricted latent class models which have proven to
be useful in the context of the analysis of measurement problems. As
will be shown in one of the following sections, all probabilistic variants
of the Guttman scaling model proposed so far can be expressedas la-
tent class models with restrictions imposed on the conditional response
probabilities.

However, it is possible to express the latent class model as alog-linear
model with a latent variable. This is the notation used by Haberman
(1979). Because ofthe assumption oflocal independence, this log-linear
model is readily expressed as:

lnp~fy~ =zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu + u~ + uf + u1.
o AO BO cozyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

+ Ut + U 9 t + uk t + U it . (2.23)

Sometimes, the joint probabilityp~ffr will also be denoted byPvOt

in order to remain consistent with the notation used earlierfor the
Lazarsfeld/Goodman parameterization. The relationship between these
unknown joint probabilities and the known probabilities for observing
some specific response patternII is then:

T

p; = 2::PvOt'

t=l

(2.24)

This way of expressing the latent class model as an unsaturated log-
linear model with a latent variable is a very general formulation of the
latent class model (see, for example, Langeheine, 1988). Byexpress-
ing the logarithm of the joint probabilities as the sum of a number
of log-linear parameters, it is possible to place restrictions upon these
parameters. This leads to a number of latent class models which lie be-
yond the scope of the latent class model as parameterized by Lazarsfeld
and Goodman.P The models that deserve mentioning in this context
are the models using linear restrictions on the relationship between the

13The reverse, however, is also true. When the latent class model is parameterized as a

log-linear model, equality restrictions upon the conditional response probabilities are also not

straightforward.
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latent and the manifest variables." Moreover, by supplyingan estima-
tion method and an algorithm suited for this parameterization, Haber-
man also made it possible to perform multi-group analyses aswell as
analyses in which the response patterns are weighted differentially. The
topic of estimating parameters in the latent class model is taken up in
the next section.

The log-linear formulation makes it possible to derive an expression
for the conditional probabilities of scoring in some category of an item,
given that a person belongs to a specific latent class (i.e.,probabilities
likezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp~~). Thus, it is very easy to establish a relationship between
these conditional probabilities, which play such a distinctive role in
the Lazarsfeld/Goodman formulation, and the log-linear parameters for
Haberman's approach. Moreover, these expressions will prove helpful
in exploring the relation between latent class models and latent trait
models, as these latter models are nearly always formulatedin terms of
conditional response probabilities. The probability thatan individual
belonging to latent classzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA()t will respond to itemA in category9 can be
written as:

Ali
Pgt

P
ArI
!It

P9,

'" '" ABC9~k ~lPgkit

'" '" '" ABC9~g ~k ~lPgkit

(A A9) '" '" ( B C + 9 + B9 + C9)exp Ug + Ugt ~k ~lexp U + Uk + Ul Ut Ukt Ult

(2.25)

The latter expression shows how to translate restrictions in terms of
conditional response probabilities into restrictions putupon the log-
linear parameters, and vice versa.It is also very convenient in exploring
the relations between latent trait models and restricted latent class
models. Another advantage of this notation is that it is moregeneral,
in the sense that it does not depend on the number of variablesas do the
parameterizations used by Goodman and Haberman. The notation in

14These models were introduced briefly in Section 1.3.2 in Chapter 1. These models are

reviewed in more detail in Section 2.4.3 of this chapter.
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the following will therefore be changed slightly. This modified notation
was also used in the previous chapter. The indexzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj will be used for
an arbitrary item, so itemzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA will be indicated byj = 1, item B by
j = 2, etc. The expression for the conditional response probabilities
then becomes:

_ exp(Ujg + UjgfJ.)

Pjg!fJ, - '\" ( ). (2.26)
~g exp Ujg + UjgfJt

From this expression it can be verified that the logits can beexpressed
as

[

Pjg!fJ']In -- = Ujg + UjgfJt•

PjO!fJ,

This equation was presented earlier in Chapter 1 using Goodman's na-
tation (Equation 1.6).

There is one drawback to using the modified notation proposed here
because not all parameters that have to be estimated appear in this for-
mulation. Besides the sets of log-linear parameters (or equivalently the
conditional response probabilities), we also have to estimate either the
one-variable log-linear parameters which pertain to the latent variable
(), i.e., the parametersUfJ" or the latent proportionsPfJ,·

It should be noted that the parameterization given in Equation2.26
was already given by Haberman himself (Haberman, 1979). Thepa-
rameterization in terms of latent proportions and responseprobabilities
that are expressed as functions of log-linear parameters isalso a special
case of Formann'slinear logistic latent class analysis(Formann, 1992).
The linear logisticLeA model is more general because it expresses not
only the response probabilities, but also the latent proportions as a
function of log-linear parameters. Moreover, with linear logistic LeA,

these log-linear parameters do not necessarily pertain to just the man-
ifest and the latent variables; they can also apply to other external
variables. Because the relationship with other external variables is not
explored in depth in this chapter, linear logisticLeA will also not be

discussed here.
The two parameterizations presented in this section have also given

rise to different estimation procedures. This is not to say that a specific
formulation of a latent class model will necessarily lead toa particular
estimation method. But both Goodman and Haberman proposed not
only different parameterizations, but also different estimation proce-
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dures. The estimation of the parameters in latent class models is the
topic of the next section.ZYXWVUTSRQPONMLKJIHGFEDCBA

2 .3 .1 E s t im a t io n in th e la te n t class m o d e l

ML estimation of the parameters in the unrestricted latent classmodel-"
can be performed in a number of ways, each with its own benefits
and drawbacks. The most frequently encountered numerical methods
for obtaining maximum likelihood estimates are Newton-Raphson, the
scoring algorithm and the EM algorithm.!" Estimation in thelatent
class model is more difficult than in the ordinary log-linear models with
direct observations since the data-matrix is incomplete because of the
latent variable. This results in an expression for the log-likelihood with
a more complex structure. First, the Newton-Raphson procedure will
be reviewed briefly. Next, the scoring algorithm and a modified Newton-
Raphson procedure proposed by Haberman (1988) are paid attention
to. Finally, a great deal of this section is devoted to estimation of
parameters in the latent class model with EM.

In the log-linear parameterization of the latent class model as formu-
lated by Haberman, it can be shown that the same likelihood equations
hold as in the case of the ordinary log-linear model. But in these equa-
tions the expected frequencieszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(N· pveJ appear, which are not observed
(see Haberman, 1979 pp 543-544).It is possible to estimate these fre-
quencies, but the resulting likelihood equations are not solved easily by
means of Newton-Raphson. The procedure is numerically not very sta-
ble. As a result Newton-Raphson is not widely used for the estimation
of parameters in the latent class model. Haberman (1979) proposed the
scoring method as an alternative. In this method the matrix of second
derivatives of the log-likelihood to the parameters is replaced by its ex-
pected value, the Fisher information matrix, also called the expected
information matrix. It should be noted that, in contrast to the situa-
tion for log-linear models, the expected information matrix for latent
class models is not the same as the matrix of second derivatives (see

15The estimation procedures have to be changed in order to include restrictions on the

paramet.ers. These changeswill be described later on, after the different kinds of restrictions
that can be applied have been discussed.

J6Formann (1984) also uses the gradient method. This last method is not discussed in this

book. The readeris referred to Formann (1984) for further details.
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Appendix A). A minor drawback is that the information matrixis some-
what more complex to compute than the matrix of second derivatives.
But one gains in terms of numerical stability by replacing Newton-
Raphson by the scoring algorithm. The scoring method can also be
rewritten as an iterated weighted least squares solution, as was the
case with the Newton-Raphson procedure for log-linear models. This
scoring algorithm is used in Haberman's program LAT (Haberman,
1979). As Haberman himself already noted, it is often very difficult to
find initial values for the parameters which will lead to convergence of
the algorithm. Because of this, the scoring algorithm has not become
very popular among social researchers. Recently, Haberman(1988)
suggested a modified Newton-Raphson procedure where the matrix of
second derivatives is adjusted whenever this matrix is not negative def-
inite. The resulting algorithm has been used in Haberman's programzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

NEWTON. The algorithm converges very fast, it is less sensitive to the
choice of initial estimates, but it also requires a lot of computing time.
Hagenaars (1990) reports satisfactory results obtained with NEWTON
even when the initial estimates were rather crude figures ascompared to
the final solution. He used the program for a number of restricted latent
class models, with restrictions on the conditional response probabilities.
However, when linear restrictions are imposed on the association coef-
ficients between the latent and the manifest variables it ismuch more
difficult to get the algorithm to converge. Although very flexible and
definitely a lot more satisfactory than LAT, theNEWTON program is
not well suited for estimating all sorts of restricted latent class models.

An alternative to these Newton-Raphson and scoring methodsis the
EM method proposed by Dempster et al. (1977). This procedurecan
be used in the wide context of models with missing data. As thelatent
variable is not observed directly, the scores on this latentvariable can
be seen as missing. The EM algorithm consists of two steps:

1. In the first step (this is called the E(xpectation )-step)the suffi-
cient statistics for the parameters are estimated. In the context
of latent class models this means that the probabilities forthe
complete data-matrixPvOt are estimated using the observed pro-

portions Uv/N).

2. In the second step (which is called the M(aximization)-step) the



66zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

log-likelihood for the complete data matrix is maximized inorder
to obtain new estimates of the model parameters. Using these
new model estimates, another E-step can be performed in order
to obtain new estimates for the complete data, etc.

The EM algorithm thus consists of an E-step and an M-step which are
alternatively performed until the procedure converges. The application
of this algorithm in the context of latent class models is very simple.F
First, some points concerning the notation that was introduced at the
end ofthe previous section, and that was also used in Chapter1, should
be recapitulated. The probability that an individual will respond in
categoryzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 of itemzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi, given that this individual belongs to latent class
(Jt, is denoted byPjgl(h where j = 1, ... , nand 9 = 0, ... ,mj, so that
the number of categories for itemj is equal to (mj + 1). As before,
the number of individuals that has responded with response pattern t/

is equal to Iv. Furthermore, some indicator variablesXvjg are needed.
These dichotomous indicator variables are used to simplifythe notation
for the log-likelihood. The following rules determine whenXvjg is equal
to 0 or 1:

Xvjg = 1 if in response patternv item j is responded to with
category g,

otherwise.Xvjg = 0

Thus, for each itemj, it will be true that

mj

LXvjg = 1.
g=O

(2.27)

Assuming local independence, the probability of observingresponse
pattern 1/ in latent class(Jt can be expressed as:

n mj

Il Il Xvjg
PvIB, = PjgIB,·

j=1g=0

(2.28)

Starting with initial estimates for the conditional response probabili-
ties PjglBt (or with initial estimates for the log-linear parametersUjg and

17The notation used here, as well as the explanation of the EMalgorithm, leans heavily on
Croon (1990).
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Ujg(lt), Equation 2.28 can be used to compute estimates for the probabil-
ities PvlOt. Then Equation 2.22 can be used to compute initial estimates
for the probabilitiesPv:zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

T

Pv = LPvOt.
t=l

Furthermore, by Bayes' theorem:

PvlOt . POt
POdv =

Pv
(2.29)

These estimates for the probability of belonging to latent class ()t given
that one has responded with response patternv (i.e., the so-called al-
location probabilities) can be used for estimating the complete data.
When the estimated number of persons who responded with pattern v

and also belong to latent. class()t is denoted bye,IO
l
, initial estimates for

these complete table frequencies can be computed by:

(2.30)

It is important to note that in the estimation procedure for parame-
ters in the latent class model two kinds of expected frequencies appear.
Firstly, there aree,J(h frequencies, the estimated observed frequencies.
These are estimates of the frequencies within the complete table under
the restriction that the observed marginalsIv should be reproduced
exactly.ZYXWVUTSRQPONMLKJIHGFEDCBAIn the calculation of the test statistics, however, the expected
frequenciesN . Pv are used. These expected frequencies will not repro-

duce the marginalsIv.
The calculation of the estimated observed frequenciese.e,completes

the E-step. Now an M-step has to be performed in order to derive
new estimates for the log-linear parametersUjg and UjgOt (or for the
conditional response probabilitiesPjgloJ and for the latent proportions
Po, . These new estimates can then be used again for another E-step,
etc.

The M-step can be carried out in a number of ways. Since at the
start of the M-step a provisional complete table is known, the estima-
tion procedures developed for the ordinary log-linear model with direct
observations can be used. This means that both Newton-Raphson and
iterative proportional fitting can be employed in order to obtain new
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parameter estimates by maximizing the log-likelihood. Because IPF is
the easiest procedure to apply, it is the most naturalchoicel'' and it is
applied in two common programs for latent class models, Hagenaars'
LCAG and Clogg's MLLSA. Moreover, the conditional responseprob-
abilities (or the log-linear parameterszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUjg and UjgoJ can be estimated
independently from the latent proportionsPOt. It must be remembered
that after an E-step has been carried out, the estimated complete data
matrix can be used in the following M-step. This means that inthe M-
step a log-likelihood based upon the complete data can be used. This
likelihood function has the following form:zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

T

L = II II [PvoJCVOt .
v t=l

(2.31)

By using Equation 2.28, this likelihood function can be rewritten as:

(2.32)

where qjgOt denotes the number of individuals who belong to latent
classOt and respond to itemj within categoryg. This number can be
expressed as:

qjgBt = L e//B, . Xvjg·

v

The symbole+B, stands for the frequency with which individuals belong
to latent classOt and this frequency is given by:

In the E-step provisional estimates for the observed frequencies in
the complete table(eVo

t
) and provisional estimates for the bivariate

I~Thc argumout that. Nowton-Raphson has an advantage in that it. automatically generates

est.illlatmi standard errors110 longer holds ill this situation, because iu the M-step only asubset

of the parameters is estimated using Newton-Raphson. The latent proportions Po, are also

estimated in the M-step, but not with Newton-Raphson. For the estimation ofPo" Equation
2.33 is used. For this reason, the inverted matrix of second derivatives used in the M-step can

no longer be used to compute such estimated standard errors.Another topic that is relevant

in this context is the difference between the observed and the expected information matrix.

This topic will be dealt with again later on.
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marginalszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(qjgoJ were computed. These estimates can be used to es-
timate the conditional probabilitiesPjglOt (or the log-linear parameters
Ujg and UjgOt) in the M-step by maximizing the likelihood in Equation
2.32. The expression for this log-likelihood also clearly shows that the
latent proportions POt can be estimated independently from the other
parameters. It can be shown quite easily that the maximum likelihood
estimates for the latent proportions are given by:

(2.33)

The maximum likelihood estimates for the conditional response proba-
bilities PjglOt in the unrestricted model are given by:

(2.34)

with

Qj+Ot =zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL qjgOt·

9

When certain restrictions are imposed on the conditional response prob-
abilities, the estimation is less straightforward. Estimation can, in fact,
be rather complex when certain equality constraints are combined with
restrictions that fix certain conditional response probabilities at partic-
ular values, as was shown by Mooijaart and van der Heijden (1992).
Further details on this subject can be found in Section 2.4. Details for
applying equality constraints in less complex situations are given by
Hagenaars (1990). The procedure for estimating the log-linear param-
eters in the M-step is directly comparable to the one used forordinary
unsaturated'? log-linear models. As mentioned earlier, this can be done
by applying either IPF or Newton-Raphson.

The discussion mentioned earlier concerning the relative merits of
IPF and Newton-Raphson in the context of log-linear models also ap-
plies to the case of latent class models. The question is whether param-
eters should be estimated by applying EM on the one hand or Newton-
Raphson or scoring on the other. Standard Newton-Raphson suffers
from numerical instability; the scoring algorithm only gives satisfac-
tory results if proper initial values are specified, and these may be hard

19The fact that this log-linear model is not saturated is a consequence of the assumption of
local independence.
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to find. The improved Newton-Raphson algorithm proposed byHaber-
man seems, in many cases, to be a good alternative. The possibility
of making use of any of these three estimation procedures, often men-
tioned as an advantage, is that an estimate of the variance-covariance
matrix of the estimated parameters can be produced, while EMdoes
not offer such information without additional manipulation. However,
this advantage is a relative one. The Newton-Raphson procedures and
the scoring algorithm are time consuming because of the calculation of
these matrices, in contrast to the EM procedure. Also, nothing pre-
vents the calculation of an estimated variance-covariancematrix in the
context of EM, but the calculations can only be performed in addition
to the estimation of the parameters.

It should be noted that the estimation of the variance-covariance
matrix of the parameters in the context of latent class analyses can be
performed in two ways. The more traditional method of tackling this
problem is to take the negative of the expected information matrix. The
inverse of this matrix can be shown to be an estimate of the variance-
covariance matrix. However, another possibility is to use the matrix of
second derivatives of the log-likelihood to the parameters. The inverse
of the negative of this matrix can also be shown to be an estimator
for the variance-covariance matrix. The observed information matrix is
defined as minus the matrix of second derivatives evaluatedfor the ML
estimates. Efron and Hinkley (1978) give a number of examples where
the observed information matrix should be preferred to the expected
information matrix, but this position has beenchallenged.I" The most
direct method for estimating the variance-covariance matrix is, how-
ever, to perform additional calculations using the usual expressions for
either the observed or the expected information matrix. These expres-
sions can be found in Appendix A. Both procedures lead asymptotically
to the same results.

In the aforementioned, the estimation of parameters in the unre-
stricted latent class model was discussed. The procedures sometimes

20See also the comments on the Efron& Hinkley article in the same issue of Biometrika.

Louis (1982) has pointed out how the observed information matrix can be calculated when

using the EM algorithm, while Meilijson(1989) proposed a modification of the EM algorithm

in order to estimate the standard errors of the parameters via the empirical information

matrix, a less known variant of the information matrix.
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require adaptation when restrictions are imposed on the parameters.
The kinds of restrictions that are sensible in the context oflatent class
analysis will be the subject of one of the following sections. In the next
section some special aspects of testing and model selectionwith latent
class models will be discussed.

2.3.2 Testing and model selection in latent class analysis

In the discussion of model selection and testing for log-linear models,
several strategies were mentioned that can be used in the context of
latent class models. However, there are several differences that should
be kept in mind when selecting and testing latent class models.

Firstly, it should be noted that in order to perform a statistical test
on a model, it is necessary for the model to be identifiable. This is not
necessarily the case for latent class models, as situationsexist in which
the parameters cannot be uniquely determined. A necessary condition
for identifiability is that the number of degrees of freedomis not nega-
tive. The number of parameters that must be estimated independently
cannot be greater than the number of independently observedfrequen-
cies. However, this condition is nevertheless insufficient. Thus, there
are situations in which the model is not identified, despitethe fact that
the number of degrees of freedom is not negative. Goodman (1974b)
has formulated a sufficient condition for local identifiability. In order
to check the local identifiability, a matrix is constructedin which the

rows consist of the[Ilj=l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(mj + 1)] - 1 nonredundant response prob-

abilitieszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPv as defined by the model, and the columns pertain to the
non-redundant model parameters (i.e.,Pjgl9t, P9t or, when the log-linear
representation is used,Ujg and Ujg9J The cells of this matrix are filled
with expressions for the first derivatives ofp; to the model parameters."
These expressions are given at the end of Appendix A. Sample esti-
mates for these first derivatives can be found by substituting the max-
imum likelihood estimatesPjgl9t, P9t and Pvl9t in these expressions for
the first derivatives. By calculating the rank of this matrix, a test for

21Some authors (i.e., Hagenaars (1990) and McCutcheon (1987) state that one should use

the derivatives of theobserved probabilities i.e. Ivl N to the nonredundant model parameters.

This is, of course, incorrect because the observed probabilities cannot be expressed as a

function of the model parameters.
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local identifiability can be performed. The matrix must be of full col-
umn rank; if the matrix is not of full rank, the model is not locally
identifiable.

This test of local identifiability can also be performed using the es-
timated expected information matrix. Dayton and MacReady (1980)
stated that the theoretical variance-covariance matrix for the parame-
ters should be of full rank. Thus, by investigating the rank of estimated
asymptotic variance-covariance matrix, a test of local identifiability can
be carried out. Formann (1985) discussed the properties which the ex-
pected matrix of the second-order partial derivatives should have in or-
der for the solution to correspond to a local maximum of the likelihood
function. If all the eigenvalues of this matrix are negative (and, there-
fore, the matrix is negative definite), the model is locallyidentifiable.V

Models which are not identified can be made identifiable by putting
restrictions on theparameters.PThe various possibilities for applying
restrictions will be surveyed in the next section.

With regard to the statistical testing of the usual null-hypothesis
(i.e., the model is valid for the population) it is still truethat the log-
likelihood ratio asymptotically follows azyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 distribution when certain
regularity conditions are met. This means that for unrestricted latent
class models, the usual testing procedures can be carried out as was
explained in the section concerning log-linear models. However, when
certain parameter estimates are on the boundary of the parameter space
(e.g., estimated probabilities which are equal to 0 or 1), this may in-
dicate a situation in which the parameters are also on the boundary.
In that case, the standard regularity conditions will breakdown and
the likelihood ratio test statistic will no longer approximate aX2 dis-
tribution. When such aterminal solutionis obtained, one can usually
assume that the parameter with an estimated value on the boundary
was restricted to that value on an a priori basis so that with one ex-
tra degree of freedom the model can still be tested. This convention

22Because the observed information matrix equals the negative of the matrix of second-

order derivatives, this observed information matrix (and also its inverse, i.e., the estimated

variance-covariance matrix) should be positive definite,i.e., all eigenvalues should be greater

than zero for the model to be locally identifiable.
23Unfortunately, the opposite is also true. An identifiable model can be made unidentifiable

by putting certain restrictions on the parameters. Examples are given in Hagenaars (1990)
and Goodman (1974b).
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was proposed by Goodman (1974a; 1974b) and has been widely applied
since its proposal; as was noted in the previous section, this practice is,
strictly speaking, not admissible.

The same type of problem also arises when one wants to test hypothe-
ses about the number of latent classes, assuming that one would like
to test whether a model with two or a model with three latent classes
should be used to explain the data under study.It is not permitted
to take the difference in the log-likelihood ratios and testthis statistic
with the difference in degrees of freedom for the two models,because
the difference in the two Q2-values is not asymptotically distributed
as a x2-variable. The reason for this is that, again, standard regularity
conditions break down as a consequence of the fact that the model with
two latent classes can only be expressed as a restricted version of the
model with three latent classes by setting onezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPOt in the latter model
equal to 0 (for a more thorough treatment of these ideas, see McLach-
lan and Basford, 1988).24Thus, one would test the hypothesis that one
parameter will take a value on the boundary of the parameter space.
In that case, the regularity conditions will no longer hold.

It could be presumed that this problem could be solved by comparing
models with a different number of latent classes using the Akaike infor-
mation criterion or one of the modified information criteria described
in the previous sections. However, these criteria rely on the same reg-
ularity conditions as the log-likelihood ratio does in order for Q2 to be
asymptotically distributed as a x2-variable. Therefore, the information
criteria also do not resolve this problem.

All that has been said previously should not lead to the conclusion
that it is impossible to perform statistical tests for certain restrictions
on the parameters. It is possible to test whether certain parameters
can be restricted to take the same value as opposed to the alternative
where they are allowed to vary freely. The point is that it is not pos-
sible to test hypotheses when parameters are set equal to values on
the boundary of the parameter space. Some researchers have suggested
modifications which should be applied to the likelihood ratio statistic
and/ or to the number of degrees of freedom in order to improvethe
approximation of the actual sampling distribution by a theoreticalzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX

2

24It should be noted that the log-linear u-parameters can be set equal to 0 because 0 is not

a boundary value for the log-linear parameters.
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distribution when parameter-estimates are on the boundaryof the pa-
rameter space. Monte Carlo research by Holt and MacReady (1989)
has shown, however, that the deviance between the actual sampling
distribution and thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 distribution cannot be readily predicted from a
number of relevant variables such as sample sizes or the skewness of the
latent distribution. This casts doubt upon the possibilityof applying
standard corrections when parameter estimates take valuesnear 0 orl.

Besides performing formal statistical tests, it is always possible to
calculate the more descriptive statistics indicating the fit of a specified
model. All indices presented earlier can be applied in the context of
latent class analysis.

2.3.3 Strength of association between latent and manifest
variables

Apart from the question of whether a model provides a good fitto
the data, it is worthwhile to pay attention to the quality of the mea-
surement model by investigating the relationship between the latent
variable and the manifest indicators. The idea behind this notion is
simple: the measurement model improves as the association between
the latent and the manifest variables grows stronger. One way to in-
dicate the association between the latent and the manifest variables is
through the two-variable log-linear parameters (i.e.,Ujg(h in Equation
2.26). The estimated values of these parameters for the unrestricted
latent class model withT = 3 latent classes are reported in Table 2.4.
Because the latent variable has three categories and dummy coding is
used, these log-linear parameters are only estimated for the second and
the third latent class. The parameterUjg(h is equal to the log odds of
the 2 x 2 table consisting of a dichotomous manifest indicator and the
latent variable with only categories one and two. The log-linear param-
eter Ujg8

3
equals the log odds when only categories one and three of the

latent variable are taken into account.
The estimated values of the log-linear parameters were all positive

and for each itemUjg8
3

was greater thanUjg82• This means that the
probability for responding in category 1 increased for the three succes-
sive latent classes. The larger the value of these coefficients was, the
stronger the association between the latent variable and a manifest indi-



75zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

cator were. Because some estimated conditional response probabilities
were equal to zero, not all log-linear parameters could be estimated.

Another possibility is to operationalize the strength of association in
terms of the ability to predict the membership of specific latent classes
on the basis of observed response patterns. A central role inthis strat-
egy was played by the allocation probabilitieszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP£ltlv, which were already
defined in Equation 2.29. On the basis of these allocation probabilities,
the maximum a posteriori or the MAP estimator can be obtained for
each response patternu, The MAP estimator for a specific response
pattern v is defined as the value of the latent class for which the allo-
cation probability takes the greatest value. This maximum allocation

probability is denoted byPOlv' so:

The strength of the degree of association between the latentand the
manifest variables can then be measured by the proportion misclassified
E or by the coefficientAOt.v.

The proportion misclassified can be obtained as follows. When the
MAP-estimator is used to allocate individuals to latent classes, the
probability of assigning an individual with response pattern v to the
wrong latent class is given by:

1 - POlv'

The overall probability of assigning individuals to a wronglatent class
following the modal assignment rule is given by:

(2.35)
//

The higher the valueE takes, the weaker the relationship between the
latent variable and the manifest indicators. Of course, onecould also
take the proportion correctly classified, i.e.,1-E. It is merely a matter
of taste whether one uses the proportion misclassified or the proportion

correctly classified.
Another method for expressing the relationship between latent and

manifest variables was proposed by Clogg (1981). This modification
resulted in the well-known coefficientA developed by Goodman and
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Kruskal (1954). This measure of association indicates the relative im-
provement in predicting class-membership with the aid of the observed
indicators as compared with the situation where class-membership is
predicted without knowledge of the responses on the manifest variables.
This coefficientzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA is defined as:zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

AO -...:..( l_----=--:po::....:...)_-_E_
.u - (1 - Po) , (2.36)

where:

Po = max [POI' P02, ••• , POT]·

Thus, Po refers to the unconditional modal latent class.
By replacing the population parameters in these equations with their

maximum likelihood estimates, sample estimates can be obtained for
the proportion misclassified as well as the coefficientAo.v. For the latent
class models that were presented in Section 2.2, the estimated values
.x and the proportion correctly classified (so 1 - E) are reported in
Table 2.5. These results clearly show that as the number of latent

Table 2.5: Proportion correctly classified and the coefficient .x for un-
restricted latent class analyses with 2 and 3 latent classes

1- E ~e.v
T = 2 T=3 T = 2 T=3

Male
Female
TotalA

.905 .831 .791 .675

.923 .851 .784 .723

.911 .823 .777 .678

classes increased it became more difficult to allocate individuals to la-
tent classes correctly, which is not surprising. Furthermore, although
the model with two latent classes did not fit according to theusual
likelihood ratio test, the values of both the percentage correctly classi-
fied as the coefficientA were relatively high. This indicates that these
measures of the strength of the relationship between the latent variable
and the manifest indicators reflected other characteristics of the latent
class model than the fit indices did.

In this section and the preceding one, the possibility of putting cer-
tain restrictions on the parameters in a latent class analysis was men-
tioned several times. The various types of restrictions that can be used
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to define more restricted latent class models are discussedin the next
section.

2.4 Restricted latent class models

Unrestricted latent class models can be useful for an exploratory analy-
sis of a multidimensional cross-classification, but restricted latent class
models are more interesting. Restricted models make it possible to test
and investigate a number of interesting hypotheses concerning the struc-
ture of the measurement model, i.e., the relations between the latent
variable and manifest indicators. Furthermore, by imposing restric-
tions on the model parameters, one may perform detailed multi-group
comparisons, include external variables in the measurement model, or
construct multidimensional latent class models (see, for example, Ha-
genaars, 1990). The restrictions that can be used, including a number
of interesting measurement models that arise given specific sets of con-
straints, will be the topic of this section.

As was seen in the previous sections, the latent class model can be
parameterized in several ways. The restrictions that can beimposed
on the parameters in the LCA model are closely linked to the selected
parameterization. The different parameterizations are summarized be-
low:

1. Firstly, the latent class model can be parameterized in terms of
latent proportionszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPo! and conditional response probabilitiesPjglOt·

This parameterization was originally proposed by Lazarsfeld and
Henry (1968) and is also used by, for example, Goodman (1974a,
1974b), Clogg (1977, 1981) and Hagenaars (1988, 1990).

2. Haberman (1979) chose a log-linear formulation of the latent class
model. In this parameterization (see Equation 2.23), only log-
linear parameters appear.

3. In Section 2.3, log-linear parameterization was used to obtain ex-
pressions for the conditional response probabilitiesPjglOt in terms
of the log-linear parameters (see Equation 2.26). Togetherwith
the set of latent proportionsPo" this provides a third method of
parameterizing the latent class model.
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Each method of parameterizing the LCA model provides its own
opportunities for imposing restrictions on the parametersused. If, for
example, the LCA model is parameterized in terms of latent proportions
and conditional response probabilities, the latter parameters can be
submitted to restrictions. The computer programs written by Clogg
(i.e., MLLSA) and by Hagenaars (i.e., LCAG) offer the possibility of
formulating models with these kinds of restrictions (Clogg, 1981 and
Hagenaars& Luijkx, 1987). These restrictions fall into two different
categories. Firstly, it is possible to restrict some parameters so that they
will be equal to each other. Secondly, certain parameters can be fixed
at a specified value. Equality restrictions and fixed-value restrictions on
the latent proportionszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPet are, for example, used in multi-group analyses
(see, for example, Clogg& Goodman, 1986). In most cases, however,
restrictions are imposed on the conditional response probabilities.

By restricting the conditional response probabilities, one can test
multidimensional models, perform multi-group comparisons or con-
struct a number of scaling models for dichotomous items. Most of these
models require equality constraints, i.e., certain conditional response
probabilities are restricted to take the same value.It is, however, also
possible to restrict certain conditional response probabilities to take a
specified value. In most cases, this will be the value 0 or 1. This makes
error-free linkage of a given indicator to the latent variable possible.
Besides equality constraints and fixed-value constraints, it is also pos-
sible to formulate inequality constraints with respect to the conditional
response probabilities. This is done by Croon (1990) in his model for
ordinal latent class analysis.

By applying the second method of parameterizing the LCA model,
i.e., the log-linear representation proposed by Haberman,it is possible
to impose linear restrictions on the log-linear parameters. The merit of
this approach is that it allows the formulation of models forvariables
measured on an interval scale. A short introduction to this type of
model was presented in Chapter 1. The computer programs provided by
Haberman, LAT (Haberman, 1979) and NEWTON (Haberman, 1988),
offer possibilities for imposing restrictions on the log-linear parameters
not found in MLLSA or LCAG. However, it is not intuitively clear
how restrictions on conditional response probabilities should be handled
with Haberman's programs. Although it is not entirely impossible, it
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is a major drawback of the log-linear formulation that equality and
fixed-value restrictions on the latent proportions and theconditional
response probabilities are not easy to incorporate.

By focussing on the third method of parameterization, i.e.,by ex-
pressing the conditional response probabilitieszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPjglf)t in terms of log-
linear parameters as is done in Equation 2.26, it can be made clear for
a number of simple situations how equality restrictions on the condi-
tional response probabilities can be translated into restrictions on the
log-linear parameters. The simplest situations occur whenthe manifest
indicators are dichotomous.

In the following, it is assumed that there are equality restrictions on
the conditional response probabilities of one variablej or two variablesj
andzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj'. Furthermore, the restrictions can pertain to probabilities within
one latent classBt or to probabilities for two different latent classesBt

and Bt" Next, the two categories for the manifest items are scored0 and
1. Finally, it is assumed that a dummy coding scheme has been applied
with category0 for the manifest variables and categoryBI for the latent
variable treated as the reference-category (i.e., for these categories the
log-linear parameters are restricted to zero).

It is now possible to write the two most general expressions forthe
relationship between equality restrictions among conditional response
probabilities on the one hand and the resulting equality restrictions
among sets of log-linear parameters on the other hand as follows:

Pjllf)t = Pj/llf)!, {:} Ujl + UjH!t = Uj'l + Uj'lf)t"

Pjllf)t = Pj'olf)t' {:} Ujl + Uj19t = -( Uj'l + Uj'lf)t')'

(2.37)

These general expressions are at this point not yet very informative, but
in a number of situations simplified and more meaningful expressions
can be obtained.

Supposing thatBt, is equal toBI, i.e., 0t' is the reference-category, the
expressions can now be simplified as follows:

Pjllf)t = Pj'llf)j {:} Uji + Ujl9t = Uj'l

or : une, = Uj'l - Ujl,

Pjllf)! = Pj'0IOt {:} Ujl + UjlOt = -Uj'l

or : Uj19! = -Uj'l - UjI·
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A further simplification follows whenzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOt = Ot' = 01.ZYXWVUTSRQPONMLKJIHGFEDCBAIn this case,
the equality of corresponding probabilities results in theequality of
corresponding one-variable parameters, and the equality of opposite
probabilities is identical to the one-variable parameterswhich form each.
other's complement:zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Pjll8 j = Pj'll81 {:} Ujl = Uj'l,

Pjll81 = Pj'0181 {:} Ujl = -Uj'l·

Assuming that the probabilities pertain to two different latent classes
but to the same manifest item, i.e.,Ot i= Ot' but j = jf, the expressions
given in 2.37 can also be simplified. Consider first the casewhereOt i= 01

and alsoOt' =f. 01. Under these assumptions, the expressions become:

Pjll8, = Pjll8" {:} Uj18. = Uj18,,,

Pjll8, = PjOI8" {:} Uj18, = -2Ujl - UjI8,,·

Finally, in the simple case wherej = i', Ot =f. Ot' = 01, the following
results are obtained:

Pjll8, = Pjl181 {:} Ujl8t = 0,

Pjll8, = Pj0181 {:} Uj18t = -2Ujl.

The pattern of restrictions on the conditional response probabilities
can be translated into a set of restrictions on the log-linear parameters.
However, the translation is only simple if the manifest items are di-
chotomous. For polytomous items the relation between the two sets of
restrictions is not transparent.In the case of polytomous items and/or
a rather complex pattern of restrictions, it is more convenient to use
the parameterization given by Goodman (1974a, 1974b).

A topic which has not yet been discussed concerns the estimation of
parameters in restricted latent class models. Equality constraints and
fixed-value constraints on the latent proportionsP8, can easily be incor-
porated into the EM estimation framework. The parameter estimates
that result from a particular M-step are submitted to the constraints
before the next E-step is carried out.In the case of fixed-value con-
straints, this entails that the latent proportions which have been left
free are rescaled so that the sum of all latent proportions (fixed and
free) equals one. When equality constraints are imposed on the latent
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proportions, the estimates obtained in the M-step for the constrained
proportions are replaced by their arithmetic mean.

While constraints on class sizes are not problematic, restrictions on
the conditional response probabilitieszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPjglBt can cause severe problems.
For a long time it was believed that restrictions on the conditional
response probabilities could be handled in much the same wayas re-
strictions on the latent proportions. This strategy was proposed by
Goodman (1974a, 1974b). Thus, fixed-value restrictions were incorpo-
rated by rescaling the estimates obtained in the E-step, while equality
restrictions were handled by calculating the weighted meanof the esti-
mates for the restricted parameters, with the class sizes used as weights.
As Mooijaart and van der Heijden (1992) pointed out, this estimation
procedure will not work in some specific situations. In general, it can
be shown that when equality restrictions or fixed value-restrictions are
imposed on the conditional response probabilities, estimates for the pa-
rameters can be found by solving a system of non-linear equations. In
a number of situations, these non-linear equations have a closed-form
solution that is identical to Goodman's procedure. The reader is re-
ferred to Mooijaart and van der Heijden (1992) for more details on the
specific situations in which the Goodman procedure provides the cor-
rect results. In all other situations, the system of non-linear equations
has to be solved iteratively, for example, by Newton-Raphson. After
each M-step, therefore, new parameter estimates for the response prob-
abilities must be found iteratively before the next E-step starts. The
available computer programs do not offer such possibilities.

As was stated earlier, in some simple situations equality restrictions
on the conditional response probabilities can be translated directly into
constraints on the log-linear parameters in Equation 2.26.It can be
shown that these simple situations belong to the cases classified by
Mooijaart and van der Heijden (1992) as situations allowingexplicit
solutions for the restricted parameters. In other words, inthese simple
situations the system of non-linear equations can be simplified, with the
direct solutions equivalent to the solutions obtained withGoodman's
strategy of calculating weighted means.

Even if the parameterization consists of latent proportions and a
formulation of the conditional response probabilities in terms of log-
linear parameters as was done in Equation 2.26, it is still convenient to
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estimate the parameters using an EM procedure.If the M-step contains
a Newton-Raphson procedure, the restrictions can be accounted for
directly by incorporating them in the expression for the log-likelihood.
This procedure is used in Chapter 3. A drawback of this procedure is
that for different kinds of restricted models, different expressions for
the log-likelihood must be maximized.

Finally, when the parameterization is in terms of the log-linear
parameters as in Equation 2.23, scoring algorithms or a (modified)
Newton-Raphson procedure will almost always be employed toesti-
mate the parameters. In the programs developed by Haberman,LAT
and NEWTON, linear restrictions on the log-linear parameters can be
taken into account by supplying the program with a properly adapted
design matrix. This approach has, however, a minor drawback. Al-
though not really difficult, it is also not very challengingto construct a
design matrix for problems with a relatively large number ofresponse
patterns and a rather complex pattern of restrictions.

The various types of restrictions that were presented in this section
can be employed to construct a number of measurement models,most
of which are probabilistic variants of the Guttman scaling method. In
the next section, these models are used to analyze the data onwomen's
liberation that were previously analyzed using unrestricted latent class
models.

2.4.1 Latent class models for scale response patterns

In this section, a number of restricted latent class models will be pre-
sented, all of which are probabilistic versions of the Guttman scale (for
a discussion of the Guttman scale, see, for example, Torgerson, 1962).
The principles on which Guttman's scalogram technique is founded, can
be easily explained using an example with three dichotomousitemszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA,

BandzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC. The two response alternatives are scored with the numbers 0
and 1. If the three items all refer to some common latent variable and
this latent variable is considered continuous then both individuals and
items are located along this unidimensional latent continuum. Further-
more, when an individual is located to the right of a given item along
this latent continuum, then this individual should agree with that item.
The response category 1 is reserved for agreeing with an item. If an
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individual is located to the left of an item that individual will not agree
with that item because the item is too "difficult" for that individual.
This will result in an observed score ofo. With three manifest items
of whichzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA is the easiest item and C is the most difficult item, only
the response patterns denoted in Table 2.6 are legitimate under the
Guttman scale model.

Table 2.6: Guttman-type response patterns with three items

ItemzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA ItemB Item C
o
1
1
1

o
o
1
1

o
o
o
1

In the abovementioned, a set of five items concerning women's liber-
ation was analyzed by means of unrestricted latent class analysis. The
data for the male subsample will be used here again to illustrate some
restricted latent class models that are constructed on the basis of the
ideas formulated byGuttman.P

In order to explain the Guttman scale pattern it is necessaryto order
the items according to the degree of difficulty. It is assumed that this
ordering can be made along a unidimensional continuum. As there is no
a priori information that can be used to order the items, the observed
data was employed for this aim. The difficulty of the items was related
to pro-women's lib answers on the 5 statements that were presented
to the respondents. Thus, an item was considered more difficult, if
less respondents did not agree with an item (and thereby takea pro-
women's lib point of view). This meant that item 4 was the easiest
item, followed by the items 2, 1 and 3, respectively. Item 5 was the
most difficult item for the male respondents (see Table2.1).

The Guttman scale assumes that a person who agrees with the most
difficult item (i.e., item 4) will also agree with all the other (easier)
items. Therefore, the ordering of items is cumulative. Oncea certain
threshold is passed, i.e., when an individual agrees with a certain item,
it is assumed that all thresholds belonging to easier items have also

25 Again, the data for the subsarnple consisting of men that fulfilled the educational require-

ments mentioned earlier was used.
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been passed (i.e., the individual should have agreed with all items that
are easier).

It is obvious that, in general, there arezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn+ 1 (in this case 6) legitimate
response patterns. For the example presented here, these patterns are
denoted in Table 2.7. The frequencies in Table 2.2 indicate that a total

Table 2.7: Guttman-type conditional response probabilities; difficulty
order for male respondents

Item 1 Item 2 Item 3 Item 4 ItemA5
o
o
o
1

1
1

o
o
1

1
1
1

o
o
o
o
1
1

o
1
1

1
1

1

o
o
o
o
o
1

of 340 males responded with one of these response patterns. Thus, 63%
of all respondents used in this analysis conformed to the rules of the
Guttman scale. Strictly speaking, the other 37% were not scalable
because they responded with one of the remaining2n -zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(n +1) response
patterns.

This rather brief exposition of the properties of the Guttman scale
also reveals the demands that are placed upon the items. Firstly, the
manifest items must be dichotomous. Secondly, the items must be
monotone, i.e., the item characteristic curves should be monotone. An
example of a monotone item characteristic curve (also called a trace
line) that conforms to the Guttman scale is shown in Figure 2.1. It is
clear from this figure that the trace lines in the Guttman scale model
are step functions. This trace line clearly shows that up to some point
along the continuum, the probability that a subjectwill give a positive
response(ill this example: will not. agree) is 0, but once the difficulty
location of that item is passed, the probability of a positive response
is 1. Items that are more difficult have the same trace line, except
that the threshold values for these items are located more tothe right.
Easier items have threshold values more to the left.

A nonmonotone item has a different kind of item characteristic curve.
For these items, the probability for a positive response will increase up
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Figure 2.1: Item characteristic curve for a Guttman scale item

to some point and after reaching a maximum, that probabilitywill
again decrease. A trace line for a perfectly discriminatingitem (i.e.,
the probability of giving a positive response is either 0 or 1) that is
non-monotonous is pictured in Figure 2.2. Especially with the study
of attitudinal topics, one cannot always be sure in advance that items
will be monotone. So there is no guarantee forzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsubstantial monotonicity

(Jansen, 1983). Procedures for analyzing non-monotone items can be
found in Formann (1988), Hoijtink (1990) and Croon (1993).

Although the Guttman scale rests upon a few simple and attractive
ideas, it cannot be used in many practical situations, because the de-
mands the Guttman scale puts upon the data are too rigid, i.e., in most
cases it will be concluded that the data will not conform to the pat-
tern predicted by the Guttman scale.It has been argued that when
the data are not too deviant from the Guttman scale pattern, it is still
possible to use the Guttman scale as a measurement device. Inthis
context use is made of rules of thumb resting upon coefficients like the
coefficient of reproducability and the coefficient of scalability (see, for
example, Clogg and Sawyer, 1981, for an explanation of thesecoeffi-
cients). Apart from the problem that it is not clear what values these
coefficients should take in order to justify the use of the Guttman scale,
it is also true that in examples where the coefficients reachvalues that
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Figure 2.2: Item characteristic curve for a perfectly discriminating non-
monotone item

are considered satisfactory, a closer analysis of the scaleproperties of
the items reveals that the items are not in accordance with the Guttman
scale type. Clogg and Sawyer(1981) gave an example in which both the
coefficient of reproducability and the coefficient of scalability were sat-
isfactory. However, latent class analyses in which models were tested
that can be regarded as probabilistic (and therefore less demanding)
variants of the Guttman scale, all models had to be rejected according
to standard log-likelihood ratio tests.A number of attempts have been
made to develop Guttman-like scaling models that would place less se-
vere demands upon the data. Three of these variants will be discussed
below.

2.4.1.1 Models with errorof measurement

One way to improve the flexibility of the Guttman scale is to allow
for measurement error. The idea of a deterministic scaling model is
discarded ill favor of a probabilistic formalization of themeasurement
model. This idea can be made clear by looking at the trace lines for
suchzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAerror-rate models. In Figure 2.3 a trace line is shown for an item
for which errors of measurement are allowed. There is a certain prob-
ability that individuals who have a position on the continuum left of
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Figure 2.3: Item characteristic curve for an item with measurement
error

the threshold value of the item will respond within the positive cate-
gory, although they should ideally answer with the negativecategory.
This error-rate for falsely giving a positive response is denotedzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbya. If

an individual passes the threshold, then the probability ofobtaining a
positive response increases. But then again it still is possible that an
incorrect (so negative) response is recorded. This error-rate for scor-
ing incorrectly with the negative category is denoted byb. With this
modification of the model the deterministic character of the original
Guttman scale is replaced by a probabilistic formulation, which can
account for the occurrence of response patterns that deviate from the
Guttman pattern. The simplest model arises when it is assumed that
both types of error probabilities have the same value (i.e.,a = b) and
that this error-rate is constant over items. This model was proposed
by Proctor (1970). The Proctor model can be expressed as a restricted
latent class model. A latent class is associated with each legitimate re-
sponse pattern. The membership of a specific latent class then defines
which responses are legitimate and which are false. When theerror-
rate is equal toa, the conditional probability of responding correctly
is equal to (1 - a). When the five items are ordered from easiest to
most difficult, Table 2.8 shows the equality constraints that ought to
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be imposed on the conditional response probabilities, according to the
Proctor model.

Table 2.8: Conditional response probabilities for the Proctor model

Latent Item 4 Item 2 Item 1 Item 3 Item 5
Class 0 1 0 1 0 1 0 1 0 1

1 a I-a a I-a a I-azyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaA I-a a I-a

2 I-a a a I-a a I-a a I-a a I-a
3 I-a a I-a a a I-a a I-a a I-a
4 I-a a I-a a I-a a a I-a a I-a
5 I-a a I-a a I-a a I-a a a I-a

6 I-a a I-a a I-a a I-a a I-a a

By using the results stated earlier, this pattern of restrictions on the
conditional response probabilities can be translated intorestrictions on
the log-linear parameters.It can easily be verified that in this case
all one-variable termsUjl will be equal to some value, say c, for all
j = 1, ... ,5 if dummy coding is used. The two-variable parameters
Ujl0zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

t
will be equal to -2c for every combination ofj and (}t where a

response in category1 can be considered as correct. For every pair
of (}t and j where a response in category1 is not in accordance with
the Guttman scale pattern (and so whichwill result in a conditional
response probability equal toI-a), the parametersUjgOt are equal toO.
This implies that the probability of giving a correct response is given
by:

1

1 + exp(c)'

and the probability of giving a response that is contradictory to the
scale pattern is then of course:

exp(c)

1 + exp(c)"

As can be seen from the results in Table 2.9, the Proctor modelhas to
be rejected for the male subsample. The estimated error-rate under
the Proctor model is equal to 0.13. So, when the Proctor modelhad
fitted the data, there would have been a constant probability of some
13% of scoring in the wrong category of some item, given that one
belongs to a certain latent class.
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Table 2.9: Testing results for given scaling models with measurement
error

PearsonzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX2zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P G2

P df
Proctor's model 108.29 .000 108.62 .000 25
True-type specific error-rates 95.99 .000 92.70 .000 214

Intrusion-Omission model 98.78 .000 94.86 .000 24
Item-specific error-rates 22.16 .390 27.37 .159 21
Latent distance model 19.88 .339 24.02 .154 18

4Because one of the estimated probabilities turned out to bezero, that
probability was restricted to that value making the number of degrees of
freedom for this model21 instead of20

The legitimate response patterns corresponding to the various latent
classes and their estimated latent proportions in the Proctor model are
presented in Table 2.10.

Table 2.10: Estimated latent proportions; Proctor model

Item 4 Item 2 Item 1 Item 3 Item 5 Po,
0 0 0 0 0 .054

1 0 0 0 0 .155

1 1 0 0 0 .241
1 1 1 0 0 .119

1 1 1 1 0 .145

1 1 1 1 1 .285

The conclusion that the Proctor model is not acceptable in the ex-
ample presented raises the question whether it is possible to formulate
Guttman-type models that put less severe restrictions on the param-
eters than Proctor's model does.26 One possibility that has been pro-
posed by Clogg and Sawyer (1981) is to assume that within latent
classes there are constant error-rates, but these error-rates may vary
over latent classes.ZYXWVUTSRQPONMLKJIHGFEDCBAIn that case the trace lines are still symmetric,
which means that the error-rate left of the threshold value of an item
is equal to the error-rate to the right of the threshold.In other words,

26For the more complex models for scale response patterns that will be presented next,
there is no simple relation between the marginal popularity as denoted in Table2.1, and the
item difficulties, i.c., the location of the items along the latent coutinuurn. St.ill, because no

morc informat.ion isavailable, l.hosame ordering of it.(~mRwill he lIsed III{in t.he Proctor IIWt\PI.
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the probabilities for both types of error (scoring incorrectly in category
o and scoring incorrectly in category 1) are equal.

This model has been denoted in Table 2.9 as thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtrue-type specific

error-rates. This model does not adequately explain the deviations
from the deterministic Guttman pattern that are present in the data
for the male subpopulation. The reason that both the Proctormodel
and the true-type specific error-ratesmodel fail to fit the data may be
due to the fact that both models use error-rates which are invariant
across items. When error-rates do vary over items, other more flexible
models could possibly fit the data. The most flexible model in this
respect is the latent distance model proposed by Lazarsfeld& Henry
(1968). This model allows for different error-rates per item. Moreover,
the latent distance model allows for asymmetric trace lines, so that the
probability of incorrectly responding with category 0 neednot be equal
to the probability of incorrectly responding with category1. However,
in this most general formulation, the model is not identified. One way
to solve this problem is to require the two most extreme itemsto have
symmetric trace lines. In the example presented here this means that
only one error-rate will be estimated for item 4 and item 5, whereas
for the other three items, two different error rates are estimated. This
model fits the data well as can be seen from the results of the statistical
tests displayed in Table 2.9. In Table 2.11, the estimated error-rates
for the latent distance model are presented together with the estimated
latent proportions.

Table 2.11: Estimated error-rates and latent proportions;Latent Dis-
tance model

Scale type Response Pattern Item 4Item 2 Item 1 Item 3 Item 5 Po,
1 (0,0,0,0,0) .028 .200 .275 .066 .105 .086
2 (1,0,0,0,0) .028 .200 .275 .066 .105 .183
3 (1,1,0,0,0) .028 .094 .275 .066 .105 .156
4 (1,1,1,0,0) .028 .094 .327 .066 .105 .074
5 (1,1,1,1,0) .028 .094 .327 .135 .105 .204
6 (1,1,1,1,1) .028 .094 .327 .135 .105 .297

One of the most striking results has to do with the high error-rates
for item 1. A possible explanation for this result is that item 1 takes
a rather average position on the scale when the items are ordered with



91

respect to difficulty, using information from the marginaldistributions.
It seems justifiable to assume that error-rates will be lower for either
very easy or very difficult items.

The restrictions that were proposed by Lazarsfeld and Henryare not
the only way to circumvent the identifiability problems. Dayton and
MacReady (1976) suggested adapting the latent distance model by pre-
serving the idea of asymmetric trace lines for all the items,but requiring
the two types of error probabilities to be equal across the items. The
model they proposed thus contains two error-rates: one for the case in
which, given the scale type, a respondent incorrectly comesup with a
negative response, and the other error-rate pertains to thesituation in
which the subject erroneously answers with the positive category. This
model (thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAintrusion-omission model)does not fit the data according to
the values of the test statistics in Table 2.9. This is not very surprising
given the rather substantial variation in the estimated error rates under
the latent distance model.

Finally, the results will be presented for a model which can also be
seen as a restricted latent distance model, but which allowsthe error-
rates for the items to be different. This model, displayed inTable 2.9
under the heading ofitem-specific error-rates, assumes that the trace
lines for all items are symmetric, but each item is characterized by its
own error-rate. There is one error-rate per item and each item can have
a different error-rate. This model fits the data very well. The estimated
error-rates as well as the estimated latent proportions aredisplayed in
the following table.

Table 2.12: Estimated error-rates and latent proportions;Item-specific
error-rates

Item Error-rate Scale type Po,
4 .037 1 .078
2 .093 2 .163

1 .303 3 .228

3 .087 4 .068

5 .125 5 .178
6 .286

These results also clearly demonstrate that the first item has rather
high error-rates. This simple scaling model, however, gives a very par-
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simonious description of the data of the male subsample.

2.4.1.2 Models with an intrinsically unscalable class of re-
spondents

The models described in the previous section account for theoccur-
rence of response patterns that do not belong to the Guttman scale
types by allowing some error probabilities. Another solution proposed
by Goodman is relaxing the assumption of population homogeneity.
The basic assumption is that a part of the population responds in line
with the requirements of a Guttman scale (i.e., these subjects respond
with one of the allowed response patterns, given a specifiedordering of
the items). The rest of the population is not scalable according to the
Guttman model and is therefore denoted as thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAintrinsically unscalable

class. This scale model as proposed by Goodman can be translated
into a restricted latent class model. For the example presented here,
there are six different scale types. The Goodman scale modelwill thus
consist of seven different latent classes. The first six latent classes per-
tain to the six different Guttman scale types. This means, for example,
that the first latent class will only consist of respondentswho answered
with the response pattern (0,0,0,0,0) and the second latentclass is
reserved for people whose response pattern is (1,0,0,0,0).27 This link-
ing of latent classes to Guttman scale types can be done by restricting
the conditional response probabilities to be equal to either 0 or 1, de-
pending on the item and the specific latent class. In this waythe first
six latent classes are linked to the Guttman scale types. Theseventh
latent class contains the intrinsically unscalable respondents. For this
latent class no restrictions are put on the conditional response prob-
abilities, but local independence should hold. Some of the results of
this model are summarized in Table2.13. Again, the data of the male
subsample also used in the previous section were analyzed. One of
the most striking results is the large estimated proportionof individ-
uals that belong to the unscalable class.It was already observed that
in the male sample some 63% of the respondents answered with one of
the legitimate Guttman response patterns. So, the observedproportion

27The order of the items is according to the item difficulty,as measured by the marginal
popularity.
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Table 2.13: Conditional response probabilities for the intrinsically un-
scalable class

Unscalable
Class

Item 4

o 1

Item 2
o 1

Item 1

o 1

Item 3
o 1

Item 5
o 1zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Po, = 0.690 .083 .918 .253 .747 .514 .486 .559 .441 .687 .313

of unscalable respondents is only 37%, while the estimated proportion
of unscalable individuals in this Goodman scale is 69%. Thiscan be
explained by noting that individuals who belong to the unscalable class
can also produce a response pattern that is in accordance with the
Guttman model. In the Goodman scale model the estimated propor-
tion of unscalable individuals will always be greater than or equal to
the observed proportion.If such a large percentage of the population
belongs to the unscalable class, as is the case in our example, one may
question the usefulness of this model.

Another point of criticism concerns the implicit assumption that re-
sponses to the items are independent for the unscalable class. Clogg
& Sawyer have defended this assumption by stating that the unseal-
able class could be conceived of as consisting of a number of subgroups.
When the ordering of the items is different for each subgroup, it could
be argued that the responses within the grand total of these subgroups
are independent. However, as the results in Table 2.13 clearly show, the
ordering of the items that was used to construct the Guttman pattern
is also apparent in the conditional probabilities for the unscalable class.
Therefore it is questionable whether the assumption of independence
within the unscalable class can be justified in this example.

Dayton and MacReady (1980) have criticized the Goodman scale
model because even in situations where all respondents are scalable but
some small response error is present in the data, the Goodmanmodel
yields a high estimated proportion of unscalable individuals. They also
mentioned the problem that a test for the hypothesis that thepropor-
tion of unscalable respondents is zero makes no sense in the context
of the Goodman model, because if this hypothesis is accepted, one is
left with a deterministic model which cannot account for theoccur-
rence of non-scale type response patterns.28 Dayton and MacReady

28Dayton and MacReady do not resolve this problem, however.They suggested testing
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therefore proposed a model which combines the assumptions underly-
ing the Proctor model or the latent distance model (i.e., error-rates)
with an intrinsically unscalable class. However, these kinds of models
continue to suffer from the questionable assumption of the existence of
an unscalable class whose responses on the items are independent.ZYXWVUTSRQPONMLKJIHGFEDCBA

2 .4 .1 .3 G u ttm a n sc a lin g w ith R a s c h m o d e ls

The last probabilistic alternative for the deterministic Guttman scale
that will be dealt with is the Rasch model. This model will be studied
only briefly here because the Rasch model and other latent trait models
are the subject of Chapter 3.

Andrich (1985) has made it clear in what sense the Rasch modelcan
be seen as a probabilistic alternative for the Guttman scale. He criti-
cized the attempts to formulate probabilistic Guttman-type models by
introducing error-rates or the inclusion of an unscalable latent class.
In this way too much weight is given to the manifest properties of the
scale and too little attention to the fundamental measurement ideas
which underlie the concept of the Guttman model. Andrich stresses
that these fundamental ideas as formulated by Guttman are very sim-
ilar to the methodological point of view taken by Rasch. Guttman
demonstrated that the measurement scale should lead to an ordering of
individuals which is invariant with respect to different subsets of items.
In the same way the ordering of items should be invariant with respect
to different subsamples of subjects. These requirements with respect
to the measurement scale are similar to the idea ofzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAspecific objectivity

formulated by Rasch. Stated briefly, this idea means that scale param-
eters for items should be independent of the specific sampleused, and
scale-parameters for individuals have to be independent ofthe specific
set of items used to derive these parameters. The formulation of Rasch
is therefore stricter. Guttman only required invariance with regard to
the ordering of items and/or individuals, while Rasch formulated this
invariance in terms of scale-parameters which are used to character-

whether the proportion unscalable respondents is zero by comparing the likelihood ratio for a

model with such an unscalable class with the likelihood ratio for a model without such a latent.

class. As was previously noted, a conditional likelihood ratio test cannot be performed in a

situation where the restricted model is formulated by restricting a parameter at a boundary

value. The procedure proposed by Dayton and MacReady is therefore not correct.
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Figure 2.4: Item characteristic curve for the Rasch model

ize both individuals and items. These parameters are used toexpress
a functional relationship between the conditional response probability
for an item and the continuous latent scale. The logistic model used
by Rasch to formalize this functional form leads to trace lines for the
items as shown in Figure 2.4.

The form of trace lines shows that the latent scale is conceived of as a
continuous variable. Further, it should be noted that the trace lines for
different items are parallel, i.e., trace lines for different items will never
intersect. The trace lines for the Rasch model will always beparallel.
As will be made clear in Chapter 3, the idea of specific objectivity
is translated into statistical terms by the requirement of the presence
of sufficient statistics. The total sum of scores for an individual is a
sufficient statistic for the latent scale parameter for that individual; at
the same time, the total number of positive responses on an item has t.o
be a sufficient statistic for the scale parameter pertaining to that item.
The sum of scores plays a central role in the Rasch model. Andrich has
pointed out the fact that this same sum of scores is also dominant in
the Guttman model because for each scalable subject this sumof scores
uniquely defines the response pattern for that subject. Ideas borrowed
from the Guttman model are also used by Andrich to develop hiszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAratingzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

scale model,a model that is in the tradition of Rasch and that is suited
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for the analysis of polytomous data.
Although Rasch models have been used in the context of the analysis

of attitudinal data (see, for example, Duncan, 1984a and 1984b and also
Reiser, 1981), it is not clear whether this was done as an attempt to
replace the deterministic Guttman scale by a probabilisticalternative.

2.4.2 Latent class models for Likert-type data

All latent class models exemplified so far have pertained todichotomous
variables. Clogg (1977 and 1981) has suggested some models for the
analysis of polytomous data. To illustrate these models, the data for
the five items on women's liberation are analyzed again, butnow the
original five categories are reduced to three categories asfollows:

• category 0: agree entirely or agree

• category 1: don't agree, don't disagree

• category 2: don't agree or don't agree at all

The marginal distributions for the five items and the frequencies with
which the 35 = 243 response patterns occur can be found in Appendix
B. The data are given for the male and female subsample as wellas
for the total sample. Again, only those individuals are included that
satisfy the educational conditions that were mentioned earlier.

The first model starts from the following assumptions. Since all man-
ifest items have, say, three categories, a model with three latent classes
is assumed. Each latent class is associated with one of the response
categories. Hence, individuals belonging to the first latent class should
respond only in category 0 of each of the manifest variables and indi-
viduals in the second latent class should only respond in category 1. Fi-
nally, subjects who belong to the third latent class would consequently
score in category 2 if there was no measurement error. Measurement
error is now introduced to relieve these rather strict assumptions. In-
dividuals are allowed to score not only in their own "true" category,
but also in a category that adjoins this "true" category. So,individuals
belonging to the first latent class can respond in category 0(the "true"
category for these individuals), but also in category1. They are, how-
ever, not allowed to respond in category 2. The opposite holds for the
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subjects belonging to the third latent class. They can only come up
with a response in category 1 or 2. The probability of responding in
category 0 is zero for these individuals. Finally, subjectsin the middle
latent class can respond in any of the three categories.

This model was tested for the male and female subsample, as well
as for the total sample (as was stated before, only respondents that
satisfied the educational conditions were included in the analyses).

Table 2.14: Testing results for latent class models for Likert-type data

PearsonzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx2 P c2
P df 1- E .x

Male 303.81 .000 242.30 .000 221a .936 .819
Female 276.68 .008 216.89 .603 223A4 .933 .838
Total 357.25 .000 328.01 .000 221" .938 .872

"Degrees of freedom adapted owing to restrictions for parameters of which
the estimated values were equal to boundary values

The values for the two test statistics in Table 2.14 are quitedifferent,
especially in the case of the male subsample. This is a consequence of
the fact that the five-way table analyzed here is quite sparse. Because
some of the estimated conditional response probabilities were equal to
1, these parameters were restricted to those boundary values and the
number of degrees of freedom was adapted accordingly.

The association between the latent variable and the five manifest
indicators is relatively large for both subsamples, as can be seen from
the satisfactory values for the percentage of respondents that would be
allocated correctly. The estimates for the parameters are given in Table
2.15.

The distribution of individuals over the three latent classes indi-
cates that the women have a slightly more positive attitude concerning
women's liberation on the average than the men.

This restricted latent class model thus clearly shows that the order-
ing of the categories corresponds to an ordering of the latent classes.
This ordering is reflected by the relationship between the three latent
classes and the conditional response probabilities: the probability of
responding in the first category declines as one shifts fromthe first via
the second to the third latent class. The opposite relation can be found
for the probability of responding in the third category. Such a clear
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Table 2.15: Estimated parameters for latent class models for Likert-
type data

Estimated conditional response probabilities
Male sample Female sample

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3
Cat. 0 .752 .224 .0004 .792 .260 .ooo-

Item 1 Cat. 1 .248 .339 .437 .208 .289 .186
Cat. 2 .ooo- .437 .723 .ooo- .451 .814
Cat. 0 .746 .137 .ooo- .608 .125 .ooo-

Item 2 Cat. 1 .254 .209 .044 .392 .238 .000
Cat. 2 .ooo- .655 .956 .792 .637zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.000zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb

Cat. 0 1.0000 .448 .0004 .738 .522 .0004

Item 3 Cat. 1 .000 .241 .129 .262 .232 .131
Cat. 2 .0004 .311 .871 .ooo- .246 .869
Cat. 0 .445 .030 .eoo- .354 .038 .ooo-

Item 4 Cat. 1 .555 .063 .005 .646 .018 .000
Cat. 2 .ono- .907 .995 .0004 .944 1.000b

Cat. 0 .897 .691 .ooo- 1.000b .406 .ooo-
Item 5 Cat. 1 .103 .147 .228 .000 .242 .132

Cat. 2 .ooo- .162 .772 .ooo- .352 .868
A

Lat. Prop. Po, I .047 .649 .304 I .042 .586 .373

"Restricted a priori

bRestricted according to boundary estimate

relationship does not exist for the probability of responding in the sec-
ond category. The relationship between this probability and the latent
variable is not necessarily increasing, decreasing or non-monotone.

Clogg proposed still other latent class models for the analysis of
Likert-type data. A second model links the three categoriesof the
manifest variables to three latent classes perfectly by constraining the
relevant conditional probabilities to be equal to 1 orO. A fourth latent
class is then added to account for all individuals that cannot be located
in one of the first three latent classes. This model is similar to the
model presented by Goodman for data which are assumed to follow a
Guttman scale. For the example presented in this section this model
does not make very much sense. Only three of a total of 35 = 243
response patterns are mapped on the three error-free latentclasses. As
only a relatively small fraction of all respondents answered with one of
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these three response patterns, the great majority of the individuals is
assigned to the fourth latent class. Therefore. this model will not be
applied to the data in the present example.

Recently Clogg proposed other latent class models for measurement
problems (Clogg, 1988). As these models have a close connection to cer-
tain latent trait models, the treatment of these models willbe deferred
until the next chapter.ZYXWVUTSRQPONMLKJIHGFEDCBA

2 .4 .3 O rd in a l la te n t class analysis

The restricted latent class models that were reviewed in Sections 2.4.1
and 2.4.2 make use of fixed-value constraints and equality restrictions
on the conditional response probabilities. In this section, attention
is focussed on ordinal latent class analysis, a technique proposed by
Croon (1990). This model links an ordinal latent variable toordinal
manifest indicators by imposing certainzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAinequality constraints on the
response probabilities. The idea of latent class models forordered latent
classes can be illustrated very easily for the situation with dichotomous
manifest indicators.

Suppose there areT different latent classes, numbered 1, ...,T, which
are ordered according to some criterion. With a proper ordering of the
latent classes, the probability of a "positive" response (which will be
indicated withPjll8 t) should increase with the class number, so:

The same idea can be used to model ordered relations between latent
and manifest variables for polytomous indicators. However, for polyto-
mous items there are a number of ways to define a "positive response" .
When an item has (m+ 1) different response categories, and9 and h

denote, as before, arbitrary categories, the following setof inequalities
with respect to the response probabilities could hold:

m m

L Pjh18,+12: LPjh18"
h=g h=g

(2.38)

for 1 ~ t ~ T - 1 and for 1 ~9 ~ m. Because within each latent class
the sum of the conditional response probabilities is equal to one, the
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restriction can also be written as:zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

g-1 g-1zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2:PjhI8t+1 < LPjhl8t,
h=O h=O

now for 1 ::; t ::; T - 1 and for 0 ::;9 ::; m - 1. Equation 2.39 states
that the probability for a "negative response" decreases with increasing
class number. Combining Equations 2.38 and 2.39 gives the following
result:

(2.39)

E~=gPjhI8t+l > E~=gPjhI8t
~g-1 - ~g-l .

L.Jh=O Pjhl8t+1 L.Jh.=OPjhl8t
Because the ratio in Equation 2.40 is a monotonically increasing func-
tion of class numbert, the logarithm of this ratio will also increase with
increasing class number. These logarithms are calledcumulative logits.

As Croon (1991a) has pointed out, modeling ordinal latent classes with
cumulative logits is just one way to handle the problem of polytomous
data. Croon, following Agresti (1984), distinguishes fourtypes of logits
that could be used:

(2.40)

• the cumulative logits

(2.41)

for 9 = 0, ... ,mj - 1.

• the adjacent-categories logits

In [Pj9+118t] ,

Pjgl8t
(2.42)

for 9 = 0, ... ,mj - 1.

• the continuation logits of the first type

I [ Pjg+118t ]
n E~=oPjgI8t '

(2.43)

for 9 = 0, ... ,mj - 1.

• the continuation logits of the second type

In [E:~9+IPj918tl.
Pjgl8t

(2.44)
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ItzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be proven that the operationalization of the concept of "ordered"
relations in terms of these four types of logits will, in general, not lead
to the same results (Croon, 1991a). The strongest conditionis de-
fined by the adjacent-categories logits.If this condition is satisfied, the
response probabilities themselves will be monotonically related to the
latent classes. When the set of inequalities implied by the criterion of
adjacent-categories logits is fulfilled, sets of inequalities implied by any
of the other three criteria will also be satisfied. The weakest condition
is given by the cumulative logits. The response probabilities do not
have to be monotonically related to the latent classes if thecondition
of cumulative logits is satisfied. The ratio of the sum of allresponse
probabilities above a certain category to the sum of the remaining re-
sponse probabilities is, however, a monotonically increasing function
of the latent class number. The other two criteria take a medium po-
sition between the stronger adjacent-categories logits and the weaker
cumulative logits. The two variants of the continuation logits can not
be ordered amongst themselves. More details can be found in Croon
(1991a).

The latent class model suggested by Croon uses only information
concerning the ordering of the categories of the manifest items. Fur-
thermore, the functional relationship between the latent variable and
the manifest indicators is not given explicitly (i.e., in algebraic terms).
The only requirement about the relation is monotonicity, not an exact
functional form such as linearity. In this sense the latent class model de-
veloped by Croon is definitely different from other models for the analy-
sis of "ordered data". Many of these other models take into account the
ordered character of the data by putting linearizing constraints upon
the latent and/or the manifest variables. These linear constraints were
already reviewed in Chapter 1. In the next section, latent class mod-
els that use this kind of restriction will be studied in more detail. A
drawback of these models, as compared to Croon's model, is that they
all make explicit algebraic assumptions about the functional relation-
ship between the latent and manifest variables. As a consequence, the
latent and/or manifest variables are treated as variables on an inter-
val leveL However, these models have fewer parameters than Croon's
model, and therefore they offer a more parsimonious description of the
latent structure.
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2.4.4 Latent class models with linear restrictions upon the
log-linear parameters

All restricted latent class models that were reviewed so farimpose re-
strictions on the conditional response probabilities. These restrictions
can be fixed-value constraints, equality restrictions or inequality restric-
tions. In this section attention is focussed on latent classmodels that
use restrictions on the log-linear parameters. These models, which were
introduced briefly in Chapter 1, will be explored in more depth. In ad-
dition, a number of these models will be illustrated by analyzing the
data on women's liberation once again.

The log-linear parameterization of the latent class model as given in
Equation 2.23, can be used to derive expressions for the conditional
response probabilities in terms of log-linear parameters (see Equation

2.26):
exp(zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUjg + Ujg(h)

PjglOt = "( ).
Dg exp Ujg + UjgOt

The one-variable parameters pertaining to categoryzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg of the manifest
item j are denoted withUjg. The two-variable interactions describing
the relation between the manifest indicatorj and the latent variable
o are indicated withUjgOt' The relation between latent and manifest
variables can also be expressed using logits, i.e., the natural logarithm
of the ratio of two conditional response probabilities. Thelogit in which
the probabilities for responding in categoriesg and g' to item j are
compared can be written as:

[
pjglOt] ( ) ( )In -- = Ujg - Ujg' + UjgOt - Ujg'Ot .
Pjg'lOt

(2.45)

The categories of itemj are denoted with successive integers
0, ... ,g, ... , mj. Since item j has (mj + 1) distinct categories,Ot
[(mj + 1) x mj] /2 different logits can be defined for each latent class,
in which all possible pairs of response categories are compared. How-
ever, for each latent class, there are only mj non-redundantlogits. In
Chapter 1 it was suggested that these non-redundant logits be defined
by comparing the probability of responding in categoryg with the prob-
ability of responding in category 0; category 0 was defined as being the
reference category, i.e., for this category both the one-variable parame-
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ters and the two-variable interactions are constrained equal to O. This
simplifies the expressions for the logits to:

InzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[Pj9IO,] = Ujg + UjgO,.
PjOIO,

These logits indicate the tendency of responding in category 9 rather
than in category 0 of itemi. Of course, the value of the logits depends
on the latent class. When the number of latent classes is equal tozyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT,

there areT different logits that can be defined for each category9 of
item i.

It is now possible to formulate restricted latent class modelsby as-
suming specific contrasts with respect to theseT different logits. If the
latent classes are assumed to be ordered properly along a given latent
continuum, theT different logits can be hypothesized to be linearly
related to the latent variable. This assumption can be formalized by
imposing the following restriction on the two-variable log-linear param-
eters:

(2.46)

(2.47)

This assumption specifies a linear contrast between theT different log-
its. By doing so, the latent variable is considered to be measured
on a metrical scale. When this linear restriction is appliedto the
two-variable interactions, a very simple expression for the adjacent-
categories logits is obtained:

I [
Pj9+110,] ( ) (* *) ()n = Ujg+1 - Ujg + Ujg+l - Ujg . t-
PjglO,

This expression for the adjacent-categories logits makes several things
clear. Firstly, the relation between these logits and the latent variable
is linear. The slopes are equal to the difference between successive re-
stricted parametersujg, while the intercept is equal to the difference
between two successive unrestricted one-variable parameters Ujg. Sec-
ondly, this relation is not necessarily monotonically increasing, because
there are no inequality restrictions applied to the parameters ujg. The
relation will be monotonically increasing only if the weights ujg increase
with category numberg, i.e., if for each category9 = 0, ... ,mj - 1:

(2.48)
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Thus, for some adjacent-categories logits the relation with () can be
monotonically increasing, while at the same time it is monotonically
decreasing for other logits.

In log-linear analysis for manifest variables, there are a number of
well-known models with linear restrictions. Depending on whether the
row variable or the column variable in a two-way classification is con-
sidered as a metrical variable, these models are namedzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArow-association

or column-association models. Examples of these models can be found
in Goodman (1981, 1983, 1984). These models have not been applied
very frequently in the context oflatent class analysis, (see, for example,
Heinen et al., 1988; Clogg, 1988; and McCutcheon, 1993). Thelatent
class model with the restriction on the log-linear parameters as given
in Equation 2.47, is applied to the data on women's liberation later in
this section. This model is indicated in the tables reporting results for
these analyses as model 1. Firstly, however, some alternative models
using linear restrictions will be reviewed.

The restrictions given in Equation 2.47 linearize the relation between
the latent variable ()and the manifest indicators, but the slopes of these
linear relations are item- and category-specific. This means that the
relation between an adjacent-categories logit and the latent variable will
be stronger for one item than for other items.It may be worthwhile
to investigate whether the relation between the logits and the latent
variable is identical for a particular set of variables. This means that the
log-linear two-variable parameters would be restricted for all variables
belonging to this set as follows:

(2.49)

In Table 2.17, it is assumed in model 2 that the parametersu; are
invariant for all five manifest indicators.

The two-variable parametersUjgOt can be restricted still further. In
modell, the relation between adjacent-categories logits and the latent
variable ()is linearized by considering ()as a metrical variable. However,
as was stated before, the relation may be monotonically decreasing
for some logits because no inequality restrictions are imposed on the
parameterszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAujg. These parameters are further restricted in model 2 by
stating that the logits for a particular pair of categories are identical
over (a subset of) items. This means that in model 2 the regression
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lines formed by regressing the adjacent-categories logitsfor categorieszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

9 and 9 + 1 on the latent variable have equal slopes for all manifest
items (or for all items belonging to the subset). However, within each
item the linear relations pertaining to different pairs of categories can,
of course, have different slopes.

Model 3 restricts the two-variable parameters by treating both the
latent and the manifest variables as metrical variables. The restrictions
made in model3 can be formalized as:

(2.50)

With this restriction, the linear relations for all adjacent-categories log-
its that can be formed for itemj will have equal slopes. The general
expression for this adjacent categories logit is given by:

I [
pj9+lIBt] ( ) * 8n = Ujg+l - Ujg + Uj' t.

PjglBt

Thus, the parameterzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuj serves as the common slope parameter for all
linear relations pertaining to logits for itemj. Hence, all the "regres-
sion" lines will run parallel, and as a consequence, they will all be either
monotonically increasing or monotonically decreasing. The indetermi-
nacy at this point, found for models1 and 2, is eliminated in model3.
In log-linear analysis, models that use restrictions as expressed in Equa-
tion 2.50 are called Uniform Association models because the relation
between the two variables can be described by one single parameter (i.e.,
uj). When the scores9 for the manifest variable and8t for the latent
variable are equally spaced, this model is equivalent to thelinear-by-

linear interaction model. The two-variable interactions are linearized
in both relevant variables (i.e., in the present example item j and the
latent variable8).

Model 4 is basically the same model as model3, with the additional
restriction that the regression coefficientuj is invariant over (a subset
of) items. This means that the two-variable parameters are restricted
by:

UjgBt = u* . 9 ·8t. (2.52)

Model 3 combines the assumption of metrical latent and manifest vari-
ables, based on the assumption of an equally strong association between
the latent variable and the manifest indicators.

(2.51)
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The four models defined by the restrictions given above weretested
on the data concerning women's liberation. For this aim, theset of data
with three categories, i.e., the data as described in Appendix B, was
used. Because it was not possible to decide in advance how many latent
classes would be necessary to provide an acceptable fit, themodels were
estimated with three and four latent classes. Allfour restricted latent
class models considered here required that the metrical valueszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOt for
the latent variable be specified a priori. Use was made of equidistant
scoring on the interval that is in practice relevant for a standard normal
distribution, i.e., the interval within the range-3 to +3. Hence, three
and four points respectively were chosen and equally spacedon the
interval -3 to +3. The scoring system for models using three and four
latent classes is reported in Table 2.16.

Table 2.16: Scoring system for three and four latent classesresp.

T=3 T=4
-1.5 -2.1

0.0 -0.7
+1.5 +0.7

+2.1

For models 1 and 2, the restricted parametersujg resp. u~ had to be
further restricted in order to make the set of parameters identifiable.
This was done by using a dummy-coding scheme in which the parame-
ters pertaining to the first category of the manifest items were set equal

to zero, i.e.,ujo = 0 resp. Uo = O.
The models 3 and 4 also required that the numerical category values

of the manifest variables also be specified in advance. For the three
categories of the manifest items, a simple equidistant scoring system was
applicd , i.e., the values 0, 1 and 2 were assigned to the threecategories.

The results ill terms of the test statistics did not differ very much,
so the results from the more parsimonious three latent classes analyses
were used. The values for the test statistics as well as the number of
degrees of freedom for the four models are given in Table 2.17. The
results are presented for the total subsample and also for the male and
female respondents separately. As before, individuals that did not meet
the educational criteria formulated earlier were excludedfrom the anal-
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yses. All computations were performed using Haberman's program

Table 2.17: Testing results for three latent class models with restrictions
on the log-linear parameters

Modell Model 2 Model 3 Model 4
Male GzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 - 219.36 194.75 220.25

Pearson X2 - 331.27B 255.71 325.82a

Female G2 163.22 200.10 193.68 204.78
Pearson X2 199.64 283.23B 256.43 292.42a

Total G2 220.83 277.55B 247.86 280.19a

Pearson X2 219.44 329.91a 276.24a 329.96B

df 220 228 225 229

ap-value < 0.05

NEWTON. In some cases it was hard to find good initial estimates.
Therefore, another program (DILTRAN, a program that will bepre-
sented in the next chapter and that uses an EM algorithm) was used
to find satisfactory initial estimates for the parameters.The design
matrices needed by NEWTON were computed with a special utility
program written by Hummelman and Hagenaars called DESMAT (see
Hagenaars, 1990 p. 312). Problems were encountered while estimat-
ing model 1 for the male subsample. These problems arose because
a number of estimated conditional response probabilities approached
their boundary values, making the estimated values for the log-linear
parameters either too large or too small. These difficulties arose in
both analyses (thus with both three and four latent classes). An even
more restricted model (i.e.,T = 2) did not really resolve the problems
because latent class model 1 with just two latent classes is identical
to an ordinary unrestricted latent class model with two latent classes.
The results for that model were already presented in an earlier section.
Therefore, no results are available for model 1 in the male subsample.

One of the other problems that developed during these analyses in-
volved the use of test statistics in sparse tables. The problems that
arose in this situation were clearly reflected by the discrepancy between
the values of the log-likelihood ratio and those of the Pearson statistic.
While for the male and the female subsamples separately all models that
were tested were acceptable according to the likelihood ratio test, the
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Pearson test statistic only supported the first model and, on the edge
of significance, model 3. The use of model-selection criteria based on
information theory also did not provide decisive indications. Akaike's
information criteria supports model1. The other two criteriazyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(BIG
and GAl G) favor model 3, and sometimes model 4. This clearly shows
that the two modified criteria(BIG and GAIG) put higher penalties
on using less parsimonious models thanAIG does.ZYXWVUTSRQPONMLKJIHGFEDCBAIn summary, all four
models seem to be able to reproduce the data to a satisfactorylevel,
but it is difficult to name one that is obviously superior.

A final remarkable result that can be found in Table 2.17 is that the
models gave a better fit for the male and female samples separately
than for the entire sample. This findingis not entirely surprising as
the analysis of the dichotomous data already showed that there was
a difference in the difficulty level of the five items between males and
females. These differences were also present in the data with three cate-
gories, as can be seen from the marginal distributions in Appendix B. A
closer examination of the estimated parameters for the two subsamples
revealed that the spacing of the categories of some items wasclearly
different for male then for female respondents. These results as well as
the estimated parameters will be inspected more closely in Chapter 3,
which deals with latent trait models.

The four models using the linear restrictions introduced earlier have
two characteristics in common. They all treat the latent variable as
a metrical variable and they all assume a linear relation between this
metrical latent variable and the adjacent-categories logits defined for
the manifest indicators. The differences between these models lie in
whether the manifest variable is also considered a metricalvariable, as
well as with the possibility of imposing equality restrictions on the slope
parameters over different items. Another latent class model that uses
linearizing restrictions, but that differs from the four models considered
so far, was proposed by Rost (1985, 1988a and 1988b).

Rost's latent class model is an attempt to take into account the or-
dered information in polytomous manifest items. The model was devel-
oped using the threshold approach developed earlier by Masters (1982).
In the following it is assumed that the manifest variables havean equal
number of response categories. With (m+ 1) ordered response cate-
gories there are m disparate thresholds between successivecategories.
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The response process of an arbitrary individual who is confronted with
such an item can be described as follows: an individual triesto pass
these thresholds, beginning with the threshold separatingcategory 0
from category 1, and so on. When that individual responds in cat-
egoryzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg, he/she is said to have passedzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 different thresholds.I? The
threshold approach to the response process was suggested byAndrich
(1978a). The latent class models developed by Rost lean heavily upon
the method used by Andrich. Although Rost's model is a genuine la-
tent class model because it uses a discrete latent variable of which the
categories are not necessarily ordered, the model is derived first by
assuming a latent continuum reflecting the ability or attitude that a
manifest item tries to tap. Each individual occupies a position on this
continuum that indicates the tendency for individuali to agree with
item j. Using Rost's original notation, this tendency is indicatedby
AjlOi' On the same continuum, m different points can be demarcated
that correspond to the m distinct thresholds. The value of the thresh-
old between category(g - 1) and category9 for item j is denoted byTis-

If the continuum is conceived of as going from "difficult to agree with"
to "easy to agree with", an individual must have a relativelylarge prob-
ability of passing the threshold between category(g - 1) and category
g, if AjlO, > 7jg. Also, when AjlOi < Tjg, the probability of individual i
passing the threshold between categories(g - 1) and 9 will be relatively
small. In other words, the probability of passing the threshold between
categories(g - 1) and 9 must be some function of the difference between

AjlO, and Tjr)"

Following Masters (1982), Rost formalized these ideas by introducing
the concept of transition probabilities. Such a probability indicates the
likelihood that an individual i will respond to itemj with category 9

rather than with category(g - 1). When these transition probabilities
are symbolized byIjgli, they can be expressed in terms of the original
response probabilities by:

Ijgli = ,
Pj,g-119i + PjglO,

wherePj,g-119i indicates the conditional response probability for category

(2.53)

290f course, the implicit assumption that is made hereis that the thresholds themselves

are also ordered along a given continuum. This problem will be returned to in Chapter 3.
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(g - 1). Note that the transition probability as defined by Equation
2.53 can be interpreted as the conditional probability thatsubject i
will respond to itemj with categoryzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg, given that itemj is responded
to with category 9 or category (g - 1). Given this definition of the
transition probability {jgli, it can easily be derived that:

{jgIO;

PJglO, = Pj,g-lIO~ • 1
- {JgIO,

From this equation it can be observed that if{jgIO; > 0.5, the response
probability PjglO; will be greater than the probabilityPj,g-lIO;, while the
reverse is true if{jgIO; < 0.5.

Here, as stated before, these transition probabilities should be a func-
tion of the difference between the individual i's tendency to agree with
item j (so AjloJ and the threshold valueTjg. Rost has proposed model-
ing the transition probabilities with the logistic function:

exp(AjIO;- Tjg)

{jgli = 1 (\ ).+ exp AjIO; - Tjg

This logistic function guarantees that{jgli will be a monotonically in-
creasing function ofAjlOi and that {jgli will never fall outside the interval
[0,1] (see Figure 2.4 for an illustration of this logistic function).

The original conditional response probabilities can now also be ex-
pressed as a function of the parametersAjIO; and Tjg:

exp [g. AjIO; - L~=o Tjx]

(2.54)

(2.55)

PjglBi = m [ h] .

Lh=O exp h· AjlBi - Lx=o Tjx

This model can be transformed into a latent class model by imposing
a restriction upon the AjIBi-parameters. The number of different A-
parameters is set equal to the number of latent classes and individuals
that belong to the same class have the same valueAjlBt .30 With this
restriction, the expression of the response probabilitiesin Rost's latent
class model' becomes:

exp [g . AjlBI- L~=o Tjx]

(2.56)

(2.57)

301t is possible to place other restrictions upon the lambda-parameters that lead to other

(latent trait) models. This topicwill be further explored in Chapter 3.
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Some identification restrictions should be imposed on the threshold
parameters. This is, however, not of interest for the present discussion.

For this latent class model only one class-specific parameterzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAjlOt is
estimated for each item, while in the unrestricted latent class model, m
different independent parameters are estimated per item. Furthermore,
a set of item-specific threshold parameters which are the same for all
latent classes are estimated.

It can be shown that if the log-linear parameterization of the latent
class model is taken as a starting-point, Rost's model can bederived by
imposing certain restrictions upon the two-variable interactions. More
specifically, these interactions are given by:

Ujg(lt =zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg x Ajlo,. (2.58)

Each two-variable interaction is equal to the product of a class-
specific item weight and the category number involved. The fact that
the weights are multiplied by thecategory numbers implies that the
manifest variables are seen as variables measured on an interval level,
as otherwise these restrictions would not be meaningful. Onthe other
hand, no restrictions are put on the class-specific item parameters AjlOt'

which indicates that the different latent classes can be seen as categories
of a variable on a nominal level. The fact that each item has its own
set of class-specific difficulty parameters and class-invariant threshold
parameters also illustrates clearly that the latent variable is nominal.
Rost's model combines a latent variable on a nominal level with man-
ifest items that are assumed to be measured on an interval scale. In
this sense the Rost model differs essentially from the four models using
linear restrictions, which were presented earlier in this section.

The starting point for these four models (and the linear restrictions
that are fundamental to these models) was the idea of expressing the
logits for responding in category9 rather than in categoryg' as a func-
tion of the log-linear parameters. In the same way, Rost's latent class
model can also be reformulated using logits based on the probability
that an individual belongs to a particular latent classOt instead of la-
tent classOt', given that this individual has responded in category9 of
item j. It can be shown that this logit can be expressed as:

1 [
POtlJg]. (" )n -- = intercept + AjlOt - AjlOt' . g.
POt,ljg

(2.59)
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Thus, this logit is a linear function of the scorezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 on the manifest
variable j, which is supposed to be a metrical variable. Furthermore,
the slope is a function of the restricted two-variable interactions. So
far, the analogy with the common base of the four models reviewed
earlier in this section is clear. However, the intercept is no longer solely

a function of the one-variable termszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUO" All one-variable and two-
variable log-linear parameters pertaining to manifest items other than
item j also appear in the expression of the intercept.

Rost has further elaborated this latent class model by introducing
further constraints upon the threshold parameters. Details can be found
in Rost (1988a, 1988b).

One of the attractive properties of the Rost model is the factthat
no firm assumptions are made with respect to the measurementlevel
of the latent variable. Thus, Rost's latent class model for ordered data
is a genuine latent class model in the sense that the latent variable is a
nominal variable. Croon's LCA model for ordinal data assumes that the
latent classes can be ordered, i.e., that the latent variable is measured
on an ordinal scale.It should be noted that the idea of ordered data
is operationalized differently in Rost's and Croon's models. As stated
before, in the Rost model the transition probabilities are monotonically
positively related to the class-specific item parametersAjlOt' However,
when attention is focussed on the response probabilities instead of the
transition probabilities, the latent variable need not necessarily be re-
lated to the manifest item in a monotone way in the Rost model.This
is, of course, the consequence of considering the latent variable to be a
variable on a nominal scale.31

The number of parameters that has to be estimated is less thanin
ordinary unrestricted latent class models. However, the model does not
guarantee that the threshold parameters will be ordered properly, al-
though a proper arrangement of the categories is assumed to be present
in the development of the model. In this sense, the model has the same
deficiencies as model1. Also, a strong assumption is made concerning
the measurement level of the manifest variables. Finally, because of the
inherently nominal character of the latent variable in thismodel, it has

31The latent classes can be ordered within one single item according to the estimatedAi18,

coefficients. However, this ordering can be different for each manifest item owing to the fact

that the latent variable is a nominal variable.
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limited usefulness for analyzing sets of data where multiple indicators
are used to tap one specific latent variable.It is for this reason that the
Rost model cannot be related directly to latent trait models; the four
models studied earlier in this section do, however, have direct relations
to some well known latent trait models. Therefore, these models are of
more importance for the present study than Rost's model.

2.5 Latent class models with several latent variables

In all the latent class models presented thus far it is assumed that the
relationships between the manifest items can be explained by one dis-
crete latent variable, of which the categories mayor may notbe ordered.
It is possible to generalize the latent class model in order to account for
situations in which more than one latent variable is assumedto exist.
Goodman (1974a and 1974b) already showed how parameters in latent
class models with two latent variables can be estimated. Theparame-
terization chosen by Goodman is in terms of conditional response prob-
abilities. For latent class model with several latent variables, certain
restrictions must be imposed on the conditional response probabilities
in order to define the relations between the latent variables and the
manifest indicators in a correct fashion. This can be illustrated us-
ing the example that was presented in Chapter 1 in the discussion of
local independence. In the model in this example it is assumed that
there are two latent variableszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0(1) and 0(2) and four manifest items, so
j = 1, ... ,4. Figure2.5 shows the relations that are assumed to exist
between the manifest items and the latent variables.

AA
Item 1 Item 2 Item 3 Item 4

Figure 2.5: Relations between 2 latent and 4 manifest variables

Item 1 and item 2 depend on latent variable0(1) and items 3 and 4
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depend on latent variablezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0(2). The probability of responding to item 1

or item 2 in a given specific category9 is determined by the membership
of a given latent class on latent variable0(1). The conditional response
probabilities for the items 3 and 4 depend only on the latent classes of
variable e(2). The fact that conditional response probabilities depend
on just one latent variable implies that these probabilities must be sub-
jected to certain equality constraints. When an arbitrary latent class
that belongs to latent variable0(1) is denoted by randzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr = 1, ,T and
an arbitrary class belonging to0(2) is denoted by sands = 1, ,T', the
following set of equality constraints must be imposed on theconditional
response probabilities for the example presented here:

for j = 1 or j = 2 and forr = 1, ... ,T:

p. 10(1)'0(2)
Jg r , 1

... = p. 10(1).0(2) = ... = p. 10(1) '0(2),
Jg r , • )g r , T'

for j = 3 or j = 4 and fors = 1, ... ,T':

p. 10(1)'0(2)
)g 1 "

... = p, 10(1).0(2) = ... = p. 10(1).0(2).
)g t " )g T , •

The first equation states that the probability of responding to item
1 or item 2 with category9 is the same for all latent classess of 0(2),

provided that latent variable0(1) is held constant. The second equation
states the same for items 3 and 4, but now the roles of the two latent
variables are interchanged.

Hence, the problem with just two latent variables can be resolved by
combining the two variables0(1) and e(2) into one new latent variable
with TxT' latent classes. When the equality constraints defined earlier
are imposed on this new joint latent variable in the correct manner,
the latent class model with two latent variables can be estimated as
an ordinary restricted latent class model. This procedure has been
implemented in the programs MLLSA and LCAG.

It is also possible to parameterize the model with two latent variables
in terms of a log-linear model with some variables that are not observed
directly. The Goodman notation with variables as superscripts and cat-
egories as subscripts will be used again in order to simplifycomparisons
with expressions for the log-linear parameterization of the latent class
model given earlier in this chapter. The four manifest variables are
denoted byA, B, C and D. Categories for these four variables are
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indicated byzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg, k,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf. and J respectively. When the itemsA and B de-
pend on(il), and itemsC and D serve as indicators for latent variable
0(2), the following expression is obtained for the logarithm of the joint
latent x manifest proportions in the population:

ABCD9(1)9(2) ABC D 9(1) 9(2)

Inpgkl]T s u+ug +uk +ul +u J +ur +us

+
A9(1) + B9(1) + C9(2) + D9(2) + 9(1)9(2)(2 60)

ugr ukr uls uJs ur s •

The latent class models with two latent variables are written out as
log-linear models in which the two-variable interactions indicate which
manifest items depend on which latent variable. Furthermore, the term
U~(1)~(2) reflects the strength of the association that exists between the

two latent variables.
The latent class model with more than one latent variable presented

here can be extended in a number of ways.
Firstly, it is possible to incorporate more than two latent variables.

The formulation in terms of log-linear parameters is straightforward.
However, if the procedure outlined above is applied, all latent variables
are assumed to. interact with each other. In terms of the log-linear
model, this means that a saturated model is postulated for the marginal
table formed by the (unobserved) joint latent frequencies.This is not
always attractive. Figure 2.6 shows a latent class model with three
latent variables. Each latent variable is related to two manifest indi-
cators. The model assumes that all three latent variables are related
to each other, but there is no three-variable interaction. Therefore, an
unsaturated model is specified for the latent variables.

Hagenaars (1990) has indicated how latent class models withmore
than two latent variables for which unsaturated models are defined
can be estimated. In the EM algorithm in his LCAG program, this
is obtained by fitting a specified unsaturated log-linear model to the
joint latent frequencies at the end of each M-step. The expected latent
frequencies that result from this unsaturated log-linear model are used
as input for the next E-step. A number of latent class models can thus
be estimated easily. However, if a specific causal orderingis specified for
the latent variables, a modified path-analysis approach may be needed.
This method was developed by Goodman (1973b) in the context of log-
linear models with directly observed variables. Hagenaars(1988) and
Hagenaars et al. (1980) applied this approach to latent class models
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Item 1 Item 2

Item 3 Item 5

Item 4 Item 6

Figure 2.6: Relations between 3 latent and 6 manifest variables

with several latent variables. The details of this procedure are given in
Chapter 5.

A second method by which the latent class model with more thanone
latent variable can be generalized is to allow manifest indicators to be
dependent on several latent variables. Figure 2.7 shows three manifest
items that are dependent on two latent variables, the seconditem being
influenced by both latent variables.

i\/\zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

AzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB c

Figure 2.7: Manifest variables dependent on more than one latent vari-
able

How such models can be accounted for within the framework of log-
linear models is clear. The log-linear expression of the latent class model
in Figure 2.7 is:

1 ABC9(1)9(2)

npgkh s
A B C D(I) D(2)

U + U + U + U + UU + U
U

9 k irs

+
A9(1) + 89(1) + B9(2) + C9(2) + 9(1)9(2) (2 61)

Ugr Ukr Uks Uis Ur s . •

This extension can also easily be incorporated into the expression for
the conditional response probabilities. For manifest items that depend
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on two different latent variables, the following holds:

exp(uj9+zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(J(l) + u. (J(2»)
_ . J9 r J9 •

p. 1(J{I)·(J(2) - ~ ( ).
J9 ,. ,.. L.Jh exp Ujh + u.

'

(J(1} + U·
h

(J(2)
. J /.r J .•

(2.62)

The latent class model in which manifest items are dependenton sev-
eral latent variables is similar to the factor analysis model. Although
this type of latent class model can easily be grasped within the frame-
work of log-linear parameterization, it is not as easy to postulate these
models using the conceptualization advocated by Goodman, i.e., by us-
ing conditional response probabilities. Because this approach (i.e., the
parameterization of the latent class model in terms of latent proportions
and conditional response probabilities) has become very popular among
researchers, the usc of latent class models like the one shown in Figure
2.7 has not yet become common practice in applied research. Hage-
naars (1990), however, showed how models like these can be estimated
using the Goodman parameterization.

The latent class models with two or more latent variables canalso
be subjected to restrictions on the two-variable parameters in order
to treat only the latent variables or both the latent and the manifest
variables as variables on an interval scale. The models resuling from
this type of restriction are related to thefull-information item factor

analysis developed by Bock et al.(1988). This model and a number
of related models will be studied more extensively in Chapter 5. In
the next section, attention is given to a problem closely connected with
the subject of this section, the relation between latent variables and
manifest external variables.

2.6 Latent class models with external manifest variables

Although the analysis of measurement models itself deserves special
attention, given the great importance of building bridges between the-
ory and observation, in many situations it is desirable to domore than
just analyze a measurement structure. It may be necessary toinvesti-
gate the relation between the theoretically relevant latent variables and
a number of other external variables. When these external variables
are latent, they become part of the latent structure model and models
like the ones that were briefly outlined in the previous section may be
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used for the analysis of the dependencies or causal relations between
the latent. variables.If, however, the external variables are manifest,
a somewhat different approach is needed. Although this topic is dealt
with in depth in Chapter 5, the contours of a strategy that maybe
relevant for this type of problems is sketched in this section. Two main
lines are present in this strategy.

Firstly, one can estimatezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlatent scores. In the context of ordinary
latent class analysis one can, for instance, use the allocation probabil-
ities to allot individuals to the latent class for which thisallocation
probability is maximal. When the latent variable is treatedas a vari-
able on an interval scale, other possibilities arise. Estimating latent
scores has traditionally been one of the chief aims of latenttrait theory.
The object of this approach is obvious. Once a latent score has been
estimated for each individual, these latent scores can be used to in-
vestigate the relations between the latent variables and other, external
variables. However, intuitively appealing this procedureof estimating
latent scores may seem, a number of serious problems may arise with
these procedures. In essence these problems are much like those encoun-
tered in factor analysis owing to the indeterminacy of factor scores. Ha-
genaars (1985) addressed this problem as the problem ofidentifiability

of the individual scores on the latent variableand showed that, gener-
ally speaking, there is no one single method for determiningindividual
level scores on the latent variable using the observed frequencies and
the estimated model parameters.It is possible to find different sets of
scores on the latent variable that are all in agreement with both the ob-
served frequencies and the estimated model parameters. These different
sets may, however, show very different relations with the same external
variables. For this reason, it is often better not to investigate the re-
lationship between latent variables and external manifestvariables on
the individual level, but to incorporate these external variables in the
latent structure model.

This leads to a second strategy of analyzing the associationbetween
the latent variables and external variables. When log-linear parameter-
ization is used, external variables can easily be incorporated into the
latent class model. This bypasses the problem of estimatingthe latent
scores and the accompanying problem of the identifiabilityof the latent.
scores on the individual level. A simple illustration of this is given in



119

Figure 2.8. In this figure, a latent variable is measured through four
manifest indicators, denoted aszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, B, C and D. The external variable
is denoted aszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE.

E----· ()

A B C D

Figure 2.8: Relating an external variable to the latent trait ()

The logarithms of the joint probabilities can be expressed as:

I ABCD9E ABC D 9 E
npgki]te = U+Ug+Uk+Ut+Um+Ut+Ue

A9 B9 C9 D9 E9 ()
+ Ugt + Ukt + Utt + UJt + uet· 2.63

It should be noted that althoughE has a conceptually different status
than the other manifest variables (i.e.,E is not an indicator of ()),
the coefficientu~~ is technically equivalent to the other two-variable
interactions, such asu~~.

An interesting situation occurs when the incorporated external vari-
able is a stratifier or group-defining variable. In that case, the problem
takes the form of a simultaneous analysis in several groups.Clogg and
Goodman addressed this problem in a series of articles (1984, 1985,
1986). The method proposed by Hagenaars (1988), which is somewhat
more general, is based on the idea of introducing quasi-latent variables.
These methods are not described in detail here. Instead, a number of
models that may be relevant in the context of simultaneous analyses of
several groups are indicated. Again, the data on women's liberation is
used, but this time the dichotomous variables that were alsoanalyzed
in Section 2.3 are employed. In that section the five dichotomous items
were subjected to an unrestricted+' latent class analysis,separately for

32The term unrestricted is meant to signify that there were no special sets of equality con-

straints as in the case of response scale patterns, nor were polynomial restrictions used in order

to impose an interval scale on the latent or manifest variables. There were, however, restric-

tions used to account for estimated parameters that were on the boundary of the parameter

space.
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the male and female subsample. The results, given that it wasa model
containing three latent classes, were quite satisfactory,as was reported
in Table 2.3.

A model similar to the one shown in Figure 2.8 can now be analyzed
for this data. In this latent class model it is assumed that the rela-
tions between the variable gender and the five manifest indicators are
mediated through the latent variable. In other words, the relations be-
tween t.he latent variable and the manifest items were the same for men
aud women, but the latent distribution for males may differ from the
latent female distribution. This model can easily be testedby adding
the variable gender as a sixth indicator. The log-likelihood ratio for
this model yielded a value of 83.11 (PearsonzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 = 80.49) which, with
43 degrees of freedom, is clearly significant. The postulated hypothesis
that the measurement model is the same for the male and the female
subsample, therefore, had to be rejected.If the test for this hypothesis
had resulted in a non-significant result, a still more restrictive model
could have been tested, in which complete independence between the
latent variable and the variable gender would have been assumed. This
model can also easily be tested by restricting the conditional probabil-
ities for belonging to the male or the female subsample to be equal to
the observed marginal proportions.

A less restrictive model can be tested by taking the sum of thevalues
of the log-likelihood ratios and the degrees of freedom. This tests the
hypothesis that a latent class model with three latent classes gives an
adequate fit to the data for both males and females. However,both
the latent distribution and the conditional response probabilities may
now vary freely over the two groups (males and females). The sum of
the two log-likelihood ratios is equal to 32.67 which, with 32 degrees of
freedom, is clearly not significant. The hypothesis that a latent class
model with three latent classes can explain the observed pattern of
frequency counts for both males and females can be accepted.

Hagenaars (1990) described a number of alternative models that can
also be relevant to simultaneous group comparisons. For example, one
might consider the hypothesis that the relation between latent and man-
ifest variables is the same for both groups but allow for somedirect
relations between the grouping variable and the manifest indicators,
thereby allowing for the fact that some responses are more popular in
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one group than they are in another. These more complex modelsfor
group comparison lie beyond the scope of this chapter, but they are
considered in more detail ill Chapter 5.ZYXWVUTSRQPONMLKJIHGFEDCBA

2 .7 E v a lu a t io n

In this chapter, a large number of different latent class models were
reviewed. The latent class model can be parameterized in a number of
different ways. The parameterization in terms of conditional response
probabilities and latent proportions has the advantage that the param-
eters being used have a intuitively clear interpretation.It is possible to
formulate restricted latent class models by imposing equality or fixed-
value restrictions on the conditional response probabilities and/or the
latent proportions. This was illustrated by a number of models that are
probabilistic versions of the Guttman scale. Some of these models use
error-rates to allow for the occurrence of response patterns that are not
legitimate according to the Guttman scale model. Other models try to
cope with these non-Guttman type response patterns by including an
unscalable class.

Models with error-rates have some practical value in the analysis of
attitudinal data when the variables are supposed to constitute a cumu-
lative scale. A major problem which remains is that the ordering of the
items is often based on the marginal distributions because there is no a
priori ordering on theoretical grounds. Moreover, models incorporating
error-rates were developed primarily for the analysis of dichotomous
data.

Models with an unscalable class do not seem to have much practical
value because in many cases the estimated proportion of unscalable in-
dividuals is extremely high. Also, the assumption that one segment of
the population responds with legitimate response patterns, while the
remaining segment responds to the items in a random fashion,does not
seem to be very meaningful. More interesting models can be developed
by including two unscalable classes, one class of respondents who have
a tendency to answer the items positively and one class with high prob-
abilities for negative answers. However, the problem that arelatively
large part of the population is essentially unscalable remains.

Clogg (1977, 1981) has proposed some latent class models forLikert-
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type data that are also based on parameterization in terms ofcondi-
tional response probabilities. These models have not became very pop-
ular, mainly because the restrictions imposed on the response probabil-
ities in these models are very strict. Another more promising method of
analyzing these types of data was proposed by Croon (1990). He used
certain inequality restrictions on the conditional response probabilities
in order to develop an ordinal latent class analysis model.

An alternative parameterization of the latent class model is based
on the log-linear model. Using this parameterization, it becomes possi-
ble to develop models with linear relations between the latent and the
manifest variables. By using these types of restrictions, metrical vari-
ables can be included in the latent class models. A number of models
in which the latent variable is treated as a metrical variable can be
shown to be equivalent to some discretized latent trait models. The
log-linear parameterization with linear restrictions canalso be used to
handle metrical manifest variables. When the latent variables are also
metrical, the resulting models can again be related to specific latent
trait models.

However, when the latent variable is treated as nominal, as was done
in Rost's model, the link between latent class and latent trait models
can no longer be established. Although Rost's model was developed us-
ing concepts borrowed from item response theory, it is a genuine latent
class model and, therefore, it cannot be related to latent trait models in
the same way as the other latent class models with linear restrictions.
Another consequence of the restrictions that Rost proposedis that in
the resulting measurement model the latent variable is measured on a
lower level than the manifest indicators.It is not clear how one should
justify that the underlying theoretical concept cannot be measured on
at least the same level as the manifest variables indicatingthis theoreti-
cal variable. This characteristic also makes Rost's model less attractive
for the analysis of attitudinal data than the other latent class models
using linear restrictions.



C h a p te r 3

L a te n t T r a it M o d e ls

3 .1 In tr o d u c t io n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The methodology of latent trait models is also called item response
theory. First, some basic latent trait models are presentedin order to
clarify the elementary concepts (Section 3.2). After the fundamentals
of latent trait models for dichotomous data and polytomous data have
been explained, a short outline will be given of the estimation methods
that can be used in the context of latent trait models thus clarifying the
terminology necessary for understanding the examples presented in the
remainder of this chapter. A more profound and extensive treatment
of estimation methods for latent trait models is given in Chapter 4.

A number of interesting latent trait models will be studied in Section
3.3. A typology of latent trait models is presented in Section 3.3.1. The
Nominal Response model, proposed by Bock (1972), can be shown to
be the most general latent trait model in this typology. Thismodel is
studied in detail in Section 3.3.2. Many other known latent trait models
can be derived from the Nominal Response model by imposing certain
restrictions on the parameters. The two major types of restrictions that
can be used will be examined separately in Section 3.3.3 (restrictions
on the discrimination parameters) and Section 3.3.4 (restrictions on
the difficulty parameters). The various models that are presented in
this chapter are illustrated using the same data that was analyzed in
the previous chapter with latent class analysis. The parameters in the
latent trait models are estimated by discretizing the latent trait. When
this estimation method is used, the resulting latent trait models can
be shown to be equivalent to certain restricted latent classmodels that
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were presented in Chapter 2.ZYXWVUTSRQPONMLKJIHGFEDCBA

3 .2 S o m e b a s ic la te n t tr a it m o d e ls

Latent trait models specify a particular relationship between a latent
variable and the manifest responses. Because these models have their
roots in the psychometric literature, the latent variable is called a la-
tentzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtrait. The relationship between the latent trait and the manifest
response is operationalized by modeling the probability that an individ-
ual with latent score(}i will respond in categoryzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 of item j. Hence, it
is the conditional probabilityPjg\lI; that is modeled in a certain fashion.
Up till this part, latent trait models have not been distinguished from
the latent class models in the former chapter. In Chapter 1, it was
already stated that latent trait models get their identity from the type
of variable that is used as a latent trait. The relevant aspects that are
often mentioned to illustrate the difference between latent class and la-
tent trait models can be reduced to the difference between the types of
latent variables. In item response theory, the latent traitis considered
to be a continuous variable.

This continuous character of the latent variable has an important
consequence. Because the latent variable is continuous andquantita-
tive, the relationship between the latent variable and the probability of
responding to a manifest variable with some specific category is mod-
eled using a parametric distribution. For instance, when the observed
variables are dichotomous (i.e., a wrong or a correct response can be
given to the item), it is common practice to model the probability that
an individual with some latent score(}i will give the correct answer.
This probability is denoted byPjl\lIi because the correct answer for item
j is scored1. The probability that individuali will respond to item
j with the wrong answer is denoted byPjO\lIi as the wrong category is
scored as O. When the latent trait stands for the ability, theprobabil-
ity Pjl\lIi should increase monotonically for higher latent scores. Simple
linear relations between that probability and the latent variable cause
problems in many situations because the probability cannotbe larger
than 1 or lesser than O.

When both items and individuals are located on the same unidimen-
sional continuum, and the latent position of individuali is denoted by
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Oi, while the latent position of itemj is indicated asbj, the probability
Pjlle. should increase monotonically by the differencezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(OJ - bj). This can
be accomplished by using certain cumulative distribution functions to
relate Pjlle. to the difference(Oi - bj). So, in general:

For the function CP,the following properties should hold:

O~CP(u)~1 for -oo~u~oo,

1£( :s 1£2 =} cp(ud ~ cp(U2).

Usually, it is assumed thatcp(u) is continuous inu. It is now possible
to use the logistic distribution. The probabilityPille. is then modeled
by

1

1+ exp[-(Oi - bj)]

cxp(Oi - bj)

1+ exp(Oi - bj)'

A brief look at the expression for the probabilityPjlle. in (3.1) shows
a close resemblance with the formulas given for the latent class model
ill Chapter 2, equation (2.26). The important difference between the
two expressions is that in the expression forPjlle; in (3.1), the quantities
Oi and bj lie on a continuous interval scale. The expression, therefore,
pertains to a logistic distribution. Equation (2.26) has the same mathe-
matical form, but the argument of the exponential function is no longer
a continuous variable. In that case the probabilityPjglet does not follow
a cumulative logistic distribution.

This point of difference has been stressed in distinguishing between
latent trait models and latent class models. The relationship between
the response probabilities on the one hand and the latent variable on
the other hand is said to be parameterized in the case of latent trait
models, and to be non-parameterized in the case of latent class models.
As was stated before, this distinction between the two typesof models
depends on the difference between the natures of the latent variables.

Having thus made clear the basic distinction between latentclass and
latent trait models, some attention must be given to latent trait models

(3.1)
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for dichotomous and polytomous data in order to introduce some basic
terminology which will facilitate the explanation of the estimation of
parameters.

3.2.1 Latent trait models for dichotomous data

Latent trait models for dichotomous data are often denoted by the
number of item parameters that are used. In the literature one may
encounter one-, two-, three-, or four-parameter models. The one-
parameter logistic was presented in the previous section (Equation 3.1).
Figure 3.1 shows the item characteristic curve (ICC) or itemresponse
function (IRF) for this one-parameter logistic model. The only item pa-
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Figure 3.1: Item response function for a one-parameter logistic latent
trait model

rameter which appears in Equation 3.1, i.e.,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj, is denoted as the item
difficulty. This is rather obvious becausebj marks off a point on the
latent continuum for which the probability of giving a correct answer is
exactly 0.5. Below this point, the probabilityPjllO; is less than 0.5 and
above that point greater than 0.5. The log-odds for giving the correct
answer to the dichotomous itemj is equal to

In PjllO; = (}i - bj.

PjOIO;
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The log-odds are a simple linear function of the individual ability and
the item difficulty.

The one-parameter latent trait model as described above uses the
cumulative logistic distribution function to model the relationship be-
tween the latent variable and the response probabilities for the correct
answer. As an alternative one could use the normal ogive. This has not
been done in the context of the one-parameter model, but theoretically
it is possible to do so. The logistic model is more tractable because it
is mathematically simpler. Furthermore, parameter estimates obtained
with the two functions (i.e., the cumulative logistic and the normal
ogive) do not differ much, as was shown by Haberman (1974b).

The one-parameter logistic model can be seen as the simplest, i.e.,
the most restricted latent trait model for dichotomous data. This model
is identical to the model developed by Rasch (1960). Rasch developed
this model departing from certain requirements measurement models
normally must fulfill. These requirements have become known under
the headingzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAspecific objectivity. This subject was touched upon briefly
in the previous chapter; it is elaborated on in Chapter 4. Themain idea
behind the principle of specific objectivity is that the measurement of
individual latent abilities should not depend on the specific items used
in a test. Also, the item difficulties should be assessed independent of
the specific individuals in the sample. The idea of specificobjectivity is
worked out technically by requiring that the item response model has
known sufficient statistics for both the person and the itemparameters.

A restriction of the one-parameter model is that only the difficulty
parameters may vary. All items have the same discriminationparam-
eter, hence, the one-parameter model assumes that all itemswill dis-
criminate in the same way between individuals with different abilities.
Because the items do not differ with respect to the discrimination pa-
rameter, the trace lines for the various items run parallel,i.e., they

never intersect.
The one-parameter model assumes that the relation between the la-

tent variable and the manifest indicators is equally strongfor all indi-
cators. In many applications, this is not a realistic assumption. Vari-
ability with regard to the way in which items can discriminate can be
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introduced by incorporating a second item parameter:zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

_ exp[aj((}i -zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbj]

Pjl!Oi - [(8]·1 + exp aj i - bj

Figure 3.2 shows the trace lines for two items with differentdiscrimina-
tion parameters (i.e.,aj). The greater the value of the discrimination

(3.2)
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Figure 3.2: Item response functions for the two-parameter logistic latent
trait model

parameter aj, the steeper the trace line will be, and, therefore, the more
discriminatory power the item will have. The model in Equation 3.2
is a two-parameter logistic latent trait model and it was studied exten-
sively in the chapters written by Birnbaum in Lord and Novick(1968).
The two-parameter model was originally formulated using the normal
ogive and it has been examined by, among others, Lawley (1943), Tucker
(1946), Lord (1952) and Bock and Lieberman (1970). Again, the model
using the normal ogive is mathematically more complex, and so the lo-
gistic model has become more popular. An advantage of the model
based upon the normal ogive is that it allows the parameters of the la-
tent trait model to be interpreted in the context of Thurstonian scaling
(Bock and Jones, 1968; Reiser, 1981).

The three- and four-parameter models extend the number of item
parameters in order to deal with guessing behavior for low-ability in-
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dividuals and mistaking behavior for high-ability individuals respec-
tively. The three-parameter model provides one additionalparame-
ter as compared to the two-parameter model, thus the left asymptote
can be greater thano. In this fashion it is possible to cope with the
eventuality that low-ability individuals will still be able to provide the
correct answer by guessing. This is, of course, particularly important
when multiple choice items are used to measure an aptitude. The four-
parameter model, proposed by McDonald (1967), makes it possible to
have a right asymptote which is smaller than1. The rationale behind
this model is that high-ability individuals will not alwayshave a prob-
ability of giving the correct answer which approaches1. It is always
possible for them to give a wrong answer owing to errors, carelessness,
etc.

The relevance of the three- and four-parameter models for the anal-
ysis of ability is clear. It is possible that these models may also be
relevant for the analysis of attitudinal data. Certain response cate-
gories will be avoided by individuals if, for example, the response to
certain items depends on social desirability. Whether the three- and
four-parameter models can be used in such situations is, however, a
question that falls outside the scope of this study. Therefore, these
models will not be discussed any further.

In order to facilitate comparisons between latent trait andlatent class
models, a slight shift in notation is necessary. The item parameters are
denoted in the remainder of this study byzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACj. This parameter is defined
as

which leads to the following expression for the two-parameter logistic
model:

exp(aj . (}i + Cj)zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
pOliO =

J, 1+ cxp(aj . (}i + Cj)

This short introduction to latent trait models for dichotomous data
will suffice for the moment. In the following, attention is focussed on
latent trait models for polytomous data.

(3.3)
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3.2.2 Latent trait models for polytomous data

The purpose of this section is not to describe in great detailall latent
trait models that have been proposed for the analysis of polytomous
data. Rather, some lines will be drawn in order to categorizethe various
latent trait models. A number of these models are studied in greater
detail in other sections of this chapter. The effort made here to discover
some order among the variety of latent trait models leans heavily on
Thissen and Steinberg (1986).

A first major point of distinction which can be made is between what
Thissen and Steinberg callzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdifference modelsand divide-by-total mod-

els. Models in the first category are not attempts to model the usual
response probabilities (i.e., the probability that individual iwill respond
in category9 of item j), but focus instead on modeling the probability
of responding in categoryzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 or above. In Chapter 1, these probabili-

ties were denoted byPlgli. Thus, the cumulative probabilities (or the
complements of these cumulative probabilities) take a central position
in these difference models. In the context of latent trait models, the
most common difference model is theGraded Response modelproposed
by Samejima (1969). The essentials of this model were discussed in
Chapter 1. The termdifference modelsrefers to the fact that the usual
response probabilities can be derived by taking the difference between
the complements of two cumulative probabilities.

3.2.2.1 Divide-by-total models

Difference models use trace lines for dichotomous items to model the
probabilities Pjgli' i.e., the probabilities of responding in category9 or
above. The divide-by-total models also use trace lines for binary data,
but they do not focus on the cumulative probabilities or their comple-
ments, but rather on the conditional probability that an individual is
responding n categoryg, given that the response is in category9 or
category9 - 1. The idea of using these conditional probabilities as the
building blocks for a latent trait model for polytomous datawas first
proposed by Masters (1982). When the probability for responding in
categoryg, given that the response is in category9 or category9 - 1, is
assumed to be governed by a binary logistic trace line and thethresh-
old formulation proposed by Masters is used, the following expression
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is obtained:zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
PjglB. exp(Bi - bjg)

Pj,g-lIB. + PjglB. 1+ exp(Bi - bjg)·

From this expression, a formulation in terms of the responseproba-
bilities PjglB. can readily be derived. This topic will be returned to in
Section 3.3.3.2 in which Masters' Partial Credit model is described in
more detail. A central role in the Partial Credit model is played by the
threshold parameterbjg. This threshold parameter denotes the value
of B for which Pj,g-lIB. equalsPjgIB •. In other words, the threshold pa-
rameter bjg equals the value ofB for which the category specific curves
for categorieszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 and 9 - 1 intersect. For individuals with latent scores
smaller thanbjg, Pj,g-lIB. will be greater thanPjgIB •. The reverse is true
for individuals with latent scores greater thanbjg. For these individuals

PjglB. will be greater thanPj,g-IIB •.

Masters and Wright (1984) were the first to make it clear thatthe
Partial Credit model can be shown to be a model from which a num-
ber of other known latent trait models can be derived by imposing
some additional restrictions upon the threshold parameters bjg. In other
words, the principle introduced by Masters (1982), i.e., the idea of us-
ing trace lines for binary data to model the conditional probabilities

PjgIB'/(Pjg-lIBi + PjgIBJ, defines a whole class of latent trait models.It

is the contribution of Thissen and Steinberg to have shown that the
Partial Credit model itself can be seen as a special case of the more
general Nominal Response model proposed by Bock (1972):

exp(ajg . Bi + ejg)

(3.4)

(3.5)

The Nominal Response model is the most general model in the class
of divide-by-total models.It was briefly introduced in Chapter 1 as an
example of a latent trait model with a latent variable on an interval
scale and manifest indicators on a nominal level. The item character-
istic curves or item response functions resemble those of the Graded
Response model. However, in contrast to this Graded Response model,
the Nominal Response model leaves open some questions regarding the
ordering of the categories of the manifest indicators.

The Nominal Response model is particularly relevant to thisstudy
because it has a close link to a restricted latent class modelthat was
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introduced in Chapter 2, i.e., the latent class models with linear restric-
tions. It may be recalled that for this latent class model the two-variable
interaction parameterszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUjgt were restricted by

which leads to the following expression for the response probabilities:

exp(ujg ·Ot + Ujg)
Pjgl8t = ,",mj * . (3.6)zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

L..Jh=O exp(ujh . Ot + Ujh)

When this expression is compared with that of the Nominal Response
mode), it. becomes clear that the two models arc very similar, with the
important difference that in the Nominal Response model thelatent
variable is continuous, while this variable is discrete in the linear re-
stricted latent class model. By establishing this link, it becomes easy
to gain insight into the connections between the other restricted la-
tent class models described in the previous chapter and the latent trait
models which fall under the heading "divide-by-total". Thecategory of
divide-by-total models is thus the most closely affiliatedto the latent
class models.

Within the category of divide-by-total models, there is still one im-
portant distinction that must be made. The most general model, the
Nominal Response model, and some models that can be derived from
this model use both slope parameters (i.e.,ajg) and parameters that
are related to the difficulty of the categories (i.e.,Cjg). Conceptually,
these models show a clear resemblance to the two-parameter Birnbaum
model for dichotomous data.

Some other models (the Partial Credit models and all models that
are derived from this model) use only one type of item parameters,
namely, category thresholds (or linear functions of these thresholds). It

is possible to bypass slope parameters in these models by (implicitly)
assuming that the categories of the manifest indicators areequidistant,
i.e., the manifest variables are treated as variables on an interval scale.
These models are true divide-by-total models as defined by Masters'
(1982). As such these models are closely related to the one-parameter
Rasch model for dichotomous data.

The question whether or not latent trait models use discrimination
parameters in addition to category parameters is relevant with respect
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to the estimation procedures that can be applied, as is discussed in the
next section.

Thissen and Steinberg (1986) distinguished a third category of la-
tent trait models which they calledzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAleft-side added models.This cate-
gory contains models which try to correct for guessing by adjusting the
left asymptote. This adjustment is really nothing more thanadding
something to the probability of a correct response at the left side of
the latent continuum. Hence the name "left-side added models". The
three-parameter model for dichotomous data mentioned in the previous
section belongs to this category. This type of correction for guessing
can also be carried out in the context of polytomous data. This sug-
gests that the latent trait models for polytomous data presented in this
section should be generalized in order to include a left-side added com-
ponent. The two most widely known examples of this were proposed
by Samejima (1969) and by Thissen and Steinberg (1984).

A brief introduction to the estimation procedures that can be used
for estimating the parameters in latent trait models is presented in the
following section.

3.2.3 A brief outline of estimation procedures

The discussion in the previous section made clear that thereare two
sorts of parameters used in the parameterization of latent trait mod-
els: person parameters(}j and item parameters (i.e., item difficultieszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbj,

discrimination parametersaj, threshold parameters6jg, or functions of
these threshold parametersejg). The estimation ofthe parameters used
in a specific latent trait model can be performed in various ways.

Firstly, it is possible to estimate both the person parameters and the
item parameters simultaneously. This method is calledjoint maximum
likelihood estimation (JML). It is not used in this study because this
method has some serious shortcomings. This is explained in more detail

in Chapter 4.
Another possibility is to estimate only the item parametersusing

maximum likelihood procedures. This requires the elimination of the
person parameters in the likelihood function. There are twomethods for
eliminating these person parameters. Firstly, there are known sufficient
statistics for the person parameters of a number of latent trait models.
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By conditioning on these sufficient statistics, a likelihood function is
obtained in which only the item parameters appear. This is calledzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

conditional maximum likelihood(CML). A second method for getting
rid of the person parameters is to make some assumptions regarding
the distribution of the latent variablezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe. If the proper assumptions are
made, the person parameters can be integrated out of the likelihood
function. This latter method is known asmarginal maximum likelihood.

Conditional maximum likelihood can only be used if sufficient statis-
tics for the person parameters are known. This is true for latent trait
models that do not use discrimination parameters.' When theonly
item parameters that are used are threshold parameters (or functions
of these threshold parameters), sufficient statistics forthe person pa-
rameters are known. Likewise, conditional maximum likelihood can be
employed for the Partial Credit model and all models that arederived
from this model by imposing additional restrictions on the threshold
parameters.

When both threshold parameters and slope parameters are used,
these parameters can be estimated using marginal maximum likelihood
(MML). In order to apply this method, certain restrictions must be
made with respect to the distribution of the latent variablee. The most
far-reaching assumption states that the distribution ofe is completely
known. This is calledparametric MML. Most examples presented in
this chapter use less rigorous assumptions.It is assumed that the dis-
tribution of e can be approximated by a discrete distribution. The
latent probabilities in this discretized distribution canbe estimated
along with the item parameters. In most cases, it is also assumed that
the values of the discretized latent variable (i.e., the latent nodes) are
known. This is known assemi-parametric MML estimation. For certain
models, however, both the values of the categories of the discretized la-
tent distribution and the latent probabilities can be estimated. This
procedure is known asfully semi-parametric MML estimation.

In all of the examples presented in this chapter, semi-parametric
MML with fixed latent nodes was used. Thus, the values of the dis-
cretized latent variable were considered known and the latent probabil-

lConditional maximum likelihood can be used in models with discrimination parameters,

provided that the values of these parameters are known so that they can be imputed. This is

done, for example, in the OPLM program (Verbelst, 1992).
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ities were estimated along with the item parameters.

3.3 Discretized latent trait models

All discretized latent trait models discussed here belong to what Thissen
and Steinberg (1986) called the class of divide-by-total models. A ty-
pology of these models is presented in Section 3.3.1. The most general
model in this typology is Bock's Nominal Response model. This model
is discussed extensively in Section 3.3.2.

Because Bock's model contains slope as well as difficulty parame-
ters, restricted models can be derived by putting certain constraints on
these two categories of parameters. After the Nominal Response model
has been introduced, a number of models in which only the discrimi-
nation parameters are restricted are reviewed (Section 3.3.3). Finally,
in Section 3.3.4, a number of models are discussed in which certain as-
sumptions are also made concerning the difficulty parameters. Some
of these models deserve attention in their own right; other models are
interesting because they allow specific hypotheses to be tested by com-
paring these restricted models with more general models.

3.3.1 A typology of latent trait models

Within the class of divide-by-total models, the Nominal Response model
can be seen as the most general model. A number of more specific
latent trait models can be derived from the Nominal Responsemodel by
imposing certain restrictions on the discrimination and/or the difficulty
parameters.

In order to help the reader obtain an overview of the various restricted
models that are discussed in this chapter, Figure 3.3 provides a scheme
for the hierarchy of all the models surveyed here. For the sake of an
orderly presentation, only the working part of the expression for the
response probabilities is denoted in Figure 3.3.

It must be stressed that the arrows in Figure 3.3 only indicate the
main relations between a number of latent trait models.If there is
no arrow between two models, this does not mean that the one model
cannot be derived from the other model by imposing certain restrictions.
For example, it is possible to derive model 4 from model 2. Yet, these
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models have not been connected by an arrow in order to indicate that
these two models belong to different branches. This will become clear
in the following.

Branch 1: Models with discrimination parameters. Modell is,
of course, the Nominal Response model. This model can be restricted
along two lines. Firstly, it is possible to impose equality restrictions
on the discrimination parameterszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAajg (model 2). If it is assumed, for
example, that the discrimination parameters for items land2 are equal,
the assumption can be denoted byalg = a2g. With such restrictions, a
number of characteristics of the Nominal Response model arepreserved.
The manifest items are not assumed to be measured on an interval
scale. There are no assumptions made with respect to the ordering of
the categories of the manifest indicators. However, if the categories of
the manifest indicators are properly ordered, this will be reflected by
the outcome of the analysis. The model itself does not, however, imply
a specific ordering. Models 5 and 8 belong to the same branch as model
2. The significance of these models will be discussed at a later point.
All of the models that belong to the first branch (thus, models 2, 5 and
8) are parameterized using discrimination parameters thathave to be

.estimated.

Branch 2 and 3: Linear restrictions on the relation between
the latent and manifest variables. A second line of possiblere-
strictions that can be imposed on the Nominal Response modelrequires
treating the manifest indicators as variables on an interval scale and
linearizing the interaction between the indicators on the one hand and
the latent variable on the other hand accordingly. These restrictions
were also discussed in Chapters land 2. Because both the values of
the categories of the manifest items (i.e.,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg) and the values of the latent
"node- points" (i.e.,(}t) are fixed in advance, it is necessary to introduce
a scaling parameter. This parameter is denoted byOJ when it varies
over items. All models that use item-specific scaling parameters belong
to the third branch in Figure3.3, depicted on the right-hand side of
Figure 3.3. The use of item-specific scaling parameters (or item-specific
association parameters) is the most general method of linearizing the
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relation between the latent and the manifest variables. When the scal-
ing parameter is assumed to be the same for all items, it is simply
denoted bya. This leads to the second branch of models in Figure 3.3,
represented on the right-hand side of Figure 3.3.

Models 3 and 4 introduce a number of important new characteristics
in comparison to models 1 and 2.

1. As was already noted, the manifest variables are treated as vari-
ables measured on an interval scale.

2. If both latent and manifest variables are treated as variableson
an interval scale, the resulting (discretized) latent trait models
are related closely to the Partial Credit model and other latent
trait models that can be derived from the Partial Credit model.
In the latter group of latent trait models, known sufficientstatis-
tics for the ability parameter are available. These models are
considered important for two reasons.It is possible to estimate
the parameters in these models using CML. Furthermore, models
with known sufficient statistics for the ability parameterbelong to
the Rasch family of latent trait models, which are highly valued
by a number of researchers because they satisfy the demand for
specific objectivity.

3. Because the indicators are considered interval-level variables, an
ordering principle for the categories of the indicators is introduced
in model 3. Therefore, models that use linearizing restrictions
always consider the categories of the manifest items as ordered, in
contrast to models that use estimable discrimination parameters
(i.e., models that belong to branch 1).

4. Model 3 and all models that are derived from this model havea
number of symmetric properties. These properties are discussed
in Section 3.3.3.

5. ThezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbjg thresholds that were discussed earlier in the context of
the Partial Credit model depend only on theCjg parameters; as
will be shown later on, if the latent trait is discretized, these Cjg

parameters are identical to the log-linear one-variable parameters
in latent class models with linear restrictions. For modelsthat use
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discrimination parameters and difficulty parameters (such as the
Nominal Response model), the thresholds are a function of both
types of parameters (thus, both thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAajg and theCjg parameters).ZYXWVUTSRQPONMLKJIHGFEDCBA

R e s tr ic t io n s o n th e th r e sh o ld s . Models 2, 3 and 4 each define
a line along which further restricted models can be developed. Each
of these models can be restricted further by introducing a distinction
between a "mean" item difficulty and a set of category parameters that
is invariant over items. This can easily be illustrated for models 3 andA

4.
The conditional response probabilities for models 3 and 4 can be

expressed in terms of theCjg parameters (and, of course, the discrimi-
nation parametersCY.j and CY. respectively). But it is also possible to ex-
press these probabilities in terms of the threshold parameters 8jg. This
threshold parameter denotes the value of () for whichPj,g-110; equals
Pjglo;. The restriction that leads to models 6 and 7, respectively, can be
expressed as

8jg = s,+ 7g.

The threshold is separated in a item difficulty parameter 8j and a set of
category parameters7g that are constant over items. This restriction
implies that the spacing of the thresholds around the mean item diffi-
culty is the same for all items and, thus, depends only on the specific
response categories in question. The distance between the threshold for
categoriesg - 1 and g and the threshold for categoriesg and g + 1 is

equal tozyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7g+1 - 7g, for each itemj.
As is shown in Section 3.3.3.2, a simple relation exists between the

the threshold parameters8jg and the Cjg parameters for models 3 and

4:
8jg = Cj,g-1 - Cjg.

Using this equation, the restriction in terms of the thresholds can easily
be translated into a restriction on theCjg parameters:

Cjg = cg - g . 8j,

in which cg is defined as
9

cg = - L7h.

h=l
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Models 6 and 7 are called the Rating Scale model without and with
item-specific scaling parameters, respectively. The difference between
these two models is that in model 6 the spacing of the thresholds around
the item difficulty is exactly the same for all items, while in model 7
this spacing iszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAproportionally the same for all items. Model 7, there-
fore, allows for stretching or shrinking of the latent scalein order to
compensate for differences in the discriminatory power of the various
items.

A similar restriction can be imposed on model 2. For this model, the
values of the thresholds depend on both theag and theCjg parameters:

{;. _ Cj,g-l - CjgzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
VJg - •

ag - ag-l

The restriction in terms of theCjg parameters that leads to a separation
of the item difficulty and a set of item-invariant category parameters
for model 2 is expressed as

Cjg = cg - ag • 8j.

This restriction leads to model 5, which is known as the Unidimen-
sional Polychotomous Rasch model. With this restriction onthe Cjg

parameters, the thresholds for model 2 can be rewritten as

{;. _ Cg-l - cg {; .
VJg - + VJ'

ag - ag-l

The first part on the right side of this equation depends onlyon the
categories9 and 9 - 1. The items differ only in the item difficulties8j.

Equality restrictions with respect to the item difficulties or the
category parameters. Models 5, 6 and 7 can be further restricted in
two ways. First, it is possible to test the assumption that certain items
are equally difficult, i.e., have the same 8j parameter. In that case, the
result is models 8, 9 and 10. The most flexible of these three models is
model 10 because that model preserves some item-specific information.

Another method of restricting models 5, 6 and 7 is to assume that the
cg parameters are zero.2 The assumption is that the distance between

2 Although this type of restriction can be imposed on all threemodels (i.e.. models 5, 6

and 7), Figure 3.7 shows these restrictions only for the two Rating Scale models, and not for

the Unidimensional Polychotomous Rasch model (UPRM), the reason being that the UPRM,
restricted in this way, is not implemented in the DILTRAN program.
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the thresholds and the mean difficulty is zero, and thus the thresholds all
collapse to the point at which {}=zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADj. This assumption can be of some
use when the manifest items have three categories, and thereare two
thresholds. If these two thresholds collapse, the response probability
for the middle category will always be smaller than the probability for
one of the other two categories. This is, in other words, a boundary
case. When71 < 72 there are some {}-valuesfor which responding in the
middle category has the highest probability. When71 > 72, responding
in the middle category is always less probable than responding in one
of the two extreme categories.71 = 72 = 0 borders between these two
situations.

In the following sections, the models presented in Figure 3.3 are stud-
ied in more detail. Firstly, the most general item response model in
Figure 3.3, i.e., the Nominal Response model, is discussed.Restric-
tions on the discrimination parameters are examined in Section 3.3.3.
This leads to models 2, 3 and 4, which, as noted before, are thepar-
ent models for the three branches of latent trait models in Figure 3.3.
Finally, in Section 3.3.4 attention is given to restrictions on thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACjg

parameters.

3.3.2 A general latent trait model: the Nominal Response

model

Bock developed the Nominal Response model (denoted by model1 in
Figure 3.3) as a latent trait model that can be used when thereare a
number of alternative response categories to an item and there is no a
priori ordering for the "wrong" answers. In Bock's (1972) formulation,
the model is based on measurement theoretical ideas developed in the
context of choice models (see, for instance, Bock and Jones,1968 and
Luce, 1959). The relationships between these various measurement
models will not be studied here. Nor is attention given to Andersen
(1983), who developed the same model as Bock in an attempt to for-
mulate a general latent structure model.' Instead, attention is focussed

3Andersen, however, did not actually analyze data with this model because he preferred

a CML procedure for estimating the parameters. The discrimination parameters were only

introduced in the theoretical presentation of the model, but they were fixed in his examples

for analyzing data.
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on the properties of the model by studying the category characteristic
curves and the expressions for the conditional response probabilities.
To start with the latter, it was already mentioned that the probability
that an individual i with latent score()i will respond to itemj with
category 9 is written as

exp(zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAajg . ()i + Cjg) .

Pjgl8; =zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA"mj ( () ) WIth 9 = 0, ... ,mj' (3.7)
~h=D exp ajh· i + Cjh

The number of categories for itemj is equal to (mj + 1). Note that the
notation ()i is used to indicate the location of individuali on the latent
continuum. When the latent trait is discretized, only certain node-
points on this continuum playa role in the formalization of the model
and the values of these latent nodes are denoted by()t. For estimation
purposes, certain constraints must be imposed on both the discrimina-
tion parameters and the difficulty parameters. Bock proposed setting
the sum of both sets of parameters over the categories equal to 0, i.e.,
Ell, ajlt = Ell. Cjh = 0, but in this study it is preferred to set one of the
parameters in each set equal to zero.

Although the Nominal Response model does not require an a priori
ordering of the categories, it is assumed here that the categories are
ordered in such a manner that the following inequalities hold:

(3.8)

It should be noted that this ordering is considered here for merely ex-
planatory purposes. The discussion of the form of the trace lines is
greatly facilitated when the categories are ordered such that the in-
equalities among the discrimination parameters hold.It is clearly not
the objective to suggest that the categories of the manifestitem are
ordered according to substantive criteria, i.e., that the indicators may
be measured on a nominal level. Furthermore, it is assumed that the
identification restrictions are made for the "lowest" category. As this
category is assigned the value 0, the restrictions made areajD = CjD = 0.

When the results of an analysis result in one or moreajg values that
are less than 0, the categories can always be rearranged so that the
inequalities mentioned above with regard to theajg parameters will
hold. The same remarks can be made with respect to the "highest"
category. If, for a given category 9', the estimatedajgl parameter is
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greater thanzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAajmj' categoryzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg' should be taken as the "highest" category.
In the following, it is assumed that the categories are arranged properly
so that the inequalities between theajg parameters hold.

It can be proven that the category characteristic curve for category
o is a monotonically decreasing function of (), whereas the curve for
category mj is monotonically increasing. Aswill be shown later on,
the category characteristic curves for all intermediate categories are
unimodal, for there is only one value for which the first derivative of
Pjgl8; (or equivalently: InPjgl8J to () is zero. An example of the category
characteristic curves for an item with four categories is depicted in
Figure 3.4.

0.1

Caw

Call

Cal 2

Cat 3

·5 -4 -3

Figure 3.4: Nominal Response model: category characteristic curves

The curves for adjacent categories intersect at the threshold value
8jg. The value of this threshold is, in the case of the Nominal Response
model, equal to

~. __ (Cj,g+l - Cjg)
UJg - ).

(aj,9+1 - ajg

Bock notes, with regard to the location of the maxima, that they

. .. are functions of all the parameters of the item and ap-

pear difficult to specify ...
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but that is not entirely true. From Equation 3.7 it can be derived that

The derivatives ofzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPjgl8i and of InPjgl8i are equal to zero for the same
B-values. Because the derivative ofInpjgl8i is easier to work with, this
derivative will be used in the remainder of this section.It can easily be
shown thatzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

mj

ajg - L ajh . Pjhl8i
h=O

ajg - !(B i),

where the function!(B i) is defined as

(3.9)

mj

!(Bd = L ajh . PjhIBi'
h=O

Because of the assumption that

!(B i) will always be greater than or equal to zero. For the derivative of
f(Bi) to (), the following results can be obtained:

'"' OPjhl8i!'(()i) = Z:: ajh . ~
h !

L ajh . Pjhl8i (ajh - t ajk . pjkl8i)
h k=O

L a]h . Pjhl8i - (L ajh . pjhI8.) 2

h h

using Jensen's inequality. Thus, the function!(B i) is monotonically
. .
mcreasmg.

A number of interesting results can be derived for the category char-
acteristic curves. First, these curves can be examined for the "lowest"
and the "highest" category. Afterwards, results can be obtained for the
category characteristic curves for the middle categories.
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1. WhenzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 = 0, the discrimination parameterzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAajo is set equal to zero,
resulting in

-L ajh . Pjhl9;

h

- f(Oi)

<AO.

Therefore, the category characteristic curve for9 = 0 is monoton-
ically decreasing.

Furthermore, by inspecting the expression for the conditional re-
sponse probability Pj019i' it can easily be verified that the left
asymptote for this curve is equal to one, while the right asymp-
tote is equal to zero.

2. For the highest category(i.e., 9 = mj), it is true that

ajmj > L ajh . Pjhl9.

h

becauseajmj is greater than all other discrimination parameters
when the categories are ordered properly(i.e., when the inequal-
ities in Equation 3.8 are satisfied). Thus:

alnpjmjl9i
ee. > 0,

from which it can be concluded that the category characteris-
tic curve for categorymj is monotonically increasing. The left
asymptote is equal to zero, and the right asymptote is equal to

one.

3. For all middle categories,i.e., the categories9 for which 0 <
9 < mj, the following three results can be obtained for the first

derivative of InPjgl9, to 0:

• The left asymptote of this derivative can be expressed as

. a Inpjgl9.
hm ao = ajg > O.

9--+-00 i
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• The expression for the right asymptote of this derivative iszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

. BlnpjglOi
lim BO = ajg - ajm· < O.

0--++00 i )

• The first derivative of InPjglOi to 0 is a monotone decreasing
function.

The first of these three results states that the left asymptote of
the first derivative of InPjglOi to e is positive, while the second
result expresses that the right asymptote is negative. Because,
as the third result says, this first derivative is a monotonically
decreasing function ofzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, it can be concluded that there is exactly
one value of {},for which this derivative is equal to zero. The cate-
gory characteristic curves for the middle categories are, therefore,
unimodal.

Furthermore, the modi for the middle categories are orderedin
the same fashion as the categories.If the categories are ordered so
that the inequalities in Equation 3.8 hold (i.e.,ajg < ajg+l for all
g = 0, ... mj ~ 1), the modi for the categories1through mj-1 will
be ordered along the latent continuum according to the ordering
of the ajg values. This can be shown as follows. Suppose that the
trace line for categoryg reaches its maximum for a {}-valueequal
to Og, and that the mode for category(g + 1) is equal to09+1, it
can be concluded from Equation 3.9 that

ajg - f(Og) 0

ajg+l - f(09+1) O.

Because the categories are ordered such that

it must be true that

J( 0g) < f (09+ 1)

and becausef(O) is monotonically increasing:



147 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The results that were obtained for the first derivative of InzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPjgl8. to
{}can be summarized graphically as is done in Figure 3.5, which dis-
plays the functions (InPjgl8,) for an item with four categories. This
figure clearly illustrates that the first derivative for category 0 is always
negative, which means that the response probability for category 0 is
monotonically decreasing. The reverse is true of category 3. The first
derivatives for the two middle categories are zero for only one specific
value of {},indicating that the category characteristic curves are uni-
modal. Furthermore, the value of {}for which the first derivative of
category 2 is zero is located to the right of the corresponding {}-value
for category 1. The two modi for the categories 1 and 2 are, therefore,
ordered along the latent continuum.

cal 0

cal 1

cal 2

cal 3

-2

-3 -2 -1 o 2 3 4 5

Figure 3.5: Nominal Response model: First derivatives of Inpjgl8t

It must be stressed that the results on the category characteristic
curves, as obtained here, depend on a certain ordering of thecategories.
However, the categories need not be ordered at all. Even whenthe
categories can be ordered on substantive grounds, the estimated ajg

parameters may not show the order that would be predicted in advance
on the basis of these substantive grounds. In this sense, theNominal
Response model is truly a model for nominal data. However, when the
model is used for the analysis of ordered data, the results achieved in
this section can be used to facilitate the interpretation ofthe estimated
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parameters.
WhenzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmj = 2 and, therefore, itemj has 3 categories, it is possible

to calculate the O-valuefor whichPjll8; will be maximum by:

Omax= ~ [In (zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAajl ) - Cj2] .
aj2 aj2 - ajl

When the number of categories is greater than three, there are no
closed-form solutions for the O-valuesat whichPjgl8i takes its maximum.

The ajg parameters not only provide information as to the ordering
of the categories, they also bear information with regard tothe question
how different two response categories are for people with latent scores
below or above the threshold value for the two categories. This can be
seen by focussing on the adjacent categories logits that were discussed
in Chapter 2. For the Nominal Response model these logits can be
expressed as

(3.10)

In [Pj,9+118;] = (aj,g+l - ajg) . Oi + (Cj,g+l - Cjg). (3.11)
Pjgl8;

The adjacent logits are a linear function of the latent variable 0 and
the slope is equal to the difference between the two discrimination pa-
rameters. The greater this difference is, the larger the effect will be of
a certain shift in the latent position on the adjacent categories logits,
and, therefore, the sharper the distinction will be betweenpersons with
latent scores below and above the threshold value.

The parameters in the Nominal Response model can only be esti-
mated with CML or fully semi-parametric MML if there are known
sufficient statistics for the ability parameters. These sufficient statis-
tics are equal to the weighted total-scores for the subjects, for which
the weights are identical to theajg parameters. These discrimination
parameters are supposed to be known and it is necessary to make ex-
plicit assumptions with regard to the values of these parameters. An
example of this approach can be found in Andersen(1983). Bock (1972)
described a JML procedure for estimating the parameters, but currently
the MML procedures are more popular.

One possibility is to use parametric MML. A common choice forthe
latent distribution is to assume a normal distribution function. For
attitudinal data, this has the clear disadvantage that the assumption
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is often not very appropriate with regard to the tails of the population
distribution. With attitudinal data, it is not uncommon to register re-
sponse patterns with relatively low or relatively high total-scores; i.e.,
individuals clearly object or favor certain points of view.Therefore,
semi-parametric MML would appear to be more suited to the analysis
of attitudinal data. The five items on women's lib that were analyzed in
the previous chapter were again analyzed using semi-parametric MML.4
These semi-parametric MML analyses yielded the same results as the
restricted latent class models that were discussed in Chapter 2, Sec-
tion 2.4.4. The Nominal Response model with a discretized latent trait
is equivalent to the row- or column-association model. The values of
the test statistics were identical to the ones obtained in Chapter 2 (see
Table 2.17). Again, problems were encountered fitting thismodel to
the data for the male subsample. As was noted in Chapter 2, these
problems were caused by the fact that certain estimated conditional re-
sponse probabilities had reached their boundary values. For the female
subsample, the same difficulties arose in estimating the parameters.

It should be noted that when these kinds of problems (i.e., estimated
probabilities near 0 or 1) occur and the parameters are estimated using
procedures such as Haberman's NEWTON, the algorithm will probably
fail to converge. With EM (which is used in DILTRAN), the procedure
often converges despite the problems associated with the boundary val-
ues. These problems must then be detected by inspecting the estimated
conditional response probabilities. In these cases the estimated stan-
dard errors of the parameter estimates will also attain unreasonably
high values. When EM procedures are used, these standard errors
should always be estimated and inspected, because they givevery use-
ful information on the identifiability of the parameters. These stan-
dard errors can be estimated using the expected informationmatrix
that is described in Appendix A.5 As is clear from equation A.3, the
first derivatives ofzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPv to the model parameters are needed in order to
calculate this expected information matrix. These derivatives, for the
Nominal Response model as well as for the other latent trait models
reviewed in this chapter, are given in Appendix C.

4All calculations were performed with the DILTRAN program. See Heinen and Vermaseren
(1992).

5This is, in fact, the procedure that is followed in the DILTRAN program.
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Because of the problems in estimating the parameters of the Nominal
Response model for both the female and the male subsample, this model
was only tested for the total sample. Obviously, this analysis was not
entirely adequate because of the differences between male and female
respondents concerning the evaluation of the five items that were clearly
present in the analyses in Chapter 2. Fitting the model for the total
sample is nonetheless still instructive. Figure 3.6 shows the category
characteristic curves for the five items that were obtainedfrom this
analysis. The estimated values for the discrimination and difficulty
parameters are given in Table 3.1. The standard errors of theestimated
parameters are given in parentheses.

Table 3.1: Estimated parametersfor the Nominal Response model;
semi-parametric estimates;zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT = 3zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ajl (Lj2 Cjl Cj2

Item 1 0.85 (0.13) 1.56 (0.15) 0.56 (0.11) 0.83 (0.14)
Item 2 1.09 (0.22) 2.83 (0.34) 1.07 (0.22) 2.21 (0.24)
Item 3 1.39 (0.29) 2.94 (0.37) -0.39 (0.13) -0.60 (0.22)
Item 4 -0.33 (0.29) 1.42 (0.23) 0.03 (0.32) 3.33 (0.23)
Item 5 0.99 (0.16) 1.93 (0.18) -0.81 (0.12) -0.62 (0.16)

The category characteristic curves clearly indicate that the probabil-
ity of responding in the middle category is nearly always smaller than
the probability of responding in the lowest or highest category. From
both the figures and the values of the estimated parameters it is ob-
vious that item 4 is highly unusual. The values of the discrimination
parameters do not conform with the inequality restrictionsthat were
discussed earlier becausea41 < O. This indicates that for item 4 the cat-
egories 0 and 1 cannot be ordered. This anomalous pattern canreadily
be explained by the fact that item 4 had a highly skewed distribution:
over 90% of all respondents fell within the highest response category.

The values of the latent nodes were fixed at -1.5, 0 and 1.5. A
question that naturally arises is whether this equidistantscoring of the
discretized latent trait is adequate and whether a different spacing be-
tween the latent nodes would not have led to other results. Before deal-
ing with this question, the estimated latent proportions for the model
with three equidistant latent nodes are presented: The distribution of
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Figure 3.6: Nominal Response model: category characteristic curves
for the total sample
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Table 3.2: Estimated latent proportions for the Nominal Response
model; semi-parametric estimates;zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT = 3

-1.5 0.12 (0.15)
0.0 0.45 (0.08)

+1.5 0.44 (0.09)

the latent variable is obviously positively skewed. Because only three
latent nodes were employed in this analysis, the choice of the values of
the two extreme nodes only served the purpose of fixing the latent scale.
The question remains whether the choice for the value of the middle
node was satisfactory.ZYXWVUTSRQPONMLKJIHGFEDCBAIn order to obtain information with respect to
the problem at hand, the Nominal Response model was tested for the
five items with a number of different choices for the middle node-point.
The following table gives the values of the log-likelihood ratio statistic
and the Pearson statistic for varying choices for the value of the middle
node. The results in Table 3.3 show that a minimum value of thelog-

Table 3.3: Values for test statistics obtained by differentspacing of the
latent nodes;T = 3

Value for the GA2 Pearson'szyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX2

middle latent node
-0.4 233.41 228.77
-0.3 230.28 225.62
-0.2 226.49 222.33
-0.1 223.18 220.15

0.0 220.83 219.44
0.1 219.59 220.34
0.2 219.52 222.71
0.3 220.60 226.31
0.4 222.76 230.93

likelihood ratio statistic is reached when the value of the middle latent
node point is fixed at about 0.20. Varying values in the neighborhood
of 0.20 made clear that the minimum value for the log-likelihood ratio
was 219.40 and that this value would be reached when the middle latent
class was given a value of 0.16. The numbers presented in the table also
show that minimizing the Pearson statistic leads to anotherchoice for
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the value of this latent node, but within the framework of maximum
likelihood estimation, minimizing G2 is the obvious choice. The fact
that the values of PearsonzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 and G2 depend on the choice of the value
of the middle latent node raises the question whether it is possible to
estimate the value of this latent node. Further research on this topic is
needed.

When the value of the middle latent node is fixed at 0.16, the spacing
of the latent nodes is in concordance with the positively skewed latent
distribution that was estimated in the preliminary analysis. It would
appear from this example that the spacing of the latent nodesis optimal
when it conforms to the global shape of the latent distribution. Starting
with equidistant spacing is, therefore, an obvious choice because with
equidistant spacing no a priori assumptions are made regarding the
form of the latent distribution. The results in Table 3.3 also indicate
that choosing a spacing for the latent nodes that does not correspond
to the estimated skewness in the latent distribution leads to values for
the test statistics that are too high. Of course, this discussion of the
choice of an appropriate spacing of the latent nodes is greatly facilitated
by the fact that there are only three nodes. When the number of
latent nodes is greater than three, searching for an optimalspacing is
more intricate. It is also not clear whether the results reported here
can be generalized.ZYXWVUTSRQPONMLKJIHGFEDCBAIn other words, is it always advisable to choose a
spacing for the latent nodes that corresponds to the global shape of the
estimated latent distribution? This topic also needs further study.

Finally, it should be noted that a slight shift in the spacingof the
latent nodes, leads to changes in the estimates of the difficulty param-
eters, so the values for theCjg parameters reported in Table 3.1 should
be interpreted with care. Despite these changes in the estimated val-
ues for the difficulty parameters, the category characteristic curves are
not greatly affected by a change in the spacing of the latent nodes.
Changing the value of the middle node from 0.0 to 0.16 in the example
presented above has the impact of shifting the majority of the category
characteristic curves a little bit to the right. The basic shapes for all
the curves are retained, however.

When the manifest items are all dichotomous, the Nominal Response
model is equivalent to the Lord-Birnbaum model.It proved interest-
ing to investigate this model using the dichotomous data. Because the
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model was introduced here merely for explanatory purposes,only the
data for the male subsample were analyzed. Firstly, the parameters of
the Lord-Birnbaum model were estimated using the semi-parametric
MML for models with the number of latent nodes ranging from2
through 5. The values of the latent nodes were spaced equidistantly
on the interval from -3 to +3. Table 3.4 presents the values ofthe G2

and the Pearson x2-statistic along with the significance levels and the
number of degrees of freedom.

Table 3.4: Values for test statistics for the male subsample; Lord-
Birnbaum modelzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

T=2
T=3
T=4
T=5

Pearson'szyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx2 p dfNumber of latent nodes p

40.65
21.75
15.84
15.79

0.004 20
0.297 19
0.604 18
0.539 17

42.20
21.77
16.79
16.81

0.003
0.296
0.537
0.467

With two latent nodes, the results were identical to those obtained
with an unrestricted latent class analysis (see Table2.3 in the previous
chapter). The fit increased rapidly for three and four latent nodes.
With T = 5, however, the fit could not be improved. Moreover, with
five latent classes the standard errors for some estimatedPOt parameters
were very large. These results seem to indicate that the model with
T = 5 is not identified. This suspicion was supported by inspecting the
estimated expected information matrix. As was noted in Chapter 2, a
sufficient condition for local identifiability is that this matrix is of full
rank. The DILTRAN program was used to calculate the eigenvalues
of this matrix. Because of numerical rounding errors, some of these
eigenvalues are not exactly equal to 0 when the model is not identified,
but at least one eigenvalue is very small. This was indeed thecase for
the analysis withT = 5.

A more restricted model can be tested by imposing equality restric-
tions on the slope parameters. The resulting model is a Raschmodel
with a discretized latent variable. The hypothesis that allfive discrim-
ination parameters are equal can be tested by taking the difference in
the G2 values for this Rasch model and the Lord-Birnbaum model with
T = 4. This difference was equal to26.19 which, with four degrees
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of freedom'' is significant to the 0.1%-level. Thus, at least one slope
parameterzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwas different from the others. Table 3.5 presents the values
of the estimated parameters for the Lord-Birnbaum model. From these

Table 3.5: Estimated parameters for the Lord-Birnbaum model in the
male subsample;zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT = 4

aj Cj Difficulty=( -Cj Iaj)

Item 1 0.87 (0.18) -0.95 (0.30) +1.10
Item 2 1.35 (0.32) -0.29 (0.45) +0.22
Item 3 2.99 (0.72) -3.71 (0.68) +1.24
Item 4 1.10 (0.30) +1.55 (0.42) -1.41

Item 5 1.50 (0.25) -2.66 (0.51) +1.77

results it is immediately obvious that item 1 is the least discriminatory,
while item 3 has the greatest discriminatory power. The other three
items have estimated slope parameters that do not differ much. This
can also be seen in a graphic display of the item characteristic curves
as shown in Figure 3.7. Besides the estimated values for theaj and the
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Figure 3.7: Lord-Birnbaum model: item characteristic curves for the

male subsample

Cj parameters, Table 3.5 also gives values for the item difficulties. The

6Instead of one common slope parameter, there are four additional discrimination param-

eters in the Lord-Birnbaum model that have to be estimated.
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value of () at which the probability of answering in category1 changes
from less than 0.5 to more than 0.5 is equal tozyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(-cj/aj). The val-
ues for these estimated item difficulties show the same ordering as the
percentages responding in category 1 of the five items in Table 2.1.

The estimated (discretized) latent distribution can be characterized
by looking at the estimated latent proportions. These results are given
in Table 3.6. This estimated latent distribution again shows that the

Table 3.6: Estimated latent proportions for the Lord-Birnbaum model;
male subsample

-2.1 0.08 (0.50)
-0.7 0.01 (0.47)
+0.7 0.50 (0.12)
+2.1 0.41 (0.17)

distribution of the latent variable is negatively skewed. Once more the
question can be raised whether the fit of the model can be improved by
choosing the values of the latent nodes in accordance with this estimated
skewness. With equidistantly spaced latent nodes, the value for G2 was
16.79. By varying the values of the latent classes on the right-hand side
of the continuum, this G2 value could only be diminished by less than
0.1 point. There would seem to be little gain in fit by choosing other
values for the latent nodes. However, when a number of latentnodes
were concentrated on the left side of the latent continuum (which is
discordant with the idea of a negatively skewed distribution), the model
fit deteriorated rapidly. Again, it is clear that a uniformly spaced set
of latent nodes is a good starting point for the analysis, andthat when
the values of the latent nodes are not chosen equidistantly spaced, the
spacing used should be congruent with the estimated skewness for the
latent distribution.

The lack of fit of the Rasch model with the data for the male subsam-
ple can thus be explained by noting that both item 1 and item 3 had
different slope parameters than the other three items. To test this more
specific hypothesis, a model was tested in which the Lord-Birnbaum
model was specified for the items 1 and 3, while for the other three
items, it is assumed that they are characterized by a common slope
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parameter. The results for this model were G2 = 17.83,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdf = 20 andzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

p = 0.599. Again, four equidistant latent nodes were used. Thismixed
model provided an excellent fit. The values for G2 and the number of
degrees of freedom that pertain to the three different models that were
tested against the dichotomous data for the male subsample are given
in Table 3.7 in order to facilitate the comparison between these mod-
els. Because these three models are hierarchically nested,differences

Table 3.7: Values for test statistics for the male subsample; three dif-
ferent models;T = 4

Rasch model
Mixed model
Lord-Birnbaum model

42.98 22
17.83 20
16.79 18

between the three log-likelihood ratios can be used to test specific hy-
potheses. The difference between the Lord-Birnbaum model and the
mixed model shows that the restriction that the items 2, 4 and5 have
a common slope does not lead to a significantly worse fit. Thegain of
two degrees of freedom amply compensates for the increase ofthe log-
likelihood by 1.04 points. However, the assumption that allfive items
were characterized by the same discrimination parameter (which is the
discretized Rasch model) led to a further increase of the log-likelihood
ratio by 25.15 points which is very significant with two degrees of free-
dom. The mixed model is, therefore, the most parsimonious model,
with an acceptable fit for the dichotomous data in the male sample.

3.3.3 Restrictions on the discrimination parameters

Three types of restrictions with regard to the discrimination parame-
ters are surveyed. The first type of restriction is very straightforward.
In the Nominal Response model, each item is characterized byboth
discrimination and difficulty parameters. Both sets of parameters are
category specific and are allowed to vary over items. When the re-
sults in Table 3.1 are inspected closely, it is clear that forsome items
the estimated discrimination parameters are very much alike. Thus, a
more parsimonious model can be obtained by restricting somesets of
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category-specific discrimination parameters to be equal.This leads to
model 2 in Figure 3.3.

Secondly, the Partial Credit model, which was presented somewhat
superficially in previous sections and chapters, is dealt with in greater
detail below. In this model it is assumed that the categoriesof the
manifest items are equally spaced and so the manifest indicators are
assumed to be measured on an interval scale. The parameters for this
model can be estimated by, for example, CML or semi-parametric MML
methods. If the latter procedure is employed and the values of the latent
nodes are fixed, a scaling parameter has to be introduced. The Partial
Credit model parameterized by such a scaling parameter is denoted by
model 4 in Figure 3.3.

In this section a third type of restricted model can be generated by
letting this scaling parameter vary over items (model 3 in Figure 3.3).

3.3.3.1 Discrimination parameters restricted to be equal over
items

In the foregoing, the Lord-Birnbaum model was analyzed using the data
from the male subsample. This model for dichotomous data uses two
parameters, a discrimination parameter and a difficulty parameter, for
each item. When the discrimination parameters are restricted to be
equal over items, the resulting model is the Rasch model.It is also
possible to specify models in which some but not all discrimination
parameters are restricted to be equal.

The same restrictions can be applied to the Nominal Responsemodel.
The parameters in this restricted model can be estimated by semi-
parametric MML with fixed latent nodes. This model is illustrated
using the data from the total sample, the same data that were used
to examine the Nominal Response model. The estimated parameters
from the Nominal Response model were reported in Table 3.1.It is clear
from these results that the estimatedzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAajg parameters for items 2 and 3
were very much the same. The same can be said for the items 1 and5.
As was noted earlier, item 4 had an aberrant pattern of estimated ajg

parameters.
Table 3.8 presents the results for a number of models in whichpartic-

ular sets of discrimination parameters were restricted to be equal. Just
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as with the Nominal Response model, three latent nodes were used. To

Table 3.8: Semi-parametric MML with fixed nodes; Nominal Response
model for the total sample with equality restrictions on thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAajg param-
eters

Items for which
ajl! are set equal (,'2 pzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdf

220.83 0.472 220
2 3 222.00 0.487 222
1 5 223.92 0.451 220

2 3 5 233.32 0.321 224
all items 277.55 0.014 228

facilitate the comparison between the different models presented in Ta-
ble 3.8, the results for the Nominal Response model that wereobtained
earlier in this chapter are also included. The preliminary conclusions
that were drawn from the results reported in Table 3.1 can nowbe
based on statistical grounds. The value of the log-likelihood ratio in-
creased just slightly when theajg parameters for the items 2 and 3 were
restricted to be equal. The same conclusion is reached when the dis-
crimination parameters for items 1 and 5 are set equal. The difference
between the G2 values for these two models with the G2 value for the
Nominal Response model are not significant. All other pairsof items
resulted in higher values for the G2 when the discrimination parameters
were set equal. Not surprisingly, this was in particular thecase for pairs
of items in which item 4 was involved. When the parameters forthree
items were restricted to be equal, the optimal set consistedof items 2,
3 and 5. All other sets of three items yielded G2 values that were much
higher. However, the difference between the value of the log-likelihood
ratio for the specified model (i.e., the model in which theajg parameters
were set equal for items 2, 3 and 5) on the one hand and theG2 for the
Nominal Response model on the other hand, was significant atthe 5%
level. When the discrimination parameters for all five items were set
equal, the model did not fit the data very well. This model is equivalent
to a latent class model that was presented in Section 2.4.4 and which
was denoted there by "model 2". The value for the log-likelihood ratio
in Table 2.17 for model 2 is therefore equal to the value in Table 3.8.



160

Thus far, the data from the total sample were used to illustrate results
for the Nominal Response model with and without equality restrictions
upon the discrimination parameters. The reason for this is that the
parameters in the Nominal response model could not be estimated for
the two subsamples, i.e., the male and the female subsample.It is
possible to solve such problems by fixing certain response probabilities a
priori to zero. The parameters pertaining to these responseprobabilities
were not estimated in that case. However, at present such options
are not implemented in the DILTRAN program. The choice for the
total sample is, however, not optimal because, as was shown in the
previous chapter, male and female respondents differ with respect to
the difficulty of the five items. In the sections to follow, the data from
the male subsample are analyzed.

In order to make a number of comparisons between competing models
possible, the Nominal Response model with equality restrictions on
the discrimination parameters was also analyzed for the male sample.
When all five items were assumed to be characterized by the same
set ofzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAag parameters, the model was acceptable according to the G2

(G2 = 218.02, df = 227,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = 0.654), but the value of the PearsonX2
-

statistic was less satisfying(X2 = 347.62, p = 0.000). The parameters
for the male subsample were estimated assuming four fixed latent nodes
with values of -2.1, -0.7, 0.7and 2.1, respectively. The reason for
taking four rather than three latent nodes was that in the models for
the male subsample that are presented in the following four latent nodes
were used.

Because the two test statistics had such different values, it is not
possible to place much confidence in these statistical tests. However,
the restricted Nominal Response model does seem to fit much better
for the male subsample than for the total sample.

3.3.3.2 The Partial Credit Model

The Partial Credit model was proposed by Masters(1982). The model
was developed for the analysis of ordered polytomous data. The basic
idea behind the model is that when the ordered categories of an item
are numbered from 0 throughmj, there aremj steps that an individ-
ual can take in responding to this item. The number of steps that an
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individual actually takes defines the credit that this individual is given;
hence, the name Partial Credit model. It is obvious that thisidea per-
tains particularly to items that are developed to measure some kind of
performance. Such items can often be responded to at variouslevels.
Hence, the number of steps that are successfully completed indicates
the performance level of an individual. However, the idea ofa succes-
sive number of thresholds that should be passed in order to reach a
particular level can easily be transferred to attitudinal items.

The basic assumption defining the model is that the probability that
an individual will pass the threshold between categoryzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 - 1 and 9

depends on the latent ability of the individual and the location of the
threshold. Both the thresholds and the individuals are located on the
same latent continuum; in other words, the model is unidimensional.
The probability of passing the threshold between category9 - 1 and
categoryzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 is defined as the probability of scoring in category9 rather
than in category9 -1or categoryg. Furthermore, the relation between
this probability on the one hand and the two parameters characterizing
the individual ability and the location of the threshold on the other
is assumed to follow a logistic distribution. When the latent ability
of individual i is denoted again as(h and the value of the threshold
between category9 - 1 and 9 for item j is indicated by8jg, the model
states that

PjgllJ. exp(Oi- 8jg)

Pj,g-lllJ. + PjgllJ. - 1+ exp(Oi- 8jg)·

As the total number of categories is mj+ I, there are mj of these
equations for each itemj. An item with mj + 1 categories is, thus,
broken down into mj hypothetical subitems and for these subitems
the common Rasch model is specified. Because it must be true that
L;~oPjgI9. = I, it can be shown that the expression for the probability
that individual i will respond in category9 is

(3.12)

PjOllJ. = (3.14)

Pjgl9. =

The model can now be reparameterized in order to facilitate the com-
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parison with restricted latent class models. This reparameterization
also shows the restrictions imposed on the Nominal Responsemodel in
order to generate the Partial Credit model. The threshold parameterszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

bjg are reformulated as

bjg = Cj,g-l - Cjg.

This definition of the threshold parameters not only allowsfor a less
complicated formulation of the Partial Credit model, it also focuses
attention on the fact that the threshold parameterbjg not only pertains
to categoryzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg, but also to category9 - 1 (see Molenaar, 1983a). Using
the reparameterization in terms of theCjg parameters, the response
probabilities can now be rewritten as

exp(g . ()i + c· )p. _ Jg

Jg19; - 2:h exp(h . ()i + Cjh) .
(3.15)

As was done before, an identifiability restriction is imposed on theCjg

parameters by stating thatCjO = O. This formulation of the Partial
Credit model makes it clear that the slope parameters in the Nominal
Response model are restricted in the Partial Credit model toequal:

There are two important facets to this restriction. Firstly, the slope
parameters are equal across items. Secondly, the slopes do not have
to be estimated, because they equal the category numberg. This also
implies that the manifest items are measured on an interval scale and
that the categories for these items are equidistantly spaced.

It is easy to derive a number of interesting properties concerning the
category-characteristic trace lines. Firstly, the trace lines for PjOI9. and
Pjmjl9i will intersect at a (}-valuewhich is equal to ()= -Cjmj/mj. This
specific (}-valueis denoted by()*. Defining two points on the latent scale
at equal distances above and below()* respectively leads to:

o: 1+ E = --Cjm + c,
mj J

e: - C = -~Cjm - c.
mj J

..
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Now it can be proven that

PjOlllO =zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPjmjle" ,

PjOIO" = PjmjIO°·

When the trace line forPjOIO, is mirrored aroundzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB", the resulting image
is equivalent to the trace line forPjmjlO" and vice versa. These results
are independent of the number of response categories existing for the
manifest variables. Therefore, the restriction thatajg = 9 implies that
the trace lines forPjOlo. and PjmjlO. are mirrored around the point(j =

-Cjmj/mj.

If the manifest items have 3 different categories, it is easy toderive
from Equation 3.10 that the (j-value at which the trace line for the mid-
dle category reaches its maximum is equal to(-cj2/2). Furthermore,
it can easily be shown that the probability of responding in the middle
category is equal for(j0 and (j.. In other words, the trace line for the
middle category is symmetric around(j*. This symmetric property of
the Partial Credit model if the number of categories is equalto 3 does
not necessarily hold when the number of categories of the manifest

variables is greater than 3.
The Cjg parameters in model 3.17 are often estimated using CML.

Because the slope parameters equal the category numbersg, the per-
son parameters(ji can easily be conditioned out of the likelihood. The
CML procedure for the Partial credit model was described by Wright
and Masters (1982). Thissen and Mooney (1989) showed how CMLesti-
mates for these parameters can be obtained by using log-linear models.
In his original article, Masters proposed a JML approach forestimating
the parameters of the Partial Credit model (Masters, 1982).

Another method of dealing with the estimation problem is to employ
MML methods. Glas and Verhelst (1989) proposed a parametricMML
procedure. The estimation problem may also be solved by using fully
semi-parametric MML. This approach, which was originally proposed
for the Rasch model (for dichotomous data), can readily be generalized
to the case of polytomous data. Using fully semi-parametricMML,
the Cjg parameters are estimated together with the values of a speci-
fied number of latent nodes as well as the latent proportionsfor this
discretized latent distribution. Finally, theCjg parameters can also be
estimated using semi-parametric MML with fixed node-points. It is
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necessary to include a scaling parameter in the latter approach because
both thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 values of the categories and theOt values of the node-points
are fixed in advance. The formulation for this model (denoted by model
4 in Figure 3.3) becomes

exp(a·zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg. Ot + ejg)

Pjgl9t = ~ (h 0 + ).
L.Jh exp a· . t ejh

The scaling parametera is estimated together with theejg param-
eters and the latent proportionsP9t• This scaling parameter absorbs
changes in the choice for the values of the latent nodes. Choices for the
Ot values that are proportionally different will not change the estimated
ejg parameters.

The data on women's liberation for the male subsample were analyzed
using the Partial Credit model. Again, only respondents whosatisfied
the educational requirements were used in the analysis. ThePartial
Credit model was estimated with three and four (fixed) latent nodes
respectively. The values for the log-likelihood ratio and the PearsonX2-

statistic are given in Table 3.9. The results for G2 in Table 3.9 indicate

(3.16)

Table 3.9: Semi-parametric MML with fixed nodes; Partial Credit
model for the male subsample

T=3
T=4

Pearson's x2 p dfNumber of latent nodes
325.82

347.60

0.000 229

0.000 228

220.25 0.649

218.18 0.668

that the hypothesis that the data was sampled from a population for
which the Partial Credit model held should be accepted. However, the
Pearson x2-statistic would seem to suggest a rejection of this hypothesis.
The fact that both test statistics differ so clearly reflects the problem of
sparse data. As was already noted in the previous chapter, inthese cases
the test statistics cannot be used without running into problems as it is
questionable whether the sampling distribution of the teststatistics was
still approximately X2-distributed. The question of whether the Partial
Credit model was an acceptable model for the male populationshould
then be answered by comparing this model with alternative models.
The only alternative model that has been studied so far is theNominal
Response model. The parameters of this model could not, however, be
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estimated for the male sample. Other possible competing models are
presented later in this section.

Despite the fact that it was not clear whether the Partial Credit
model fit the data for the male subsample, the estimates for the parame-
ters were interpreted substantively as this clarified somecharacteristics
of the Partial Credit model.

As was stated before, the threshold is the value of {}where the two
curves for adjacent categories intersect. In other words, it is the location
on the latent scale where the probability for responding in categoryzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg-1

equals the probability of responding in categoryg. To the left of this
{}-value,categoryzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 - 1 is more likely to occur, whereas to the right of
this threshold value, subjects are more prone to come up withcategory
g. This characteristic of the Partial Credit model can also be seen by
examining the expression for the adjacent logits:

I [
pj'9+lIO;] {} ( )n = i + Cj,g+1 - Cjg

PjglO;

= {}i - bj,g+1'

The threshold parameters can be interpreted in a clear-cut fashion in
the graphical display of the category-characteristic curves. It is also
apparent that the threshold parametersbjg are equal to the difference
between the two successive parametersCj,g-1 and Cjg. Therefore, the
interpretation of the item difficulty parametersCjg is greatly facilitated
by calculating the thresholdsbjg from these parameters. Table 3.10
presents the estimated values both for theCjg and thebjg parameters.

It follows from Equations 3.13 and 3.14 that the location ofthelatent
scale is set arbitrarily. Therefore, the comparison of results of different
analyses can be hampered if there are differences between the locations
of the latent scale. For that reason Table 3.10 also presentsthe values
of the thresholdsS;g that are relocated so that the first threshold (i.e.,

S;1) equalsO.
The results in Table 3.10 show thatbj2 < bjl for all ofthe items except

item 1. This means that passing the threshold between categories 1
and 2 is easier than passing the threshold between categories 0 and 1.
Within the perspective of the threshold approach, the ordering of the
categories is somewhat problematic (see, for example, Andrich, 1992).
The fact that bj2 < bjl for four out of five items demonstrates that the
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Table 3.10: Estimated category parameters and thresholds for the Par-
tial Credit model; male subsample

Semi-parametric MML
withzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT = 4 fixed nodes

Cjg s; S"
Item 1 Cat. 1 0.07 -0.07 0.00

Cat.. 2 -0.75 0.82 0.89
Item 2 Cat. 1 0.04 -0.04 0.00

Cat. 2 0.47 -0.43 -0.39
Item 3 Cat. 1 -1.24 1.24 0.00

Cat. 2 -1.79 0.55 -0.69
Item 4 Cat. 1 0.83 -0.83 0.00

Cat. 2 2.61 -1.78 -0.95
Item 5 Cat. 1 -1.98 1.98 0.00

Cat. 2 -2.91 0.93 -1.05

middle category is not very popular.
When the parameters in the Partial credit model are estimated us-

ing semi-parametric MML and fixed latent nodes, the model isclosely
related to a restricted version of theUniform Association modeldis-
cussed by Haberman (1978) and Goodman (1981, 1983, 1984). The
restriction imposed in the Partial Credit model is that the association
must not only be uniform within the cross-classifications for the latent
variable and a specific indicator, but also uniform across these cross-
classifications.

Despite this similarity, the two models (i.e., the Partial Credit model
and the Uniform Association model) stress different aspects. Within the
framework of the Partial Credit model, a crucial role is played by the
threshold parameters. These thresholds, defined as the difference be-
tween successive log-linear one-variable parameters, have never received
much attention from researchers involved with the Uniform Association
model.

Within the context of this latter model, interest has been focused
011 the a parameter. From the measurement theoretical perspective
that dominates the Partial Credit model, this a parameter ismerely a
scaling parameter that compensates for different choices for the values
of the latent nodes. In the Uniform Association model, it is the only
parameter that describes the association between itemj and the latent
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variable (). This can easily be illustrated as follows. Assuming as before
that the categories for the manifest item are scored from 0 tozyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmj, the
number of categories of itemj is equal to (mj + 1). Furthermore,
for convenience and without loss of generality, it can be assumed that
the latent nodes are scored with successive integers: 1, ...,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt, ... ,T.
As before, the number of latent classes is equal toT. Because of the
assumption of local independence, all manifest items are related only to
the latent variable (). Following the well known collapsibility theorem,
the relationship between itemj and the latent variable () can then be
studied in the two-way [(mj+1)xT]-table. Consider a 2x2 subtable for
adjacent categories9 and (g + 1) of the manifest itemj and categories
t and (t + 1) for the latent variable (). Under the assumptions made, it
can easily be demonstrated that the log-odds for this subtable is equal

to
In Pgt . p(g+l)(t+1) = a.

P(g+1)t . Pg(H1)

Because this is true for each 2 x 2 subtable made up of adjacent
categories, the a parameter has been termed the parameter ofuniform

association (Goodman, 1981). Within the context of linear by linear
association models, the a parameter is not merely a scaling parameter,
but rather a parameter which summarizes the degree of association
for the complete [(mj + 1) x T]-table. As this a parameter in the
Partial Credit model does not depend upon the specific item involved,
this single parameter describes the association in all complete two-way
tables made up of the manifest items on the one hand and the latent
variable on the other.

Models with less restrictions can now be formulated by allowing the a
parameter to vary over the manifest items. Such models, while preserv-
ing the threshold approach that characterizes the Partial Credit model,
are more flexible because not all manifest items have to be equally
"good indicators" of the latent trait, if the quality of an indicator is
measured from the degree of association between the manifest and the
latent variables. An example of such a model is discussed later on.

The intrinsic relevance of the a parameter becomes obvious when dif-
ferent groups measured on the same indicators are compared.The five
items concerning women's liberation, for instance, were also measured
in the female subsample. When the same scaling for the four latent
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nodes was used (i.e., -2.1, -0.7, 0.7 and 2.1), the estimatedzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa param-
eter for the male sample was equal to 1.07, while the estimated value
of this parameter in the female sample was1.21. Therefore, it could be
concluded that the indicators were better for the female sample than for
the male sample. The greater the value ofa, the steeper the category
characteristic curves were, and the clearer the distinction was between
the categories of the manifest item. The interpretation ofa as merely
a scaling factor ignores the intrinsic relevance of this parameter.

Both the Partial Credit model and the Uniform Association model
stress different, but equally important, aspects of the same model. Es-
tablishing a link between latent trait models and restricted latent class
models is fruitful, both because of the more profound interpretation of
the parameters that is made possible and because the formulation of
relevant competing models is made easier.

One such competing model was introduced briefly in Chapter2. This
model will now be considered again by placing it in a latent trait per-
spective.

3.3.3.3 Item-specific scaling parameters

Previously, the data for the male subsample were analyzed using the
Partial Credit model. Although the value of the log-likelihood ratio
indicated an acceptable fit, the value of the Pearson x2-statistic cast
some doubt on the adequacy of this model for describing this data. It

is possible that the fit can be improved by relaxing the assumptions
concerning the discrimination parameters.

As with all latent trait models discussed in this chapter, there is a
linear relationship between the latent variable and the adjacent logits.
For the Partial Credit model, the slopes of these linear functions do not
depend on the specific item involved. When the categories ofthe mani-
fest items are scored with successive integers, these slopes are all equal
to a with semi-parametric MML with fixed latent nodes. The Par-
tial Credit model does not account for differences in the discriminatory
power of different items.

There are several ways of allowing for variation in the discrimination
parameters. One method is, of course, to apply the Nominal Response
model. This would, however, completely negate the philosophy under-
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lying the Partial Credit model. The manifest items could no longer be
seen as equally spaced variables, measured on an interval scale. More-
over, the idea of breaking up an item intozyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmj hypothetical subitems
and specifying simple logistic models for these subitems would be aban-
doned by returning to the Nominal Response model. In other words,
the elegance of the threshold approach, so characteristic of the Partial
Credit model, would be marred.

However, it is possible to specify a model which retains thisthreshold
approach and at the same time is less restrictive with regardto the
discrimination parameters by allowing this scaling parameter to vary
over items. One such latent trait model was proposed by Heinen and
Croon (1992). By introducing item-specific scaling parameters, the
variation of discrimination parametersamong items is accounted for.
Within each item, however, there is just one slope parametergoverning
the adjacent logits for successive categories. The expression for the
response probabilities for this Partial Credit model with item-specific
scaling parameters (model 3 in Figure 3.3) is

_ exp(oj' g .zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOt + Cjg)

Pjglet
- Lh exp(OJ . h . Ot + Cjh) .

(3.17)

The item-specific scaling parametersOJ can be interpreted in several
ways. One interpretation is that theseOJ parameters allow for vari-
ation in the latent scale for different items. When an item has more
discriminatory power than the other items, it is necessary to stretch
the latent scale in order to make this item comparable to the other less
discriminatory items. The value ofOJ then gives a clear indication of
the discriminatory power of an item. The higher the value of this scal-
ing parameter, the better the item discriminates. Before returning to
two other possible ways of interpreting theOJ parameters, some results
will be presented for the application of this model to the data from the
male subsample. The item-specific scaling parameters estimated with
semi-parametric MML and 4 fixed latent nodes are given in Table 3.11.

These results illustrate the strong discriminatory power of item 3, a
fact that was observed before when the data for the total sample were
analyzed using the Lord-Birnbaum model. The values of the latent
nodes were equally spaced. ForT = 4, these values were equal to those
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Table 3.11: Estimated item-specific scaling parameters for the male
subsample

Item 1 0.66 (0.10)
Item 2 0.96 (0.15)
Item 3 2.78 (1.18)
Item 4 0.78 (0.14)
Item 5 0.81 (0.13)

mentioned in Table 3.6. The variation in the scaling parameters that
is allowed for in this model only implies that the distances between
successive categories can vary among the five items. The latent nodes
are still equally spaced within each item.

The model with item-specific scaling parameters also provided a bet-
ter fit than the original Partial Credit model. An interesting question
is whether this improvement is largely due to the fact that item 3 was
more discriminatory than the other four items, or the fact that these
other four items also differed significantly in their slopes.ZYXWVUTSRQPONMLKJIHGFEDCBAIn order to
test this assumption, a model was fitted in which only item 3 was al-
lowed to have a different slope parameter. The other four items were
assumed to have equal slopes. The values of the two test statistics as
well as the number of degrees of freedom are given in Table 3.12. The
results are presented for models withzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT = 3 and T = 4 fixed latent
nodes. ForzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT = 3 the values of the latent nodes were chosen as re-
ported in Table 3.2. To facilitate the comparisons between the models,
the results for the original Partial Credit model already given in Table
3.9 are also included.

It can be seen from these results that item 3 had a different slope
parameter than the other four items. WhenCt3 was set free, the value of
both the G2 and the PearsonX2 statistic decreased significantly. When
the slopes for the other four items were also set free, the G2 values
decreased further, but not significantly so. WithT = 3 latent nodes,
the value of the Pearson statistic actually increased in this situation.
This rather strange effect can probably be explained by the fact that the
amount of data dealt with was relatively small. The overall conclusion
is that item 3 had a different slope parameter than the other four items.
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Table 3.12: Semi-parametric MML with fixed nodes; Partial Credit
model for the male subsample with and without item-specificscaling
parameters

Number of nodes G2zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp Pearson 'szyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX2 P dJ
Partial Credit model 220.25 0.649 325.82 0.000 229

T=3 03 set free 201.49 0.896 250.46 0.147 228
All OJ set free 194.75 0.928 255.71 0.078 225
Partial Credit model 218.18 0.668 347.60 0.000 228

T=4 n;! set free 193.53 0.948 265.87 0.039 227
All OJ set free 189.76 0.953 254.43 0.079 224

These latter items conformed rather neatly to the original Partial Credit

model.
For T = 3, the results for the Partial Credit model and the model

with item-specific scaling parameters for all items were equivalent to
those presented in Table 2.17. This is quite logical considering the Par-
tial Credit model with item-specific scaling parameters isequivalent
to the restricted latent class model ("Model 3") presented in section
2.4.4. As was mentioned before, the Partial Credit model is equiva-
lent to "Model 4" in section 2.4.4. For "Model 3", the two-variable
parameters are restricted by

The equivalence between this restricted latent class modeland the
Partial Credit model with item-specific scaling parameters, provides a
new perspective on theexj parameters. Within the latent class frame-
work, the ex parameters are regarded as association coefficients. In the
original Partial Credit model, there was just oneex parameter and this
parameter described the degree of association within alln [(mj + 1) x T]-

tables formed by the manifest items on the one hand and the latent
variable on the other. With item-specific scaling parameters, each
[(mj + 1) x T]-table is characterized by its own coefficient of uniform
association. There is, therefore, just one relevant parameter describ-
ing the degree of association for each table. This parameter, however,
is allowed to obtain different values for the various tables. Thus, the
estimated exj parameters for the male subsample indicated that the as-
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sociation between the latent variable and item 3 was much stronger
than the association between () and the other indicators. Hence, the
model with item-specific scaling parameters was equivalent to the orig-
inal Uniform Association model.

Finally, a third way of interpreting theOJ parameters becomes ob-
vious by noting that the model with item-specific scaling parameters
preserves the threshold approach in the Partial Credit model. It must
be kept in mind that the Partial Credit model was developed byfo-
cussing on the probability that an individual will respond in categoryzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

9 rather than in category9 - 1. The probability that this threshold
between categories9 and 9 - 1 will be passed was expressed earlier as
a Rasch model (see Equation 3.12).It can now be easily derived from
Equation 3.17 that

exp(OJ . (}t -zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbjg)

1+ exp(oj .(}t - bjg)'
(3.18)

Thus the threshold approach is still adequate for the Partial Credit
model with item-specific scaling parameters, although theprobability
of passing a given threshold is now modeled by the Lord-Birnbaum
model instead of the Rasch model. This also illustrates clearly why
this model accounts for variation in the discriminatory power of the
various indicators. TheOJ parameters function as the slopes of the
curves describing the probability of passing a threshold within item
j. For each itemi, all of these "threshold characteristic" curves run
parallel as there is just oneOJ parameter for each item. For different
items, however, these curves may vary in the slopes.

The idea of generalizing the Partial Credit model by using the Lord-
Birnbaum instead of the Rasch model for modeling the probability of
passing a threshold was suggested by Heinen and Croon (1992). Inde-
pendently of these authors, Muraki (1992) proposed the samemodel
calling it the generalized Partial Credit model.However, Muraki esti-
mated the parameters in this model using parametric MML. Because he
did not discretizc the latent trait, the relation between this generalized
Partial Credit model and the Uniform Association model was lost.
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3.3.4 Restrictions on the difficulty parameters

A number of models with restrictions placed upon the difficulty param-
eters have been proposed within the context of latent trait analysis.
Until recently, this type of restriction rarely attracted the attention
of researchers using latent class analysis (see, for example, Formann,
1985), because within the latent class framework, thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACjg parameters
(i.e., the log-linear one-variable parameters) are not considered to be
inherently interesting. As was pointed out in the previous section, this
is not entirely true. After all, theCjg parameters are the building blocks
for the threshold parameters of the models that use linear restrictions
on the relation between latent and manifest variables, and these latter
parameters are quite interesting from a measurement-theoretical point
of view. If difficulty parameters are studied from this threshold per-
spective, a number of interesting models come into play.

Firstly, the possibility of applying the type of restriction used in the
previous section to the difficulty parameters can be examined. One of
the restrictions reviewed in Section 3.3.3 involved the equality of the set
of ajg parameters over a number of items. Analogously, it is possible to
set the restriction that theCjg parameters for some (or all) items must
be equal to each other(Cjg = cg). In the Nominal Response model,
the adjacent logits are a linear function of the latent variable. Because
the intercept of this linear function depends on theCjg parameters, this
restriction, when used in the context of the Nominal response model,
will restrict the intercepts for corresponding linear functions to be equal
over items. It is not clear what the substantive significance of such a
restriction is.

Another possibility is to restrict both theajg parameters and theCjg

parameters to be equal over a number of items. The response proba-
bilities are then expressed aszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

exp(ag • Oi + cg) ( )
Pjglfh = LID ( 0 ) for 9 = 0, ... ,m. 3.19

h=Oexpah' i + Ch

When semi-parametricMML with fixed latent nodes is used,0 is in-
dexed byt rather than byi. When both theajg and theCjg parameters
are restricted to be equal over a set of items, all item-specific informa-
tion is lost and the category-characteristic curves for these restricted
items are identical. It is clear that these restrictions are strict and
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may appear to only be of practical value for investigating whether the
trace lines for two (or more) items differ significantly. Inthis manner,
hypotheses about parallel items ("parallel" in the psychometric sense)
can be tested by comparing the log-likelihood ratio values for the two
relevant models. In Figure 3.3 this model is numbered model 8.

As an example, the data for the total sample were again used. From
the results in Table 3.8 it was concluded that the discrimination pa-
rameters for items 2 and 3 could be restricted to be equal without a
detrimental loss in the goodness of fit. The same conclusioncould be
drawn with regard to items 1 and 5. The question arose whetherthese
two sets of items could be restricted any further by assumingthat all
parameters (bothzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAajg and Cjg) were equated. When this assumption
was made with respect to items 2 and 3, the G2 value became 547.49
which, with 224 degrees of freedom, was highly significant.This result
was not surprising as item 2 was one of the easier items, whileitem 3
was a rather difficult item. When all of the parameters for items 1 and
5 were equated, the results were likewise unsatisfactory, though they
were less dramatic. The G2 value was 368.51zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(dJ = 224).

Of course, the same types of assumptions can also be tested within
the framework of the Partial Credit model, with or without item-specific
scaling parameters. The expressions for the response probabilities are

exp(aj .9 . (}t + cg)

I:hexp(aj .h· (}t + Ch)'
exp(a .9 . (}t + cg)

I:hexp(a .h . (}t + Ch)·

(3.20)

(3.21)

The first of these two expressions preserves some item-specific infor-
mation; the other does not. In Figure 3.3, these models are shown as
models 10 and 9, respectively.

The manner in which these restricted models can be used is illus-
trated by the data of the male subsample. In the previous section these
data were analyzed using, among others, the Partial Credit model with
item-specific scaling parameters. The results in Table 3.12 showed that
this model fitted the data quite satisfactory. In order to convert it
into a more parsimonious model, the model with item-specific scaling
parameters was restricted in two ways.
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First, as was also reported in Table 3.12, it is possible to assume
that a number of scaling parameters are equal over items. In that case,
equality restrictions are imposed on some of thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{Y-j parameters butnot

on the Cjg parameters. When all scaling parameters are assumed to
be equal, the resulting model is the original Partial Creditmodel. It

was found that item 3 was more discriminating than the other four
items so a model in which the scaling parameters for these other four
items were restricted to be equal, gave acceptable results (see Table
3.12). When scaling parameters are assumed to be equal for a number
of items, the units of measurement of the latent scale underlying these
items are made equal. Items are, however, still allowed to differ from
each other by the ()values at which the thresholds are located because
the Cjg parameters are not restricted.

A second means of creating a model which is more parsimoniousthan
the Partial Credit model with item-specific scaling parameters is to re-
strict the threshold values rather than the scaling parameters. When
the Cjg parameters are restricted to be equal over a number of items
but the exj parameters are set free, it is assumed that the threshold val-
ues for this subset of variables areproportionally equal. The distances
between the thresholds are thus proportionally equal, with"propor-
tionally" signifying a proportionality relative to{Y-j. Differences in the
spacing of the thresholds are due solely to the shrinking or stretching
of the latent scale.

From a measurement-theoretical point of view, the difference between
the two types of restriction is straightforward. In the first case, in which
some of theexj parameters are restricted, the latent scale is "measured"
in the same units for all items involved in the restricting assumptions.
But the thresholds for these items can be located anywhere onthe latent
scale. In the second case, only someCjg parameters are restricted. The
distances between the threshold values are now proportionally equal;
proportionally, because theexj values are free to vary and these pa-
rameters are determined by the degree the latent scale is shrunk or
stretched for the particular items.

When these assumptions are looked at from the "association"per-
spective, the substantive relevance of the restrictions isnot always ob-
vious. This association perspective focuses on the linear relationship
between the latent variable and the adjacent logits.If the exj parame-
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ters are restricted, the slopes of these linear relationships will be equal
across items. In other words, the degree of association between the
latent variable on the one hand and the manifest items on the other
is constant. This assumption clearly has substantive significance. If,
however, thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAejy parameters are restricted to be equal, as opposed to
the exj parameters, this means that the intercepts are restricted to be
equal, which in turn, has no clear theoretical meaning. Assumptions
concerning theejy parameters appear, therefore, to bear more substan-
tive relevance when these assumptions are interpreted in the context of
the threshold approach.

Table 3.13 contains some of the results pertaining to the Partial
Credit models with item-specific scaling parameters in which the ejy

parameters were restricted for some items.In Table 3.13 only certain

Table 3.13: Semi-parametric MML withzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT = 4 fixed nodes; Partial
Credit model for the male subsample with item-specific scaling param-
eters and equality restrictions on theejy parameters

Items for which G2 p Pearson's X2 p df

Cjg are restricted
- 189.76 0.953 254.43 0.079 224

1 2 198.95 0.902 248.15 0.149 226

1 3 1!J7.80 0.912 258.02 0.071 226

3 4 202.38 0.869 357.11 0.000 226

3 5 201.72 0.876 396.14 0.001 226

2 3 5 240.83 0.267 321.80 0.000 228

subsets of those items with restrictedejy parameters which gave an ac-
ceptable fit are reported. These results illustrate that itis possible to
assume that two items have proportionally the same threshold values.
If, however, theejy parameters are equated for 3 or more items, the fit
deteriorates rapidly. Remarkably enough, relatively difficult items (for
example, item 3) and relatively easy items (i.e., item 4) canboth be
present in subsets of restricted items.

The model can be further restricted by assuming that, for a subset
of items, both theexj and theejy parameters are submitted to equality
constraints. This leads to the model in Equation 3.21.If items are
restricted according to this model, all item-specific information is lost.
Items which belong to such a restricted subset are characterized by the
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same set of trace lines. Clearly, when these assumptions areapplied
to pairs of variables in which one variable is relatively difficult and the
other item relatively easy, the model will provide a bad fit.Table 3.14
provides the results for the pairs of variables that were also reported in
Table 3.13.

Table 3.14: Semi-parametric MML withzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT = 4 fixed nodes; Partial
Credit model for the male subsample with equality restrictions on both
the scaling parameters and theejg parameters

rt.mlls for which r,2 7) Pearson'szyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx2
11 df

IV) .uul "i» are n'sl.rid,('d

1 2 259.20 0.070 299.54 0.001 227
1 3 268.40 0.031 365.28 0.000 227
3 4 562.04 0.000 650.50 0.000 227

3 5 252.20 0.120 314.40 0.000 227

As these results show, there is some evidence that items 3 and5 have
identical relationships to the latent variablefl. Note that this model
provides a reasonable fit, although it has only 5 degrees of freedom less
than the model of total independence.

Obviously, it does not make much sense to apply these restric-
tions to all manifest items because the resulting model would be even
more parsimonious than the model for total independence between the
indicators," i.e., a log-linear model in which only one-variable parame-
ters for the manifest indicators appear. As this latter model is generally
seen as a base-line model, it would not be profitable to investigate mod-
els that are even more parsimonious.

Besides imposing equality restrictions on theejg parameters, it is
also possible to make the difficulty parameters a linear function of the
category numberg, i.e., ejg = ej . g. It would seem natural to make
this assumption only if the same kind of restrictions are also imposed
on the discrimination parameters.ZYXWVUTSRQPONMLKJIHGFEDCBAIn other words, the restriction that
ejg = ej . 9 would only be made for the Partial Credit model with
or without item-specific scaling parameters. The expressions for the

7The resulting model would be more parsimonious than the model for total independence,

unless the number of latent nodes is quite large. In that case, the model would probably not

be identifiable.
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response probabilities would become

exp(zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaj . 9 . (}t + Cj .zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg)

L:h exp(aj . h . (}t + Cj . h) ,

exp(a .9 . (}t + Cj . g)
PjglOt = L:h exp(a .h . (}t + Cj . h)'

In Figure 3.3 these models are denoted as model12 and model 11,
respectively. It should be noted that theCj parameters in Equations
3.22 and 3.23 are replaced by-8j in Figure 3.3. The reason for this
shift in notation is that the models in Equations3.22 and 3.23 can also
be regarded as restricted Rating Scale models; in these models the item
difficulty is denoted by8j•

The model in Equation3.22 allows for item-specific information.It
can easily be verified that with this assumption imposed on the Cjg

parameters, all threshold values are equal to-Cj. The model implies
that all category-characteristic curves intersect at one point. The ()-
value at which this occurs is equal to-Cj and this is also the (}-value
at which the category-characteristic curve for the middle category of
item j reaches its maximum, provided that the manifest items have
3 categories. A distinguishing characteristic of this model is that for
all (}-values but one, one of the two most extreme categorieshas the
highest probability of occurring. The probability of responding in one
of the other categories is always lower. Only for ()= Cj are the response
probabilities equal for all categories.

The model in3.22 was estimated for the male subsample. The ob-
tained values for the test statistics as well as the number ofdegrees of
freedom and the probability levels are reported in Table3.15.

(3.22)

(3.23)

Table 3.15: Semi-parametric MML withT = 4 fixed nodes; model3.22
and 3.23 for the male subsample

c2 p Pearson's x2 p df

Model 3.22 224.80 0.566 519.80 0.000 229
Model 3.23 276.31 0.027 506.19 0.000 233
Model 3.23 with 249.74 0.202 410.96 0.000 232
itern 3 set free

According to C2, this model fits very well. The value of the Pear-
son x2-statistic is, however, highly significant. When therestriction
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Cjg = Cj·zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg was applied to the Partial Credit model without item-specific
scaling parameters and the parameters for model 3.23 were thus esti-
mated, the resulting model yielded values for the test statistics which
were much higher. As it is known that this phenomenon can be ex-
plained by the fact that item 3 was more discriminatory than the other
four items, a mixed model in which item 3 was allowed to have its own
scaling parameter was also estimated. Although this mixed model fit
better than model 3.23, it still provided a worse fit than model 3.22.

3.3.4.1 The Rating Scale model

The restrictions on the difficulty parameters discussed sofar either
equated someCjg parameters over a set of items or linearized these
parameters in terms of the categories of the manifest variables, i.e.,
Cjg = Cj . g. Another method of restricting these parameters is to sep-
arate Cjg into one component that pertains to theitem difficulty and
another component that deals with the specificcategory.

This idea of separating the difficulty parameters into two components
was first suggested by Andrich (1978a). Actually, Andrich suggested
such a separation with regard to the threshold parameters and not to
the Cjg parameters themselves. The Rating Scale model proposed by
Andrich (1978a) can be derived in the same fashion as the Partial Credit
model, although Andrich used another method that is less compelling
and straightforward, as is shown later on. In fact, the Rating Scale
model can be seen as a restricted Partial Credit model.It should be
remembered that in the Partial Credit model the thresholds only de-
pend on theCjg parameters. Therefore, restricting these thresholds by
separating an item component from a category-specific component can
be translated directly into comparable restrictions with respect to the
Cjg parameters. The restriction that leads to the Rating Scale model is

(3.24)

In the Rating Scale model, items differ only by the value ofbj. This
parameter can be regarded as a kind of mean location for the category-
specific trace lines that belong to a certain item. The thresholds them-
selves are located at distanceTy from this mean location. These latter
distances are, of course, category-specific, but they do not vary over
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items. The spacing of the thresholds is the same for all items. Items
only differ in the location of these thresholds. It is obvious that these re-
strictions only make sense if the number of response categories is equal
for all items.

The restriction in terms of the thresholdzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbjg can easily be translated
into one that pertains to theCjg parameters. Within the context of the
Partial Credit model, thresholds can be expressed as

from which it can easily be inferred that

9

Cjg = - L bjh for 9 = 1, ... ,m.
h=1

For the Rating Scale model, the following results are obtained:

9

Cjg = - L (bj + rh)

h=l
9

-g·bzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj - Lrh

h=l

9

-g .bj + cg where cg = - L rho

h=l

So, for the response probabilities, the expression now becomes

(3.25)

exp(g ·Oi - 9 . bj + Cg)

Lh exp(h . Oi - h . bj + Ch)
exp [g(Oi - bj) + Cg]

Lh exp [h(Oj - bj) + Ch]·

Andrich (1978a) derived this model in the following fashion. If it is
supposed that an item has three categories and therefore twothresh-
olds, each threshold will have an associated variable whichcan take
on just two values: the value 0 if the threshold is not passed and the
value 1 if the threshold is passed, denoted as variablesYl and Y2. An-
drich also assumed that the two thresholds were ordered along with
the category numbers, thus71 was located to the left of72. Next, it

PjglB; =

(3.26)
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is assumed that the probabilities of passing these two thresholds can
be expressed as simple Rasch models, taking into account theabove
mentioned restriction onzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8jg:

exp(Bi -zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(8j + 7d)
1+ exp(Bi - (8j + 71))'

exp(Bi - (8]+ 72))
1+ exp(Bi- (8j + 72))"ZYXWVUTSRQPONMLKJIHGFEDCBA

In order to obtain expressions for the response probabilitiespertaining
to the original variable, it is necessary to combine the probabilities
for passing the thresholds. Andrich made the assumption that the
variablesY1 and Y2 were independent. Theoretically, four outcomes can
be observed for the joint variable obtained by combiningY1 and Y2. The
probabilities for observing these four outcomes can be expressed easily
from the probabilities for passing the thresholds given above, owing to
the assumption of independence. However, given the assumption that
71 is located to the left of72, it is not possible thatY1 = 0 while Y2 = 1.

The probability that corresponds to this outcome for the joint variable
must be zero, and the other three probabilities must be normalized
again to insure that their sum equals1. All this requires is some simple
algebra. The resulting equation is Equation 3.26.

The derivation of the Rating Scale model as given by Andrich leads
to the following observations. Firstly, the threshold approach on which
the Rating Scale is built incorporates the assumption that the thresh-
olds are ordered along the latent continuum in the same way asthe
ordered categories of the manifest variable. Andrich (1992) defended
this assumption on measurement-theoretical grounds. However, the
assumption that the thresholds are ordered along with the category
numbers is not translated into the model. This means that it is possi-
ble to get an estimated value for72 that is smaller than the estimated
value for 71. Within the threshold perspective, such results are not
allowed. An inappropriate ordering of the thresholds can indicate mul-
tidimensionality of the latent variable or an inappropriate ordering of
the categories of the manifest variable. However, if the marginal fre-
quencies for the middle categories of the indicators are relatively small
(as is often the case for attitudinal data), the estimated7 parameters
are often not ordered along with the categories of the indicator.
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Secondly, the assumption that the variables pertaining to the thresh-
olds (Yl andzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY2) are mutually independent seems hard to defend.It

seems reasonable to assume that it is only possible to pass the thresh-
old with the highest value after the easier threshold has been passed.
The manner in which the Rating Scale model was derived by Andrich is
not logical in this sense. Therefore, it is preferable to derive the Rating
Scale model in the same way the Partial Credit model was developed.
This means that the probability of responding in categoryzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 rather than
in category (g - 1) of item j can be expressed as a simple Rasch model,
in which the Rating Scale restriction with respect to the parameter Ojg

is included:

exp [Bi - (OJ + 1'g)]
1+ exp [Bi - (OJ + 1'g)]'

(3.27)
Pj,g-lIOi + PjglOi

In the same manner the Partial Credit model was developed, this
expression can be used to derive Equation 3.26. The parameters in the
Rating Scale model, as presented in Equation 3.26, can be estimated in a
number of ways. In one of his earlier articles, Andrich (1978b) proposed
JML. However, the parameters in this Rating Scale model can also be
estimated using CML because the sufficient statistic forBi is equal to
the total-score for individuali (and therefore known), provided that the
manifest variables are scored with successive integers. Inother articles,
in which certain variants of the Rating Scale model were developed,
Andrich (1979, 1982) used sufficient statistics to estimate threshold-
related parameters. Finally, MML can also be employed to estimate
the parameters in this model.

The use of semi-parametric MML with fixed latent nodes is illustrated
at a later point in this section. For this procedure, the expression for the
response probabilities includes a scaling parameter, because the values
for the latent nodes are fixed in advance:

exp [g(a· Bt - OJ) + cg]

PjglOt = 2::h exp [h( a .Bt - OJ) + Cit] .
(3.28)

In Figure 3.3, this model has been numbered model 6.
Like the Partial Credit model, the Rating Scale model can also be

generalized by including item-specific scaling parameters. This leads to
model 7 in Figure 3.3. The expression for the response probabilities in
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this model is
_ expzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[g( Ctj .zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA()t - bj) + cgJ (3.29)

Pjgl8t - '"""' [h( () c ) J'6h exp Ctj' t - "i + Ch

This model can also be generated from the concept that the probability
of responding in categoryg, rather than in category(g - 1) is a logistic
function as expressed in Equation 3.27. However, the building blocks
are no longer simple Rasch models but Lord-Birnbaum models with an
item-specific discrimination parameter. The model with item-specific
scaling parameters is, of course, much more flexible than the original
Rating Scale model. The parameters in this extended model can be
easily estimated using semi-parametricMML with fixed latent nodes.

Instead of introducing item-specific scaling parameters,one could
also generalize the Rating Scale model by including category-specific
discrimination parameters in expression 3.27. In that case, the Unidi-

mensional Polychotomous Rasch modelis obtained (Rasch, 1961; model
5 in Figure 3.3):

(3.30)

This model was studied by Andersen (1977), who proved that the suffi-
cient statistic for()i is only known and equal to the total-score if theag

parameters have equidistant values. The model in 3.26 is, therefore, the
only variant of the Rating Scale model for which it is true that there
is a known sufficient statistic for()i. As stated earlier, this variant has
the advantage that the item and category parameters can be estimated
using CML. This is not, however, the decisive advantage in the view of
Andrich, as he proposed the use ofJML for estimation purposes. The
main reason Andrich prefers the Rating Scale model to the more gen-
eral Unidimensional Polychotomous Rasch model is a substantive one.
When the discrimination parametersag are replaced by the category
numbers g, as is done in Equation 3.26, the model is said to use an in-
tegral scoring function, i.e., the categories of the manifest variables are
scored with successive integers. In Andrich's view, this integral scor-
ing function is attractive because the sufficient statistic for the ability
parameter is equal to the number of thresholds passed. Of course, this
statement is only true if the thresholds are ordered in correspondence
with the category numbers. However, the estimatedf values may be
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ordered improperly. Whether the raw total-score equals thenumber of
thresholds that an individual has passed depends on the estimates.

Andrich (1978a) mentions still another advantage of the integral scor-
ing function:zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

. .. The second and related point is that the integral scoring

function does not arise from any references to distances.

Instead, it arises from the number of equally discriminat-

ing thresholds passed. This is in contrast to certain tradi-

tional formulations where the so called "equidistant" scoring

is considered justified only if the distances between succes-
sive categories are equal. ...

Andrich was correct when he claimed that there are no assumptions
made with respect to the distances between successive thresholds and
that the use of an integral scoring function implies nothingconcerning
these distances. But that is not the point. Equidistant scoring means
that the categories of the manifest variables are considered to be equally
spaced. The fact that these fixed distances between categories do not
necessarily lead to equal distances between thresholds does not mitigate
the assumption concerning the equidistant weights that aregiven to the
successive categories of the manifest indicators in the calculation of the
response probabilities in Equation 3.26.ZYXWVUTSRQPONMLKJIHGFEDCBAIn this sense, the Rating Scale
model is no less "traditional" than other formulations.

Of course, the Rating Scale model with an integral scoring function
is a very simple model and therefore valuable in its own right. But
the advantages that Andrich imputed to the integral scoringfunction
are somewhat questionable. The more general Rating Scale models, like
the model with item-specific scaling parameters and the Unidimensional
Polychotomous Rasch model are applicable in a larger numberof practi-
cal situations because Andrich' Rating Scale model is highly restrictive.
As was noted earlier, the parameters in the model with item-specific
scaling parameters can easily be estimated using semi-parametric MML
with fixed latent nodes. Within the context of this estimation proce-
dure, this model assumes a natural position. This same procedure can
also be used for the estimation of the parameters in the Unidimensional
Polychotomous Rasch model. This was already implied by the notation
used in Equation 3.30 in which the latent variable () was indexed by t
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and not byi.
The data on women's liberation for the male subsample were analyzed

with the three models presented in this section. The parameters were
estimated using semi-parametric MML with fixed latent nodes.ZYXWVUTSRQPONMLKJIHGFEDCBAIn order
to establish comparability with the other discretized latent trait models
presented in this chapter, the number of latent nodes was equal to 4.
Furthermore, the values for these latent nodes were chosen in the same
fashion as in the models introduced earlier.

It should be noted that the estimation of parameters in the Unidi-
mensional Polychotomous Rasch model is numerically more problem-
atic than in any of the other discretized latent trait modelsdiscussed
so far. The reason for these problems is the fact that the expression
for the response probabilities contains the product of the parameterszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

azyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
g

and 8j• Therefore, this product also appears in the log-likelihood
that must be minimized. For all other discretized latent trait models,
the log-likelihood function only comprises (functions of)estimable pa-
rameters in' an additive expression. The estimation of the parameters
in the Unidimensional Polytomous Rasch models appeared to be quite
sensitive to choices of the initial estimates.

Table 3.16 shows some of the results pertaining to the goodness of
fit statistics for the three models applied to the data for the male sub-
sample. It is clear from these results that the Rating Scale model does

Table 3.16: Semi-parametric MML withT = 4 fixed nodes; Rating
Scale model (RS) with and without item-specific scaling parameters;
the Unidimensional Polychotomous Rasch model (UPRM) for the male

subsample

G2 p Pearson's x2 p df

RS Model 269.46 0.046 421.48 0.000 232

RS Model with 222.39 0.592 453.07 0.000 228

item-specific scaling
UPRM 268.02 0.048 437.23 0.000 231

not provide an acceptable fit. This is not surprising as the Rating Scale
model is a restricted Partial Credit model and this latter model likewise
did not fit the data from the male subsample very well. The other two
models (UPRM and RS with item-specific scaling parameters)provide
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their own generalization for the Rating Scale model and should there-
fore yield G2 values which are smaller than the G2 for the Rating Scale
model.ZYXWVUTSRQPONMLKJIHGFEDCBA

In the case of the UPRM, this generalization was obtained by intro-
ducing discrimination parameters that were category-specific but con-
stant over items. The assumption made was that the probability for
responding in categoryzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 rather than in category(g - 1) was governed
not only by the "mean" item difficultyzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOJ and the value for the thresh-
old Tg, but also by a discrimination parameterag which depended on
the specific threshold in question. Introducing this parameter hadas

a consequence that some thresholds were passed more easily than oth-
ers. This variation in difficulty of the thresholds was identical for all
items. A direct result of this parameterization of the threshold diffi-
culties was that the manifest indicators were no longer considered as
variables measured on an interval scale because the category numbers9

were not usedas weights in the calculation of the response probabilities.
This means that the same remarks that were made with respect to the
Nominal Response model, concerning the ordering of the categories of
the manifest items, also apply to the UPRM.If the adjacent logits are
a monotone increasing function of the latent position()i (or if the latent
variable is discretized,()t), then the weightsag should also be ordered
so that

ao ~ a1 ~ ... ~ am-1 ~ am·

Again, the model does not insure that these inequalities will hold. If,
however, the categories for the manifest indicators are ordered properly,
the estimatedag-values will show this ordering.

The results in Table 3.16 indicate clearly that the generalization pro-
vided by the UPRM did not improve the fit substantially. Allowing for
variation in the difficulty of passing the thresholds was not a successful
strategy. As the results in previous sections already indicated, this lack
of fit was due to the fact that the five items differed with respect to
their discriminatory power. The most pronounced item in this respect
was item 3. This item was not only one of the more difficult items, it
was also the item which had the greatest discriminatory power. Thus,
in order for a model to be more successful in the sense that it provides
a smaller G2 value it must take this aspect into account.
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The Rating Scale model with item-specific scaling parameters is such
a model. This generalization of the Rating Scale model does not focus
on variations in the difficulty of thresholds (which are constant for all
items) as the UPRM does, but instead introduces variation inthe dis-
criminatory power of items (which is, within each item, constant for all
thresholds). When the fit is evaluated using thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC2, this generalized
model gives a remarkably good fit. However, when attention is focused
on the Pearson x2-statistic, this model must also be rejected, just as the
other two variants of the Rating Scale model were. Again, theproblem
of performing adequate statistical tests in the presence ofsparse data
clearly makes it impossible to draw clear-cut conclusions.

To conclude the discussion of the Rating Scale model, the estimated
values of the parameters for the three models presented in this chapter
are also reported. The estimated standard errors for the parameters
are given in parentheses.

Table 3.17: Semi-parametric MML withT = 4 fixed nodes; param-
eter estimates for Rating Scale model (RS) with and without item-
specific scaling parameters and the unidimensional polychotomous
Rasch model (UPRM) for the male subsampleA

RS rrs wi t.1t itern- UPRM

specific scaling

81 o.oa o.o- o.o-
82 -0.70 (0.10) -0.44 (0.13) -0.60 (0.10)

83 0.41 (0.09) 1.43 (0.30) 0.38 (0.08)

84 -1.89 (0.15) -1.68 (0.15) -1.66 (0.15)

85 -1.00 (0.10) -1.56 (0.19) -0.89 (0.10)zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

a = 1.13 (0.08) al = 0.58 (0.08) ao = o.ooa
a2 = 1.07 (0.14) aj = 1.26 (0.14)

a3 = 1.97 (0.41) a2 = 2.32 (0.15)

a4 = 1.00 (0.15)

a5 = 1.30 (0.18)

Co o.o- o.o- o.o-
Cl -0.67 (0.14) -0.03 (0.11) -0.72 (0.18)

C2 -1.03 (0.26) 0.13 (0.19) -0.99 (0.25)

"Value restricted by assumption
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All three models clearly showed the differences in difficulties for the
five items. Items 3 and 5 were more difficult, while items 2 and 4 were
relatively easy. The value of 81 was fixed in advance at 0.0, in order to
achieve the necessary location restriction. As the estimated values forzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAazyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg

in the UPRM increased with the category numbers, the adjacent logits
were in fact a monotone increasing function of the latent variable ().
The estimated item-specific scaling parameters reflectedthe fact that
item 3 had greater discriminatory power than the other four items.
Finally, from the estimatedcg parameters for the Rating Scale models
with and without item-specific scaling parameters, one caneasily derive
the values for the threshold values7g• Given the relationship between
the 7g parameters and thecg parameters that was presented earlier, it
can easily be shown that

When these equations were applied to the estimatedcg values in Table
3.17, it became apparent that the estimated value for71 was greater in
value that the estimated value for72. This result held for both types
of Rating Scale models. This analysis illustrates that the estimated
values for the threshold values were not ordered along the latent con-
tinuum in correspondence with the category-numbers for thepresent
example. This also makes clear that the raw total-score doesnot al-
ways indicate how many thresholds a subject has passed. The values
for the thresholds in the UPRM are a function of both thecg and the
ag parameters. If, however, these threshold values are calculated from
the estimated parameters presented in Table 3.17, this model too shows
that the estimated value for72 is less than the estimated value for71.

Andrich has shown that the Rating Scale model can be further re-
stricted in a number of ways. As noted before, the Rating Scale model
does not restrict the distances between the thresholds in any way. An-
drich (1978a) showed how these distances could be restricted to equal
unity. This restriction was generalized in Andrich (1982) where it was
indicated how the distances between thresholds can be restricted to
be equal to some arbitrary value (which is not necessarily unity). It

can be shown that these types of restriction lead to specificconstraints
upon the cg parameters.ZYXWVUTSRQPONMLKJIHGFEDCBAIn still another model, the Binomial Trials
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model (Andrich, 1978c), the passing of a threshold is treated as a bino-
mial process. This model also imposes specific con- straints on thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcg

parameters. The details with respect to these restricted Rating Scale
models are not discussed here. The interested reader is referred to the
literature cited.ZYXWVUTSRQPONMLKJIHGFEDCBA

3 .4 E v a lu a t io n

A great number of latent trait models were discussed in this chapter.
The parameterization of these models was based on a discretized latent
trait. Because the values of the discrete node points along the latent
continuum were fixed in advance, a scaling parameter had to be included
in the parameterization of some of these models.

The most general latent trait model discussed here was Bock's Nom-
inal Response model.If it has a discretized latent trait, this model
is equivalent to the rows- or columns-association models presented in
Chapter 2. There is, in other words, a direct link between certain re-
stricted latent class models and discretized latent trait models. The
Nominal Response model links a metrical latent variable to nominal
manifest indicators. No ordering information concerning the categories
of the indicators is used in the model. However, if the categories are or-
dered, the estimated trace lines for the Nominal Response model should
reflect this information and a substantive interpretationof the results
can be based on the ordering of the categories. Because the Nominal
Response model uses both discrimination parameters and difficulty pa-
rameters, it is a very flexible model. The drawback is that the results
are less easy to interpret because, for example, thresholdsdepend on
both discrimination and difficulty parameters.

Another important latent trait model is the Partial Credit model.
This model assumes that both the latent and the manifest variables
have been measured on an interval scale. Because the spacingof latent
and manifest variables is fixed in advance, a scaling parameter must be
introduced. The Partial Credit model with a common scaling parameter
is equivalent to a restricted Uniform Association model, a fact that is
significant for a number of reasons. Firstly, attention is thus focussed on
the possibility of formulating less restricted models suchas the Partial
Credit model with item-specific scaling parameters (Heinen and Croon,
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1992). This model is more flexible than the original Partial Credit
model and can, therefore, be vital in the analysis of attitudinal data.
Secondly, the parallel with the Uniform Association model makes it
clear that the scaling parameters has a substantive meaningbecause it
can be interpreted as an association coefficient of the relation between
the latent and the manifest variables. The parameters of thePartial
Credit model (with or without item-specific scaling parameters) can be
interpreted rather easily using the threshold approach. One problematic
aspect is the possibility that thresholds are not ordered properly, as
became clear in the illustrating analyses in this chapter.

Using the threshold formulation, still more restricted models can be
formulated by separating the threshold parameters into item-specific
difficulty parameters and a set of category-specific threshold parame-
ters that are invariant over items. The Rating Scale model proposed
by Andrich (1978a) is the most well-known of these models.ZYXWVUTSRQPONMLKJIHGFEDCBAIn the
discretized versions of these models scaling parameters are needed. By
allowing the scaling parameter to vary over items, a more general Rat-
ing Scale model can be obtained. Although the Rating Scale model is a
rather direct and logical translation of the threshold approach in latent
trait theory, it is a highly restrictive model. Therefore, the practical
value of this model in the analysis of attitudinal data is limited.

The models discussed so far can be restricted by imposing equality
restrictions on parameters.In this manner, convergence of trace lines
over several items can be investigated. Several analyses were performed
in this chapter to illustrate these possibilities.It can be stated that by
using discretized latent traits highly fine-tuned analyses may be per-
formed in order to gain further understanding of the relations between
manifest indicators and the latent variable.
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E s t im a t io n a n d T e s t in g in L a te n t

T r a it M o d e ls

4 .1 In tr o d u c t io n

In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAChapter 3 a number of latent trait models were introduced. All
of these models are parameterized in terms of both person parameters
(i.e., the latent ability(}i) and item parameters. The item parameters
can be discrimination parameters, threshold parameters ordifficulty
parameters. These parameters can be estimated using a number of

procedures.
In this chapter, three important maximum likelihood procedures that

can be used in the context of item response theory are discussed. These
methods were briefly mentioned in Chapter 3. The reason for restrict-
ing attention to maximum likelihood procedures and bypassing other
estimation methods is that only maximum likelihood methodswere dis-
cussed in Chapter 2. Because a comparison of latent trait andlatent
class models is the main theme in this study, it would seem reasonable
to focus attention in this chapter on ML methods.

Firstly,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJoint Maximum Likelihoodestimation is reviewed (Section
4.2.1). This ML method estimates the person parameters and the item
parameters simultaneously. Because the person parametersact as nui-
sance parameters, this procedure is hampered by a number of problems.

The second method dealt with isConditional Maximum Likelihood.

This procedure is discussed in Section 4.2.2. CML was developed in
an attempt to overcome the problem of nuisance parameters bycondi-
tioning them out of the likelihood function. This can be accomplished
if there are sufficient statistics for the person parameters.A natural
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consequence is that this procedure can only be used if known sufficient
statistics for the person parameters exist, and this is not the case for all
latent trait models discussed in Chapter 3. Furthermore, itis important
to understand that CML is not merely a technical method of ridding
the likelihood function of nuisance parameters. This procedure is also
closely linked to Rasch's methodological claims ofzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAspecific objectivity.

The third method,Marginal Maximum Likelihood, also uses a like-
lihood function in which the person parameters have been eliminated.
MML, which is discussed in Section 4.2.3, is based on a numberof
assumptions about the distribution of () in order to integrate the per-
son parameters out of the likelihood function.If the complete density
function of () as well as the values of the parameters defining this dis-
tribution are specified by assumption, the estimation method is called
parametric MML. A less restrictive method is to assume that only the
type of the density function is known and to estimate the parameters of
this density function from the data. This is likewise calledparametric
MML. It is, however, also possible to approach the unknown continu-
ous density function by using a discrete distribution. Thisestimation
method, called semi-parametric MML, makes it possible to link latent
trait models directly to latent class analysis.

The fit of a specified latent trait model can be tested against empir-
ical data with the same methods that were discussed in Chapter 2 for
latent class models. In the context of latent trait models, it may be rel-
evant to test hypotheses concerning specific assumptions.Examples are
hypotheses about the sample independence of the item parameters or
the unidimensionality of the latent trait. Section 4.3 discusses a num-
ber of tests that have been proposed in the literature on itemresponse
theory.

4.2 Estimation

Estimating the parameters in a latent trait model is a topic that has
attracted a good deal of attention in the last 25 years. A number
of estimation methods have been proposed. Fischer used a modified
minimum chi-square estimation method in which a chi-squarestatistic
based on the number of individuals that respond positively to item j

and negatively to itemzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAjf was minimized (see Fischer, 1970 and Zwin-
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derman, 1991a). Swaminathan and Gifford (1982) and Mislevy(1986)
suggested the use of Bayesian methods (see Engelen, 1989 fora review
of these Baysian methods). The most widely used method is maximum
likelihood.' In this chapter only ML methods are discussed.

At first glance, the problem of estimating the parameters initem
response models using ML methods would appear to be more complex
than in latent class models because of the presence of ability parameters
that may vary over subjects. One may be surprised by the fact that
within the framework of ML methods there are at least three differ-
ent procedures which are all claimed to result in maximum likelihood
estimates. It is important to understand in what respect these proce-
dures differ from each other. In the following an attempt is made to
clarify the differences, as well as the relations, between these three ML
procedures.

In latent class analysis, ML estimates can be obtained by using
a number of different numerical procedures, among others, Newton-
Raphson, Fisher's scoring algorithm, and the stabilized Newton-
Raphson.f These procedures differzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnumerically but they all lead to
the same estimates as they all maximize the same likelihood.As was
shown in Chapter 2, this log-likelihood function can be written as

InL = Llvlnpv
vzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

~fvln [tpv1". -
Llvln [t (IIIIpj918tXVjg) . P8t] (4.1)

'/ t=l J 9

The indicator variablesXvjg indicate whether the response to itemj in
response patternv falls in category g, so:

Xvj!} = 1 if, in response patternu, item j is responded to with
category g,

otherwise.Xvjg = 0

I Bayesian methods also liseIII axin 111III likelihood estimation. The ML methods discussed

in this chapter are, however, "traditional", i.e., non-Bayesian methods.

2Stabilized Newton-Raphson is used in Haberman's NEWTON program.
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If the EM algorithm is used, the likelihood is rewritten in a slightly
different fashion because, in the M-step, the log-likelihood can be de-
fined on the complete data-matrix. After all, the complete"latent x
manifest data-matrix is estimated in the foregoing E-step.In this case,
the expression for the log-likelihood function is simple:zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

lnL = LLevot ·lnpvt,
v t

(4.2)

in which evOtindicates the estimated number of individuals responding
with pattern 1.1 and belonging to latent class(}t.

However, EM also leads to the same maximum likelihood-estimates
as the other numerical methods that are available in the context of la-
tent class models. The two likelihood functions are equivalent, though
they are expressed somewhat differently. Both contain parameters per-
taining to the latent distribution, i.e., the pel-parameters. In Newton-
Raphson, scoring, or NEWTON, these parameters are estimated simul-
taneously with the other parameters, i.e., the response probabilities or
the log-linear parameters on which the response probabilities are based.
In the EM algorithm, the POt-parameters are estimated separately in the
M-step.

For latent trait models, the problem is more complex becausethe
three different procedures that have been proposed are all attempts
at maximizing a different likelihood function. The differences between
these three methods are not merely numerical. This raises some serious
questions because it is not clear which of the three methods should be
preferred.

In the following sections, a global description of these different max-
imum likelihood methods is presented. A more detailed review can
be found in Baker (1987). The question of which method shouldbe
preferred cannot be answered until the relations between the various
methods have been explored. Recent work by Holland (199Gb) and
Lindsay, Clogg, and Grego (1991) has lead to new insights into the
relations between the different estimation procedures.

3The data-matrix is incomplete because the membership of the latent classesis unknown.
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4 .2 .1 J o in t m a x im u m lik e l ih o o d

Joint maximum likelihood (JML) is a procedure in which item param-
eters and ability parameters are estimated simultaneously. The log-
likelihood function that is to be maximized is equal tozyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

N

lnL = LlnpvllJ.

i=l

(4.3)zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

t In [II II PjgllJ,X,jgj.

~=1 J g

The conditional probability that individuali will respond with pat-
tern u, provided that this individual has an ability parameterOi, is
denoted byPvllJ, , Again, Xijg indicator variables are used in order to
write the log-likelihood in a form that allows for polytomous data. In
this fashion, the comparison between this log-likelihood function and
the log-likelihood function for other maximum likelihood procedures as
well as those presented in Chapter2 is made easier. TheXijg indicator
variables take the value1 if subject i responds in category9 of item j.

Otherwise, theXijg variable is equal toO. The number of subjects in
the sample is equal toN.

Because two individuals who have responded to then items with
exactly the ~ame response patternv have the same estimated ability
parameter Ov, the log-likelihood function can be written, somewhat
more economically, as:

lnL LivlnpvllJ, (4.4)
v

in which PjgllJ" indicates that the response probabilities are the same
for individuals with the same response patternu, The Xvjg indicator
variable indicates, as it did in Chapter 2, whether the response to item
j in response pattern1/ falls in category 9 (X1Jjfl = 1) or in another

category (xvjg = 0).
The development of the joint maximum likelihood estimationproce-

dure was mainly the work of Lord (1967) and Birnbaum (1968). Al-
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though the log-likelihood function and the term "joint maximum like-
lihood" indicates a simultaneous estimation of item parameters and
ability parameters, the procedure uses a two-stage iterative method.
At one stage, the item parameters are held constant and new ability
parameters are estimated. To solve identification problems, the mean
of thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(J's is fixed to a given value; for the two- and three-parameter
model, the latent scale must also be fixed by restricting thevariance of
the (J's to be equal to some arbitrary value. Subsequently, the adjusted
ability parameters are held constant and new estimates are obtained
for the item parameters using a multivariate Newton-Raphson proce-
dure. Details concerning these numerical methods as well asexpres-
sions for the likelihood equations that have to be solved in the case of
dichotomous variables can be found in Baker (1987) and Hambleton
and Swaminathan (1985).

The JML procedure is hampered by a number of problems, the most
serious being the presence of "incidental" parameters. As the sample
size increases, the number of(Ji parameters that must be estimated
also increases. For this reason, the()i parameters are called incidental
parameters. The item parameters are called "structural" parameters
because their number does not increase if the sample size grows. The
problem is that these structural parameters cannot be estimated consis-
tently in the presence of incidental parameters. Within thecontext of
JML it is impossible to get consistent estimators for the item parame-
ters of the Rasch model. This problem was first studied by Neyman and
Scott (1948) in a different context. Andersen (1973a) showed that the
item difficulty parameters in the one-parameter model werenot consis-
tently estimated by using JML if the number of subjects approached
infinity and the number of items was fixed to a given value.If, however,
the number of subjects(N) and the number of items(n) approaches
infinity, the JML parameter estimates for item and ability parameters
are unbiased, ifthey exist at all (Haberman, 1977b).4 In practice, these
conditions are never fulfilled.

A second serious drawback to JML are the numerical problems that
are often encountered with the estimation of parameters in the two-
and three-parameter model. In a number of cases, estimates for the

~Haberman also specifiedit condition with respect to the relationship betweenzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANand n.

Details call be Iouud ill Haberman (1977b).
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discrimination parameters can degenerate, i.e., become very large, and
estimates for the guessing parameter in the three-parameter model can
fall outside the region of acceptable values (i.e., the region ranging from
zero to one). Finally, the estimation of ()parameters may become very
cumbersome in the case of two- and three-parameter models.

These numerical problems do not appear in the one-parametermodel
as in this model score groups can be formed on the basis of sufficient
statistics for the ability parameters (i.e., the total-scores for the sub-
jects). In most situations the number of score groups is muchsmaller
than the number of subjects.If just one ability parameter has to be es-
timated for each score group, the estimation problem can be simplified
considerably. However, there are also a number of situations known
in which the estimation of the item parameters for the one-parameter
model is not possible by using JML. Sufficient and necessaryconditions
for the existence of a JML solution in the case of the one-parameter
model are given in Fischer (1981).

In the past, JML was sometimes denoted as "unconditional maximum
likelihood" to contrast the procedure with conditional "maximum like-
lihood" (see Wright and Douglas, 1977a, 1977b). However, the term
"unconditional maximum likelihood has also been used by Bock and
Lieberman (1970) and Bock (1972) to explain what later was called
"marginal maximum likelihood". It is for this reason that the term
unconditional maximum likelihood is not used in this study.De Leeuw
and Verhelst (1986) denoted JML as "unconstrained maximum likeli-
hood". This terminology corresponds to theoretical results obtained by
Holland (1990b). This subject will be discussed again at a later point.

4.2.2 Conditional maximum likelihood

Conditional maximum likelihood (CML) depends on the availability
of known sufficient statistics for the person parameters. The principle
behind this method is very simple. By defining a log-likelihood function
conditioning on the sufficient statistics for the ability parameters, these
ability parameters vanish from the log-likelihood function and what is
left is a function in which only item parameters appear. In the absence
of the incidental parameters, the structural item parameters can be
estimated consistently.
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Whether CML can be used to estimate the item parameters in a
specific latent trait model depends on the availability of known sufficient
statistics for the person parameters. In the Rasch model (when the
manifest indicators are dichotomous) and in the Partial Credit model
and its derivative models (the manifest variables are polytomous) these
sufficient statistics are equal to the total-score for an individual. 5 No
additional assumptions are needed.

If, however, latent trait models with discrimination parameters are
used (such as the Lord-Birnbaum model or Bock's Nominal response
model), it must be assumed that these discrimination parameters are
known a priori in order to estimate the parameters with CML. In these
models, the sufficient statistics for the ability parameters (}i are equal to
the weighted total-scores, with the weights equal to the discrimination
parameters (see, for example, Verhelst,1992).

Despite this restriction, CML is widely used due to the popularity
of the Rasch model and the Partial Credit model. The reason for this
popularity is that these models have certain properties that relate to
the presence of known sufficient statistics which, in a sense, make them
unique. In order to properly understand these assertions, it is helpful to
distinguish between two strategies that can be discerned inthe context
of item response theory. One objective is the construction of models
with which the covariation that is present in a number of observed vari-
ables can be described. This perspective is rather pragmatic and it al-
lows the inclusion of models that do not have known sufficient statistics
for the ability parameters, such as .the two- and three-parameter mod-
els suggested by Birnbaum and Bock's Nominal Response model. The
second perspective is based on a number of measurement-theoretical
considerations which are derived from the item response model. This
tradition can be traced back to Rasch(1960) who introduced the notion
ofzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAspecific objectivity.

Specific objectivity has to do with the possibility of comparing any
two items independently of all other item parameters and indepen-
dently of the ability parameters. In the comparison betweenany two
items, only the parameters characterizing those two items should play
a role. This can be illustrated as follows.If individual i responds to

f,]t. is assumed for the models for polytomous data that the cat.egories of the manifest

indicators are scored with successive integers.
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two dichotomous itemsj and j', two indicator variables,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxii and xiii,

are defined. These variables take the value 1 ifi responds positively to
an item; otherwise, the value of the indicator variable iso. According
to the Rasch model, the probability thatxii or Xiii equals 1 can be
expressed as

exp(()i - bi)

1+ exp(()i - bzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi)

exp(()i - bi')

1+ exp(()i - bi')·

The total-score computed from these two items is denoted byXi+, so
Xi+ = xii + xiii. This total-score can, of course, take the values 0, 1,
or 2. Only the situation in whichXi+ = 1 provides information with
respect to the relative position of the item-difficultiesbi and bi'. It can
easily be derived that the log odds for responding positively rather than
negatively to itemi, provided that Xi+ = 1, depends only on the item
parametersbi and bi':

P(Xii = 1)

P(Xii' = 1) =

In [P(Xii = 1 I Xi+ : 1)] = bi _ bi'
p( Xii = 0 I Xi+ - 1)

Because these log odds do not depend on the person parameter(}i, the
relative position of the item difficulties can be estimatedindependently
of the specific individuals that have responded to the items.

Similarly, way it can be shown that the comparison between two
individuals who respond to a specific item only involves theability pa-
rameters of those two subjects, not any other ability parameters nor any
item parameters. The objectivity of the measurement process implied
by these claims is calledspecific because the comparison takes always
place within a certain frame of reference, i.e., a specific class of items
and a specific class of subjects.

If a measurement process allows for the comparison of any two items
independently of all other item parameters and all person parameters,
and if that measurement process also allows for a comparisonof any
two individuals that involves only the ability parameters of those two
individuals, specific objectivity is said to be present in the measure-
ment process. This definition of specific objectivity is, however, rather
vague. There are two methods of further defining specific objectivity.
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One method is to translate the claims of independent comparisons into
a measurement theoretical framework.It goes beyond the scope of this
study to analyze the measurement theoretical analysis of specific ob-
jectivity in depth. The foundation for this approach was laid by Rasch
(1977) and further elaborated upon by Irtel (1987). However, within
the measurement theoretical framework, the claim of specific objectiv-
ity does not necessarily lead to the Rasch model. Analyses byGlas
(1989) made clear that the two-parameter model proposed by Birn-
baum, for example, also has the property of specific objectivity. Only
if the demand is made that the parameterization be symmetrical, i.e.,
that the number of parameters used to characterize an item beequal
to the number of parameters used to characterize the abilityof a sub-
ject, does the Rasch model necessarily follow from the measurement
theoretical definition of specific objectivity.If this claim of symmetric
parameterization is not made, models other than the Rasch model can
also possess the property of specific objectivity.

The second method of regarding specific objectivity is froma statis-
tical point of view.ZYXWVUTSRQPONMLKJIHGFEDCBAIn this often-used approach, specific objectivity is
equated to the presence of sufficient statistics for the ability parame-
ters independent of the item parameters. Within this interpretation,
it can be shown that for dichotomous data the Rasch model is the
only possibility if certain additional assumptions are made (Andersen,
1973a). This unique characteristic of the Rasch model, i.e., the fact
that it can be derived from a number of assumptions among which the
most important is the availability of sufficient statistics, has also been
demonstrated by Fischer (1974).6 The Rasch model can also bede-
rived as a probabilistic variant of the Guttman scale. This derivation
was given by Roskam and Jansen (1984). The relationship between the
Guttman scale and the Rasch model, a topic which was already brought
to attention in Chapter 2, was also explored by Andrich (1985).

If the measurement process is required to satisfy specific objectivity,
i.e., the item response model has to allow for the existence of known
sufficient statistics for both the item and the ability parameters, it can
be shown that, in the case of dichotomous data, the Rasch model nec-
essarily follows. Within this perspective, the Rasch modelis more than

6The other assumptions made are rather straightforward, for example, the assumption of

local independence, limo~_oozyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPig/O, = 0, and limo~ooPjg/o, = 1.
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a two-parameter model with the discrimination parameters restricted
to be equal.

Similar results can be obtained for polytomous manifest variables. If

the item response function has to be unidimensional, i.e., the ability can
be characterized by a scalar, and if sufficient statistics for the ability
parameters must exist, the model that results is equal to thePartial
Credit model. This result was first obtained by Andersen (1977).7 The
Partial Credit model and all models that can be seen as restricted
Partial Credit models are the only item response models thatprovide
known sufficient statistics for the ability parameters when the manifest
indicators are polytomous.

That the availability of sufficient statistics for the ability parameters
makes it possible to eliminate these ability parameters from the likeli-
hood function by conditioning on them is easily illustratedwithin the
Rasch model." The probability of responding in category 1 ofitem j

can be written as
exp((}i-zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbi)zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Pillo; = 1+ exp((}i_ b
i
)" (4.5)

The probability that subjecti will respond with an arbitrary response
pattern v can now be expressed as

exp(Xi+ . (}i - L:j=l xii· bj)

PvIO; = TIj=l [1+ exp(()i - bj)] ,

in which Xi+ = L:i Xij is the total-score for subjecti. Again, an indi-
cator variableXij is used which is 1 if the response of subjecti to item
j falls in category 1 and is otherwise equal to zero. The factorization
theorem (see, for example, Mood, Graybill and Boes, 1974, pp. 307-
308) makes it clear that the total-score is a sufficient statistic for the
ability parameter (}i. Similarly, the number of subjects that answered
item j correctly, i.e.,x+j = L:i Xij is a sufficient statistic for the item
parameter bj•

(4.6)

7Although Andersen derived the Partial Credit model as the model that necessarily follows

from the claim that sufficient statistics exist for the scalar-valued ability parameters, the

naming "Partial Credit model" was introduced by Masters, who developed this model using

the threshold approach. See Chapter 3 for details.
8This can also easily be shown for the Partial Credit model, the notation is then a bit

more cumbersome. To facilitate the exposition only the Rasch model is dealt with. A through

treatment. of CML-estimation for the Partial Credit. modelis given in Masters (1982).
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If <;zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdenotes a total-score (0S; c S;zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn) and 0, is the subset of response
patterns 11 with <;v = c, then the probability that the total-score for
subject i will be equal to c can be written aszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

P<;18; = L Pv18;
vEO,

exp(<; . (}i) x LVEO, exp ( - Lj Xij . bj)

lli=l [1+ exp((}i- bj)]

exp(< . (}i) X /<;
(4.7)

in which /<; = LVEO, exp ( - Lj Xij . bj) are the elementary symmetric

functions whose values depend solely on the total-score andthe item
parameters. The notationLVEO, is used to indicate that the summation
takes places only for those response patterns11 which result in a total-
score equal to c. Finally, the probability that response pattern 11 will
be observed given that subjecti has a total-score equal to<; is

Pv18;

P,IIJ;

exp ( - Lj Xij . bj )

/e;
(4.8)

The likelihood function that must be evaluated for a sample of N sub-
jects is obtained by

N

L = I1Pvle; = ITp~re;
i=l v

(4.9)

so that the expression for the log-likelihood becomes

InL = LivlnpvIc;, (4.10)

in which Pvle; is defined as in Equation 4.8.
The CML log-likelihood function is expressed here by a summation

ofthe response patterns11. It is also possible to let the summation take
place over the total-scores<; which leads to an expression that is simpler
to evaluate, but that cannot be directly compared to the log-likelihood
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functions obtained within the framework of JML or the third procedure,
marginal maximum likelihood, which is described in the nextsection.
It is for this reason that the CML convention of taking the sum over C;

is not followed here.
The only identification problem that must be solved is fixing the lo-

cation of the latent scale. This can be done by constraining one of thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj

parameters to zero. Andersen (1970) showed that the CML estimators
are then consistent, efficient, and asymptotically normally distributed.
There are, however, a number of numerical drawbacks to the CML pro-
cedure. The evaluation of the elementary symmetric functions can be
laborious, particularly if a large number of items are involved. Origi-
nally, it was believed that in practice CML could only be carried out
without serious problems for analyses involving up to 50 items. Sug-
gestions for solving the numerical problems involved in computing the
elementary symmetric functions can be found in Verhelst, Glas, and van
der Sluis (1984). The numerical approach suggested by theseauthors
made possible the analysis of large data sets.

4.2.2.1 CML estimation by log-linear models

CML estimates for the item parameters in the Rasch model can also
be obtained by fitting somewhat non-standard log-linear models. The
close connection that exists between the two types of modelshas been
pointed out by 'various authors (Mellenbergh and Vijn, 1981; Tjur, 1982;
Cressie and Holland, 1983; Kelderman, 1984, 1987; Duncan, 1984b;
Hout, Duncan and Sobel, 1987). As a starting point, the expression for
the probability of a certain response pattern1/ given a total-score equal
to c is taken to be (see Equation 4.8)

exp ( - 2:j Xij • bj)

Pvle; =
Ie;

The Rasch model based upon this probability was called the "condi-
tional Rasch model" in Kelderman (1984). This model can be written

as a log- linear model:

Inpvle; = Ue; +L Xvj • Uj,

j

(4.11)
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in whichzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu, = In(l/,,;), Uj = -bj and Xvj is the element of the design
matrix for pattern v and itemj. Because the vector of xij-values is the
same for all individuals responding with the same response pattern v,
the expressionXij used in Equation4.8 is replaced byXvj.

As Kelderman has shown, the estimates for the item parameters in
this log-linear model are identical to the CML estimates forthe Rasch
model (Kelderman,1984,appendix II). The conditional model assumes,
however, that the total-score marginalsi, are fixed by the sampling
design. As this assumption is not fulfilled in most practical applications,
a model in which the assumption of a fixed total-score distribution is
not made would appear more attractive:zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Pv = Pvl, x p,

exp ( - L;j Xij . bj)

x p,.A
I,

The log-linear formulation now becomes

ln p, = u~+ LXVj· Uj,

j

(4.12)

(4.13)

in which u~= In(p,/,,) and Uj = -bj. Although this model does not
assume that the totalsI. are fixed by design, another problem arises
because theu~parameter is now dependent onP,lfJi, which, in turn, is
dependent on the latent distribution ofO. As was already shown, the
latter probability can be expressed as

exp(xi+ ·Oi) x I,
P,lfJi = n [ ( )] .ITj=1 1+ exp OJ - bj

When the latent variable0 is assumed to be continuous, the probability
of obtaining a particular total-score can be written as

1

+00 exp(<; • OJ)

P« = Ie; -00 IT;=1 [1 + exp(Oi_ bj)] difl(O),
(4.14)

in which ifl(O) is the cumulative distribution function of the latent vari-
able.

Becauseu~ is equal toIn(p,),,), the exponential ofu~equals

* 1+00 exp(<; • OJ)
exp(u,)= nn [ (O __ b_)]difl(O).

-00 j=1 1+ exp ~ J
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Cressie and Holland (1973) showed that the elements to the right of
the equal sign constitute a moment sequence. Because such a moment
sequence must satisfy certain inequality restrictions.? these restrictions
must be taken into account when estimating the parameters ofthe
Rasch model using the log- linear model in 4.13. Expressionsfor these
inequality restrictions can be found in Cressie and Holland(1973) and
Kelderman (1984). Holland (1990a) showed how these restrictions in-
fluenced the values of thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu~ parameters. As the usual methods for
estimating parameters in log-linear models cannot deal with this type
of inequality restriction, the question arises whether this log-linear ap-
proach to the Rasch model holds any promise. Cressie and Holland
(1973) criticized the uncritical use of the log-linear model for estimating
parameters in the Rasch model. The estimated set ofPv probabilities
do not have to be true manifest probabilities for the Rasch model. If

the inequality restrictions are not met, it is possible to obtain estimated
Pv parameters that could not be generated by any latent trait model.

The log-linear Rasch model in which the inequality constraints are
ignored was termed the "extended Rasch model" by Tjur (1982). Tjur
showed that even if the inequality constraints are not fulfilled, the es-
timates for the item parameters are equal to the conditionalmaximum
likelihood estimates. This follows from the fact that the likelihood for
this extended Rasch model can be factored in two parts (see Ander-
sen and Madsen, 1977 and de Leeuw and Verhelst, 1986). One part
corresponds to the usual conditional likelihood, the otherto the u~

parameters. This can easily be shown as follows:zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

/I

/I

/I /1

(4.15)
/1

9For example, the second moment must be greater than or equalto the square of the first

moment, otherwise the variancewill be negative.
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The first part, on the right hand of this expression, is equalto the
log-likelihood for CML (see Equation 4.10). The second partpertains
to the total-score distribution. In the log-linear parameterization thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

u~ parameters guarantee that the total-score distribution isprecisely
reproduced. As is clear from Equation 4.14, however, both the distri-
bution of the latent variable and the item parameters playa role in this
second part of the likelihood. The fact that the latent proportionszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp, are
also a function of the item parameters has some consequenceswith re-
spect to the relationship between CML estimators and semi-parametric
MML estimators. This is the subject of discussion in Section4.2.3.

Thus, in the extended Rasch model, the estimated item parame-
ters are equal to the CML estimates for those parameters. However,
when the inequality restrictions are not met, the estimatedprobabili-
ties Pv do not necessarily have to conform to the Rasch model. Cressie
and Holland stress the fact that, despite these complications, the ex-
tended Rasch model may have some practical use.If the extended
Rasch model does not provide an acceptable fit for a given setof data,
the Rasch model will, likewise, not fit the data and, therefore, more
complex models will be needed to explain the association between the
variables. On the other hand, if the data conform to the Raschmodel,
they will also fit the extended Rasch model. As stated before, the
reverse is not necessarily true.

To illustrate the use of log-linear models in estimating theitem pa-
rameters of the Rasch model, the data analyzed in the previous chap-
ters were again used. Before turning to these analyses, however, some
remarks have to be made about the identifying restrictions that are
needed in the context of these log-linear models. To clarifythis, the
log-linear model in4.13 has been rewritten below using the Kronecker-
delta notation that was also used by Cressie and Holland:

n n

ln p, = L u~·8(<;,xv+) - L Xvj . Uj,

,=0 j=1

in which Xv+ = L.jXvj and 8(<;,xv+) is defined by:

( ) {
I if Xv+ = <;

8 c, Xv+ = O.f ../..
. I Xv+ r <;.
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At first sight, there appear to bezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2n + 1 parameters in this log-linear
model. However, the actual number of parameters is smaller because of
the presence of some linear restrictions. Firstly, it must be noted that

n

LO(C;-,XvzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+) = 1,A
,=0

so the number of independent o-functions isn instead ofn + 1. Fur-
thermore

n n

LXVj = LC;-'o(c;-,xv+),
j=1 ,=1

which indicates the need for another identifying restriction, for example,
XvI = 0 or Xvn = 0 for all 1/, which will fix the item parameter for the
first or the last item at a value of zero. This restriction is clearly
necessary for fixing the scale of the latent variable.

The number of parameters to be estimated is equal to2n - 1; there-
fore, the number of degrees of freedom is equal to

df = 2n - 1 - (2n - 1) = 211.- 2n.

The parameters of the log-linear Rasch model were estimatedfor the
data on women's liberation that were also used in the previous chap-
ters. Again, only the data for individuals who satisfied theeducational
requirements formulated in Chapter 2 were used in the analysis.

The analyses were performed with Haberman's FREQ program. The
log-linear Rasch model for the 2n-table can be estimated with any log-
linear program that enables the user to specify a design matrix. The
reason for this is that theu~interaction parameters that appear in 4.13
are non-standard. Another possibility, pointed out by Kelderman, is to
estimate a log-linear model for the2n x (n + I)-table formed by com-
bining the 2n different response patterns with the(n + 1) total-scores.
Of course, this table has a large number of cells containing structural
zeros. The log-linear Rasch model can be estimated in such a table
by fitting the quasi-independencemodel.l'' Both methods of estimating
the parameters in the log-linear Rasch model are, for practical reasons,
restricted to situations in which the number of items is not too large.

lOInformation concerning quasi-independence models can be found in standard text books

such as Bishop et al. (1975) and Hagenaars (1990).
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Kelderman (1987) proposed a "marginalization-by variable" algorithm
that can be used when the number of items is large.

Table 4.1 provides the values of the log-likelihood ratios and the Pear-
son x2-statistics that were obtained in the analyses for thetotal sample,
as well as the separate analyses for male and female respondents. Ta-

Table 4.1: Testing results for the log-linear Rasch model

Male
Female
Total

42.51 .000
43.34 .000
53.30 .000

42.98
41.92
51.77

.000 22

.000 22

.000 22

PearsonzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 P p df

ble 4.1 clearly shows that the test results were not satisfactory. The
hypothesis that the Rasch model holds in the population clearly had
to be rejected for the total sample. The values of the test statistics
were smaller in the male and the female subsamples, but that was due
to the fact that the number of observations in the subsampleswere, of
course, smaller than in the total sample. The Rasch model could not
be accepted in these subsamples either.

In Chapter 2, as was already noted, it can be seen that the order-
ing of the items according to their difficulty was not the same for the
two subsamples by inspecting the marginal distributions ofthe items.
The same phenomenon was found in the estimated item difficulties for
the two subsamples. These estimates are reported in Table4.2. The

Table 4.2: Estimated item difficulties for the Rasch model; log-linear
estimates

It.em I
Hem :2
Item 3
Item 4
Item 5

-0.95
-2.21
-0.74
-3.89

o.oo-

-0.17
-1.53
+0.34
-3.78

0.00"

-0.56
-1.86
-0.19
-3.77

o.oo-

Malp. Female Tot.al

"Fixed according to identifying restrictions

results regarding the ordering of the items for male and female respon-
dents were identical to those obtained in Chapter2 using marginal
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distributions. For the male respondents, item 5 was the mostdifficult
item, followed by item 3, whereas the reverse was true for thefemale
respondents.

The item difficulties reported in Table 4.2 are identical tothe CML
estimates. However, as was mentioned earlier, the log-linear Rasch
model does not guarantee that thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPv response pattern probabilities
will conform to the Rasch model. Cressie and Holland (1973) formu-
lated both the necessary and the sufficient conditions in terms of theu;
parameters. When the sufficient conditions are met, the pv-probabilities
will conform to the Rasch model. Table 4.3 provides the estimated u;
parameters.

Table 4.3: Estimated u;-parameters in the log-linear Raschmodel

c; Male Female Total
o o.oo-
1 -3.43
2 -5.27
3 -6.65
4 -7.07
5 -6.76

o.oo-
-3.05
-4.59
-5.01
-4.56
-3.11

o.oo-
-3.18
-4.83
-5.73
-5.71
-4.78

aFixed according to identifying restrictions

It can be verified from the obtained values that the sufficientcondi-
tions were met. This was true for both the total sample and forthe
male and female subsamples. The estimated parameters in Table 4.2
can therefore be interpreted as the CML estimates of the itemdifficul-
ties in a Rasch model. The exact definition of the inequalityconstraints
that must be satisfied as formulated by Cressie and Holland (1973) will
not be given, as they have already been reformulated by Lindsay et al.
(1991) in a way that is both more informative and easier to interpret.
These results will be discussed at a later point.ZYXWVUTSRQPONMLKJIHGFEDCBA

4 .2 .3 M a rg in a l m a x im u m lik e l ih o o d

The two maximum likelihood procedures discussed so far eachdealt
with the simultaneous presence of item and person parameters in their
own fashion. JML does not provide a solution to this problem;the
presence of person parameters is taken for granted. Abilityand item
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parameters are estimated jointly, although it is known thatthe esti-
mators are inconsistent. Estimation of ability is facilitated by forming
homogeneous ability groups on the basis of identical total-scores or
identical response patterns.It is for this reason that JML is labeled a
fixed-effects model, i.e., both persons and items are treated as fixed.

Holland (1990a) pointed out that the JML approach starts from what
he called thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstochastic subject rationale.The assumption formalized
in the expression forzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPjglfJ;, that the response of a personi with abil-
ity (}i to item j is probabilistic in nature has to do with the fact that
human behavior is inherently unpredictable. The uncertainty which is
characteristic of human behavior is modeled byPjglfJ;, which denotes the
probability that an individual with latent score(}i will answer in cate-
gory 9 when confronted with itemj. As Holland (1990a) noted, it was
this interpretation ofPjglfJ; which led to the joint maximum likelihood
function 4.3. The outcome of the measurement process when stochastic
subject i meets itemj is ruled by the probability functionPjglfJ;, and
the likelihood function 4.3 states that these probability functions are
all statistically independent. In item response theory, this approach
is called thefixed-score model or thefunctional model (de Leeuw and
Verhelst, 1986). In the context ofthis model, it does not make sense to
talk about the distribution function of the latent variablebecause the
distribution of the latent variable is a point distribution. The persons
are regarded as fixed and the person parameters are estimated jointly
with the item parameters.

In CML, the problem of the simultaneous presence of item and per-
son parameters is solved by using sufficient statistics forthe person
parameters. By conditioning on the sufficient statistic for the person
parameter, i.e., the total-score, the person parameters can be eliminated
from the likelihood function and consistent estimates can be obtained
for the item difficulties. The major drawback of this methodis that it
can only be applied to item response models in which known sufficient
statistics for the person parameters are available. This puts limits on
the range of latent trait models that can be used.

After the item parameters have been estimated, estimation of the
latent ability can still take place using standard maximum likelihood
procedures. In practice, this means that the JML likelihoodis used in
which the item difficulty parameters have been replaced by their CML



211

estimates. Again, this procedure for estimating thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA()i parameters does
not depend on assumptions concerning the latent distribution. This
method yields maximum likelihood point estimates of the latent abilities
for each response pattern except the two most extreme patterns, i.e.,
the response pattern in which the answers to all of the items are in
the lowest category and the pattern in which all of the answers are
in the highest category.It is, of course, assumed that the response
categories for the manifest indicators can be ordered. The fact that
point estimates are obtained for the latent ability parameters clearly
illustrates that it is not necessary to speak of a latent distribution in
the context ofCML estimation. In this sense,CML can also be used in
the context of the fixed-effects or functional model.

When CML is used, it is also possible to include certain hypotheses
about the latent population distribution in the estimationprocedure.
CML can, therefore, be used to estimate the parameters in what de
Leeuw and Verhelst (1986) called therandom-score model or thestruc-

tural model.ZYXWVUTSRQPONMLKJIHGFEDCBAIn this model, subjects are regarded as being sampled at
random from a population which is characterized by a certaindistribu-
tion of the latent variable ().

Holland (1990a) stated that this model is based on another sub-
stantive interpretation ofPjgl8i. That quantity is now regarded as the
proportion of subjects in the population with latent score()i that will
respond in categoryg of item j. The stochastic nature of the relation-
ship between the latent variable and the manifest indicators is not the
result of inherently unpredictable human behavior, but stems from the
fact that subjects are sampled at random from a population with a
specified latent distribution. Holland called this interpretation ofPjglOi

the random sampling rationale.The log-linear Rasch model which does
not condition on the total-score is an example of this structural model.
As was already shown, the likelihood for this log-linear Rasch model
can be written as

InzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL = L f II • PII

II

and this likelihood can be factored in two parts:

In L = 2:lnpIII'i +L Inp'i·
i
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The first part, on the right-hand side, is the likelihood that is used in
CML. Andersen and Madsen (1977) proposed estimating the parame-
ters of the latent distribution using the second part of the likelihood.
Equation 4.14 makes clear that the probabilities that appear in this
part of the log-likelihood,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp" depend on the latent distribution in the
population. The density function</J(zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0) of this latent variable is equal to
the first derivative of<p(0) in 4.14, assuming that this first derivative
exists. Andersen and Madsen (1977) proposed taking a given known
density function for</J(O) , for example, the normal density or the log-
beta density. Using the part of the log-likelihood that is based onP«

and substituting the CML estimates for the item difficulties in this like-
lihood function, standard ML methods can be employed to estimate the
parameters that describe the assumed density function for the latent
variable.

Marginal maximum likelihood (MML) makes explicit use of theden-
sity function of the latent variable</J( 0) in order to end up with a like-
lihood function which does not contain any0i person parameters. This
is achieved by maximizing the likelihood function:

N

L = IlPvi = Ilptv
,

i=l v

(4.16)

in which the probability for observing response patternv can be ex-
pressed as

Pv = J PvllJ;d<p(O).

In this fashion, the person parametersOi are integrated out.ll The re-
sulting likelihood function is based on the probabilitiesPv which reflect
the marginal distribution of the response patternsu , hence the name
marginal maximum likelihood.

MML was first proposed by Bock and Lieberman (1970), though the
numerical procedures developed in that article were not very workable,
owing to their complexity. A major breakthrough was made in an article
by Bock and Aitkin (1981), in which it was pointed out that parameter

llThe Stieltjes form of the integral was used in the notation, a common convention in the

literature on this topic. If the cumulative distribution function ~(8)is differentiable, d~(8)

can be replaced by the more known expression ¢(8)d8, in which ¢(8) is the first derivative of
~(8) and the density function of 8.
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estimation using the MML function can be dealt with numerically by
applying the EM algorithm (Dempster, Laird and Rubin, 1977). Before
going into further detail, some comments have to be made regarding
the choice of the density functionc/J(zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0). This topic is discussed in the
following sections.

4.2.3.1 Parametric estimation

The major problem with MML is that something must be known about
the density functionzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc/J(O) in order to be able to evaluate the integral
in the expression forPV. The most rigorous solution to this problem is
to assume that the distribution of the latent variable0 is completely
known. For example, one may assume thatc/J(0) is the density of a
standard normal variate. In that case, the integral can be evaluated
numerically using Gauss-Hermite quadrature. The continuous normal
variable is then discretized on a certain interval and the integration is

substituted by a summation:

q

Pv = LPvlXk .A(Xk).

k=l

The optimal set of theq different quadrature pointsXk and their cor-
responding weightsA(Xk) can be found in Stroud and Secrest ~ 966).
The set is optimal in the sense that the approximation to the integral
is optimal when the quadrature points and their weights are used in
this summation. It should be noted that when this procedure is used,
identifiability restrictions which fix the scale of the latent variable are
no longer needed. In the Rasch model, the value of the common dis-
crimination parametera has to be estimated (see Thissen, 1982, for

details on MML estimation in the Rasch model).
As an example, the data on women's liberation were again analyzed

using a Rasch model. In order to obtain results that were compara-
ble with the results in Tables 4.1 and 4.2, the analyses were performed
separately for the male and female subsamples, as well as forthe total
sample.V The Rasch model was subsequently fitted with a MML pro-
cedure under the assumption that the latent variable followed a normal

12Again, only respondents satisfying the educational constraints were retained in the

analysis.
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distribution in the population. The calculations were performed us-
ing Thissen's Multilog program (Thissen, 1988). A normal distribution
was assumed for the latent variable.ZYXWVUTSRQPONMLKJIHGFEDCBAIn the estimation process, ten
equidistant quadrature points were used ranging from-4.5 to +4.5 at
distances of 0.5 point from each other. Because the assumption of a
normal distribution for the latent variable set a metric forthe latent
scale that could not be compared directly to the results of ananalysis
using CML estimation, the estimated MML item difficulties were stan-
dardized so that they had the same mean and standard deviation as the
CML estimates. The results of both estimation procedures are given in
Table 4.4.

Table 4.4: Estimated item difficulties for the Rasch model;a compari-
son of CML estimates with parametric MML estimates

Male Female Total
CML MML CML MML CML MML

Item 1 -0.95 -0.96 -0.17 -0.18 -0.56 -0.70
Item 2 -2.21 -2.27 -1.53 -1.59 -1.86 -1.97
Item 3 -0.74 -0.74 +0.34 +0.38 -0.19 +0.12
Item 4 -3.89 -3.86 -3.78 -3.75 -3.77 -3.69
Item 5 o.oo- +0.03 o.oo- +0.01 0.00" -0.14
CzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 42.98 47.7 41.92 46.3 51.77 57.2
df 22 25 22 25 22 25•

"Fixed according to identifying restrictions

The results made clear that the CML estimates resulted in a slightly
better fit than the parametric MML estimates, though this was at the
cost of a loss of three degrees of freedom. The parametric MMLesti-
mation procedure imposed some extra constraints on the distribution
of the latent variable, whereas with CML the latent distribution was
not even a part of the likelihood that was maximized. This difference
between the two estimation procedures was also reflected bythe dif-
ference in degrees of freedom. Furthermore, the differences between
the estimated item difficulties in the two estimation schemes became
negligible when attention was given to the male and female subsamples
separately. The differences were somewhat larger, however, for the to-
tal sample. The overall picture gained by this comparative analysis is,
however, apparent: the two sets of estimated item difficulty parameters
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have a distinct resemblance. The two estimation proceduresprovide
highly comparable, though not identical, results.

Another less restrictive solution is to assume that the density function
¢(zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0) belongs to a given parametric family of distributions, and to esti-
mate the parameters describing¢(0). It could be assumed, for instance,
that the latent variablezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 is normally distributed with unknown mean
Jl and unknown variancea2

• Subsequently, the distribution parameters
Jl and a can be estimated along with the itemparameters.P

Within this tactic of estimation, two different approachescan be dis-
tinguished. Firstly, it is possible to estimate the parameters describing
the population distribution by using the MML function in 4.16, pro-
vided that the item parameters are known.It is immaterial whether
these parameters were estimated using CML or obtained from aprevi-
ous calibration sample. This approach is similar to the one suggested
by Andersen and Madsen (1977), but it should be noted that thelike-
lihood function which is used to estimate the parameters defining ¢(0)

is different. If the item parameters are known, this approach of esti-
mating the parameters defining the latent distribution canalso be used
for the two- and three-parameter models (this is not true of the Ander-
sen/Madsen solution). Examples of this estimation procedure can be
found in Mislevy (1984). In this article, several parametric possibilities
are presented for¢(O), such as the normal distribution, a mixture of
normal components, and the beta-binomial.

An alternative approach is to estimate the item parameters and the
parameters describing¢(0) simultaneously. Examples can be found in
Rigdon and Tsutakawa (1983) and Glas (1989).

Regardless of whether the density function¢(0) is considered com-
pletely known or¢(0) is assumed to belong to some parametric family
with unknown parameters that have to be estimated, the MML esti-
mation is said to be parametric. Within the framework of MML it is,

13Whether both J.I. and a can be estimated depends on whether sufficient restrictions are

imposed on the item parametersto fix the location and/or thc metric of the latent. scale,
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however, also possible to employ semi-parametric estimation.!" Semi-
parametric estimation is discussed in the following sections.

4.2.3.2 Semi-parametric estimation

There are two possible strategies that can be used in order toexecute
semi-parametric estimation. Both methods are characterized by the
discretization of the latent scale at a number of node-points. One pos-
sibility is to fix a number of node-points on the latent axis and to assign
particular values to these node-points.If this tactic is chosen, estimates
must be obtained for the item parameters and the latent proportions
which belong to the fixed latent node points. The weightszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA(Xk) are
no longer fixed, but have to be estimated from the data. This proce-
dure will be called semi-parametric estimation. As was illustrated in
the examples in Chapter 3, the discretization of the latent trait and
the assumption that the values of the latent nodes are known results in
latent trait models that are identical to certain restricted latent class
models. Therefore, within the framework of the semi-parametric MML
approach it is possible to bridge the gap between latent trait models
and latent class analysis.

Another possibility is to estimate not only the latent proportions but
also the values of the latent nodes. In this case the entire latent distri-
bution is free and has to be estimated. Only the number of latent node
points are fixed in advance. This will be called fully semi-parametric
estimation. In this section, semi-parametric estimation with fixed node-
points is discussed.

As a starting point is taken the expression for thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPv probabilities.

T

Pv = LPvIOt' POt'
t=l

The structure of this expression is the same as the one that isused

I4TlJe estimation methods discussed here under the headingsemi-parametric estimation

have, in a number of articles, been defined as non-parametric. However, it should be noted

that the relationship between the latent variable and the manifest indicators is still assumed

to be parametric, i.e., this relationship is assumed to follow the logistic distribution. Here,

the term non-parametric will be reserved for those procedures in which Pjg!O, is also permitted

to be non-parametric. Examples of this approach can be foundin Holland and Rosenbaum
(1986) and Croon (1990, 1991a, 1991b).
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for the Gauss-Hermite quadrature. The difference is that the valueszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA()t

and the numberT of these values can be chosen freely (within certain
constraints) by the researcher. The second and most important differ-
ence is that thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA(Xk) weights are now replaced by thePOt probabilities
which are estimated using the empirical data. The form of thelatent
distribution is only fixed in advance in the sense that the latent distri-
bution can be approximated by a discrete distribution with aspecified
number of node-points. This procedure is extremely flexible and it al-
lows for the application of MML to a great variety of item response
models.ZYXWVUTSRQPONMLKJIHGFEDCBAIn Chapter 3, this semi-parametric MML approach was used

extensively.
The parameters in this model (i.e., the item parameters and the la-

tent proportions POt) can be estimated using several algorithms.It is
possible to use Haberman'sNEWTON program which incorporates the
stabilized Newton-Raphson procedure. The application of this program
to models containing linear restrictions on the relations between the la-
tent and the manifest variables did not, however, prove satisfying. The
algorithm is sensitive to the choice of initial estimates and for some data
sets it proved very difficult to obtain convergence. The simultaneous
estimation of item parameters and the latent probabilitiesPOt is, on the
other hand, rather straightforward if the EM algorithm is used. The
estimation problem at hand is similar to the estimation problems that
were dealt with in Chapter 2, i.e., the estimation of parameters in the
latent class model.In the following, the same notation is used as was
in Chapter 2 in order to maintain consistency in the expressions. As
the essentials of the EM algorithm were already explained inChapter
2, only the main steps will be indicated here.

In the E-step, the frequencies for the "complete" data-matrix(eVot)

are estimated (see Equation 2.30). Estimation of the item parameters
can then take place in the M-step by maximizing a likelihood function
that is based on this complete data-matrix. The expression for this
likelihood function is the same as the one used for latent class analysis:

T

L = IT IT [pvotleV9t
v t=l



218

In this expression, the symbolzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe+o
t

denotes the frequency with which
individuals belong to latent "class"zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(}t. Thus,

The number of individuals that belong to latent "class"(}t and respond
in categoryg of item j is indicated byqjg8" which is defined as

Qjg8t = L eVot . Xvjg.

v

The variable Xvjg is, as before, an indicator variable that takes the
value 1 if the response to itemj in response patternv falls in category
g. Otherwise, this indicator variable isO.

Again, it is clear that the latent proportions can be estimated inde-
pendently of the item parameters that define the response probabilities
Pjgl8t• This means that the item parameters can be estimated using just
the first part of this likelihood function. Therefore, the ML estimates
for the item parameters are those values that maximize

In L = L L L qjgOt .lnpjgIOt·

t j 9

Because the item response models dealt with are all defined by the lo-
gistic distribution, the M-step is equivalent to estimating parameters in
an ordinary logistic regression problem. Below, the Nominal Response
model is taken as an example because, as was shown in Chapter 3, this
model is the most general item response model used in this study. The
response probabilities for this model are defined as

exp[ajg .(}t + Cjg]

PjglOt = L:~oexp[ajh . (}t + Cjh]'

Substituting this expression in the likelihood function results in

In L = L L L [qjg8t . ajg . (}t + qjg(}t . Cjg - QjgOt . In SjOt] ,

t j 9
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mj

SjOt = L exp(ajh .()t + Cjh).

h=O

The parametersajg and CjlJ can be estimated using Newton-Raphson.
Hence, the first and second derivatives of the log-likelihood with respect
to these parameters are needed. The expressions for the first derivatives
can readily be obtained:

8lnL

8ajg

8lnL

8cjg

L[qjgOt - e+ot . PjgloJ . ()t

t

L[qjgOt - e+Bt • Pjglo,]·
t

Using these expressions, it is also easily verified that thesecond deriva-
tives are equal to the following expressions:

82lnL

8a;g

82lnL

8c]q

82lnL

8ajg8ajh

82lnL

8cjg8cjh

82lnL

8ajg8cjg

82lnL

8ajg8cjh

- L e+ot . PjglOt . (1 - PjglBJ . ();
t

- L e-o, . PjglOt . (1 - PjgloJ
t

L e-o, . PjglOt . Pjh.IOt . ();
tzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

L e+Bt . PjglOt . PjhlOt
t

-L e+ot . PjglOt . (1 - PjgloJ . ()t

t

L es», . PjglO, . PjhlOt .()t·
t,

It should be noted that the second derivatives with respect to param-
eters pertaining to different items (such as/2~L ) are equal to zero

aJy aJ'y

for the Nominal response model. Hence, the matrix of second deriva-
tives has a block-diagonal structure. Each block pertains to the second
derivatives with respect to the parameters of one specific item.
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With these first and second derivatives the provisional estimates forzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ajg and Cjg can be improved at each M-step. Because of the block-
diagonal structure of the matrix of second derivatives, theestimation
of the item parameters can be carried out for each item separately.
However, for a number of other item response models this is not the
case. When equality constraints are imposed on parameters pertaining
to different items, the parameters for these items have to beestimated
simultaneously.

For the other item response models discussed in Chapter 3, the nec-
essary first and second derivatives can be derived in a similar way. The
resulting expressions can be found in Appendix D.

Using the results from Appendix A, it is possible to obtain estimates
for the variance-covariance matrix of the estimated parameters. When
one is interested in estimating this matrix via the inverse of the ex-
pected information matrix, then expressions are needed forthe first
derivatives ofPv with respect to the item parametersajg and Cjg and
also the first derivatives ofPv with respect to the latent proportions
POt· The latter are equal to the expressions that were already given in
Appendix A for the general latent class model. The first derivatives for
the item parameters are, of course, dependent of the specific type of
item response model. For Bock's nominal response model the following
results are readily obtained:

0pv

oajg

0pv

OCjg

LPOt . PvlOt . (}t(xvjg - PjgloJ
t

L POt· Pvlo, (xvjg - Pj.fJloJ
t

Although one of the main advantages of this semi-parametricap-
proach is that it is possible to estimate parameters for models without
known sufficient statistics, the procedure will be illustrated in this sec-
tion by fitting again the Rasch model to the data on women's lib. In
this way a comparison can be made with the CML procedure as well as
with other MML procedures. First, the expression for the conditional
probability that itemj will be responded to in category 1 will be given
once more. In order to take account of the fact that the latentcontin-
uum is discretized, this probability will be denoted byPjglOt instead of
by PjglOi. The expression for the response probability in the discretized
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Rasch model is:
exp(a .()t +zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACj)

Pjllllt = 1 (() ) .+ exp a· t + Cj

Note that the common slope parametera is used here as a scaling
constant that catches up with different choices for the set of ()t values.
So the value ofa must be estimated. TheCj parameters are equal to
the negative of the item difficulties. Because the locationof the latent
scale is fixed by the choice of the()t values, all five item parametersCj

can be estimated. When the number of node points that is used equal
T, there areT -1 independent latent proportions to be estimated. The
number of degrees of freedom for this model is then equal to:

df = 2n - n - T - 1.

We are left of course with the problem of choosing a specific number
of node points as well as choosing the values that must be assigned to
these node points. The problem of choosing a specific numberof node
points is of course equivalent to choosing a specific numberof latent
classes in latent class analysis. Noting this equivalence does not solve
the problem, however.It is known that in LCA the number of latent
classes can not be extended infinitely, because this leads at a certain
point to identification problems. This observation is alsomade in the
context of semi-parametric estimation of latent trait models (see for

example Mislevy, 1984).
When there are no theoretical grounds for taking a specific number

of latent node points, as will very often be the case, one strategy is to
vary the number of node points and to weight the benefit of a reduction
in the likelihood ratio against the drawback of a less parsimonious and
more complex model. As was made clear in the Chapter2, choosing be-
tween models with a different number of latent node points (or classes)
cannot be guided by resorting to statistical tests, as the difference in
likelihood ratios is not longer asymptotically X2-distributed. Also, the
Akaike information criterium and other criteria that are based on AIC
cannot solve this problem. Hence, again it is not possible tobase the
choice for a specific number of latent nodes on statistical or theoreti-
cal considerations. In the context of estimating Rasch models there is
however one handhold. Before turning to this topic, some results will
be presented for the semi-parametric estimation of the Rasch model to
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the data on women's lib. Table 4.5 provides the values of the likelihood
ratio and Pearson x2-statistics when the Rasch model is fitted to the
data of the male, the female and the total sample.IS All calculations
were performed with the program DILTRAN, a program for the semi-
parametric estimation of latent trait models'" (Heinen andVermaseren,
1992). The values for the node points were chosen on the interval from

Table 4.5: Semi-parametric estimation of the Rasch model; testing re-
sults for models with2, 3 and 4 latent node pointszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

T=2 T=3 T=4
Pearson X2 60.27 45.14 42.54

Male G2 64.38 45.89 42.98
df 24 23 22
Pearson X2 62.50 42.82 43.32

Female G2 68.69 44.40 41.92
df 24 23 22
Pearson X2 92.62 54.16 53.31

Total G2 98.19 54.97 51.77
df 24 23 22

-3 to +3 in order to preserve some comparability with the assumption
of a standard-normal distributed latent variable. The node-points are
assumed to be equally spaced on this interval. So for the casewith two
nodes, the values are-1 and +1;with three nodes, the values are-1.5,
o and 1.5;finally, with four node points, the values-1.8, -0.6, +0.6
and 1.8 are used.

It is clear from the results in Table 4.5 that a model with two latent
node points does not provide an acceptable fit. Note that this model
differs from an unrestricted latent class model with two latent classes in
that the association between the latent variable and a manifest indicator
is the same for all manifest items. The models with three and four latent
nodes provide abetter, but not yet acceptable fit. These models treat
the latent variable as a variable on an interval scale with equidistant
scoring. The difference in the likelihood ratio between themodel with
three nodes and a model with four nodes, is not very large.

15Again only respondents fulfilling the educational requirements were retained in the
analyses.

16This program is currently only available for VAX computers working under the VMS

operating system. Copies of this program can be obtained from the author.
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When more than four nodes were used, the fit could not be improved.
Moreover, when trying to estimate a model with more than fournodes
for these data, numerical problems were frequently encountered. It is
also questionable whether models with more than four latentnodes
are identified. This raises the question what is so special about the
solution with four node points. To examine this, the estimated item
parameters for the four latent classes solution are presented in Table
4.6. It should be kept in mind that the item parameterszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACj are equal to
the negative of the item difficulties. The standard errors are denoted
between parentheses after the values of the estimated parameters.

Table 4.6: Estimated item parameters for the Rasch model; semi-
parametric estimates;T = 4

Male Female Total

Discrimination
parameter: Slope +1.84 (0.12) +1.80 (0.15) +1.86 (0.10)

Item 1 -1.89 (0.21) -1.15 (0.28) -1.61 (0.22)

Item 2 -0.63 (0.19) +0.20 (0.28) -0.31 (0.22)

Easiness Item 3 -2.10 (0.21) -1.67 (0.28) -1.97 (0.22)

parameters : Item 4 +1.06 (0.25) +2.45 (0.28) +1.61 (0.21)

Item 5 -2.84 (0.23) -1.33 (0.28) -2.16 (0.22)

The estimated value of the slope is dependent on the choice ofthe
BzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt values. When the estimated item parameters are examined more
closely, it becomes clear that they are exactly equal to the negative
of the estimated item difficulties in Table 4.2, i.e., the CML estimates.
The semi-parametric solution that is obtained here is therefore identical
to the CML solution. That it is possible that these two procedures
can give the same results was already mentioned by Clogg (1988). It

should be remembered that the CML estimates for the item parameters
can be obtained by fitting a log-linear model. In addition tothe item
parameters, this log-linear model includes a set ofu~ parameters to
insure that the distribution of the total-score variable isreproduced
exactly. As was shown in one of the previous sectigns, there are exactly
n different independentu~parameters to be estimated in this log-linear
model. When a latent variableB is introduced with valuesBt, where
t = 1, ... ,T, the set ofu~ parameters can be written as polynomial
function of this variableB with at most (n - 1) different terms. Hence,
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when there are 5 dichotomous items, there can be no more than four
latent classes when a Rasch model is fit to these data.

This rather simple rule of thumb in establishing the maximumnum-
ber of latent nodes also makes clear why models with more than4
latent classes are not identified. Although in this examplethe CML
estimates for the item parameters could be obtained with a discretized
latent trait model withzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(n - 1) latent nodes, three additional remarks
should be made in this context.

Firstly, choosing fewer than(n - 1) latent classes can also lead to
a acceptable fit and so there is no a priori reason for always taking
(n - 1) latent classes, except when one is only interested in obtaining
CML estimates. At present, however, there seems to be no rationale
for preferring CML estimates a priori.

Secondly, although the semi-parametric estimates for the item pa-
rameters in the examples presented were exactly the same as the CML
estimates, this is not necessarily the case.It depends on the data
whether the distribution of the total-score variable can bereproduced
exactly by a restricted latent class model. A number of very important
results in this context were established by Lindsay et al. (1991). This
topic is discussed in more detail in the next section.

Finally, sometimes the fit can be improved considerably by choosing
a spacing of the latent nodes that is not equidistant, as the analyses in
Chapter 3 have pointed out. So, in principle it is possible tosearch for
an optimal spacing of the latent nodes.ZYXWVUTSRQPONMLKJIHGFEDCBA

4 .2 .3 .3 F u lly s em i-p a r a m e tr ic e s t im a t io n

In fully semi-parametric estimation both the latent proportions p(lt and
the latent node pointszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(}t are estimated from the data. This estimation
procedure has been proposed for the Rasch model by de Leeuw and
Verhelst (1986). The same method was developed independently by
Follman (1988). Fully semi-parametric MML can easily be extended to
the Partial credit model.

As a starting point, the partioning of the likelihood function of MML
as shown in Equation 4.15 is taken up once again:

In LMML = L Iv -In p;
v
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LfvzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA·lnp* + Lf, -In p,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
v c

In LCML + In L,.

Maximization of the first part on the right-hand side yieldsestimates
for the item-parameters that are identical to CML estimates. This part
is a function of the item parameters, but not of the parameters of the
distribution of the latent variable<1>(0). The second part on the right-
hand side refers to the distribution of the total-scores.It measures
how well the observed total-score distribution(f, : c = 0, ... ,,max)
can be approximated by the theoretical probability distribution (p, :

c = 0, ... "max). For the case of dichotomous variables, it has already
been shown that the latter probability distribution is a function of both
the item parameters and the parameters of the distribution function
<1>(0) (see Equation 4.14). These results can easily be generalized to
the situation of polytomous items. When the Partial Credit model is
specified to model the relations between the latent and the manifest
variables, the response probabilities can be expressed as

exp(g .Oi + c· )
P IfJ - )g

jg i - L:h exp(h .Oi + Cjh)·
(4.17)

Equation 4.14 can now be generalized to

_ 1+00

exp(,·Oi) d<1>(O)
P« - I, -00 rr~=l[L:h exp(h .0i + Cjh)] ,

in which <1>(0) is the cumulative distribution function of the latent vari-
able and with

(4.18)

I, = L expL L (Xvjg· Cjg)

vEri. j 9

The notation used is analogous to the one introduced earlier. The
symbol" denotes the total-score overn items; each item is scored with
successive integers 0, ... ,m, so° ::;< ::; (n x m). The subset of response
patterns 1/ with 'v = , is indicated byn" and the summation is taken
over all response patterns1) that result in a total-score equal to c. The
variablesXvjg are indicator variables that take the value 1 if in response
pattern 1/ item j is responded to in categoryg; otherwise the variable
is equal to 0.
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Thus, in the case of the Partial Credit model it is also true that
the theoretical probability distribution ofzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp, depends on both the item
parameters Cjg and the parameters of the distribution function CP(8).

It is important to investigate the conditions under which the CML
estimates are identical to the MML estimates. Let the CML estimates
for the item parameters be denoted byejg; hence, the set ofejg maximize
LCML· It can now be shown thatLMML and L, are maximized by these
CML estimates if and only if a distribution function CP(8) can be found
for which L, with the item parameters equal toejg attains its maximal
realizable value. The latter value is obtained by the unconstrained
estimates under a multinomial model. Maximizing InL, = L,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt..Inp,

yields the following estimates for the probabilitiesp.:

'fie; = ~ with N = L f,·
c

Hence, the problem is reduced to the question whether, giventhe CML
estimates of the parametersejg, a distribution function CP(8) can be
found such that

1+00 exp(C; • 8i) d"""(Ll) _ f, _ ~',n '*' u - - p,
-00 TIj=l [Lh exp(h ·8i + Cjh)] N

(4.19)

Now define:

dG(O

exp(8) and

il[~exP(h . 0, + Cjk) ]-1 d<I>(0).

Then:

r+
oo

~'dG(~) = Pe; = W" (4.20)10 ,e;
Similar results for the Rasch model were first achieved by Cressie and
Holland (1983) and later by de Leeuw and Verhelst (1986). A more
general result was obtained by Holland (1990a).

It can be seen from Equation 4.20 that solving this equation implies
solving a power moment problem. The necessary and sufficient condi-
tions on the set of moments{w, : C; = 0, ... ,C;max} can be stated in the
following way:
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Case I:zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA<;lIULX = 2 .y is even.

Let U be a matrix of order(y + 1) x (y + 1) with elementszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Ui,j = Wi+j-2

for i,j = 1, ... ,y + 1, and let V be the v x v matrix with
elements

Vi,j = Wi+j-l

for i,j = 1, ... ,y. Then the moment problem has a solution
if U and V are both positive semi-definite.

Case II: <;max = 2 .y + 1 is odd.

The two (y +1) x (y +1) matricesU and V are defined as follows:

v· .
1,)

Wi+j-2

Wi+j-l

U· .
1,)

for i, j = 1, ... ,y + 1. The moment problem has a solution
if both matricesU and V are positive semi-definite.

If both matrices are positive semi-definite, there is a bounded non-
negative measuredG( €) such that

W, = 1+00

€'dG(O

for <; = 0, ... ,<;max - 1, and for which

Wy = 1+00

€'dG(€) + x

in which >. ~ 0 is the mass at infinity.If both matrices are positive
definite, a representation with>'= 0 is possible.

It is thus possible to specify the conditions under which it is possible
to estimate the distribution functionG(€). The inequality conditions
that follow from the claim that the matricesU and V must be positive
semi-definite are the same as those discussed by Cressie andHolland

(1983) and Kelderman (1984).
But the question of how this latent distributionG(€) can be estimated

has not been answered yet. The latent distribution cannot bedeter-
mined uniquely by maximum likelihood unless one restricts the class of



228

possible solutions. This can be done by estimating a discrete distribu-
tion function G* with a specified number of support points (=nodes)
that has the same firstzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn moments as the continuous distribution func-
tion G. Karlin and Studden (1966) have proven that such a discrete
distribution function exists. This makes it possible to estimate a dis-
crete latent distribution in a semi-parametrical way. Results with- re-
spect to the consistency of such estimates can be found in Kiefer and
Wolfowitz (1956). A rather technical elaboration of this topic can be
found in Engelen (1989).

Suggestions for using Karlin and Studden's (1966) results to obtain
fully semi-parametric estimation of the parameters in the Rasch model
were first formulated by de Leeuw and Verhelst (1986). The same ideas
were developed independently by Follman (1988). Clogg (1988) arrived
at a formally equivalent model, but he started from a restricted latent
class point of view. Following Karlin and Studden (1966), deLeeuw
and Verhelst (1986) restricted themselves to a descriptionof canonical

solutions for the estimation of the latent distribution. These canonical
solutions are step functions.

1. In the case thatzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC;max is even, this step function has(C;max + 2)/2
points of increase, with the first point being equal to-00. (Note
that this first point of increase corresponds to a latent class in
which the response pattern (0,0, ... ,0) is given with probability
1.)

2. In the case thatC;max is odd, the canonical solution has(C;max + 1)/2
points of increase, none of which is specified in advance. Note also
that those observations on canonical solut.ions only applyif the
necessary and sufficient.conditions on the "moments" are satisfied,
i.e., if the marginal distribution of the total-scores can be fitted
perfectly

An obvious question pertains to the relationship between the MML
estimates obtained with fully semi-parametric estimationon the one
hand and CML estimates on the other hand. Some intuitive notions
can already be made in this context. When the inequality conditions
formulated by Cressie and Holland (1983) are met, the estimated u~pa-
rameters in the log-linear model in Equation 4.13 are compatible with
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the existence of a latent distribution. On the other hand, when the dis-
crete latent structure estimated by fully semi-parametricMML leads
to estimated probabilities'fir; that are equal to the observed propor-
tionszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(f,/zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN) (i.e., when the total-score distribution is being reproduced
by the MML estimates), the partioning of the complete likelihood is
the same as in the case of log-linear analysis.It seems obvious that
in this case both procedures yield the same estimated item parame-
ters. De Leeuw and Verhelst (1986) were the first to formalize the
relationship between fully semi-parametric MML estimatesand CML
estimates. They showed that the MML estimates for the item param-
eters are asymptotically equal to the CML estimates asN ----+ 00 for
a discrete distribution function G* with an infinite numberof support
points. More general results were obtained by Lindsay et al.(1991).

Lindsay et al. (1991) make a distinction between concordantand
discordant cases. A case is concordant if one succeeds in fitting the
observed total-score distribution exactly; it is discordant in all other
cases. With respect to the concordant case, a further distinction is
drawn betweenborderline concordanceand PD (positive-definite) con-
cordance. PD concordance is achieved if all determinantal inequalities
that arise in checking for concordance hold strictly. Borderline concor-
dance is achievedif at least one of these inequalities holds as an equality.
Lindsay's (1991) main results may now be stated in the following way:

1. For concordant cases, the MML and CML estimates of the item
parameters are identical.

2. In the case of borderline concordance, the latent distribution can
be estimated uniquely. Moving beyond the critical number of
node points does not yield a better fit; moreover, the correspond-
ing latent distribution will degenerate in the following sense: the
extra number of node points added beyond the critical number
will collapse so that, in the end, one always obtains the latent
distribution which assigns non-zero probability only to the criti-
cal number of node points. This latent distribution is estimated

uniquely.

3. In the case of PD concordance, the latent distribution cannot
be estimated uniquely: increasing the number of node pointsbe-
yond the critical number does not improve the fit, but will result
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in definitely distinct latent distributions. In this case,the latent
distribution is not identified: one obtains a different estimate for
each different number of node points. However, the latent distri-
bution may be uniquely determined for a fixed number of node
points.

4. In the discordant cases, MML and CML estimates are different.

5. For discordant cases, the estimates of the latent distributions are
also unique and maximallyzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA<;max/2 distinct node points are in-
volved.

Both de Leeuw and Verhelst (1986) and Lindsay et al. (1991)
indicated how the EM algorithm can be used to obtain fully semi-
parametric estimates with a discretized latent distribution. To illus-
trate this, the results of an analysis on the data on women's liberation
for the male sample will be presented. Again, only respondents who
satisfied the educational requirements were used in the analysis.

The parameters of the Partial Credit model were estimated with
three, four and five latent nodes, respectively. In each case the same
value for the log-likelihood ratio(GzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 = 218.06) was found; the MML
parameter estimatesCjg were very much alike. None of these three
models could reproduce exactly the distribution of the total-score. All
these results indicate that this is a discordant case. In order to verify
this, the CML estimates for the parameters were also calculated with
log-linear models.If the data really is discordant, the CML estimates
should differ from the MML estimates.

It should be noted that the value for the log-likelihood ratio obtained
with fully semi-parametric MML is almost equal to the valuesfor this
ratio obtained with MML with four fixed latent nodes (see Table 3.9).
In order to investigate this further, the estimatedejg parameters and
the estimated latent structure should be inspected. Table 4.7 presents
the estimated latent structure both for semi-parametric with fixed and
free values for the latent nodes. With fixed latent nodes, the first
latent class has a probability near zero. The other three latent classes
have probabilities which are almost equal to the corresponding latent
proportions for MML with free latent nodes. The latter procedure
estimates the two distances between the values for the latent nodes as
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Table 4.7: Estimated latent structure; semi-parametric MML with free
and fixed nodes; Partial Credit model for the male subsample

-1.7 0.11
+0.1 0.49
+1.6 0.40

-2.1 0.02
-0.7 0.11
+0.7 0.49
+2.1 0.38

Free latent nodeszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Bt Pet

Fixed latent nodes

Bt Pet

almost equal. As this was also the assumption for the analysis with
fixed latent nodes, this probably explains why both procedures gave
approximately the same fit.

The comparison of the estimatedCjg parameters obtained with dif-
ferent estimation procedures can sometimes be hampered by the fact
that the location of the latent scale is set arbitrarily. This was already
discussed in Section 3.3.3.2. Therefore, it is more convenient to calcu-
late the estimated thresholds and to fix the location on the latent scale
by fixing one of the thresholds to, for instance, zero.

Table 4.8 gives the values for the estimatedCjg parameters as well as
the estimated threshold values, when the thresholds are relocated such
that the first threshold (i.e.,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADjd equals O. These estimated values are
given for the Partial Credit model estimated for the male subsample,
where the estimation was done (i) by fully semi-parametric MML with
three latent nodes (ii) by semi-parametric MML with four fixed latent
nodes and (iii) by CML using log-linear models.F The estimates for
the threshold parameters obtained with the two semi-parametric MML
methods are nearly identical. Given that the value of the log-likelihood
was almost equal for the two methods, this is not very surprising.

When CML is used, the estimates are different: the distance between
the two estimated thresholds is much greater. CML also resulted in a
value for the log-likelihood ratio that was different from the values that
were found with MML. The log-likelihood ratio for CML was 192.94.
All these results conform to the theoretical conclusions that were drawn
earlier in this section. This is a discordant case. The parameters es-

17The fully semi-parametric MML procedure was carried out by an ad-hoc program written

by Croon. The analyses with semi-parametric MML with fixed latent nodes were performed

with DILTRAN, while the CML estimates were obtained with FREQ.
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Table 4.8: Estimated category-parameters and thresholds;three differ-
ent estimation procedures

Fully semi-parametric Semi-parametric MML Conditional ML
MML with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT = 3 with T = 4 fixed nodeszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Cjg {jjg Cjg {jjg Cjg {jjg

Item 1 Cat. 1 0.66 0.00 0.07 0.00 -0.14 0.00
Cat. 2 0.44 0.88 -0.75 0.89 0.46 -0.74

Item 2 Cat. 1 0.64 0.00 0.04 0.00 -0.18 0.00
Cat. 2 1.66 -0.38 0.47 -0.39 1.67 -2.03

Item 3 Cat. 1 -0.66 0.00 -1.24 0.00 -1.49 0.00
Cat. 2 -0.60 -0.72 -1.79 -0.69 -0.59 -2.39

Item 4 Cat. 1 1.41 0.00 0.83 0.00 0.59 0.00
Cat. 2 3.81 -0.99 2.61 -0.95 3.81 -2.63

Item 5 Cat. 1 -1.39 0.00 -1.98 0.00 -2.23 0.00
Cat. 2 -1.71 -1.07 -2.91 -1.05 -1.71 -2.75

timated with CML differ from the ones estimated via semi-parametric
MML. The log-likelihood ratio obtained with CML is smaller than the
one found with MML because in CML a part of the total log-likelihood
is discarded. The restrictions that result from the assumption of a
proper latent distribution function playa significant role in MML, but
are neglected in CML. The difference in the estimated parameters is
clearly shown in Figure 4.1.

The category-characteristic curves for MML are represented by the
solid lines, whereas the CML curves are depicted as dashed lines. It

is very remarkable that the middle categories are much less important
according to the CML estimates, as compared with the MML estimates.
It is also obvious that the distance between the two thresholdsis greater
for CML than for MML.

4.2.4 Evaluation of the maximum likelihood estimation
methods

The differences between the three maximum likelihood methods pre-
sented in this chapter (i.e., JML, CML and MML) are not merelynu-
merical. Each maximizes its own likelihood function. Therefore, one
could raise the question whether one of the estimation schemes is to be
preferred to the others.
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Figure 4.1: Partial Credit model: category characteristiccurves for
MML (solid lines) and CML (dashed lines)
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There are a number of objections that can be raised against the use
of JML. This method is numerically very troublesome for the two- and
three- parameter models and the item parameter estimates are not con-
sistent. With respect to the relationship with the other twomethods,
the following observations can be made. First, as Holland (1990b) has
noted, it is possible to rewrite the MML likelihood functionin a way
that is comparable with the JML likelihood function. Holland shows
that in JML the person parameterszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOi are free to vary over all possible
functions of the response patternsu, whereas in MML the parameters
Oi are in some complicated way constrained by the distributionfunction
«p(O). As Holland notes, this is in accordance with de Leeuw and Ver-
helst (1986) who refer to JML asunconstrained maximum likelihood.

The fact that these complicated constraints are ignored in JML also
explains why JML will lead to G2-ratios and to estimated standard er-
rors for the parameters that are both too small. As such, JML presents
a view that is too optimistic.

It is also possible to link JML and CML. This link originates from
the problem of estimating person parametersOi in CML. Because in
CML the Oi parameters are conditioned out of the likelihood, these
parameters have to be estimated in a separate step, after theitem
parameters have been estimated. There are a number of possibilities
for estimating the person parameters.

Firstly, one could use a likelihood function in which the item pa-
rameters are conditioned out by using the number-correct per item as
a sufficient statistic for the item parameters. This approach has been
advocated by Fischer (1974). As Zwinderman (1991a) has noted, this
procedure is of little practical value when the number of subjects is
large beca.use the symmetric functions cannot be evaluated.

A second alternative (and herein lies the link to JML) is to use the
JML function with the item parameters fixed at their estimated CML
values. This procedure is also subject to criticism becausewith a small
number of items the estimates for0i will be biased and the standard
errors of these estimates will be relatively large. Both procedures have
the disadvantage that noOi estimates are available for the two most
extreme response patterns (i.e., all items answered incorrectly or all
items answered correctly). Moreover, both procedures alsoseem to arise
from what Holland (1990b) has called thestochastic subject rationale.
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So thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfJi parameters are seen as a set of parameters that belong to
subjects, while the subjects are considered a "fixed" factor. Hence,
both procedures pertain to what de Leeuw and Verhelst (1986)have
called the functional Rasch model.

A third procedure is the one suggested by Andersen and Madsen
(1977). Their approach differs from the former two because alatent
distribution function ~(fJ) is assumed to exist and the latent quanti-
ties fJi are now no longer considered to be merely a set of parameters
belonging to "fixed" individuals. Rather, thefJi quantities are seen as
latent scores belonging to subjects that were sampled at random. In
other words, it is thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArandom sampling rationale(Holland, 1990b) which
governs the ideas of Andersen and Madsen. Their procedure pertains
to the random-score model orstructural model (de Leeuw and Verhelst,
1986). Within the context of the Andersen and Madsen approach, no
individual fJi parameters are estimated, but the parameters describing
the distribution function~(fJ) are to be estimated.

This procedure has been briefly described earlier in this chapter. It
is an interesting procedure for two reasons. Firstly, it uses the same
starting point as some MML procedures and hence it sheds light on the
relationship between CML and MML. Secondly, it gives the opportunity
to comment upon the usefulness of the Andersen and Madsen approach
in the light of the results obtained by Lindsay et al. (1991) with regard
to MML estimation.

Andersen and Madsen take as a starting point the likelihood in terms
of the probabilities Pv which, as was noted earlier, can be factored in
two terms by conditioning on the total-scores. One of these terms
is equal to the CML-likelihood and the other pertains to total-score
distribution. The first term is used to obtain CML estimatesfor the
item parameters. The second term depends, among other things, on the
latent distribution function~(fJ). After the CML estimates for the item
parameters have been obtained, this second term is used to estimate
the parameters describing~(fJ).

Herein lies a substantial difference with MML: within the context of
MML the item parameters and the parameters characterizing the latent
distribution are estimated jointly. This has given rise to aserious crit-
icism of MML, for the hypothesis tested within the MML framework
pertains to both a measurement model for the items and some assump-
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tions regarding the latent distribution. When the latent trait model
fails to fit the data, it is not clear what the reason is for this bad fit.
Is the measurement model specified incorrectly, or are the assumptions
with respect to the population distribution incorrect? In this sense,
the approach suggested by Andersen and Madsen seems a reasonable
alternative. First, the measurement model is tested using CML and
afterwards structural hypotheses pertaining to the population distri-
bution can be tested separately. However, this approach assumes that
the estimated item parameters are compatible with a latent distribu-
tion functionzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA<1>(0). The results obtained by Cressie and Holland (1983)
and Lindsay et al. (1991) have pointed out that CML estimatesfor the
item parameters are not necessarily compatible with the idea of a latent
distribution function. As was mentioned before, this is caused by the
fact that the second term in the partioned likelihood represents a power
moment problem and that the solution of this problem does notneces-
sarily guarantee that the estimated total-score distribution equals the
observed distribution. So, conditioning on these total-scores as is done
in CML can lead to different estimates as compared to semi-parametric
MML where the latent distribution is characterized directly.

If the latent trait model is conceived of as being built upon Holland's
random sampling rationale and, hence, a latent distribution of scores
is thought to exist, semi-parametric MML is to be preferred.The fact
that goodness of fit tests in this MML framework necessarilypertain
to complex hypotheses in which both the measurement model and the
latent population distribution play a role is a direct consequence of
the random sampling rationale.It is the price that has to be paid
for in structural latent trait models. The alternative is tostick with
the stochastic subject rationale, but as Holland (1990b) notes, it is the
random sampling rationale that provides the basis for statistical infer-
ence in latent trait models. Thus, the fixed-subjects approach seems
less attractive. And if this fixed-subjects view is not adopted, CML
estimation for the item parameters is less attractive because the only
thing one can do is to hope that the estimates for the item difficul-
ties are compatible with the existence of a proper latent distribution
function. As Lindsay et al. (1991) have shown, this is only soin the
PD-concordant case and whether this case appears in a specific analysis
depends on the structure in the observed data.
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Holland (1990b) also made some relevant comments with respect to
these problems. He showed that CML and semi-parametric MML would
always give the same results for the estimated item parameterszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAif the
second term in the partioned likelihood (i.e., the part thatpertains to
the total-score distribution) only depended on the latent distribution
<1>( (J) and not on the item parameters as well. As this is only approx-
imately true, CML and MML will not always give the same results.
These notions lead to some other interesting conclusions. When the
Guttman scale model is considered as a deterministic Rasch model, it
is easy to see that an individual's location on the latent continuum
fully determines the total-score for that individual. In the usual Rasch
models this is only approximately true because of the stochastic nature
of the item response functions. However, in most data sets that were
analyzed in this study, the data satisfied the PD concordantcase and so
CML and MML item parameter estimates are the same. In most prac-
tical situations CML works just fine. But this observation is only true
for dichotomous indicators. With polytomous data, the relationship
between the position that an individual takes on the latent scale on one
hand and the observed total-score for that individual on theother hand
is far less tight. The consequence is that for polytomous data, CML
and MML will only rarely lead to the same estimated item parameters.
In such cases the use of MML should definitely be preferred because the
latent population distribution is characterized directlyby this method.

The remaining question is whether semi-parametric or fullysemi-
parametric MML should be used. At this time, fully semi-parametric
MML is only applicable in latent trait models for which knownsuffi-
cient statistics for the (Ji-parameters exist. This methodcan therefore
be used for the Rasch model (in the case of dichotomous data) and for
the Partial Credit model and the models that can be derived from this
model (in the case of polytomous data). The semi-parametricmethod
in which the values of the latent nodes are fixed in advance ismore
widely applicable and consequently, more advantageous. A second ben-
efit of this procedure is that it is computationally much simpler than
fully semi-parametric MML. However, the fact that a set of(Jt values
has to be chosen can be regarded as a drawback of this procedure.
In those cases in which both semi-parametrical procedures could be
employed, the disadvantage of selecting the values of the latent node
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points in advance is, however, not always serious because inthe case
of PD concordance, the latent structure is not identified. With the
correct choice of the number of latent nodes, both procedures will lead
to the same estimated item parameters. Only in discordant cases (and
as stated earlier, this will most notably be the case with polytomous
data) is the latent structure unique and identifiable. In this case the
two semi-parametric methods can lead to different solutions. The ex-
tent to which the estimated latent structure and the estimated item
parameters will be different with both estimation schemes is not clear
at this moment. Further research is needed to clarify these topics.

4.3 Testing latent trait models

The problem of testing log-linear models and latent class models was
taken up in Chapter2. To summarize this discussion briefly, there are
basically two methods for evaluating the goodness of fit of such models.

One way is to perform statistical tests. The null-hypothesis for the
overall test states that the observed data are sampled from apopulation
for which the specified model is true.If this hypothesis has to be
rejected, it will not always be clear which particular aspects of the data
are responsible for the bad fit. Performing conditional tests on more
specific hypotheses can help to identify the sources of bad fit and to
indicate alternative models that will be more successful indescribing
the structure of association in the data.

A second way of analyzing and comparing competing models is to
use descriptive indices. A benefit of these indices is that the problems
that arise because of the asymptotic character of the statistical tests
are circumvented. A drawback, however, is that the evaluation of the
values of these measures is rather subjective.

The same methods for evaluating the goodness of fit of competitive
models can be discerned in the context of latent trait models. First
of all, there is, at least theoretically, the possibility ofperforming an
overall test for goodness of fit. This can be done by using either the
Pearson x2-statistic or the log-likelihood ratio. The formulas for both
test statistics were given in Chapter2. Both statistics are asymptoti-
cally distributed as x2-variables when certain conditionsare satisfied.
Read and Cressie(1988) showed that the Pearson statistic and the log-
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likelihood ratio are special cases of a more general statistic, from which
other test statistics can be derived that share some of the properties
of the Pearson statistic and the log-likelihood ratio. In some situations
with sparse data, these new statistics may be better than Pearson'szyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX2

orzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG2
•

It is important to note that the conditions under which Pearson's X2

and G2 are asymptoticallyX2 distributed will never be satisfied if the
parameters of the model are estimated with JML because JML does
not provide consistent estimates for the parameters. Thesedifficulties
do not arise with CML or MML.

As was already noted in Chapter 2, it is known that the expected
frequencies(N . Pv) should be sufficiently large in order for the test
statistics to have a sampling distribution that approximates the theo-
retical X2 distribution to a satisfying level. While this creates problems
when these statistics are used in latent class analysis, these problems
are surpassed completely by the difficulties that arise within the set-
ting of applied latent trait models. The reason is quite obvious: in
psychological testing the number of items, and therefore the number
of possible response patterns, is much larger than in the case of latent
class analysis. So, in research where latent trait models are applied,
the expected frequencies will be, on the whole, smaller.

Of course, this is not to say that there is any fundamental difference
between latent class models and latent trait models as to thepotential
use of both test statistics. Several authors have proposed circumventing
these problems by pooling response patterns in order to increase the
expected frequencies. This introduces new problems. As Glas (1989)
noted, the way response patterns are pooled is a function of the data
itself. Therefore, it is hardly possible to derive the sampling distribution

of test statistics based on pooled data.
Besides the possibility of testing global hypotheses concerning good-

ness of fit, one could also test more specific hypotheses in order to
gain some understanding with regard to the possible sourcesof bad
fit. One way to do so is to make use of estimated standard errors of
the model parameters. Hypotheses concerning individual parameters
can be tested by calculating est.imated standardized values of the pa-
rameters. This procedure is ident.ical to the one discussedin Chapter
2. Hypotheses with respect to single parameters can also be tested by
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formulating conditional tests, i.e., by comparing different models. Such
conditional tests are also interesting when the hypothesesconcern a set
of parameters. This topic will be discussed later. Within the framework
of latent trait models, the question has been raised whetherthe testing
of hypotheses should be aimed at the assumptions that underlie the
model (see, for example, Molenaar, 1983b). For the Rasch model, this
has led to a number of different test statistics. Usually, these statistics
are divided into two categories. These two types of test statistics are
discussed in the following section.

Test statistics based on first-order information The firstcate-
gory is based onzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfirst-order information (Zwinderman, 1991a): the sub-
jects are divided into subgroups and the number of positive responses
to an item within these subgroups are compared with the expected
numbers of positive responses. Because the observed numbers are the
sufficient statistics for the item parameters in the subgroups, this proce-
dure in effect studies the between-groups variation of the estimated item
parameters (Van den Wollenberg, 1979).If the Rasch model holds, the
estimated item parameters for subgroups can only differ within chance
limits because the item parameters are sample independent.Thus, test
statistics which are based on first order information are sensitive to
violation of this assumption of sample independence.

The subgroups of subjects can be arranged according to any crite-
rion. One could use background or demographic variables (for example,
gender) or specific test items as in Van den Wollenberg'ssplitter item
technique (Van den Wollenberg, 1979, 1982a). Very often, subgroups are
obtained by partioning the sample according to observed total-scores.
In that case, the testing procedure is especially suitable for testing the
assumptions of monotonicity and sufficiency (Zwinderman,1991a). Be-
cause sufficiency of the total-scores implies that the itemcharacteristic
curves run parallel, testing differences between item parameters esti-
mated within such subgroups is identical to testing for variation in the
slopes of these curves.

A very straightforward test statistic within this first category of test
statistics is Andersen's (1973b)conditional likelihood ratio test. The
general formulation for this test statistic is as follows (see, for instance,
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Zwinderman, 1991a):zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Z = -21n [ mLcA(a)]
na=1 Lc

The number of different groups is equal to m. The maximum of the
usual conditional likelihood (see Equation 4.9) is denotedby i.: while
the maximum for the conditional likelihood in subgroupa is repre-
sented byL~a). When the Rasch model holds and the item parameters
are the same in different subgroups, n::lL~a) will be equal tozyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt: An-
dersen proved that the test statistic is asymptotically distributed as a
x2-variable. The number of degrees of freedom for this test is equal to
(n -l)(m -1) when the number of items is, as usual, equal ton. When
the subgroups are formed according to the total-scores, thenumber of
these groups is equal to(n - 1) because individuals with a total-score
equal to either 0 orn do not provide any information about the item
parameters. In that case, the number of degrees of freedom isequal to
(n - l)(n - 2). A significant result indicates that the item parameters
are not the same across subgroups and, as a result, the Rasch model
does not hold.

Zwinderman (1991a) noted an interesting feature of this statistic:
Andersen's conditional likelihood ratio isconjugate with respect to
CML estimation. This means that the same estimated item parameters
are obtained whether Andersen's statistic is minimized with regard to
the "overall" item parameters (i.e., for the total sample) or ordinary
CML methods are used. Van den Wollenberg (1988) also prefersthe
conditional likelihood ratio test from a theoretical pointof view. A like-
lihood statistic is theoretically more suitable when the parameters are
estimated using maximum likelihood methods. From that standpoint,
Andersen's statisticis preferable to other candidates such as Martin-
Lof's statistic (Martin-Lof, 1973) or Van den Wollenberg'sQl-statistic
(Van den Wollenberg, 1982b) because these statistics are both of the
Pearsonian x2-type.

Martin-Lof 's statistic is based on a comparison of the observed and
expected frequencies of the total-score distribution.It is expressed as

n-l

T = I) d,J'(V,J-1(d,J,

<;=1
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in whichzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd; is the vector of differences between the observed and ex-
pected total-score frequencies. The summation takes placeover sub-
groups formed according to the total-score; individuals with a total-
score equal to either 0 orzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn (hence, individuals passing none or all items)
are left out. The matrixV~l is the variance-covariance matrix of the
conditional expectationsE(j,j I j,), hence, the expected number of pos-
itive responses to itemj within the subgroup with total-scores equal to
c. Van den Wollenberg's Q1-statistic is a special case of Martin-Lof''s
statistic in the sense that forQ1 it is assumed that the off-diagonal
values of the matrixV~l are equal.

From a practical point of view, it is advisable to use the Ql-statistic
suggested by Van den Wollenberg because it is easier to calculate and
it is also applicable in situations in which Andersen's statistic cannot
be used. Moreover, Van den Wollenberg showed in a number of simula-
tion studies that the three statistics are highly correlated. However, it
has been proven thatT follows asymptotically a X2-distribution, while
the sampling distribution ofQl is unknown. Glas(1989) developed
the same statistic as Martin-Lof, but in a more general context. Glas
showed how this test statistic can be generalized for the unidimensional
polytomous Rasch model and for the Partial Credit model. Moreover,
Glas developed a similar test statistic that can be used in the context
of MML. The interested reader is referred to the literature given above
for further details.

A final remark concerns the availability of still other teststatistics
that were suggested to test for differences in slopes of itemcharacter-
istic functions (see, for example, Wright and Panchapakesan, 1969 and
Fischer and Scheiblechner,1970). These statistics have been criticized
on theoretical grounds by Van den Wollenberg(1988). On the basis of
this criticism, it can be concluded that these statistics should no longer
be applied because the alternatives presented above are more tractable
both from a theoretical and a practical point of view.

Test statistics based on second-order information The second
category of test statistics relies onsecond-order information. This kind
of information can be found in two-way tables for pairs of items. Tests
based on this kind of data are sensitive to violation of the assumption
of a unidimensional latent trait and the assumption of localindepen-
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dence. When the data are in effect generated by a Rasch model,there
should be no association between pairs of manifest indicators when the
latent trait is partialed out. Hence, this test compares theobserved
with the expected two-way tables for item pairs. Van den Wollenberg
(1979, 1982b) proposed a test statistic namedzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ2 for this purpose. Glas
(1989) formulated an alternative statistic which is easierto calculate
and for which it can be proven that it has a sampling distribution that
is asymptotically X2-distributed. Glas also generalized this test statistic

for MML estimation.
Nearly all test statistics that fall in the two categories mentioned

here apply to the Rasch model only. The statistics suggestedby Glas,
however, can be used in a context that is slightly broader; Glas's statis-
tics can be used with polytomous data, provided that known sufficient
statistics exist. This broadens the scope to the Partial Credit Model,
but latent trait models such as the Lord-Birnbaum model or Bock's
Nominal Response model are not included. Glas has also generalized
the use of the test statistics to the context of MML estimation of the
parameters in the Rasch model or Partial Credit model. With this gen-
eralization, new relevant assumptions that underlie the model come into
the picture, i.e., assumptions regarding the distributionof the latent
variable. Glas (1989) developed the Ro-statistic for this purpose. The
sampling distribution of this statistic is approximately X2-distributed.
This test can only be applied for the Rasch model and the Partial Credit
Model, i.e., for models with known sufficient statistics for the ability

parameters.
Zwinderman (1991a) noted that it is almost impossible to separate

between violations of the assumptions of the Rasch model (i.e., sample
independence, equal slopes, and the like) and misspecification of the
latent distribution. The statistic proposed by Glas seems sensitive to
both kinds of violations. Simulation studies performed by Zwinderman
have also pointed out that misspecification of the latent distribution
results in MML estimators that are slightly biased and less efficient.
Zwinderman, among others, used this result to criticize MMLand to
plead for a combined use of CML and MML as in the approach sug-
gested by Andersen and Madsen (1977). As was stated in previous sec-
tions, the problem of misspecification of the latent distribution can be
circumvented by using (fully) semi-parametric MML methods. More-
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over, if one is indeed interested in estimating properties of the latent
distribution, it is natural to start within a MML framework because
CML estimators do not guarantee that the estimated values for the
item parameters are reconcilable with a proper distribution of the la-
tent variable.ZYXWVUTSRQPONMLKJIHGFEDCBA

C o n d it io n a l tests As was stated before, models can be evaluated
statistically by carrying out formal tests. Besides the global tests, there
are also a number of specific test procedures for the Rasch model. The
discussion in Chapter 2 made it clear that tests can be unconditional
or conditional. Conditional tests are based on the comparison of hi-
erarchically nested models. So far, the tests discussed in this section
were unconditional, but a number of the specific tests presented here
can also be translated into conditional terms. Kelderman (1989) has
pointed out these conditional tests by using the log-linearformulation
of the Rasch model:

ln p, =zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu; +zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALXij' Uj

j

This log-linear model pertains to a contingency table formed by item

1 x item 2 x ... x item n x total-score. The model assumes that the
two-variable interactions are absent and because the tableis incomplete,
the specified model is a model forquasi-independence(Goodman, 1968).
The fit of this model can now be compared with the fit of other log-linear
models which are more or less restrictive. An example of sucha model
is the log-linear model which is more general than the Rasch model
because it also includes the two-variable interactions foritem j x total-

score for j = 1, ... n. These two-variable interactions can only reach
significant values when the item difficulties vary over different score-
groups (i.e., groups that are composed according to the total-score).
Kelderman has shown that a test of the difference in the log-likelihood
ratios of this model and the log-linear Rasch model is equivalent to
Andersen's conditional likelihood ratio test. The test can, of course, be
made more specific by including only certain two-variable interactions.
Other alternative models that enable us to test interestinghypotheses
can be developed by including background variables. Kelderman (1989)
shows how hypotheses regarding item bias can be tested by including
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appropriate interactions between items and background variables into
the log-linear model. Two-variable interactions for pairsof items can
be used to test hypotheses regarding local independence. Finally, it
is easy to generalize the log-linear Rasch model to a multidimensional
latent trait model by calculating total-scores over different subsets of
items. Models that are related to these multidimensional log-linear
Rasch models are also discussed by Goodman (1990).

The log-linear approach for testing assumptions in the Rasch model
as developed by Kelderman is very challenging, but it also rather re-
strictive. It can only be used within the context of the Rasch model; in
more general models such as the Lord-Birnbaum model, the total-score
is no longer a sufficient statistic for the ability parameter. Therefore,
if the objective is to compare the one-parameter model with atwo-
parameter model, it seems more fitting to start with a two-parameter
model. A check can be made to determine whether the discrimination
parameters can be restricted to be equal to each other. Kelderman's
strategy is not entirely satisfying in this regard: when hisconditional
test identifies items that are not equally difficult for different score
groups, the Lord-Birnbaum model might be a better fitting alternative,
but it does not have to be so. In other words, Kelderman's approach is
satisfactory when it comes to merely checking some assumptions made
in the Rasch model, but it is not very adequate for comparing compet-
ing models, when these rival models have varying slope parameters. In
addition, the log-linear approach uses CML estimation. As was argued
before, this procedure will not always be appropriate when the data
are polytomous. It therefore makes sense to compare rivaling models
without restricting ourselves to log-linear models.

Descriptive methods There are a number of limitations to the use
of statistical tests in item response theory. In small samples statisti-
cal tests will probably not be very sensitive to severe violations of the
model assumptions. Moreover, given the fact that the sampling distri-
butions of the tests statistics are only asymptotical X2-distributed, the
test results will not always be very reliable in relatively small samples.
With large samples, however, small deviations will give rise to signifi-
cant results. Finally, tests do not give much information with regard
to the degree of fit or bad fit. This means that descriptive methods
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are needed in addition to the formal statistical tests.IS To gain some
understanding with regard to the goodness of fit of a model ina de-
scriptive way, the methods presented in Chapter 2 can be used. The
goodness of fit indices based on the value of the log-likelihood ratio as
well as the information criteria can also prove to be of some value in
the application of latent trait models.

Van den Wollenberg (1988) and Zwinderman (1991a) review a num-
ber of alternative descriptive methods that can be used for the Rasch
model. These methods are similar to the test statistics thatwere devel-
oped for the Rasch model because the descriptive models havealso been
developed to be sensitive for the violation of the typical Rasch model
assumptions. Again, first-order information is used to check for sample
independence and second-order information helps to control for condi-
tional independence. The reader is referred to Zwinderman's excellent
review of (1991a) for details.

18The termzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdescriptive methods is used here in a rather loose way. Zwinderman (1991a)

makes a distinction between heuristic, diagnostic and descriptive methods. In the terminology
used here, descriptive methods cover all these different methods.



C h a p te r 5

S o m e e x te n s io n s o f la te n t tr a it

m o d e ls : in tr o d u c in g a d d it io n a l

la te n t a n d m a n ife s t e x te r n a l

v a r ia b le s

5 .1 In tr o d u c t io n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

This chapter deals with two major extensions of latent traitmodels.
Firstly, multidimensional latent trait models are studied. The latent
trait models that were discussed in the previous chapters, are all based
on the assumption that the association between the manifestindicators
is explained by just one latent trait. However, in a number ofsituations
this assumption is not realistic. Moreover, in some cases there may be a
necessity for testing specific assumptions concerning unidimensionality.
Therefore, an extension of the latent trait models discussed in Chapter
3 in the direction of multidimensionality is needed. This generalization
can be accomplished in a number of ways. In this chapter the focus
is on the multidimensional models that can be written as log-linear
models with several latent variables. In this fashion, maximum compa-
rability with the unidimensional models discussed earlieris preserved.
Alternative methods of defining multidimensional latent trait models

are discussed briefly.
A second major extension of latent trait models is the inclusion of

external variables. External variables are variables thatare not part of



248

the measurement model, i.e., they are not indicators of the latent trait.'
The inclusion of external variables in the analysis makes itpossible to
estimate the strength of the association between latent traits on the one
hand and external variables on the other. This generalization of latent
trait models also makes it possible to test specific hypotheses concerning
the relationship between latent traits and external variables.

The most well-known application of the examination of the relation-
ship between latent variables and external variables in item response
theory concerns the study of item bias, i.e., the differences in the mea-
surement model for specific subgroups; are there differences between
subgroups with regard to item difficulties, etc. Multi-group analyses are
performed to study the relationship between latent traits and external
variables. Another interesting development in this field was prompted
by the proposal of a number of latent trait models by Fischer (1974,
1983, 1987, 1989) and Fischer and Parzer (1991). They proposed la-
tent trait models in which the item parameters are a functionof cer-
tain structural characteristics of the items or a function of differences
in the treatment that individuals have or have not received.This made
possible the inclusion of the treatment variables which define the ex-
perimental design in the latent trait model.

An alternative method of studying the relationship betweenlatent
variables and external variables is to assign scores on the latent vari-
ables to individuals. Once scores on the latent trait are assigned, the
relationship with external variables can be explored usingroutine statis-
tical procedures. Interesting questions in this field concern the manner
in which these latent scores can be estimated and the identifiability of
latent scores. The problems that show up in estimating latent scores
are similar to the problems with respect to estimating factor scores
(see, for example, Steiger, 1979). These topics are also reviewed in this
chapter.

IThe termzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAexternal variables should not be confused with the termexogenous variables.

The latter term refers to variables that operate in a specified structural model only as indepen-

dent variables, i.e., the variation in exogenous variables(as opposed to endogenous variables)

is not explained within the model. External variables can function in such structural models

both as exogenous variables and as endogenous variables.
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5.2 Multidimensional latent trait models

There are several reasons for generalizing from unidimensional to mul-
tidimensional models. Firstly, of course, multidimensional models may
provide a better fit simply because the items may tap more than one
distinct latent trait. Secondly, multidimensional modelsoffer opportu-
nities for studying the relationships between latent variables; the asso-
ciation between these latent variables is not disturbed by measurement
error. This can be helpful in analyzing data from panel research or non-
equivalent control group designs, as is shown in several examples given
by Hagenaars (1992a, 1992b). Finally, studying multidimensional mod-
els helps to clarify the concepts of unidimensionality and local indepen-
dence. Some authors have used these concepts in a way that suggests
that unidimensionality implies local independence, thereby suggesting
that the assumptions of unidimensionality and local independence are
identical (see, for example, Hambleton& Swaminathan, 1985 and Lord
& Novick, 1968). Multidimensional models make the dimensionality
structure of the model explicit. Within this structure, theassumption
of local independence can be retained. Within the context ofmultidi-
mensionality it is clear that the assumptions concerning dimensionality
and local independence are separate ones. In fact, Hagenaars (1990)
has used models with multidimensional latent variables to analyzezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlocal

dependencebetween manifest indicators.
The discussion in this chapter starts with a general multidimensional

latent trait model that. follows directly from Bock's Nominal Response
model. This model can be both extended and restricted in a number of
ways. Some of these restricted models are reviewed briefly.Following
this discussion, the estimation of the parameters in this model is dealt
with. The section is concluded with the presentation of an example.

5.2.1 A general multidimensional latent trait model

A model with two latent variables. This discussion of multidi-
mensionallatent trait models starts with the example depicted in Fig-
ure 5.1. This figure shows how four manifest indicators, denotedzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA

through D, are influenced by two latent variables, designated0(1) and
0(2). The model represented by this figure is an ordinary factor model
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with four manifest variables and two common factors.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0(1) ----- 0(2)

A B c D

Figure 5.1: A model with two latent variables

Models like the one in Figure 5.1 can be used with both continu-
ous and discrete latent variables. When it is assumed that the latent
variables are discrete, the model in Figure 5.1 can be expressed as a
log-linear model. It should be noted that the model in Figure 5.1 is
not identified. However, the model used here is only for explanatory
purposes, so that the problem of identification is not relevant. Using
the notation introduced in Chapter 2, the logarithm of the joint prob-
abilities can be written as

Expressing the common factor model in this way makes it clearthat no
specific assumptions are made with respect to the measurement level
of the latent variables. The two-variable interaction terms are not lin-
earized or restricted in any other fashion.

When the latent variables are variables on an interval level, the two-
variable interactions may be linearized in the latent variables. Taking
variable A as an example, the following restrictions are made:

(5.2)
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The same restrictions are made for the two-variable interactions per-
taining to the other manifest variables. The two-variable interaction
that describes the relationship between the two latent variables, i.e.,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

U~(I)~(2), iszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnot restricted in the model in Equation 5.1.It is possible

t . ific restri . h .. 0(1)0(2) bo Imposespeer c restrictions on t e association parameterUr s , ut
that requires certain extensions of the model that are discussed at a
later point.

With the restrictions on the two-variable interactions describing the
relationship between a latent and a manifest variable as defined above,
the conditional probability for responding in category9 of item A, given
scores rand s on the latent variables0(1) and 0(2) respectively, is ex-

pressed as

Lh exp(U1(1) . 0~1) + Uf2) . oi2) + u1) .

This expression for the conditional probability will now bereformulated
by using a notation similar to the one used in Chapter 3 for defining
the various latent trait models. The conditional response probability
for responding in category9 of item i, given scores rand s on the latent
variables0(1) and 0(2), respectively, is thus

(
A(\) 0(1) + A(2) 0(2) + A)exp Ug . r Ug• s Ug (5.3)

PjgIO~I);0~2) = ~ ( (1) 0(1) + (2) 0(2) + ).
L..Jh exp ajh· r ajh· s Cjh

The parametersa;~ and aYi are, of course, the two-variable interactions
describing the relationship between the two latent variables on the one
hand and the manifest itemj on the other. When Equation 5.4 is
seen as defining a discretized latent trait model, these ajg-parameters
serve as discrimination parameters belonging to the respective latent
variables. The category difficulty parameterCjg is equal to the one-
variable interactionu: in the log-linear model defined earlier.

This multidimensional discretized latent trait model usesa linear
combination of the latent scores as the working part of the model.
Therefore, it is sometimes denoted as alinear MIRT (multidimensional
item response theory) model (see, for example, Spray et al.,1990).
An important characteristic of this model is that it iscompensatory

(Ansley and Forsyth, 1985). This term can easily be explained within

exp(a (1) . 0(1) + a(2) . 0(2) + c· )is r ss S Jg (5.4)
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the context of measuring abilities.It means that an individual who has
a low score on one latent dimension can still have a high probability
of responding with the correct answer, provided that this individual
scores sufficiently high on the other dimension(s). Low ability on one
particular dimension can be compensated for by high abilities on the
other dimensions.

It is also possible to define non-compensatory multidimensional latent
trait models. In that case, an elementary probability for responding in
categoryzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 of itemzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj is defined for each dimension by using an ordinary
one-parameter or two-parameter logistic model. The overall probability
of responding in category9 of item j in the complete multidimensional
space is then defined as theproduct of these elementary probabilities. It
is clear that the minimum of the elementary probabilities sets an upper
bound for the overall probability. The multiplicative character of this
model makes it non-compensatory. Examples of this type of model
can be found in Sympson (1978) and Embretson (1984). A comparison
between compensatory and non-compensatory multidimensional latent
trait models is made in Spray et al. (1990). In this chapter attention
is restricted to the linear compensatory model because thismodel has
direct links to the log-linear and latent class models.

A model with q latent variables. The model in Equation 5.4 can
now be generalized to an arbitrary number ofq latent variables. These
q latent variables are denoted:

When these latent variables are again considered discrete,the number of
latent nodes is equal to TI,T2, ••• ,Ts, •.. ,Tq respectively. Furthermore,
a vector 'ljJ is defined whose elements are the ordered combinations of
the latent nodes on theq latent variables. The elements in this vector
will be subscribed by the indext, so t = 1,2, ... ,(TI X T2 X ... x T, x
... x Tq). Finally, because the response probabilities depend on theq

different latent traits, a vectorajg is defined consisting ofq different
discrimination parameters pertaining to category9 of item i. Thus,
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The response probabilities in the multidimensional model can then
be expressed as

exp(zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAajg •zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(J + Cjg)
p. =

)gl1/1t "exp(a' (J + c· ).
L...Jh jh • )h

The model in Equation 5.5 is the discretized multidimensional version of
Bock's Nominal Response model. The continuous version of this model
was studied by Reckase (1985) for dichotomous items under the heading
multidimensional two-parameter logisticand by Bock et al. (1988), who
also described a parametric MML method for estimating the parameters
in this model. The same model is examined here using discretized latent
traits, again in order to facilitate the comparisons with latent class
models. Discretizing the latent traits again will lead to semi-parametric
MML with fixed latent nodes.

(5.5)

Estimation in the multidimensional Nominal Response model.
Estimation of the parameters in this model can be carried outusing
the EM algorithm. Because of the shift in notation that results from
the multidimensional perspective, the main steps to be set with this
procedure are outlined once again.

In the E-step the frequencies for the "complete" data-matrix, i.e., ev1/;t

are estimated. These frequencies pertain to the number of individuals
responding with pattern1/ and belonging to combinationt at the joint
distribution formed by theq latent variables; they are calculated in the

E-step by

eV1/1t= Iv • P1/;tlv.

The observed number of individuals responding with patternt/ is de-
noted byIv and the estimated probability that these individuals belong
to cell t in the joint latent distribution is represented byP1/;t\v' Once
the frequencies for the complete table are estimated in the E-step, new
estimates for the parameters of the model are obtained in an M-step.
ML estimates for the elements ofajg as well as the category parameters
Cjg are found by maximizing the log-likelihood function. This problem
can be solved numerically by a standard multivariate Newton-Raphson
procedure. This estimation procedure is similar to the procedure used
in logistic regression analysis. The first and second derivatives of the
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log-likelihood with respect to the parameters to be estimated arezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

olnL

oajg

olnL

OCjg

021nL

oajgoajg

021nL

OC]g

02 log L

oaj9oajh

02 logL

OCjgOCjh

0210gL

oajgocjg

0210gL

oajgOCjh

L[Qjg1Pt - e+1Pt . Pjgl1PJ . e
t

L[Qjg1Pt - e+1Pt . Pjgl1PJ
t

- L e+1Pt . Pjgll/Jt . (1- Pjgl1PJ . (()()')
t

- L e+1Pt . Pjgl1Pt . (1 - PjglI/JJ
t

L e+1Pt . Pjgll/Jt . Pjhl1Pt . (()()')
t

L e+l/Jt . Pjgl1Pt . Pjhl1Pt
t

- L e+1Pt . Pjgl1Pt . (1 - Pjgl1PJ . ()
t

L e+1Pt . Pjgll/Jt . Pjhl1Pt . ().
t

In these expressions, the number of individuals belonging to latent class
1f;t is denoted bye+l/Jt and the number of individuals in latent class1f;t

responding in category9 of item j is denoted byQjgl/Jt.

With these first and second derivatives the provisional estimates for
ajg and Cjg can be improved at each M-step. Note that because each
item has its own set ofajg and Cjg parameters, the estimation of the
item parameters can be carried out separately for each item.This is not
the case for a number of other item response models. When equality
constraints are imposed on parameters pertaining to different items, the
parameters for these items have to be estimated simultaneously. After
the estimates for theajg and Cjg parameters have been improved in the
M-step, another E-step follows.

An example of a multidimensional Nominal Response model.
In order to present an example of a multidimensional NominalResponse
model, the data on women's liberation was analyzed again. For this
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example, the data for the total sample (both male and female respon-
dents) were used. The reason is that there were problems estimating
the parameters of the unidimensional Nominal response model for the
male and female subsamples and these problems could only be worse in
the multidimensional case.

A model with two latent variables was specified. For each latent
variable, two latent nodes were used with values equal to-1 and +l.
Table 5.1 presents the estimated values ofthe parameters inthis model.

Table 5.1: Estimated parameters for a two-dimensional Nominal Re-
sponse model with fixed latent nodes; items on women's liberation for
the total samplezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Cjg
.(1) .(2)zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a· a·

Item 1 Cat. 1 0.20 1.28 -0.21
Cat. 2 0.56 1.58 0.56

Item 2 Cat. 1 0.56 1.24 -0.17

Cat. 2 1.71 2.36 1.24

Item 3 Cat. 1 -1.07 1.44 0.26

Cat. 2 -1.01 2.09 1.24
Item 4 Cat. 1 -5.33 -0.05 -5.86

Cat. 2 3.15 1.14 1.08

Item 5 Cat. 1 -1.22 1.15 0040

Cat. 2 -0.90 1.52 1.35

It should be noted that the solution presented in Table 5.1 is not iden-
tified because the matrix with a-parameters can be rotated.Therefore,
it is difficult to give a substantive interpretation of the estimates in
Table 5.l.

Table 5.2 gives the estimated joint distribution for the twolatent
variables. There is a moderate positive association between the two

latent variables.
Not surprisingly, this model had a much better fit than the corre-

sponding unidimensional model that was presented in Chapter 3. The
value of the log-likelihood ratio was 280.19 with 229 degrees of free-
dom for the unidimensional model; the two-dimensional model yielded
a value ofG2 = 182.18 with 209 degrees of freedom. However, the inter-
pretation of the estimated parameters in the multidimensional model
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Table 5.2: Estimated joint probability distribution for the latent vari-
ables

8(2)= -1 8(2)= +1

8{l) = -1 1 .093 1 .118 1.211
8{l) = +1 .310 .480 .790

.403 .598 1.0

was more complex than in the corresponding unidimensional model,
in particular because the multidimensional solution was not uniquely
identified.

Generalization of the multidimensional Nominal Response
model. The semi-parametric MML estimation scheme is quite flexi-
ble and can be used to estimate the parameters in a great variety of
different multidimensional latent trait models. These models can be
obtained both by generalizing and by restricting the modelsin Equa-
tions 5.4 and 5.5. The generalization has to do with the possibility of
including certain higher-order interactions in the model:zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(
(1).0(1) + (2).0(2) + (1x2). 0(1) .0(2) + .)exp ajg r ajgzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS ajg r s CJg

PjgI8~1);8~2) = " ( (1). ()(1) + (2). ()(2) + (1x2). ()(1) . ()(2) + .)'c.« exp ajh r ajh S ajh r s CJh

(5.6)
This model assumes that the response probability for itemj depends
not only on the two main effects of the two latent variables0(1) and
0(2), but also on a combined interaction effect of these latent variables.
This three-variable log-linear interaction is denoted byaJ~X2).

Of course, with more than two latent variables, still more complex
interactions can be included in the model. The possibility of generaliz-
ing the multidimensional latent trait model in this fashionwas pointed
out by Bock et al. (1988). This generalization is also straightforward
within the context of the log-linear formulation as presented in Equa-
tion 5.1. This latter expression suggests other ways of generalizing the
multidimensional model, for example, by including external variables.
This topic was already briefly touched upon in the example presented
in this section.It will be dealt with more extensively later on.

The model in 5.4 and 5.5 can also be restricted in a number of ways.
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Some of these restrictions lead to models that have been suggested in
the literature, but little credence has been given to the fact that these
models can be seen as restricted versions of the general multidimen-
sional latent trait model discussed in this section. Restricted multidi-
mensional latent trait models are discussed in the next section.

5.2.2 Restricted multidimensional latent trait models

The model depicted in Figure 5.1 pertains to two common factors and
four indicators. A natural method of restricting this modelis to convert
it from a exploratory factor model into a confirmatory factor model. In
this type of model, indicators are no longer necessarily connected to all
latent factors. In other words, some factor loadings are restricted to o.
An example of such a confirmatory factor model is depicted inFigure
5.2.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A B c D

Figure 5.2: Restricted model with two latent variables

This model can be derived from the general model in 5.4 by restricting
certainzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAajg parameters to equalo. When it is assumed that the four
manifest indicators each have three categories, Table 5.3 indicates which
ajg parameters are set equal to zero and which parameters are to be
estimated. The first are indicated by 0 and the latter by the x-sign.

It is clear that by restricting certainajg parameters to 0, a large num-
ber of potentially interesting models can be developed. In the example
in Table 5.3, the restrictions regarding the discrimination parameters
are applied in a manner which guarantees that each item is connected to
exactly one latent variable. Another scheme of restrictions that could
be applied is given in Table 5.4. This set of restrictions links the latent
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Table 5.3: Restricted and freezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAajg parameters in the confirmatory factor
model in Figure 5.3

0(1) 0 x x 0 x x 0 0 0 0 0 0
0(2) 0 0 0 0 0 0 0 x x 0 x xA

Item zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA Item B Item C Item D
012012012012

Table 5.4: Restricted and free ajg-parameters in the multidimensional
polychotomous Rasch model

0(1) 0 x 0 0 x 0 0 x 0 0 x 0
0(2) 0 0 x 0 0 x 0 0 x 0 0 x

Item A Item B Item C Item D

012012012012

dimensions not to specific items, but to specific response categories.
Such a model was first proposed by Rasch under the headingMulti-

dimensional Polychotomous Rasch model(Rasch, 1961).It should be
noted that in the Multidimensional Polychotomous Rasch model some
additional assumptions are made. Theajg parameters that are denoted
by the x-sign in Table 5.4 are assumed to be equal so that they can
be absorbed in the latent variables. This is, of course, not an unusual
assumption in the context of Rasch modeling. The expressionfor the
probability that individual i responds in category9 of item j becomes,
in the Multidimensional Polychotomous Rasch model:

exp((}lg+ CJg)

P 18 -
Jg '9 - :Eh exp((}lh + CJh)

(5.7)

The Multidimensional Polychotomous Rasch model links the latent
variables to different categories and not to different variables. Because
in many practical applications it cannot be assumed that therelation
between the latent variables and the probability for responding in a
specific category will be the same for all manifest items, the Multidi-
mensional Polychotomous Rasch model has only limited use.

Andersen (1983) generalized this multidimensional model for the case
in which the ajg parameters are known but not necessarily equal to each
other.
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The possibility of assuming knownzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAajg parameters can also be utilized
for models other than Rasch' Multidimensional Polychotomous model.
For example, by using an integer scoring function, a multidimensional
Partial Credit model or a multidimensional Rating Scale model can be
constructed. Parameters in those models can be estimated byapply-
ing either the semi-parametric MML or the CML. In the latter case,
the latent variables are conditioned out of the likelihood by condition-
ing on the sufficient statistics. The latter are equal to theweighted
total-scores, where the weights are assumed to be known (forexam-
ple, successive integers for polytomous items) and the total-scores are
calculated over a specified subset of the manifest items. Inthe model
depicted in Figure 5.2, for example, one total-score is calculated over
items A and B and the other over itemsC and D. Kelderman (1988)
showed how the parameters in such multidimensional latent trait mod-
els can be estimated by fitting specific log-linear models.The procedure
is similar to the one for one-dimensional models outlined inthe previ-
ous chapter. There it was shown that the logarithm of the probability
that response patternzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv will be observed can be written as

ln p, = u; + LXij . Uj.

j

(5.8)

This log-linear model includes, aside from theUj item parameters the
normalizing parametersu;, which insure that the distribution of the
total-scores will be reproduced. The multidimensional extension has
the same form but now theu; parameters pertain to all possible com-
binations of the different total-scores which are sufficient statistics of
the latent variables. As Kelderman (1988) illustrated, fitting such log-
linear models is equivalent to fitting a model for quasi-independence in
the incomplete table made up of the manifest items and all thedistinct
total-scores. These multidimensional extended Rasch models were also
studied by Goodman (1990) and termedGeneralized Total-score Non-

independence models.

5.3 Relations with external variables

In this section attention is focused on the question of how relationships
between the latent trait( s) and certain external variablescan be inves-
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tigated. Basically, there are two methods. Firstly, one canattempt
to estimate some value or score upon the latent variable for each indi-
vidual. Subsequently, these scores can be related to external variables.
Another possibility is to include the external variables inthe model
and relating the latent traits to the manifest indicators. The distinc-
tion between these two procedures is similar to the difference between
the estimation of factor scores and the correlation of thesefactor scores
to external variables on the one hand, and the inclusion of the external
variables in a covariance-structure model (e.g., a LISREL-type model)
on the other hand. Both procedures are discussed below.

5.3.1 Estimating latent scores

In Chapter 4, a number of topics regarding the estimation of latent
scores for individuals were discussed. For the discussion in this section,
the distinction between the functional model and the structural model
as introduced by de Leeuw and Verhelst (1986) is used again. This
terminology was also introduced in Chapter 4. In other words, when
the subjects are regarded as levels of a fixed factor, then the latent scores
(}i can be regarded as parameters that should be estimated. Technically
speaking, these latent scores have a one-point distribution. This fixed-
effects design is denoted as the functional model.It represents what
Holland (1990a) has called thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstochastic subject rationale. As was
mentioned in Chapter 4, a natural method of estimating the latent
scores in this context is to use joint maximum likelihood estimation
(JML). However, JML estimates are not consistent, and in thecase of
small samples, they can be heavily biased.

In this book, the main emphasis regarding estimation methods is
on MML. This procedure explicitly postulates the existenceof some
distribution of latent scores, and thus belongs in the context of the
structural model.It is based on Holland'srandom sampling rationale.

Estimation of the latent variable within this framework hasa different
emphasis than in the context of the structural model. Firstly, it should
be noted that within the framework of MML, () is merely a variable of
integration and cannot be estimated (Holland, 1990a). The only thing
that is interesting within the context of MML is the density function
of the latent variable. In this context, the parameters of the latent
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distribution are estimated instead of the individual latent scores. Using
parametric MML, the parameters of a known density function can be
estimated and using semi-parametric MML, the unknown continuous
density function can be approximated by an estimable discrete density
function with the same moments as the unknown continuous function.
However, it is still possible to estimate what Holland (1990a) callszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAability
predictors. These are functions that map response vectorsv into values
on the latent variable. This is done by using the posterior distribution
ofzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf), given u, The same idea was already discussed with regard to
latent class models in Chapter 2. The allocation probabilities P8tlv were
introduced in Chapter 2. On the basis of these probabilities, a modal
allocation probability, denoted byPOtiv was defined as the value of the
latent class for which the allocation probability takes itsmaximum:

POtiv = mtJ:'x [P811v P821v ... P8Tlv]'

This estimator is also called themodal a posteriori estimator, abbre-
viated MAP. The same estimator can be used (and, in fact, is used)
within the context of latent trait models. However, becausethe latent
nodest have numerical values that have meaning on an interval scale, it
is also possible to use theexpected a posteriori estimator(EAP), which
is defined as

Oilv = cie. I v) = L f)t . P8t1v'
t

Both ability estimators, the MAP and the EAP, are optimal in aspecific
sense. Each minimizes its own loss function. The MAP minimizes the
number of failures in predicting the latent class score on the basis of the
observed response patternu. As was seen in Chapter 2, this definition of
a loss function can be used to define a measure indicating thestrength of
the relationship between the latent variable and the manifest indicators,
i.e., the proportion misclassifiedE (see Section 2.3.3). The loss function
that is minimized by EAP is the sum of squared deviations between the
true f)-values and the estimatesOilv' In other words, EAP minimizes the
mean-square error of£(f)i I v). Besides an a posteriori mode or mean, it
is also possible to define an a posteriori median. Of course,this ability
estimator minimizes the sum of the absolute differences between f)i and

Oilv'

(5.9)
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The concept of estimating latent scores on the basis of the a poste-
riori distribution of (), given the response patternzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu, seems attractive
in the context of the structural model. There are, however, anumber
of problems as these ability estimators are not always identified. This
identifiability problem with regard to the MAP is discussedby Hage-
naars (1985). The problem can be sketched as follows. Let () denote
the latent variable in the population andB the MAP estimator of (),
based on the allocation probabilities in the population. Finally,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0* in-
dicates the MAP estimator of () based on samplevalues.f Now, when
E =1= 0, there will always be a discrepancy between () andO. Even if all
relevant information concerning the population was available, () would
never be a perfect substitute for (), unless all individualswere classified
correctly (which is, of course, never the case). As Hagenaars showed,
when E =1= 0, there are several different sets of "estimated" ()-values
that can be assigned toindividuals.P All these sets are in agreement
with the model parameters as well as the observed scores, butthey will
differ from one another, and occasionally they may even be correlated
negatively. These sets provide no firm basis for analyzing the relation-
ship between the latent variable and certain external variables. The
problem is, however, not as serious as it may appear as the association
between the latent and the manifest variables is stronger. In general,
however, the latent scores()i cannot be precisely determined by using
the allocation probabilities.

The identification problem with respect to EAP was discussed by
Lindsayet al. (1991) and Holland (1990b). Holland illustrated what
can be known about the posterior distribution of () givenPv in various
situations. The contribution of Lindsay et al. (1991) focuses on the
identifiability of the EAP in the Rasch model. When semi-parametric
MML without fixed nodepoints is used, the latent distribution cannot
be identified for a PD concordant case (see Chapter 4 for further de-
tails). Thus, in this same situation, the EAP will also not beidentified.
The different estimated mixing distributions that are congruent with
the observed frequency distribution of the total-scores, will lead to dif-

2& is the true a posteriori Bayes estimator, while(T- is the empirical Bayes estimator.
3The term "estimated" refers not to the estimation of population parameters on the basis

of sample data, but to the estimation of () values on the basisof the population probabilities

POd ....
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ferent estimates of EAP.
The problem of an unidentified latent distribution can be handled

by using fewer thanzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(n + 1)/2 node-points. This solves the identifiabil-
ity problems, but it disturbs the relationship between semi-parametric
MML estimation and CML estimation in Rasch-type latent trait mod-
els. In other words, this solution is restricted to the context of latent
class analysis with linearized interactions between the latent variable
and the manifest indicators.It does not apply to the semi-parametric
estimation of parameters in latent trait models.

As was noted before, these identifiability problems can have a pro-
found impact on the estimated relationship between the latent trait
and external variables. Therefore, the option of includingthe external
variables in the model in the manner in which this is done in LISREL
models seems preferable. Before surveying this method in more detail,
another method of estimating latent scores is discussed. After the item
parameters have been estimated, it is possible to estimate OJby em-
ploying standard maximum likelihood methods. An ML estimate forzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0i can be found by maximizing the likelihood function based onPlIIU.,

the probability for responding with response pattern1/, given a latent
score OJ.This conditional probability can be expressed in terms of the
response probabilities by

n mj

II II p;;fu.,
j=lg=O

and thus the log-likelihood based onPlIIU. equals

n mj

L L [xvjg .10gPjglu.] .
j=l g=O

In these expressions,XlIjg again is an indicator variable, defined by

XlIjg = 0

if in response pattern1/ item j is responded to

in categoryg,

otherwise.

XlIjg = 1

The quantities Pjglu. in these expressions are replaced by estimates for
these response probabilities based on the estimates for theitem param-
eters. The OJvalue which maximizes this log-likelihood canbe found
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by using a standard univariate Newton-Raphson procedure. The first
derivative of the log-likelihood with respect tozyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABi is expressed as

a log L =zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALL a logL . apjgI9;.

aBl j 9 apjgl9; aBi

Now:
alogL _ Xvjg

apjgl9; Pjgl9;

The expression for the first derivative ofPjgl9; to Bi is dependent on the
specific type of latent trait model under consideration. For the Nominal
Response model, for example, the resulting expression is

apjgl9; [~ ]
~ = Pjgl9; ajg - ~ ajh . Pjhl9; .

I h=O

The first derivative of the log-likelihood with respect toBi thus becomes

alogL n mj

aB. = L L ajg (xvjg - Pjgl9;) .
I j=l g=O

And the second derivative is equal to

a>~~iL~ - ~ {~aJg. P;gl"- [~a;g. Pi91',]'} ..
The expressions for the first and second derivatives of the log-likelihood
with respect toBi for the other latent trait models presented in Chapter
3 are presented in Appendix E.

Maximum likelihood estimators forBi are widely applied in the con-
text of item response theory. These estimators do not use anyin-
formation concerning the distribution of latent ability.ZYXWVUTSRQPONMLKJIHGFEDCBAIn this sense,
this method seems to belong more to the framework of the functional
model than to that of the structural model. However, the method is
employed in a number of computer programs using MML (for exam-
ple, DILOG and MULTILOG). The fact that no information regarding
the latent distribution is used can also be interpreted as anadvantage,
given the identification problems in estimating the latentdistribution
with semi-parametric MML. However, ML estimation ofBi also has
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some drawbacks. Firstly, it is not possible to estimatezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOi for individuals
with the two most extreme response patterns (i.e., in terms of dichoto-
mous items: response patterns with all items answered incorrectly or all
items answered correct). This problem could be circumvented by using
parametric MML and including some assumptions concerning the latent
population distribution in the ML estimation procedure forOi' Most re-
searchers, however, are not willing to make such restrictive assumptions
with regard to the distribution ofOi. Secondly, the properties of ML
estimators are asymptotic. Since the ML estimation ofOi is dependent
on the estimated item parameters, these asymptotic resultswill only
be valid only if the number ofitems (and not individuals) is large. For
research concerned with attitudinal data, this is rarely the case.

5.3.2 Including external variables in the model

In the past, efforts have been made to include external variables in the
latent trait. model in order to estimate directly the relation between the
latent; trait and these exterual variables. In this section, an overview
of the main developments in this area is presented. Firstly,the possi-
bility of relating the latent variable to external variables by way of a
regression model is explored. Afterwards, attention is given to the sit-
uat.ion in which the relations between the latent trait and the external
variables are modeled through log- linear models. This typeof analysis
is particularly useful when the external variables are discrete. A spe-
cial case of relating the latent variables to discrete external variables
is the multiple-group analysis. In such an analysis, each category of
the discrete external variable is regarded as a distinct group of subjects
and the multiple-group analysis focusses on questions suchas: Does the
same measurement model hold in the various groups?; Are the relations
between the latent variable and the manifest indicators thesame in all
groups?, etc.It is clear that these questions have a lot in common with
the problem of relating the latent trait to external variables. Finally,
some remarks are made concerning the situation in which the distinc-
tion between the different groups is not directly observed.In other
words, one or more of the external variables is also latent.
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5.3.2.1 Relating the latent trait to external variables using a
regression model

When external variables are included in a latent trait model, there are
basically two routes one can follow. Firstly, the latent variable can be
related to these external variables through ordinary regression methods.
This results in LISREL-type models in which the measurementmodels
are based on item response theory instead of factor analysis. This option
for including external variables is appealing if the external variables are
continuous. The other alternative is to use log-linear models in order
to model the relations between the latent variable and the external
variables. This alternative is dealt with in the next subsection.

In the context of latent class analysis, Dayton and Macready(1988)
proposed a number of models which relate external variablesto the la-
tent proportions and/or the conditional response probabilities through
logistic regression. In item response theory, one of the attempts to
relate the external variables to the latent trait with the aid of regres-
sion methods, stems from Zwinderman (1991b). The model proposed
by Zwinderman is an extension of the Rasch model, but Zwinderman
claims that this extension can easily be applied to the two and three-
parameter logistic models. Assuming that the latent trait is related to
m external variableszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx; (s = 1, ... ,m) through the linear model:

in whichzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf3 is a vector of length m containing the unknown regression
weights, Xi is a vector of length m consisting of the scores of subjecti

on the m external variables, andti is the error-term for subjecti, The
expression for the response probabilities becomes

exp(,Bo+ 131 . XiI + +,Bm . Xim + ti + Cj)

PjllO; = 1+ exp(13o + 131 . XiI + + 13m' Xim + ti + Cj)'
(5.10)

The regression parameters,Bs, the item easiness parametersCj and the
standard deviationa for the error terms ti, can be estimated with
an EM algorithm first proposed by Zwinderman, provided thatsome
identification constraints are imposed on theCj parameters and the
mean of the distribution of theti. As is common practice in regression
analysis, theti are assumed to be independent, identically distributed
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normal variates. The estimation procedure provides correct estimates
both for the sampling design with fixedzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx variables, as for the case
where the x variables are not fixed in advance but are sampled from
some population distribution.

It is clear that this model can, in principle, be extended to cases with
more than one distinct latent trait, as well as those with polytomous
indicators. The further development of these logistic regression mod-
els makes possible covariance structure models with latentvariables, in
which the relations between the latent variables and its manifest indica-
tors are modelled according to item response theory .. Further research
in this area looks very promising.

5.3.2.2 Relating the latent trait to external variables through

log-linear models

If the external variables that are to be related to the latent trait are dis-
crete or measured on a ordinal or nominal level, modelling the relations
between the latent trait and the external variables can be handled com-
fortably by using log-linear models. This is especially true if the latent
trait is discretized and the parameters in the model are estimated using
semi-parametric MML. A simple model in which the latent variable () is
related to a given external variableE, is sketched in Figure 5.3. When

E----' ()

AzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB c D

Figure 5.3: Relating an external variable to the latent trait ()

() is regarded as a discretized latent trait and the parameters describing
the relations between ()on the one hand and the manifest indicators A,

B, C and D on the other are linearized, then the model is equivalent
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to the following log-linear model:

IzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAABCD9E
npgktmtezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=

(5.11)

Suggestions for using this log-linear formulation in orderto relate the
latent variable to external variables were already given byHaberman
(1978). The parameters in this model can be estimated by including E
as an extra. indicator.If, as is the case of Equation 5.11, the para:meter
describing the relationship between0 and the external variableE is not
linearized, the likelihood equation for estimating the parameter u~rin
the M-step is different from the standard likelihood equations used in
the Nominal Response model (see Chapter 4 for details). The likelihood
equation that must be used in this case is equal to the standard equation
used for log-linear models. These can be found in standard textbooks
on log-linear modeling (see, for example, Agresti, 1990).

If, however, theu~rparameter is linearized, then all the parameters
can be estimated in the same way, i.e., by using the estimation proce-
dure and likelihood equations given in Chapter 4. Formally,there is no
distinction between the manifest indicators(A, B, C and D) and the
external variableE. The only difference between the two types of vari-
ables in Figure 5.4, is that the external variableE is assumed to have a
causal influence on0, while the manifest indicators are seen ascaused
by o. This distinction is, however, irrelevant for the estimation of the
parameters. Only the interpretation of the estimated parameters will
be different for variableE on the one hand and the manifest indicators
on the other hand.

As an example, the data on women's liberation were analyzed again
for both the male and the female samples." Table 5.5 presentsresults
concerning the fit of the Nominal Response model for the simultaneous
group analysis of the male and female samples. Both with 3 and4 la-
tent nodes, the model gave an excellent fit according to the G2 and an
acceptable fit when the Pearson statistic was used. This means that the
same measurement model can be used for both male and female respon-
dents.ZYXWVUTSRQPONMLKJIHGFEDCBAIn other words, this model assumes that there is nodifferential

40nly respondents fulfilling the educational requirements, were included in the analysis.
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Table 5.5: Semi-parametric MML with fixed nodes; Nominal Response
model for a simultaneous group analysis of the male and female samples

Number of latent nodes Pearson'szyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 p df

T=3
T=4

445.74 0.687
442.30 0.715

510.77
501.80

0.054 461
0.087 460

item functioning (DIF).5 The fact that the items on woman's libera-
tion seemed to have the same characteristics for both male and female
subjects could be seen as somewhat surprising, given the differences in
difficulty order that could be observed between the two subsamples in
the previous chapters." The values of the estimated parameters again
indicated that it was difficult to make a distinction between response
categories 0 and 1 for item 4. This phenomenon was already observed
in the different analyses for the male subsample in Chapter 3. The
values of these estimated parameters are not reported here.Results
regarding the relationship between the latent variable andthe variable
gender are, however, presented. Table5.6 presents the distribution of
both the males and the females over the four latent node points.

Table 5.6: Estimated latent distribution of the males and females (per-

centages)

-2.1
-0.7

0.7
2.1

34.9
28.3
21.5
15.3

Male
16.2
22.1
28.1
33.6

Latent nodes Female

These relative distributions can easily be derived from theresponse
probabilities for the variable gender. As in this model gender is treated
as just another indicator, computer programs can provide response

5This expression is used to indicate a situation in which individuals with the same abil-
ity, but belonging to different groups, have systematically different scores. The term DIF
originated in the field of testing research and is widely used in the context of cross-cultural

research, for obvious reasons.
6It should, however, be remembered that these differencesin the difficulty order were found

in analyses of the dichotomous items. In the analysis reported here, the coding scheme with

3 categories was used.
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probabilities for falling in the category female (or male),given specific
latent node point positions. By renormalizing these response proba-
bilities to percentages within the categories of the variable gender, the
relative distributions over the four latent nodes are obtained. As one
can see from the results in Table 5.6, women are more prone to belong to
the higher values of the latent variable, indicating that women are more
likely to have positive attitudes regarding women's liberation. The fact
that the percentage of women with positive attitudes increases (and
the percentage of males with positive attitudes therefore decreases), re-
flects the restriction that the parameter representing therelationship
between () and gender is linearized.

Including an external variablezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE as an extra indicator leads to a
rather restrictive model. Both the structure of the measurement model
and the values of the parameters in this model are the same forall cate-
gories of the external variable. In other words, the relationship between
the external variables and the manifest indicators is mediated entirely
by the latent variable. This model is interesting because itexcludes
differential item functioning. This is a highly relevant hypothesis in the
context of cross-cultural research. However, if this hypothesis has to be
rejected, more flexible models are required to explain or describe the
structure in the observed data.

Figure 5.4 shows three models that can be relevant in examining the
relationship between an external variablezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(E) on the one hand, and a
latent variable (()) and its indicator(A) on the other. For the sake of
convenience, only one indicator is included in these figures.

In all three of these models, it is assumed that there is a relationship
between the latent variable () and the external variableE. As it is
not very interesting at this point to make a distinction on the basis of
whether () influencesE or vice versa, these two variables are connected
not by an arrow, but by a line. The presence of the relation between ()
and E has a clear interpretation: the distribution of the latent scores
will be different in all subpopulations. It is also possible to formulate
models in which there is no relation between () andE, but these are
not included here. Examples of such models can be found in, among
others, Hagenaars (1990).

Model 5.4.a is the model described above. Both the structureof
the model and the parameter values are the same for all categories of
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<.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A

r-.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A-:

EE
5.4.a 5.4.b 5.4.c

Figure 5.4: A number of models for the inclusion of an external variable
in the latent trait model

E. The second model, model 5.4.b, allows for all possible interactions
between the three kinds of variables(0, E and A). The combined ar-
row emanating from0 and E and pointing toA indicates the presence
of the three-variable interaction in the corresponding log-linear model.
This is the most flexible model that can be postulated in the situation
given. The only thing that is assumed to be constant across the differ-
ent groupings ofE is the structure of the measurement model. Both
the distributions of the latent and manifest variables and the relations
between the latent and manifest variables vary over the different cate-
gories ofE. Model 5.4.b can easily be tested by estimating this model
separately for the various subgroups (i.e., the different levels of variable
E) and summing the obtained values of theG2. The resulting G2 value
can be used to test the null hypothesis that the specified model (i.e.,
model 5.4.b) is valid in the population. The degrees of freedom is equal
to the sum of the separate numbers of degrees of freedom for the dis-
tinct tests in the subpopulations. In this example, this test cannot be
carried out because the Nominal Response model could not be fitted for
the male and female subsamples separately (sec Chapter 3 fordetails).
However, because the model in Figure 5.4.b is much more flexible than
the model in 5.4.a and the latter model provided an acceptable fit, it
can safely be concluded that model 5.4.bwill also hold.

Models 5.4.a and 5.4.b can be regarded as the two most extreme
models that could be postulated if an external variable is included in
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the latent trait model. Model 5.4.a postulates the completeabsence of
differential item functioning and is therefore the most restrictive. In
model 5.4.b everything but the structure of the measurementmodel
is allowed to vary over the different categories of the external variable.
Within the spectrum of these two models, several other competing mod-
els can be proposed. One such model is illustrated in Figure 5.4.c. This
model states that the relationship between the latent variable ()and the
manifest indicatorzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA is the same for the different categories ofE. In
this model, the relationship between () andA is not influenced byE,

indicating that the discrimination parameters (i.e., the degree of associ-
ation between ()andA) are the same within the different subgroups.If

the relations between the latent trait and the manifest indicators could
be described by, for example, a Rasch model, then this Rasch model
would hold in all subgroups. However, there is a direct relationship
betweenzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE and the indicators. This means that the item difficulties
will vary over the different levels ofE. Thus, model 5.4.c specifies the
presence of differential item functioning. As stated earlier, there is also
a relationship between the latent variable and the externalvariable,
meaning that the distribution of the latent scores is different in the
various subpopulations.

The estimation of the parameters in model 5.4.c takes place along the
same lines as the estimation of the parameters in the multidimensional
latent trait model. The response probabilities for model 5.4.c can be
expressed as

exp(a;i . (}t + a;!) . Ee + Cjg)

Pjgllh;E. = (1) (2) .
Lh exp(ajh . (}t + ajh . Ee + Cjh)

The logistic regression weight of the external variableE is indicated
here bya;~,while the original discrimination parameter belonging to

the latent variable () is denoted bya;~). Cjg stands for the easiness
parameter belonging to category9 of item i, while the subscription of
the latent variable () by the lettert makes clear that the latent trait is
discretized. This expression for the response probabilities is formally
equivalent to the one for the multidimensional general latent trait model
(see Equation 5.4). The expressions for the first and secondderivatives
are the same as those given in Section 5.2.1, but now the role of the

(5.12)
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second latent variable has been taken over by the external variablezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE.

The model inzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq.12 can, of course, be extended to any number of ex-
ternal variables. Suppose there arek external variablesE; (r = 1, ... k)

and the logistic regression weights for these variables aredenoted by
qjgr. The observed score for individuali on variable E; is written as
E ir and the vector of observed scores on thek external variables for
subject i is denoted byEi. In this case, the response probabilities can
be written as

exp(ajg • Ot + ejg + L;-l qjgr . Eir)

PjgI8,;Ej = k'

Lh exp(ajh • Ot + ejh + Lr=lqjhr . E ir)

Assuming that all manifest items are dichotomous and that the aj dis-
crimination parameters are all equal to each other and therefore can be
incorporated in the latent variable0, the resulting model is a Rasch-
type model, incorporating external variables. The expression for the

response probabilities becomes

(5.13)

(5.14)

It is interesting to compare this model with thelinecr loqisiic test model
(LLTM) proposed by Fischer (1974, 1983). For this model the response
probabilities are written as

exp(Oi - L;-l qjr . Eir)

PjI8;;Ej = k •
1+ exp(Oi - Lr=lqjr . E ir)

There are a number of differences between 5.14 and 5.15. Firstly, Fis-
cher treats the latent variable0 as continuous, so it is subscribed by
the subject indexi, instead oft as is the case in 5.14. Secondly, and
more importantly, 5.15 has no separateej, item parameter while 5.14
does have such a parameter. The LLTM does assume that all differ-
ences in item difficulty can be explained by differences in the "external"
variablesEr• These variables are thought of as representing the factors
underlying the cognitive complexity of the items. In other examples in
which the LLTM (or models that are derived from the LLTM) is used
theseE; variables embody the absence/presence of treatments subjects
received. The values of these variablesE; are therefore assumed to

(5.15)
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be known. The basic idea behind the LLTM is that all differences in
item difficulties are due to differences in the structural characteristics of
items or to differences in treatments subjects received that are implied
by the research design.If the item difficulties are denoted byzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj, the
LLTM assumes that

k

bj = 2::= qjr . e;
r=l

Thus, an important difference between the LLTM and the modelde-
fined by Equation 5.14 is that in the LLTM theE; variables denote
differences between theitems, while in model 5.14 theEir variables
indicate differences between individuals.

The fact that it is the item difficulty parameterbj rather than the
easiness parameterCj that is reparameterized in the LLTM also explains
why the +-sign in 5.14 is replaced by the --sign in 5.15. This difference
is irrelevant.

The LLTM was proposed by Fischer in order to make it possible to
study the cognitive complexity of the items. The LLTM shouldhelp the
researcher formulate theories regarding the elementary cognitive opera-
tions that are involved in responding to items, in essence, amicro-theory
of learning. If the Rasch model is suited to identify items with DIF,
the LLTM was to make it clearwhy these items show DIF. In prac-
tice, however, the LLTM has not proven successful. The reasons are
obvious. In many situations it is not possible to explain allvariance in
item difficulty parameters by the linear decomposition in terms of cog-
nitive factors or experimental treatments. Another reason, pointed out
by Zwinderman (1991a), is that the cognitive operations often do not
function according to the simple unidimensional model thatis assumed
in the LLTM.

The fact the LLTM uses a linear decomposition of the item difficulty
parameters suggests that the LLTM is a special case of the Rasch model.
Within this interpretation, the LLTM should have been surveyed in
Chapter 3. However, as Fischer (1989) claims, the likelihood equations
and uniqueness conditions of the LLTM make it, in a formal sense, more
general than the Rasch model.

The differences between the LLTM, on the one hand, and the dis-
cretized latent trait models which incorporate external variables, on the
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other, are far from obvious. The theoretical foundation of the LLTM
makes this model rather special.It is impossible. to argue that the
LLTM should be regarded as simply a special case of 5.14 in which
the Cj item parameters have been set equal too. However, the major
drawback of the LLTM, i.e., the assumption that all variability within
the items is due solely to the basic variableszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEr, makes the models in
5.13 and 5.14 interesting competitors for describing and explaining the
relationships between external variables and latent traits in cases in
which items exhibit differential item functioning.

The differences between LLTM and the discretized latent trait model
in Equation 5.14 are now clear. However, it is possible to develop
models that combine the characteristics of the LLTM and the model
in Equation 5.14. The details of such latent trait models will not be

discussed here.

5.3.2.3 Relating the latent trait to unobserved external vari-

ables

In the preceding section it was argued that relating a discrete external
variable to the latent trait model is equivalent to performing a multi-
group analysis, in which the distinction between the groupsis ruled
by the categorization of the external variable. At times, this idea of
multi-group analysis may seem very attractive, even when the grouping
variable is not observed. Introducing latent grouping variables makes
possible the study of DIF in situations in which no grouping variable
is available; it also makes it possible to study DIF with a correction
for measurement error in observed grouping variables. The idea of ac-
counting for heterogenity in the values of the model parameters among
different subpopulations by introducing a latent variableis not new.
It was applied in, for example, hazard models (Heckman and Singer,
1982), Markov models (van de Pol and de Leeuw, 1986) and the analysis
of rankings (Croon, 1989; Croon and Luijkx, 1992). Recently, several
suggestions have been made as to how to incorporate the idea of latent
grouping variables in the latent trait models. All of these proposals
focus on the Rasch model or the Partial Credit model because of the
presence of known sufficient statistics in these models. This presence
makes the estimation of parameters in these models much easier.
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Mislevy and Verhelst (1990) proposed a latent trait model which
takes into account the different solution strategies individuals can em-
ploy when responding to test items. The model is based on the logistic
latent test model. It assumes that the item parameters can be ex-
pressed as functions of smaller numbers of parameters that pertain to
these solution strategies. Furthermore, it is assumed thatan individual
uses the same strategy for all items, but it is unknown which strategy is
used by a specific individual. It is necessary to make some assumptions
with respect to the item difficulties in order to relate themto the ba-
sic parameters characterizing the different solution strategies. Mislevy
and Verhelst indicated how these basic parameters, the proportions of
individuals employing the different strategies as well as the latent dis-
tribution within each solution class, can be estimated using an MML
method. The necessity of explicit assumptions concerning the way in
which the basic strategy parameters are related to the item difficulties
is both the strength and the weakness of this model.If an explicit
theory on solution strategies and the way in which the item difficulties
depend on these strategies is available, this model allows for the test-
ing of quite specific hypotheses. However, in the absence ofa priori
theoretical notions, the model would appear to be not very useful.

Another attempt at incorporating unobserved grouping variables in
latent trait models was made by Rost (1990, 1991). Rost's models as-
sume the existence of several latent classes and within eachlatent class
a latent trait model is specified. The latent trait models inthese la-
tent classes are formally equivalent (in each class the model is a Rasch
model or in each class the response probabilities follow a Partial Credit
model), but the item parameters in each class differ. The models pro-
posed by Rost do not require a priori assumptions regarding the item
or category parameters. The expression for the response probabilities
in this model, if a Partial Credit model is specified, withineach class is

exp(g .zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Jir + C)gr)

PjgIO.;uzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr = I:hexp(h . (Jtr + Cjhr)
(5.16)

In this expression, the latent grouping variable is denotedby u and an
arbitrary category of this variable withr. The latent trait is subscribed
by both the subject indexi and by the latent class indexr though this
is not necessary as each subject belongs to just one latent class. As
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the category parameters vary over the latent classes, theseparameters
are also subscribed byzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr. In this model, the total-scores are the suffi-
cient statistics for the parametersBiT> provided an equidistant integer
scoring system is used for the manifest items. By conditioning on these
total-scores, a likelihood function can be obtained in which thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABir pa-
rameters have disappeared. The CML estimation procedure proposed
by Rost uses the EM algorithm and provides estimates for the latent
class specific parametersCjgr, for the proportions of subjects in the la-
tent classesPr, and for the total-score distribution within each latent
class. Rost claimed that this estimation method could be used with
relatively large numbers of items. A drawback of this procedure is that
no estimates can be obtained for the proportions scoring thetwo most
extreme total-scores in each latent class. This is a direct consequence
of the proposed CML procedure.

Finally, Kelderman and Macready (1990) suggested the use oflog-
linear and latent class models for examining the influence of both ob-
served and unobserved grouping variables on differential item function-
ing. In Chapter 3, the log-linear Rasch model was dealt with exten-
sively. The log-linear formulation of the Rasch model is equal to

ln p; = u: + 2:Xij . Uj.

j

(5.17)

The u; parameters serve to reproduce the distribution of the total-
score. The item difficulties are equal to-Uj, and the Xij quantities
represent the observed score of subjecti responding to itemj (thus
Xij equal eithers 0 or 1). The most attractive property of the log-linear
formulation of the Rasch model is that the latent variableB is eliminated
entirely because of the conditioning on the sufficient statistic, i.e., the
total-score variable. A manifest and/or latent grouping variable can
easily be added to the log-linear model in 5.16. To illustrate this, the
sole focus is on the addition of a latent grouping variable. Details
concerning log- linear Rasch models with manifest groupingvariables
were extensively reviewed in Kelderman and Macready (1990). Two
examples of log-linear Rasch models with a latent grouping variable
are denoted in Table 5.7. Then. manifest indicators are denoted by
Xl through Xn, while the total-score and the latent grouping variable
are indicated by Sand U, respectively. The notation used here is
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Table 5.7: Log-linear Rasch models with a latent grouping variable

ModelzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

{Xd,···, {XzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn}, {SU}
{XIU}, ... , {XnU}, {SU}

Fitted Marginals

Model I

Model II

common in the literature on log-linear models. The marginals of the
joint Xl x ... X; X S x U contingency table that are fitted under the
model are indicated in Table 5.7. Fitting these marginals implies that
the corresponding log-linear interactions as well as all interactions of
lower-order that are contained in these marginals, are fitted by the
model."

The first model in Table 5.7 assumes that there is a relationship be-
tween the total-score and the latent grouping Variable, butthat there
are no relations between this grouping variable and the manifest in-
dicators. This model is, thus, equal to the model in Figure 5.4. The
expressions for the logarithms of the joint probabilities can be shown
to be a special case of the expression in Equation 5.11. This model,
therefore, assumes a Rasch model with the same parameters ineach
latent class. There is no differential item functioning.

Model II in Table 5.7 takes into account the direct effects ofthe
latent grouping variable on the manifest items. This model assumes a
Rasch model within each latent class, but the item parameters differ in
the individual latent groups. This model is closely relatedto the Rost
model in 5.15 (the only difference, of course, is the fact that the model
proposed by Rost assumes the more general Partial credit model, while
Kelderman and Macready restricted their models to cases involving
dichotomous items, i.e., the Rasch model). The model is alsoequivalent
to the one shown in Figure 5.4.c, though it must be pointed outthat
the grouping variable considered in model II is latent.

It should be noted that the joint contingency tableXl x ..Xn X S xU

is incomplete because of the presence of structural zeros. The expected
frequencies for this joint contingency table for the two models can be
estimated using Hagenaars' program LCAG. Once these frequencies are

7Some one-variable parameters must be set equal to zero, in order to impose the neces-

sary identifiability constraints. This is not indicated inTable 5.7, as this would needlessly

complicate things. See Chapter 4 for details.
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calculated, the estimation of the log-linear parameters, the item diffi-
culties, and the total-score distribution in the latent classes is straight-
forward.

The procedure proposed by Kelderman and Macready is very flexible,
but like the methods suggested by Rost, can only be applied toitem
response models with known sufficient statistics for the person parame-
ters. The advantage of the log-linear methods over the CML procedures
proposed by Rost is that the complete total-score distribution within
the latent classes can be estimated. Rost's estimation scheme does not
allow for the estimation of the total-score frequencies forthe two most
extreme categories within the latent groups. However, the drawback of
the log-linear approach is also evident.If the latent trait () is consid-
ered a random variable in each latent class, the log-linear models do
not guarantee that the estimated item parameters will be compatible
with the existence of a proper density function of () within the various

latent classes.

5.4 Causal models for latent and external variables

In both the multidimensional latent trait models and the models in
which external variables are related to the latent traits itis possible
to specify causal models for the relations between the latent and the
manifest external variables.It can be assumed, for example, that the
latent variables are independent or that the relation between the latent
variables is linear.It is also possible to specify specific causal models
for the relation between latent traits and manifest external variables.
These discretized "LISREL" -type models have been proposedby Hage-
naars et al. (1980) and Hagenaars (1988). Causal relationships between
latent traits can be modeled using thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmodified path analysis approach

proposed by Goodman (1973b). This type of model has been frequently
applied by Hagenaars (1992a, 1992b), but in these applications the re-
lations between the latent variables and the manifest indicators were
governed by the classical latent class models; the latent variables were
variables on a nominal scale. Theoretically, however, there is no prob-
lem whatsoever with applying the same kind of models to situations in
which the latent variables are variables on an interval scale, and can be
regarded as discretized latent traits. The same kind of causal models
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can be used when the relations between the latent trait and a number
of given external variables are investigated. The specificadjustments
that are needed in the M-step are clarified here through the discussion
of an example with manifest external variables.

The estimation of parameters in such models requires a modified EM
procedure. The model specified requires that certain restrictions be
imposed on the joint distribution of the latent and manifestexternal
variables before the next E-step is carried out. This can be dealt with
by fitting the required log-linear model on the frequenciesfor the joint
distribution, estimated in the former E-step. The latent x manifest fre-
quencies adjusted by fitting the appropriate log-linear model, together
with the improved estimates for thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAajg and Cjg parameters, are the
input for the next E-step.8

A possible model that could be interesting is depicted in Figure 5.5.
Supposing that the attitudes towards woman's liberation were mea-
sured during a particular number of years the model in Figure5.2 could
be analyzed if, besides the variable "time", also the variable "gender"
were introduced in the analysis. One crucial assumption in this model

Item 1

Time

<. Item 2

(j Item 3

-: Item 4
Gender

Item 5

Figure 5.5: A model for analyzing change incorporating the variable
gender

is that neither the variable "time", nor the variable "gender" has a di-
rect effect on any of the manifest indicators. The same measurement
model (including the same values for the parameters pertaining to this

8Note that the joint latentxmanifest distribution only pertains to the manifest external

variables and not the manifest indicators.
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measurement model) is assumed for males and females, and this mea-
surement model is also assumed to remain unchanged over a period of
several years. Furthermore, the model assumes that the (latent) opin-
ion towards woman's liberation will change over the years, hence, the
relationship between the variable "time" and (}. It is also assumed that
there is a difference between males and females' opinions onwoman's
liberation. This is indicated by the arrow from "gender" towards (}.
Finally, this difference between males and females is not allowed to
change over time and, therefore, the three-variable interaction between
"gender", "time", and (}is absent. Because it is not very likely that
the distribution of the variable "gender" will change over the years, no
relation is assumed to exist between "gender" and "time". The latter
assumption is essential.

Estimation of the parameters in this model requires a modification
of the EM algorithm as described in Chapter 4 and in Section5.2.l.
For the sake of convenience the following notation is introduced. The
latent variable is denoted by (}and an arbitrary category ofthis latent
variable byzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt. The number of latent node points is equal tozyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT. The
variable "gender" is indicated by9 and a category of this variable byg.

The number of categories9 is equal to 2. Finally, the variable "time"
is symbolized byR and an arbitrary point of time byr (r = 1, ... ,R).

The joint frequency distribution for the latent and the manifest ex-
ternal variables hasT x 2 x R categories. The response probabilities
that relate the five manifest items to all the categories of this joint
distribution depend only on the value of (}. Because (}only has a di-
rect effect on the manifest items, the usual expressions forthe response
probabilities as they were presented in Chapter 3 can be usedin the
present example. Of course, when a model was used in which9 and/or
R was also directly related to the manifest indicators, then expressions
for the response probabilities similar to those in the multidimensional
latent trait models were relevant (see Equations 5.4 and 5.5).

In the E-step, the frequencies for the complete table were estimated
using the observed counts for the (Item 1) x··· x (Item 5) x9 x R

contingency table, the initial estimates forPflt, and the initial estimates
for the category-specific discrimination and easiness parameters (the
ajg and Cjg parameters). The procedure followed in this E-step is the
one outlined in Chapter 4.
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The initial estimates for the category-specific discrimination and eas-
iness parameters can be improved in the next M-step using theusual
likelihood equations. In the example presented in Figure 5.5 the mani-
fest items depend only on ()and, therefore, the first and second deriva-
tives for the unidimensional latent trait models can be used. These
derivatives are presented in Appendix D.Ifdirect effects fromzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 and/or
R are also assumed, expressions analogous to the ones for the multidi-
mensional latent trait models must be used. These expressions for the
Nominal Response model are given in section 5.2.1.

At the end of the M-step a new cycle is built in, in order to estimate
the parameters pertaining to the causal model for the variables (),zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9

and R. It is necessary to include this new cycle because the ordinary
EM algorithm will lead to estimates for the expected frequencies in the
three-way table ()x9 x R that will not satisfy the causal relations be-
tween the three variables sketched in Figure 5.5. Generally, a saturated
model is needed to describe the relations between the three variables if
no correction is made after the M-step, because all log-linear interac-
tions can be present in the estimated expected frequencies.The extra
cycle at the end of the M-step is meant to adjust the expected frequen-
cies for the three-way table of the joint distribution of thelatent and
the manifest external variables to the specified causal model.

It is assumed that9 and R are mutually independent and thatB

depends on9 and R. Therefore, the independence between9 and R
should hold in the two-way table9 x R, and not in the three-way table
() x 9 x R. It is incorrect to fit the log-linear model{g()}{RB} for the
three-way table.If there is no association between the two explanatory
latent variables (no association in the two-way table9 x R), there will
almost certainly be some interaction between these two latent variables
in the three-way table. Goodman (1973b, 1973c) indicated that the
parameters in such models, as well as the expected frequencies, can be
estimated step-by-step by solving a system of log-linear equations. The
suggestion that this modified path analysis be applied to systems with
latent variables was made by Hagenaars (1985) and Hagenaarset al.
(1980).

In short, the procedure is as follows. The expected frequencies for
the joint latent variable that have been estimated in the m-th E-step
are denoted byFtgr(m). By summation over (), the expected frequencies
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for the two-way tablezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ x R, denoted byzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFgT(m), are easily obtained.
Because it is assumed that9 and R are independent for the two-way
table, improved estimatesFgT(mt) for this two-way table can be found
by fitting the log-linear model{9}{R} for this table. For the three-way
table, a simple log-linear model is assumed to hold with the only main
effects being fromQ and R on (). There is no combined interaction of
the two independent variables on ().It can be shown (Goodman, 1973b,
1973c) that the expected frequencies for this log-linear model can be
found by fitting the log-linear model{Q(}}{R(}}{QR}. This leads to
improved estimates of the expected frequencies in the three-way table
FtgT(mt). The causal model in Figure 5.5 assumes that both the model
specified for the two-way table and the model for the three-way table
are correct. The expected frequencies for the three-way table under
the assumption that both models hold (indicated byFt~'T(mt)), can be
calculated by

* () () FtgT(mt)
FtgT mt = FgT mt . FgT(m) .

These frequenciesFt*gT(mt) are input for E-step m+ 1.

This example was presented in order· to illustrate the possible
strength of the incorporation of external variables in models for trend
analysis. Of course, more complex models are also possible,for instance,
models with several latent traits or models in which the manifest indica-
tors are directly affected by the external variables. All these situations
can be dealt with using the adjusted EM algorithm discussed here. For
examples in which this procedurewas used in the context oflatent class
analysis, the reader is referred to Hagenaars (1985, 1990, 1992a).

(5.18)

5.5 Evaluation

In this chapter, two important extensions of latent trait models were
discussed. Firstly, multidimensional latent trait modelswere surveyed.
The generalization of unidimensional to multidimensionalmodels is
straightforward, certainly if the latent trait is discretized and the anal-
ogy with log-linear models including latent variables can be established.
The link with log-linear modeling also draws attention to the possibil-
ity of testing models with causal relations between the latent variables.
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The methodology of the "modified path analysis" introducedby Good-
man (1973b, 1973c) for log-linear models and applied to latent class
analysis by Hagenaars (1985) can be useful in item response theory,
provided that the latent traits are discretized.

Another important extension of latent trait models concerns the re-
lations between latent traits and external variables. One way to deal
with this problem is to estimate latent scores and to relate these scores
to the external variables afterwards. This procedure has asits major
drawback that the estimation of latent scores is hampered byidentifi-
cation problems. Besides, adequate estimation of latent scores depends
heavily on the strength of the association between the latent variable
and the manifest indicators.

An alternative procedure is to include the external variables in the
model in the same fashion that this is done in LISREL-type models.
The log-linear framework has proven to be quite useful in this respect.
If the latent traits are discretized, it is easy to relate external variables
to latent traits using the log- linear formulation. This approach does,
however, lean heavily on the modified path analysis methodology men-
tioned above. One problem for applied researchers is that, at present,
no standard software is available that can be used to test multidimen-
sionallatent trait models either with or without external variables. The
development of such software warrants attention in the nearfuture.
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A .I M a x im u m -lik e l ih o o d e s t im a t io n fo r lo g - l in e a r m o d e ls

In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe context of log-linear models, the logarithm of the probability of
observing a given arbitrary response pattern1/ can be written aszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

q

ln p, = U +zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL Us· Xvs·

s=1

The probability of observing a given response pattern1/ can be ex-

pressed as

p" exp (u +tu, .X",)

exp(u)exp (tu,' X",) .

Because the2:v Pv = 1,Pv can also be writtenas

exp (2:;=1 Us . xvs)

Pv = '"" (,""q ) .
6vexP 6s=1 Us . Xvs

The first derivative ofPv to a given parameterUs is, therefore,
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The likelihood can, using the multinomial distribution, beexpressed aszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

N!zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L= n f IIptv,

II II II

resulting in the log-likelihood:

II

The first derivative of the log-likelihood to a givenUs parameter is equal
to

81nL

Bu,
(A.I)

~f" (X"' - ~x", 'P")
L (Ill - N . PII) XIIS•

II

For the second derivatives, the following results can then easily be ob-
tained:

82lnL
(A.2)

The first and second derivatives, as given in this section, can be used
for the Newton-Raphson procedure to estimate the parameters in the
log-linear model.

A.2 Estimating the variance-covariance matrix for the pa-
rameters in the log-linear model

The expected information matrix or Fisher information matrix is de-
fined as the expected value of the negative of the matrix of second-order
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derivatives of the log-likelihood with respect to the unknown model pa-
rameters. A general result can be derived from Equation A.I which
also holds in the context of latent class and latent trait models:zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

8
2
lnL = 2: Iv. 8

2
pv _ 2: .L: 8pv . 8pv

8us8ur Pv 8us8ur (Pv)2 Bu, 8ur·
v v

The expected value of the first term on the right is

E [2: Iv. 8
2
pv 1 =zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANLPv. 8

2
pv

v Pv 8us8ur u Pv 8us8ur

= N
82

CLvPv) = 0
8Uk8ul '

sinceLv Pv = 1 and the derivative of a constant is zero. For the second
term in the expression for the information matrix, it is obvious that

(A.3)

The negative of this last result is a general expression for the expected
information matrix. The inverse of this information matrixevaluated at
the final estimates for the parameters provides estimates of the asymp-
totical variance-covariance matrix for the parameter estimates. How-
ever, the variance-covariance matrix for the parameter estimates can
also be estimated by using the observed information matrix.The el-
ements in this matrix are obtained by taking the negative of the ex-
pressions for the second derivatives of the log-likelihoodwith respect
to the parameters to be estimated (see Equation A.2). The inverse of
this matrix, evaluated for the final estimates of the u-terms, also pro-
vides estimates for the asymptotical variance-covariancematrix of the
parameter estimates. Of course, the expected information matrix gives
asymptotically the same results as the observed information matrix. In
the case of log-linear models in which all of the variables are directly
observed, there is no difference between the observed and the expected
information matrix (see Haberman, I977a and 1977b). This can be ver-
ified by substituting the results for the first derivativesof Pv to Us, as
given in the preceding subsection, with the expression for the expected
information matrix given above.It can also be seen that in the expres-
sion for the observed information matrix for log-linear models no terms
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appear that are subject to sampling fluctuations. Because the expected
value of a given constant is equal to that constant, there is no difference
between the expected and the observed information matrix inthe case
of log-linear models. There is, however, a difference between the two
types of information matrices when one or more latent variables appear
in the model, as is shown in the next section.

A.3 Estimating the variance-covariance matrix for the pa-
rameters in the latent class model

In the latent class model, the variance-covariance matrix for the param-
eters can be estimated by using either the observed information matrix
or the expected information matrix. The methods do provide some-
what different results.It should also be noted that the computation of
the estimated variance-covariance matrix depends on the parameteri-
zation chosen. One possibility is to use the parameterization given by
Lazarsfeld, which is also used by Goodman. In this case, the param-
eters to be estimated are the latent proportions and the conditional
response probabilities. Another possibility is log-linear parameteriza-
tion. Log-linear parameterization makes possinle the estimation of the
variance-covariance matrix for the latent proportions andthe log-linear
parameterszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUjg and UjgOI.1 If the estimated variance-covariance matrix
of the parameters is to be based on the observed information matrix,
it is necessary to derive the first and second derivatives ofthe log-
likelihood to the parameters. The log-likelihood in the latent class
model can be written as

"
in which the probabilities for observing response patternII are given by

TzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

PI' = LPvlol . POt'
t=1

lOne could, of course, also estimate the variance-covariance matrix for the log-linear pa-

rameters Ujg and 7LjgOt and the log-linear parameters7LO, , instead of the latent proportions.

However, in most practical applications the standard errors for the latent proportions are

considered more important than the standard errors for the log-linear parametersUO
t
•
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and the conditional probabilitieszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPvlfh are defined by

Pvl8t = ITII PjglOt
XVjg

•

j 9

The conditional response probabilitiesPjglOt can be expressed as a func-
tion of the log-linear parametersUjg and UjgOt:

exp(Ujg + UjgOt)

PjglOt = '" ( ).
6g exp Ujg + UjgOt

The way in which the indicator variablesXvjg are defined is explained
in Chapter 2. Furthermore, some notation is required for theestimated
complete data. The estimated frequencies in the complete table are

written aszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

eVot = Iv • POtlv,

in which the allocation probabilitiesPOt can be found by using Bayes's
theorem:

PvIO' POt
POtlv =

Pv

Occasionally, an expression is required for the expected frequency in
latent class(}t denoted bye+ot and for the expected marginal frequency
found in the two-way table made up of the latent variable () and one
manifest indicatorj. The expected number of subjects responding in
category 9 of item j and belonging to latent class(}t is designated by
%gOt' These two expected frequencies can be found by

v

qjgOt = L e,« .Xvjg·

v

Arbitrary categories for two itemsj and j' are denoted by9 and h,

while two arbitrary latent classes are indicated byt and t', Using this
notation, the following results are found for the first and second partial
derivatives of the log-likelihood to the log-linear parameters Ujg and

Ujgf!t :

8lnL 8lnL

8ujg 8ujgot
z= [qjgOt - e+ot . PjgloJ '

t
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821nL
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L Iv [PvlOt - Pvlol] for t = 2, ... ,T,
V Pv

~ Xvjg
L- Iv . POdv . --,

v PjglOt

821nL

8ujg8ujgOt

-L e+ot . PjglOt(l - PjgloJ,
t

821nL

8UjgOt8Ujh8t

L e+ot . Pjgllh . PjhlOt,
t

v

These second order derivatives can be used to construct the observed
information matrix for any of the parameterizations mentioned above.ZYXWVUTSRQPONMLKJIHGFEDCBA

In order to estimate the variance-covariance matrix for the parame-
ters by the inverse of the expected information matrix, it isnecessary to
derive the first derivatives ofPv to the parameters (see Equation A.3).
The following results can be obtained:

8pv

8pjgllh

8p"

UP(I,

0Pv _ 8pv

8ujg - 8ujgot
L POt' PvlOt [XVjg - PjglOt] .

t
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B.l Wording of the items and category-scoring

The items used in the analyses of Chapters 2 and 3 were phrasedas

follows:

1. Women's liberation sets women against men.

2. It's better for a wife not to have a job because that always poses
problems in the household, especially if there are children.

3. The most natural situation occurs when the man is the bread-
winner and the woman runs the household and takes care of the

children.

4. It isn't really as important for a girl to get a good education as it

is for a boy.

5. A woman is better suited to raise small children than a man.

In the analyses in which three response categories were used, the mean-

ing of these categories was as follows:

• category 0: agree entirely or agree,

• category 1: do not agree, do not disagree,

• category 2: do not agree or do not agree at all.
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B .2 M a rg in a l d is tr ib u t io n s

Below are the marginal distributions for the five items concerning
women's liberation with three categories. The marginal distributions
are given for both male and female respondents who fullfilled the edu-
cational requirements mentioned in Chapter 2. The frequencies for the
grand total of these two subsamples are also reported.

Table B.l: Women's liberation sets women against men
Male Female TotalzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

f % f % f %
Category 0 98 18.1 96 16.2 194 17.1

Item 1 Category 1 171 31.5 142 24.0 313 27.6
Category 2 273 50.4 354 59.8 627 55.3
Sum 542 100.0 592 100.0 1134 100.0

Table B.2: It's better for a wife not to have a job because thatalways
poses problems in the household, especially if there are children

Male Female Total

f % f % f %

Item 2

Category 0
Category 1

Category 2
Sum

67 12.4 51 8.6 118 10.4
87 16.1 81 13.7 168 14.8

388 71.6 460 77.7 848 74.8
542 100.0 592 100.0 1134 100.0

Table B.3: The most natural situation occurs when the man is the
breadwinner and the woman runs the household and takes care of the
children

Mal(~ Female Total

f % f % f %
Category 0 183 33.8 175 29.6 358 31.6

Item 3 Category 1 106 19.6 111 18.8 217 19.1
Category 2 253 46.7 306 51.7 559 49.3
Sum 542 100.0 592 100.0 1134 100.0
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Table B.4: It isn't really as important for a girl to get a good education
as it is for a boy

Male Female TotalzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

f % f % f %
Category 0 22 4.1 19 3.2 41 3.6

Item 4 Category 1 37 6.8 19 3.2 56 4.9

Category 2 483 89.1 554 93.6 1037 91.4

Sum 542 100.0 592 100.0 1134 100.0

Table B.5: A woman is better suited to raise small children than a man
Male Female Total

f % f % f %

Item 5
Category 0
Category 1
Category 2
Sum

266 49.1 145 24.5 411 36.2
92 17.0 109 18.4 201 17.7

184 33.9 338 57.1 522 46.0
542 100.0 592 100.0 1134 100.0
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B .3 R e sp o n s e p a t te r n s w ith fr e q u e n c ie s

The frequencies for the response patterns for the same samples for which
the marginal distributions were presented in the previous section, are
given on the following pages. Again, data are provided separately for
male and female respondents, and for the total sample.

Table B.6: Response patterns with frequencies; male respondents
Item 1-0 Item 1-1 Item 1-2- - -

Item 2-0 Item 2-1 Item 2-2 Item 2-0 Item 2-1 Item 2-2 Item 2-0 Item 2-1 Item 2-2
Item Item Item Item Item Item Item Item Item
345 345 345 345 345 345 345 345 345
000 8 000 2 000 2 000 0 000 1 000 1 000 1 000 0 000 0
001 0 001 1 001 0 001 0 001 0 001 0 001 0 001 0 001 0
002 0 002 0 002 0 002 0 002 0 002 0 002 0 002 1 002 0
010 6 010 2 010 0 010 4 010 2 010 3 010 1 010 3 010 0
011 I 011 0A all 0 all 1 011 0 011 2 011 0 011 0 011 1
012 0 012 0 012 0 012 1 012 0 012 0 012 0 012 0 012 0
020 13 020 7 020 13 020 6 020 8 020 20 020 9 020 6 020 20
021 0 021 0 021 2 021 0 021 0 021 5 021 2 021 1 021 6
022 3 022 I 022 6 022 0 022 2 022 3 022 1 022 2 022 3
100 0 100 0 100 0 100 a 100 a 100 0 100 0 100 0 100 0

101 0 101 0 101 0 101 0 101 0 101 0 101 0 101 0 101 0
102 0 102 0 102 0 102 0 102 0 102 0 102 0 102 1 102 0
110 0 110 1 110 0 110 0 lIO I 110 0 110 0 110 0 110 1
III 0 III 0 111 0 111 0 111 0 III 0 III 0 III 0 111 1

112 0 112 0 112 I 112 0 112 0 112 0 112 0 112 0 112 0

120 0 120 1 120 1 120 I 120 7 120 19 120 0 120 7 120 17

121 II 121 I 121 :1 121 II 121 4 121 r. 121 II 121 :1 121 II

In (I In II In I 122 (I 122 I 122 !) 122 II 122 n 122 12

200 0 200 0 200 0 200 0 200 0 200 0 200 0 200 1 200 0
201 0 201 0 201 0 201 0 201 0 201 0 201 0 201 0 201 1
202 0 202 0 202 0 202 0 202 0 202 0 202 0 202 0 202 2
210 0 210 0 210 1 210 0 210 0 210 1 210 0 210 0 210 I

211 0 211 0 211 0 211 0 211 0 211 0 211 0 211 0 211 0
212 (I 212 (I 212 0 212 0 212 () 212 2 212 () 212 0 212 ()

22() I no 2 2211 !I 220 2 nil 4 2211 II 220 II 220 4 220 : t ! i

211 () nl 0 221 2 221 () 221 I 221 14 221 2 221 I 221 24
212 I 222 a 222 (; 222 () 222 a 222 30 222 3 222 8 222 84
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Table B.7: Response patterns with frequencies; female respondents
Item 1-0 Item I-I Item 1-2- -

Item 2-0 Item 2-1 Item 2_2 Item 2-0 Item 2-1 Item 2_2 Item 2-0 Item 2=1 Item 2=2

Item Item Item Item Item Item Item Item Item

345 345 345 345 345 345 345 345 345

000 5 000 1 000 0 000 0 000 0 000 0 000 0 000 1 000 0

001 0 001 0 001 0 001 0 001 0 001 1 001 0 001 1 001 0

002 0 002 0 002 0 002 0 002 0 002 0 002 1 002 0 002 0

010 4 010 3 010 0 010 1 010 2 010 1 010 0 010 0 010 0

011 0 011 0 011 0 011 0 011 1 011 0 011 0 011 1 011 1

012 0 012 0 012 0 012 0 012 0 012 0 012 0 012 0 012 0

020 10 020 6 020 15 020 5 020 9 020 7 020 2 020 4 020 15

021 2 021 2 021 2 021 2 021 4 021 3 021 1 021 2 021 14

022 2 022 1 022 4 022 0 022 6 022 6 022 1 022 4 022 22

100 1 100 0 100 0 100 0 100 1 100 0 100 1 100 0 100 0

101 0 101 0 101 0 101 0 101 0 101 1 101 0 101 0 101 1

102 0 102 0 102 0 102 0 102 0 102 0 102 0 102 0 102 1

1I0 2 110 1 110 0 llO 0 110 1 110 0 110 0 110 0 110 0

111 0 111 0 111 0 III 0 JlI 0 111 0 111 0 III 0 111 0

112 0 112 0 112 0 112 0 112 0 112 0 112 0 112 0 112 0

120 2 120 2 120 3 120 1 120 0 120 4 120 0 120 3 120 6

121 0 121 1 121 1 121 0 121 3 121 10 121 0 121 1 121 10

122 0 122 0 122 4 122 2 122 3 122 15 122 0 122 5 122 25

200 0 200 0 200 0 200 0 200 0 200 0 200 0 200 0 200 0

201 0 201 0 201 0 201 0 201 0 201 1 201 0 201 0 201 0

202 0 202 0 202 0 202 0 202 0 202 0 202 0 202 1 202 1

210 0 210 0 210 0 210 0 210 0 210 1 210 0 210 0 210 0

211 0 211 0 211 0 211 0 211 0 211 0 211 0 211 0 211 0

212 0 212 0 212 0 212 0 212 0 212 0 212 0 212 0 212 0

220 1 220 1 220 0 220 0 220 0 220 4 220 1 220 3 220 15

221 0 221 1 221 2 221 0 221 1 221 9 221 1 221 2 221 27

222 1 222 2 222 14 222 0 222 0 222 37 222 2 222 1 222 177
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TablezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB.8: Response patterns with frequencies; male and female re-
spondents

Item 1-0 Item I-I Item 1-2- - -
Item 2-0 Item 2-1 Item 2-2 Item 2-0 Item 2 I Item 2 2 Item 2 a Item 2 I Item 2 2
Item Item Item Item Item Item Item Item Item
345 345 345 345 345 345 345 345 345
000 13 000 3 000 2 000 a 000 1 000 1 000 1 000 I 000 0
001 a 001 I 001 0 001 0 001 0 001 I 001 0 001 I 001 0
002 0 002 0 002 0 002 0 002 0 002 0 002 1 002 I 002 0
010 10 010 5 010 0 010 5 010 4 010 4 010 1 010 3 010 0
011 I 011 0 Oil 0 011 I 011 1 01 I 2 011 0 Oll 1 011 2
012 0 012 0 012 0 012 I 012 0 012 0 012 0 012 0 012 0
020 23 020 13 020 28 020 II 020 17 020 27 020 11 020 10 020 35
021 2 021 2 021 4 021 2 021 4 021 8 021 3 021 3 021 20
022 5 022 2 022 10 022 0 022 8 022 9 022 2 022 6 022 25
100 I 100 a 100 0 100 0 100 I 100 0 100 1 100 0 100 0
101 0 101 0 101 0 101 0 101 0 101 1 101 0 101 0 101 1
102 0 102 0 102 0 102 0 102 0 102 0 102 0 102 1 102 1
110 2 110 2 110 0 110 0 110 2 110 0 110 0 uo 0 110 I
111 0 III 0 III 0 III 0 III 0 III 0 111 0 111 0 111 1

112 0 112 0 112 I 112 0 112 0 112 0 112 0 112 0 112 0
120 2 120 3 120 4 120 2 120 7 120 23 120 0 120 10 120 23
121 0 121 2 121 4 121 0 121 7 121 15 121 0 121 4 121 18
122 0 122 0 122 5 122 2 122 4 122 24 122 0 122 5 122 37
200 0 200 0 200 0 200 0 200 0 200 0 200 0 200 1 200 0
201 0 201 0 201 0 201 0 201 0 201 1 201 0 201 0 201 1
202 0 202 0 202 0 202 0 202 0 202 0 202 0 202 1 202 3
210 0 210 a 210 1 210 0 210 0 210 2 210 0 210 0 210 I

211 0 211 0 211 0 211 0 211 0 211 0 211 0 211 0 211 0
212 0 212 0 212 0 212 0 212 0 212 2 212 0 212 0 212 0
220 2 220 .1 220 9 220 2 220 4 220 15 220 I 220 7 220 50
221 0 221 I 221 4 221 0 221 2 221 23 221 3 221 3 221 51
222 2 222 2 222 20 222 0 222 0 222 67 222 5 222 9 222 261



A p p en d ix C

D e r iv a t iv e s o f Pl/ w ith r e sp e c t to

th e m o d e lzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAparamet.ers!

The numbering of the models is identical to that used in Figure 3.3 in
Chapter 3.

C.l The Nominal Response model

Response probabilities:zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

PjglO, = ",mj [ () 1
~h=O expajh· t + Cjh

First derivatives:

8pv

8ajg

8pv

8rj!I

LPO, . PvlOt . ()t(xvjg - Pjglo.)
t

LPo, . Pvlo,(.T.vjg - PjgloJzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I.

C.2 The Nominal Response model with equality constraints
on the discrimination parameters

Response probabilities:

PjglOt = "TIl [() 1
~h=O exp ah· t + Cjh

IThese results are necessary for calculating the expected information matrix; see Appendix

A for further information.
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8pv

8azyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg

8pv

8cjgA
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2:= LPe! . Pvllh . Bt(xvjg - PjgleJ
t j

2:=Pet . Pvle! . (xvjg - pjgleJ
t

C .3 T h e P a r t ia l C r e d it m o d e l w ith item -sp e c if ic s c a l in g p a -

r a m e te r s

R e sp o n s e p r o b a b il i t ie s :

F ir s t d e r iv a t iv e s :

8pv

8aj

8pv

8cjg

2:= 2:= Pet' Pvle! .9 . Bt(xvjg - PjgleJ
t 9

LPe! . Pvle! . (xvjg - pjgleJ
t

C .4 T h e P a r t ia l C r e d it m o d e l w ith o u t item -sp e c if ic s c a l in g

p a r a m e te r s

R e sp o n s e p r o b a b il i t ie s :

F ir s t d e r iv a t iv e s :

8pv

8a

8pv

8cjg

2:= 2:= LPe! . Pvlet' g. Bt(xvjg - pjgleJ
t j 9

2:=pet . Pvle! . (xvjg - pjgleJ
t
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C .S T h e U n id im en s io n a l P o ly c h o to m o u s R a s c h m o d e l

R e sp o n s e p r o b a b il i t ie s :

F ir s t d e r iv a t iv e s :zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0pvzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

oag

Bp;

oey

0pv

os,

PjglOt =zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA"m [ (() c ) ]
L...Jh=O exp ah' t - Vj + Ch

L LPOt . PvlOt . ((}t - 8j) . (xvjg -, PjgloJ
t j

L L POt' Pvlo, . (xvjy - PjgloJ
t i

-L L POt' PvlOt .ag( Xvjg - PjgloJ
t 9

C .6 T h e R a t in g S c a le m o d e l w ith o u t item -sp e c if ic s c a l in g

p a r a m e te r s

R e sp o n s e p r o b a b il i t ie s :

exp[g· (0 . (}t - 8j) + Cg]

F ir s t d e r iv a t iv e s :

oPv

00

Bp;

oCg

opv

es,

Pj"IO, = "Tn [l ( () c ) + ]
L...JIL=() cxp /I,' o· I - "i CIL

z= L LPOt . PvlOt . g. (}t(xvjg - PjgloJ
t j 9

L LPOt . PvlOt . (xvjg - PjgloJ
t j

- - L LPOt . PvlOt . g(xvjg - PjgloJ
t 9

C .1 T h e R a t in g S c a le m o d e l w ith item -sp e c if ic s c a l in g p a -

r a m e te r s

R e sp o n s e p r o b a b il i t ie s :

exp[g· (OJ' (}t - 8j) + cg)



First derivatives:zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Bp;

Ba,

0pvzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

oCg

op"
es,
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L L POt· Pvl8t . g. Bt(xvjg - PjgloJ
t 9

L L POt· PvlOt . (xvjg - PjgloJ
t j

- L LPOt . PvlOt . g(xvjg - PjgloJ
t 9

C.B The Unidimensional Polychotomous Rasch model with
equality constraints on the item difficulties

Response probabilities:

First derivatives:

0pv

oag

Bp;

oCg

PjglOt = ",m [ B ]
LJh=O exp ah· t + Ch

L L POt . PvlOt . Bt . (xvjg - PjglOt)
t j

L LPOt .PvlOt . (xvjg - PjglOt)
t j

C.9 The Rating Scale model without item-specific scaling
parameters and with equality constraints on the item
difficulties

Response probabilities:

First derivatives:

Bp;

OCt

oPv

oCg

exp(a .g. Bt + cg)

PjglOt= ",m (h B )
. LJh=O exp Ct· . t + Ch

L L LPOt . P"IOt . g. Bt(xvjg - PjgloJ
t j 9

L L POt . PvlOt . (xvjg - PjgloJ
t j



301

C.IO The Rating Scale model with item-specific scaling pa-
rameters and equality constraints on the item difficul-
ties

Response probabilities:

_ exp(aj .zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 .zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA()t + cg)

PjglOt - 2:~=oexp(aj . h . ()t + Ch)

First derivatives:

L LPOt . PvlOl . g. ()t(xvjg - Pjgl9J
t 9

L L POI· PvlOt . (xvjg - PjgloJ
t j

C.II The Rating Scale model without item-specific scaling
parameters and with equality constraints on the cate-
gory parameters

Response probabilities:

First derivatives:

opv

oa
opv

OOj

PjglOt = "m [h () h c 1L.h=Oexpa· . t - . Vj

L L LPOt . Pvllh . g. ()t(xvjg - PjgloJ
t j 9

- LLPoI· PvIOI· g(xvjg - PjgloJ
t 9

C.12 The Rating Scale model with item-specific scaling pa-
rameters and equality constraints on the category pa-

rameters

Response probabilities:

_ exp[aj· 9 . ()t - 9 . OJ]
p"IO -is I l:h exp[aj .h . ()t - h . OJ]
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Bp;zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

8aj

Bp;

8DjA
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L LPBt . PVIBt • g. ()t(xvjg - PjgloJ
t 9

- L L POt' PvlB, . g(xvjg - Pjglo.)
t 9
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F ir s t a n d s e c o n d d e r iv a t iv e s o f th e

lo g - l ik e l ih o o d w ith r e sp e c t to th e

item p a r a m e te r s fo r a n u m b e r o f

d is c r e t iz e d la te n t tr a it m o d e ls zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

In this appendix, the first and second derivatives of the log-likelihood
with respect to the item parameters are given. The part of thelog-
likelihood that needs to be maximized in order to obtain ML estimates
for the item parameters can be expressed as (see Section 4.2.3.1)

InzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL =zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL L 2: qjglh . In Pjgl8t·

t j 9

The expression forPjgl8t depends on the latent trait model specified.
The symbol qjg8t denotes the number of individuals belonging to la-
tent "class"Ot who respond in category9 of item j. Furthermore, the
number of individuals belonging to latent "class"Ot is denoted byOt·
The numbering of the models is the same as that used in Figure 3.3 in

Chapter 3.

D.1 The Nominal Response model

Response probabilities:

Pjgl8t = ",m' [ IJ ]
LJh:"O exp ajh . Ut + ejh



First derivatives:zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

BlnL

Bajg

BlnL

BCjg

Second derivatives:

B21nL

BaJg

B21nL

BCJg

B21nL
BajgBajh

B21nL

BcjgBcjh

B21nL

BajgBcjg

B21nL
BajgBcjh
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L[%gOt - e+t . PjgloJ . ()t
t

L[qjgOt - e+t . PjgloJ
t

- L e+t . PjglOt . (1 - PjgloJ . ();
t

- L e+t . PjglOt . (1 - PjgloJ
t

L eH .PjglOt . PjhlOt . ();
t

L eH .PjglOt . PjhlOt
t

- L e+t . PjglOt . (1 - PjglOt) . ()t

t

L eH .PjglOt . PjhlOt . Ot
t

D.2 The Nominal Response model with equality constraints
on the discrimination parameters

Response probabilities:

PjglOt = ""m [() 1LJh=O expah· t + Cjh

First derivatives:

BlnL

Bag

BlnL

BCj!)

L L[qjgOt - eH· PjgloJ . ()t

tzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj

L[qjg{/, - e+t . PjgloJ
t
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821nLzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

8a2
9

821nL
8ag8ah

821nL
8ag8cjg

821nL
8ag8cjh

821nL

8c;g

821nL
8cjg8cjh

305zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

- L L eH' Pjgl8t • (1 - Pjgl8J . O~
t j

-L eH .Pjgl8t • (1 - Pjgl8J ·Ot

t

L e+t . Pjgl8t • Pjhl8t • Ot

t

-L eH .Pjgl8t • (1 - Pjgl8t)

t

L e+t . Pjgl8t • Pjhl8t

t

D .3 T h e P a r t ia l C r e d it m o d e l w ith item -sp e c if ic s c a l in g p a -

r a m e te r s

R e sp o n s e p r o b a b il i t ie s :

F ir s t d e r iv a t iv e s :

81nL
80'.j

81nL
8cjg

S e c o n d d e r iv a t iv e s :

exp[O'.' .g. Ot + c, ]
P

_ ) )g

jgl8t - '" [ h II ]6h exp O'.j. .Ut + Cjh

L L [qjg8t - e+t . Pjgl8J 9 . Ot

t 9

L[Qjg8, - eH .Pjgl8J
t

- ~ { ew 01 [~g'. Pj,I" - (~BPj,!" y] }
- ~ eH [g. H, . Pj,I" - Pj,I', (~g. H, . Pj,I•.) 1
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{)C]g

{)21n L

{)Cjg{)CjhA
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- L e+t . Pjgl8t • (1 - Pjgl8J
t

L e+t . Pjgl8t • Pjhl8t

t

D.4 The Partial Credit model without item-specific scaling
parameters

Response probabilities:

expjo .9 . Ot + c· ]
P 18 - }g

so t - Lh exp]o .h . Ot + Cjh]

First derivatives:

{)In L

{)a

{)lnL

{)Cjg

L L L [qjg8t - e+t . Pjgl8J . 9 . Ot
t j 9

L[%g8t - e+t . Pjgl8.l

t

Second derivatives:

{)21n L

{)a{)cjg

{)21n L

{)C]g

{)21n L

{)Cjg{)Cjh

-~y {e+, 0; [~>2.Pigl', - (~9"Pi91 e.)'] }

- ~ e+, [9 .0, .Pigl', - P"I" ( ~ 9 . 0, .Pi91.,) 1
- L e+t . Pjgl8t • (1 - Pjgl8.)

t

+ L e+t . Pjgl8t • Pjhl8t

t

D.5 The Unidimensional Polychotomous Rasch model

Response probabilities:
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F ir s t d e r iv a t iv e s :zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

81nL

86·J

81nL

8azyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg

81nL

8cg

- L L [qjgBt - e+t . PjglBt] (Ot - 6j)

t j

S e c o n d d e r iv a t iv e s :

821nL - L L {[(Ot - 6 j)2 • Pjgl9t . (1 - PjgI9t)] .zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe+d
8a2

-

9 t j

821nL -~ [~>;PjgW, - (~>g. Pjgl', )']. eH862 -
J

821nL - L L [e+t . Pjgl9t • (1 - Pjg19J]
8c2

9 t j

821nL L L [e+t . (Ot - 6j)2 • Pjgl9t • Pjhl9t]

8ag8ah t j

821nL L L [e+t . Pjgl9t . Pjhl9t]
8cg8ch

-

t j

821nL - L L [e+t . (Ot - 6j) • Pjgl9t . (1 - Pjg19J]
8ag8cg

-

t j

821nL L L [e+t . (Ot - 6j) . Pjgl9t • Pjhl9t]
8ag8ch

t j

821nL L [e+t . (()t - 6j .Pjglflt .
8ag86j t

{ ag - (~ag . Pjgl.,) } + e+! . Pjgl', - Qjg8,1

821nL
~ e+! . Pjgl', [ag - (~ag. Pjgl.,) 18cg86j

-
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D .6 T h e R a t in g S c a le m o d e l w ith o u t item -sp e c if ic s c a l in g

p a r a m e te r s

R e sp o n s e p r o b a b il i t ie s :zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

expzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[g . (a .zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf)t - 8·) + C ]

P
_ J 9

jgl8t - "m [h ( f) c ) ]
uh=O exp . a· t - Vj + Ch

F ir s t d e r iv a t iv e s :

81nL

88j

81nL

8a

81nL

8cg

-L L [qjg8t - eH .Pjgl8t] 9
t 9

L L L [qjg8t - eH .Pjgl8t] • 9 . f)t
t j 9

- L L [qjg8t - e+t . Pjgl8t]

t j

S e c o n d d e r iv a t iv e s :

821nL

882

J

821nL

8c2
g

a21nL

8cg88j

821nL

8cg8ch

821nL

8a88j

821nL

8a8cg

- ~ ~ { C+t 01 [~>'.Pjgl', - (z;= Y"Pjgl" Y] }
- ~ [z;= 9' .Pjgl" - (z;= 9 .Pjgl,,) '] . e+t

- L L [e+t' Pjgl8t • (1 - Pjgl8J]
t j

~ eH .Pjg!', [9 - z;= 9' Pjg!',]

L L [e+t . Pjgl8t • Pjhl8J
t j

1;=0. . e+t [z;= 9' .P"I" - (z;= y"pjgl,Yl

-L e+t . f)t L [g . Pjgl8t - Pjgl8t L h .pjhl8t]
t j h.
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D .7 T h e R a t in g S c a le m o d e l w ith item -sp e c if ic s c a l in g p a -

r a m e te r s

R e sp o n s e p r o b a b il i t ie s :

F ir s t d e r iv a t iv e s :

olnLzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

08·J

olnL

oaj

olnLzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

oCg

-L L [qjg8t - e+t· Pjgl8J 9

t 9

L L [%g8, - e+t· Pjgl8J . g. Ot

t 9

S e c o n d d e r iv a t iv e s :

021nL

082zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
J

021nL

oc2
9

021nL

ocg08j

021nL

OCgOCh

02 In L

oaj08j

021nL

oajocg

- ~ {ew ei [~>2.Pi,I" - (~9"Pi,!'.r] }

_~ [~92.Pi, I" _ (~9. Pj,I••) 2].e+,

-L L [e+t· Pjgl8t • (1 - Pjg18J]

t j

~ ewPi,!,. [9 - ~ 9 .Pi,I',]

L L [e+t . Pjgl8t • Pjhl8J

t j

~ e,.e+, [~g'. Pigl', _ (~9.Pi'!'.) 2]

- ~ eH· e, [9.Pigl'. - Pig!'.~ h· Pi'I',]
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D .8 T h e U n id im en s io n a l P o ly c h o to m o u s R a s c h m o d e l w ith

e q u a lity c o n s tr a in ts o n th e item d if f ic u lt ie s

R e sp o n s e p r o b a b il i t ie s :zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

_ exp[ag . Ot + Cg]
PjglOt -zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA"m [ 0 ]

6h=Oexp ah' t +zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACII

F ir s t d e r iv a t iv e s :

olnL

oag

olnL

oCg

S e c o n d d e r iv a t iv e s :

o21nL

oa2
9

o21nL

oc2
9

o21nL

oag/Jah

&21nL

OCg&Ch

o21nL

oag&cg

&21nL

&agoch

L L [qjgOt - eH .PjgloJ Ot
t j

L L [qjgOt - eH .PjglOt]
t j

- L L [0; . PjglOt . (1 - PjgloJ . e+t]
t j

- L L [e+t . PjglOt . (1 - PjgloJ]
t j

L L [eH .0; .Pjgl8t . PjhlO,]
t j

L L [e+t . PjglOt . PjhlOt]
t j

- L L [eH . Ot . PjglO, . (1 - PjgloJ]
t j

L L [e+t . Ot . PjglOt . PjhlOt]
t j

D .9 T h e R a t in g S c a le m o d e l w ith o u t item -sp e c if ic s c a l in g

p a r a m e te r s a n d w ith e q u a lity c o n s tr a in ts o n th e item

d if f ic u lt ie s

R e sp o n s e p r o b a b il i t ie s :

exp[o .9 . Ot + cg)

PjglOt = "m (h 0 )
L..h=Oexp a· . t + Ch
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olnLzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

oa

olnLzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

oCg
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L L L [qjgOt - e+t· PjglBt] ·9· (}t
t j y

L L [qjgOt - e+t . PjglOt]
t j

S e c o n d d e r iv a t iv e s :

o21nL

oc2
g

o21nL

OCgOCh

o21nL
8aocg

- 2::L [e+t . PjglOt . (1 - PjgloJ]
t j

L L [eH . PjglOt . PjhloJ
t j

-L e+t . (}t L [9 .PjglOt - PjglOt L h .pjhlBt]
t j h

D .lO T h e R a t in g S c a le m o d e l w ith item -sp e c if ic s c a l in g p a -

r a m e te r s a n d eq u a lity c o n s tr a in ts o n th e item d if f ic u l-

t ie s

R e sp o n s e p r o b a b il i t ie s :

exp(aj ·9· (}t + cg)
p. 10 - ==--'=-...:...-....:!..:--=----...:?...:---,-

so t - L~=o exp(aj .h . (}t + Ch)

F ir s t d e r iv a t iv e s :

olnL
oaj

81nL
8cg

L L [qjgOt - eH .PjglOt] . 9 . (}t

t g

L L [qjgBt - e+t . PjgloJ
t j

S e c o n d d e r iv a t iv e s :
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8c2zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
g

82lnL

8cg8ch

82lnL

8aj8cgA

312

- L L [e+t . Pjgl6t • (1 - Pjg16J]
t j

L L [e+t· Pjgl6t • Pjhl6J
t j

- ~ eH' 0, [g. PigI" - Pigl', ~ h· Pihl.,]

D.II The Rating Scale model without item-specific scaling
parameters and with equality constraints on the cate-
gory parameters

Response probabilities:

Pjgl6t = "m [h () h 1: 1
L.Jh=Oexp a· . t - • Vj

First derivatives:

8lnL

8a

81nL

os,

L L L [%g6t - e+t . Pjgl6J . 9 . e,
t J 9

-L2: [Qjg6, - e+t . Pjgl6,] 9
t 9

Second derivatives:

- ~ ~ {e+, 0; [~g2. P;gl', - (~g p;gl.,y] }

-~ [~9'P;gl', - ( ~ gp;gl', y] .e+,

~ 0, .e+, [~g2 P;gi', - (~gp;gl.Y]
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D .1 2 T h e R a t in g S c a le m o d e l w ith item -sp e c if ic s c a l in g p a -

r a m e te r s a n d eq u a lity c o n s tr a in ts o n th e c a te g o r y p a -

r a m e te r s

R e sp o n s e p r o b a b il i t ie s :

exp[aj .zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 . ()t - 9 . 8zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj]

PjglOt = ~ [ h () h ~]
L..Jh exp elj' . t - • Vj

F ir s t d e r iv a t iv e s :

81nL

8a·
J

81nLA

88J

L L [qjgOt - eH' PjgloJ g. ()t

t 9

-L L [QjgOt - eH .PjgloJ . 9

t 9

S e c o n d d e r iv a t iv e s :

821nL

8a2
J

- ~ {e ... e; [~g2. Pigl" - (~g piglB,r] }

_ ~ { eH [~g2. Pigl', - (~gop;gl'.)'] }

~ {e ... 0, [~g'. Pigl" - (~g-pigl"r] }
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F ir s t a n d s e c o n d d e r iv a t iv e s o f th e

lo g - l ik e l ih o o d w ith r e sp e c t to Bi fo r

a n u m b e r o f d is c r e t iz e d la te n t tr a it

m o d e ls zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

E.1 The Nominal Response model

Response probabilities:zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

exp[ajg .zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA()t + Cjg]

PjglB, = ",mj [ () ]
~h=O exp ajh' t + Cjh

First derivative:

Second derivative:

E.2 The Nominal Response model with equality constraints
on the discrimination parameters

Response probabilities:

exp[ag . ()t + Cjg]

PjglO, = ",m [() ]
. ~h=()exp all' t + Cjh



316 ZYXWVUTSRQPONMLKJIHGFEDCBA

F ir s t d e r iv a t iv e :zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

alogL ~'"zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a(). = ~ ~ ag· (x/ljg - Pjglo.), .

J 9

S e c o n d d e r iv a t iv e :

&'~~lL= - ~zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{~>:·Pjgl', - [~>g -:

E .3 T h e P a r t ia l C r e d it m o d e l w ith item -sp e c if ic s c a l in g p a -

r a m e te r s

R e sp o n s e p r o b a b il i t ie s :

exp[aj .9 . ()t + Cjg]
PjglOt = " [ h () ]

L.Jh exp aj' . t + Cjh

F ir s t d e r iv a t iv e :

alogL "'~
a(). = Z:: Z:: aj . g. (x/ljg - Pjglo.)

I .
J 9

S e c o n d d e r iv a t iv e :

a2~t = - ~ {~)a;. g)2 Pigl',- [~a;. g. Pi91.T}

E .4 T h e P a r t ia l C r e d it m o d e l w ith o u t item -sp e c if ic s c a l in g

p a r a m e te r s

R e sp o n s e p r o b a b il i t ie s :

exp[a .9 . ()t + Cjg]
PjglOt = " [h () ]

L.Jh exp a· . t + Cjh

F ir s t d e r iv a t iv e :

alogL '" ~
a(). = Z:: Z:: a· g. (x/ljg - Pjglo.)

I .
J 9

S e c o n d d e r iv a t iv e s :

a2~t = - ~ {~(a. g)2p;g~, - [~a g. p;gl.T}
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E .5 T h e U n id im en s io n a l P o ly c h o to m o u s R a s c h m o d e l

R e sp o n s e p r o b a b il i t ie s :

F ir s t d e r iv a t iv e :zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ologL ~~zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
of). = ~ Z:: ag· (xvjg - Pjglo.)

~ j 9

S e c o n d d e r iv a t iv e :

E .6 T h e R a t in g S c a le m o d e l w ith o u t item -sp e c if ic s c a l in g p a -

r a m e te r s

R e sp o n s e p r o b a b il i t ie s :

F ir s t d e r iv a t iv e :

ologL ~~
of). = s: c: a· g. (xvjg - Pjglo,)

~ .
J 9

S e c o n d d e r iv a t iv e :

E .7 T h e R a t in g S c a le m o d e l w ith item -sp e c if ic s c a l in g p a -

r a m e te r s

R e sp o n s e p r o b a b il i t ie s :

exp[g· (aj . f)t - 8j) + cg]
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F ir s t d e r iv a t iv e :zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

alogL ""a£) = 6 6 aj . 9 . (xvjg - Pjglo.)
~ -

J 9

S e c o n d d e r iv a t iv e :

E .8 T h e U n id im en s io n a l P o ly c h o to m o u s R a s c h m o d e l w ith

e q u a lity c o n s tr a in ts o n th e item d if f ic u lt ie s

R e sp o n s e p r o b a b il i t ie s :

PjglO, = "m [ £) 1
L.Jh=Oexp ah· t + Ch

F ir s t d e r iv a t iv e :

alogL ""a£). = 6 6zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAag· (xvjg - PjgloJ
~ .

J 9

S e c o n d d e r iv a t iv e :

E .9 T h e R a t in g S c a le m o d e l w ith o u t item -sp e c if ic s c a l in g p a -

r a m e te r s a n d w ith e q u a lity c o n s tr a in ts o n th e item d if -

f ic u lt ie s

R e sp o n s e p r o b a b il i t ie s :

exp(o .9 . £)t+ cg)

F ir s t d e r iv a t iv e :

alogL ""a£). = 6 6 a· g. (xvjg - Pjglo.)
t j 9
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S e c o n d d e r iv a t iv e :

E .1 0 T h e R a t in g S c a le m o d e l w ith item -sp e c if ic s c a l in g p a -

r a m e te r s a n d eq u a lity c o n s tr a in ts o n th e item d if f ic u l-

t ie s

R e sp o n s e p r o b a b il i t ie s :

_ exp(aj .zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 . Ot + cg)

PjglOt - "m ( h 0 )
L..h=O expzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaj' . t + Ch

F ir s t d e r iv a t iv e :

BlogL ""BO. = Z:: Z:: aj .g. (x//jg - Pjglo,)
z .

J 9

S e c o n d d e r iv a t iv e :

1J'~t= - y {~(ajg)2pj'I" - [~a;-9pj'l,r}
E .1 1 T h e R a t in g S c a le m o d e l w ith o u t item -sp e c if ic s c a l in g

p a r a m e te r s a n d w ith e q u a lity c o n s tr a in ts o n th e c a te -

g o r y p a r a m e te r s

R e sp o n s e p r o b a b il i t ie s :

exp]« .9 . Ot - 9 . OJ]
PjrJifl, = "1/1. [I 0 Ie]L..h=() cxp n· I.' t - I.' "i

F ir s t d e r iv a t iv e :

810gL ""BO. = Z:: Z:: a· g. (x//jg - Pjglo,)
t .

J 9

S e c o n d d e r iv a t iv e :

{J'~~lL = - Y {~(a. g)'. Pjgl', - [~a. g. -n
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E .1 2 T h e R a t in g S c a le m o d e l w ith item -sp e c if ic s c a l in g p a -

r a m e te r s a n d eq u a lity c o n s tr a in ts o n th e c a te g o r y p a -

r a m e te r s

R e sp o n s e probahilit.ies.

_ exp[aj·zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 . ()t - 9 .zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOJ]

Pjgl8, - " [ h () h 1:]L..Jhexp aj· . t - . Uj

F ir s t d e r iv a t iv e :

8logL ~~ .
8() = c:c: aj . g. (xvjg - Pjgl8,)

t j 9

S e c o n d d e r iv a t iv e :
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Parameters can be estimated for all discretized latent trait models men-
tioned in Figure 3.3 and discussed in Chapter 3 using the DILTRAN
program. It is also possible to estimate parameters in mixed models.
At present, the program is only available for VAX/VMS but thepro-
gram will be ported to other platforms.It is delivered with a manual

and examples.
The program is driven by commands, either directly from the key-

board, indirectly from so-called COMMAND files, or from general
BATCH files. The user must define the (mixed) model and the num-
ber and values of the latent nodes. The data can be entered as raw
data (i.e., a vector with responses for each individual) or as frequency
data. Initial estimates for the parameters can be specifiedby the user
or generated randomly. Stop-criteria and the number of iterations are
determined by the user. After a run, intermediate results can be dis-
played and the program can be restarted with or without altered model

parameters and/or stop-criteria.
The program produces output concerning the estimated item pa-

rameters and latent proportions, as well as a number of test statistics.
Optional output is available for estimated expected frequencies (the full
table or tables collapsed over one or more variables), estimates for the
latent scores (ML estimates, MAP and EAP), the information matrix,
the estimated variance/covariance matrix for the estimated parameters,
and the eigenvalues and eigenvectors of this matrix.
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Measurement models in which unobserved latent variables are linked to
observed manifest indicators have become increasingly popular in recent
decades. Both latent trait models and latent class models are examples
of such measurement models.In latent class and latent trait models,
it is assumed that the manifest indicators are discrete variables. One
of the most frequently mentioned differences between thesetwo types
of models is that the latent variables in latent class modelsare also
considered discrete, while in latent trait models the latent variables are
assumed to be continuous. This difference is, however, not as absolute
as is often suggested.In some cases, the continuous latent variable
in a latent trait model can be accurately approximated by a discrete
distribution. The resulting latent trait model is equivalent to certain
restricted latent trait models.In this study, the relationship between
(restricted) latent class models and discretized latent trait models is

explored in depth.
A classification of latent variable models that can be used for the

analysis of discrete manifest indicators is presented in the first intra-
ductory chapter. This classification is based on a distinction between
the measurement level of the latent and manifest variables.

The latent class model is discussed extensively in Chapter 2. This
model can be parameterized in a number of ways. Goodman (1974a)
suggested a parameterization in terms of conditional response prob-
abilities and latent proportions, while Haberman (1979) proposed a
parameterization based on the log-linear model.In this book, a com-
bination of these two methods of parameterization is used. The latent
class model is parameterized in terms of latent proportionsand condi-
tional response probabilities; the conditional response probabilities are
written as a function of log-linear parameters. A number of restricted
latent class models are presented in Chapter 2. The most interesting of
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these are models with linear restrictions on the log-linearinteractions
describing the relation between the latent and the manifestvariables.
When these restrictions are used, the latent variable is considered to be
a metrical variable. The resulting models can be shown to be equivalent
to discretized latent trait models.

Maximum likelihood methods for estimating the parameters in latent
class models as well as methods for model selection are also discussed
in Chapter 2. All maximum likelihood methods discussed are based on
the same likelihood function. The differences between these methods
are merely numerical.

In Chapter 3, attention is focused on latent trait models. A num-
ber of latent trait models are presented, in which the latentvariable is
discretized. The most general discretized latent trait model is the Nom-
inal Response model proposed by Bock (1972). All other latent trait
models discussed in Chapter 3 can be obtained by imposing specific
restrictions on the parameters in the Nominal Response model. If the
latent variable is treated as discrete, the latent trait models are identi-
cal to a number of restricted latent class models that were introduced
in Chapter 2.

The parameters in latent trait models can be estimated usingseveral
maximum likelihood procedures. These methods are based on different
likelihood functions, so the differences between these methods are not
merely numerical. These methods are calledzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAjoint maximum likelihood

(JML), conditional maximum likelihood(CML), and marginal maxi-

mum likelihood (MML). In Chapter 4, the focus is on CML and MML.
In JML, person parameters and item parameters are estimatedsimul-
taneously. When CML is used, the person parameters are eliminated
from the likelihood function by conditioning on their sufficient statistics.
Thus, this method can be used only in cases in which these sufficient
statistics are known. In MML, the person parameters are eliminated
in a different fashion. By making certain assumptions aboutthe pop-
ulation distribution of the latent variable, the person parameters can
be integrated out of the likelihood function. The strictestmethod of
doing this is to assume that the complete population distribution is
specified a priori. It is, however, also possible to make less far reaching
assumptions about the population distribution. The unknown continu-
ous latent distribution can be approximated by a discrete distribution.
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In some cases, it is assumed that only the values of the latentnode-
points are known in advance. This is calledzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsemi-parametric MML. In
other cases, no a priori assumptions are made concerning this discrete
latent distribution. This method is calledfully semi-parametric MML.
In Chapter 4, the relations between fully-semi-parametricMML and
CML are explored in depth.It can be shown that when CML is used,
the estimated item parameters are not necessarily compatible with a
proper latent population distribution.If subjects are considered as a
random sample from a population and, therefore, the conceptof a pop-
ulation distribution of the latent variable becomes relevant, estimating
the parameters using MML is to be preferred over estimation using

CML.
In Chapter 5, two types of extension of discrete latent traitmodels

are discussed. The first deals with multidimensional latent trait models.
The other extension tackles the problem of relating the latent trait to
external variables. This can be done either by estimating latent scores
or by including the external variables in the measurement model in
a way that is similar to the strategy used in LISREL models. The
log-linear path-analysis approach proposed by Goodman (1973b) and
extended by Hagenaars (1988) offers a general framework forincluding
both types of extensions discussed in Chapter 5, i.e., multidimensional
latent trait models and latent traits models in which the latent variables
are related to external variables.
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In de laatste decennia zijn meetmodellen waarin niet-geobserveerde la-
tente variabelen worden gekoppeld aan geobserveerde manifeste indi-
catoren meer en meer populair geworden. Zowel latente trek modellen
als latente klassen modellen zijn voorbeelden van dergelijke meetmo-
dellen. In latente klassen en latente trek modellen wordt verondersteld
dat de manifeste indicatoren discrete variabelen zijn. Eenvan de meest
frequent genoemde verschillen tussen de beide typen van modellen is,
dat in latente klassen modellen ten aanzien van de latente variabelen
verondersteld wordt dat deze ook discreet zijn, terwijl in latente trek
modellen de latente variabelen als continue worden beschouwd. Echter,
dit verschil is niet zo absoluut als soms weI wordt gesuggereerd. In
een aantal gevallen kan de continue latente variabele in eenlatente trek
model accuraat benaderd worden door een discrete verdeling. Het resul-
terende latente trek model is dan identiek aan bepaalde gerestricteerde
latente klassen modellen. De relatie tussen (gerestricteerde) latente
klassen modellen en gediskretiseerde latente trek modellen wordt in dit

boek diepgaand onderzocht.
In het eerste, inleidende hoofdstuk wordt een classificatie gegeven van

modellen met latente variabelen die gebruikt kunnen wordenvoor de
analyse van discrete manifeste indicatoren. Deze classificatie is geba-
seerd op een onderscheid in het meetniveau van de latente en manifeste

variabelen.
In het tweede hoofdstuk wordt het latente klassen model uitvoerig

besproken. Dit model kan op een aantal verschillende manieren gepara-
metriseerd worden. Goodman (1974) stelde een parametrisering voor in
termen van conditionele antwoordkansen en latente proporties, terwijl
Haberman (1979) een parametrisering introduceerde die gebaseerd is op
het log-lineaire model. In dit boek wordt een combinatie vandeze beide
manieren om het latente klassen model te parametriseren gebruikt. De
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gekozen parametrisering maakt gebruik van latente proporties en con-
ditionele antwoordkansen; deze laatste worden echter geschreven als
functie van de log-lineaire parameters. In hoofdstuk 2 worden ook een
aantal gerestricteerde latente klassen modellen besproken. Ret meest
interessant zijn modellen waarin gebruik wordt gemaakt vanlineaire
restricties op de log-lineaire parameters die de relatie tussen de latente
en de manifeste variabelen beschrijven. Wanneer dergelijke restricties
worden gebruikt, kan de latent variabele beschouwd worden als een va-
riabele die gemeten is op een metrisch niveau. Dergelijke modellen zijn
identiek aan gediscretiseerde latente trek modellen.

Zowel maximum likelihood methoden voor het schatten van de pa-
rameters in latente klassen modellen, als methoden voor model selectie
worden ook besproken in hoofdstuk 2. De verschillende maximum like-
lihood procedures zijn allemaal gebaseerd op dezelfde likelihood functie.
De verschillen tussen deze procedures zijn dus louter numeriek.

In het derde hoofdstuk staan latente trek modellen centraal. Er wordt
een aantal latente trek modellen met een gediskretiseerde latente vari-
abele gepresenteerd. Het meest algemene gediskretiseerdelatente trek
model is het Nominal Response model, voorgesteld door Bock (1972).
AIle andere latente trek modeIlen die in hoofdstnk 3 worden bespro-
ken kunnen worden afgeleid van het Nominal Response model door
het aanbrengen van bepaalde restricties. Als de latente variabele als
een discrete variabele wordt beschouwd, zijn deze latente trek model-
len identiek aan sommige latente klassen modellen die in hoofdstuk 2
werden geintroduceerd.

De parameters in latente trek modellen kunnen worden geschat met
behulp van verschillende maximum likelihood methoden. Deze metho-
den zijn gebaseerd op verschillende likelihood functies, zodat de ver-
schillen tussen deze methoden niet louter numeriek zijn. Deze me-
thoden zijn resp.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAjoint maximum likelihood(JML), conditional maxi-

mum likelihood (CML), en marginal maximum likelihood(MML). Het
accent ligt in hoofdstuk 4 op CML en MML. Bij JML worden de
persoons-parameters en de item-parameters gelijktijdig geschat. Bij
CML worden de persoons-parameters geelimineerd uit de likelihood
functie door te conditioneren op de sufficiente statistieken voor deze
persoons-parameters. Daarom kan deze methode aIleen worden ge-
bruikt in situaties waarin deze sufficiente statistieken bekend zijn. Bij
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MML worden de persoons-parameters op een andere wijze uit delike-
lihood functie geelimineerd. Door bepaalde veronderstellingen te rna-

ken over de populatie verdeling van de latente variabele kunnen de
persoons-parameters uit de likelihood functie geintegreerd worden. De
meest strikte methode om dat te doen, is de populatieverdeling op voor-
hand helemaal vast te leggen. Het is echter ook mogelijk om minder
vergaande assumpties te maken met betrekking tot de populatie ver-
deling. De onbekende continue latente verdeling kan wordenbenaderd
door een discrete verdeling. In sommige gevaIlen hoeven alleen de waar-
den van de latente knooppunten op voorhand te worden gespecificeerd.
Dit wordtzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsemi-parametrische MMLgenoemd. In andere gevallen hoe-
yen helemaal geen assumpties met betrekking tot deze discrete latente
verdeling gemaakt te worden. Dit wordtvolledig semi-parametrische
MML genoemd. De relaties tussen volledig semi-parametrische MML
en CML worden in hoofdstuk 4 diepgaand bestudeerd. Het kan wor-
den aangetoond dat, wanneer CML wordt gebruikt, de geschatte item
parameters niet noodzakelijkerwijze gecombineerd kunnenworden met
een latente populatie verdeling. Als de individuen beschouwd worden
als een toevals-steekproef uit een populatie, en aldus het idee van een
latente populatie verdeling relevant wordt, heeft het schatten van de pa-
rameters met MML daarom de voorkeur boven het gebruik van CML.

In het vijfde hoofdstuk worden twee uitbreidingen van het gediskreti-
seerde latente trekken model besproken. De eerste heeft betrekking op
multidimensionele latente trek modellen. De andere uitbreiding gaat in
op de vraag hoe latente trekken gerelateerd kunnen worden aan externe
variabelen. Dit kan gebeuren door latente scores te schatten of door
de extcrnc variabclonOJ> to nomen ill het mcctmodcl, analoog aan de
manier waarop dat in LISREL modellen gebeurt. De log-lineaire pad-
analyse zoals voorgesteld door Goodman (1973b) en veralgemeniseerd
door Hagenaars (1988) biedt een algemeen kader voor het opnemen
van de beide soort uitbreidingen die in hoofdstuk 5 worden besproken,
nl. multidimensionele latente trek modellen en latente trek modellen
waarin de latente variabelen worden gerelateerd aan externe variabelen.



R e fe r e n c e s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Agresti, A. (1984).zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAnalysis of categorical data.New York: John Wiley.

Agresti, A. (1990). Categorical data analysis.New York: John Wiley.

Agresti, A. (1992). A survey of exact inference for contingency tables. Statistical

Science, 7,131-177.

Aitkin, M., Anderson, D.& Hinde, J. (1981). Statistical modelling of data on teaching
styles. Journal of the Royal Statistical Society. Series A.144, 419-46l.

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transac-

tions on Automatic Control,19,716-723.

Akaike, H. (1987). Factor analysis and AIC.Psychometrika, 52, 317-332.

Andersen, E.B. (1970). Asymptotic properties of conditional likelihood estimates. Jour-

nal of the Royal Statistical Society. Series B.32, 283-30l.

Andersen, E.B. (1973a). Conditional inference for multiple-choice questionnaires.
British Journal of Mathematical and Statistical Psychology, 26, 31-44.

Andersen, E.B. (1973b). A goodness of fit test for the Rasch model. Pssjchosnetrika,

38, 123-140.

Andersen, E.B. (1977). Sufficient statistics and latent trait models. Psychometrika, 42,

69-8l.

Andersen, E.B. (1983). A general latent structure model forcontingency table data. In
H. Wainer & S. Messick (Eds.), Principals of modem psychological measurement;

a festschrift for Frederic M. Lord(pp. 415-494) Hillsdale: LEA.

Andersen, E.B. (1988). Comparison of latent structure models. In R. Langeheine & J.
Rost (Eds.), Latent trait and latent class models(pp. 207-229). New York: Plenum

Press.

Andersen, E.B. (1990). The statistical analysis of categorical data.Berlin: Springer-

Verlag.

Andersen, E.B.& Madsen, M. (1977). Estimating the parameters of the latent popu-

lation distribution. Psychometrika, 42, 357-374.

Andrich, D. (1978a). A rating formulation for ordered response categories. Psychome-

trika, 43, 561-573.

Andrich, D. (1978b). Application of a psychometric rating model to ordered categories
which are scored with successive integers.Applied Psychological Measurement, 2,

581-594.



332zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Andrich, D. (1978c). A binomial latent trait model for the study of Likert-style attitude
questionnaires.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABritish Journal of Mathematical and Statistical Psychology, 31, 84-
98.

Andrirh, D. (I !l79). A model for t:()nt.iIlW~IIl:'ytahlc!s having an ordered response classi-
ficatiou. Biometrics, 35, 404-415.

Andrich, D. (1982). An extension of the Rasch model for ratings providing both location
and dispersion parameters.Psychometrika, 47, 105-113.

Andrich, D. (1985). An elaboration of Guttman scaling with Rasch models. In N.B.
Tuma (Ed.), Sociological Methodology(pp. 33-80). San Francisco: Jossey-Bass.

Andrich, D. (1992). On the function of fundamental measurement in the social sciences:
the objective measurement of subjective meaning. Paper presented as a keynote
address on the International Conference on Social Science Methodology. Trento,
Italy, June 1992.

Ansley, T.N. & Forsyth, R.A. (1985). An examination of the characteristics of unidi-
mensional IRT parameter estimates derived from two-dimensional data. Applied
Psychological Measurement,9, 37-48.

Baker, F.B. (1987). Methodology review: item parameter estimation under the one-,
two-, and three-parameter logistic models.Applied Psychological Measurement, 11,
111-141.

Bartholomew, D.J. (1987).Latent variable models and factor analysis.London: Charles
Griffin & Company Ltd.

Bentler, P.M. (1990). Comparative fit indexes in structural models. Psychological
Bulletin, 107, 238-246.

Bentler, P.M. & Bonnet, D.G. (1980). Significance tests and goodness of fitin the
analysis of covariance structures.Psucholoqical Bulletin, 88, 588-606.

Birch, M.W. (1963). Maximum likelihood in three-way contingency tables. Journal of

the Royal Statistical Society. Series B.25, 220-223.

Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee's
ability. In F.M. Lord & M.R Novick, Statistical theories of mental test scores.
Reading, MA: Addison-Wesley.

Bishop, Y.M.M., Fienberg, S.E.& Holland, P.W. (1975). Discrete multivariate analysis.
Cambridge, MA: MIT Press.

Bock, R.D. (1972). Estimating item parameters and latent ability when responses are
scored in two or more nominal categories.Psychometrika, 37, 29-51.

Bock, R.D. & Jones, L. (1968). The measurement and prediction of judgement and
choice. San Francisco: Holden-Day.

Bock, RD. & Lieberman, M. (1970). Fitting a response model for n dichotomously
scored items. Psychometrika, 35, 179-197.

Bock, RD. & Aitkin, M. (1981). Marginal maximum likelihood estimationof item
parameters: application of an EM algorithm.Psychometrika, 46, 443-459.

Bock, RD., Gibbons, R& Muraki, E. (1988). Full-information item factor analysis.
Applied Psychological Measurement,12, 261-280.



333

Bollen, KA. (1989). A new incremental fit index for general structural equation models.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Sociological Methods& Research, 16,492-503.

Bollen, KA. (1990). Overall fit in covariance structure models: two types of sample
size effects. Psychological Bulletin, 107, 256-259.

Bonnet, D.G. & Bentler, P.M. (1983). Goodness-of-fit procedures for the evaluation
and selection of log-linear models.Psychological Bulletin, 93, 149-166.

Bozdogan, H. (1987). Model selection and Akaike's information criterion: the general
theory and its analytical extension.Psychometrika, 52, 345-370.

Clogg, C.C. (1977). Some latent structure models for the analysis of Likert-type data.
Social Science Research,8, 287-301.

Clogg, C.C. (1981). New developments in latent structure analysis. In D.J. Jackson
& E.F. Borgatta (Eds.), Factor analysis and measurement in sociological research
(pp. 215-246). Sage Studies in International Sociology 21.Beverly Hills, CA: Sage.

Clogg, C.C. (1982). Some models for the analysis of association in multi way cross-
classifications having ordered categories.Journal of the American Statistical As-

sociation, 77, 803-815.

Clogg, C.C. (1988). Latent class models for measuring. In R.Langeheine & J. Rost
(Eds.), Latent trait and latent class models(pp. 173-205). New York: Plenum

Press.

Clogg, C.C. & Sawyer, D.O. (1981). A comparison of alternative models foranalyzing
the scalability of response patterns. In S. Leinhardt (Ed.), Sociological Methodology

(pp. 240-280). San Francisco: Jossey-Bass.

Clogg, C.C. & Goodman, L.A. (1984). Latent structure analysis of a set of multidi-
mensional contingency tables.Journal of the American Statistical Association, 79,

762-771.

Clogg, C.C. & Goodman, L.A. (1985). Simultaneous latent structure analysis in several
groups. In N.B. Tuma (Ed.), Sociological Methodology 1985 (pp. 18-110). San

Francisco: Jossey-Bass.

Clogg, C.C. & Goodman, L.A. (1986). On scaling models applied to data fromseveral

groups. Psychometrika, 51, 123-135.

Cohen, J. (1977). Statistical power analysis for the behavioral sciences.New York:
. Academic Press.

Cressie, N.& Holland, P.W. (1983). Characterizing the manifest probabilities of latent

trait models. Psychometrika, 48, 129-141.

Croon, M. (1989). Latent class models for the analysis of rankings. In G. de Soete, H.
Feger & KC. Klauer (Eds.), New developments in Psychological Choice Modeling

(pp. 99-121). Amsterdam, The Netherlands: Elsevier.

Croon, M. (1990). Latent class analysis with ordered classes. British Journal of the

Mathematical Statistical Society,43, 171-192.

Croon, M. (1991a). The problem of ordered classes: a hierarchy of solutions and a new

algorithm. Unpublished paper.



334

Croon, M. (1991b). Investigating Mokken scalability of dichotomous items by means
of ordinal latent class analysis.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABritish Journal of the Mathematical Statistical
Society, 44, 315-33l.

Croon, M. & Luijkx, R. (1992). Latent structure models for ranking data. In M.A.
Fligner & .1.S. Verducci (Eds.), Probability models for ranking data(pp. 53-74).
New York: Springer Verlag.

Croon, M. (1993). Ordinal latent class analysis for single-peaked items. Kwantitatieve
Methoden, 14, 127-142.

Cudeck, R. & Browne, M.W. (1983). Cross-validation of covariance structures.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM1llti-

111£17.11/1' Hclunnoiul RI!smn:h, 18, H7-JG7.

Darroch, .l.N. & Ratcliff', D. (1972). Gcucralizcd iterative scaling for log-linear models.
Annals of Mathematical Statistics,43, 1470-1480.

Davis, .J.A. [I 974). Hierarchical models for significance tests in multivariate contingency
tables. III ILL. CeJHt,IH'f(Ed.), S{)(:iolo.lliml Methodoloyy 197,'1-1974(PI>. 189-23]).
San Francisco: Jessey-Bass.

Dayton, C.M. & Macready, G.B. (1976). A probabilistic model for the validation of
behavioral hierarchies. Psychometrika, 41, 189-204.

Dayton, C.M. & Macready, G.B. (1980). A scaling model with response errorsand
intrinsically unseal able individuals. Psychometrika, 45, 343-356.

Dayton, C.M. & Macready, G.B. (1988). A latent class covariate model with applica-
tions to criterion-referenced testing. In R. Langeheine& .1. Rost (Eds.), Latent
trait and latent class models(pp. 129-143). New York: Plenum Press.

De Leeuw, J. & Verhelst, N. (1986). Maximum likelihood estimation in generalized
Rasch models. Journal of Educational Statistics,11, 183-196.

Dempster, A.P., Laird, N.M.& Rubin, D.B. (1977). Maximum likelihood from incom-
plete data via the EM- algorithm. Journal of the Royal Statistical Society. Series
B. 39,1-38.

Duncan, 0.0. (1975). Partitioning polytomous variables in multi way contingency anal-
ysis. Social Science Research,4, 167-182.

Duncan, O.D. (1984a). The latent trait approach in survey research. In C.F. Turner
& E. Martin (Eds.), Surveying subjective phenomena,vol. 1 (pp. 210-229). New
York: Russell Sage Foundation.

Duncan, O.D. (1984b). Rasch measurement: further examplesand discussion. In C.F.
Turner & E. Martin (Eds.), Surveying subjective phenomena,vol. 2 (pp. 367-403).
New York: Russell Sage Foundation.

Embretson, S.E. (1984). A general latent trait model for response process.Psychome-
trika, 49, 175-186.

Engelen, R.J.H. (1989). Parameter Estimation in the logistic item response model.
Unpublished doctoral dissertation. Enschede, The Netherlands.

Efron, B. & Hinkley, D.V. (1978). Assessing the accuracy of the maximumlikelihood
estimator: observed versus expected Fisher information.Biometrika, 65, 457-487.



335 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Evers, M. & Namboodiri, N.K. (1978). On the design matrix strategy in the analysis
of categorical data. In KF. Schuessler (Ed.),zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASociological Methodology1979 (pp.
86-111). San Francisco: Jossey-Bass.

Felling, A., Peters, J. & Schreuder, O. (1987).Religion in Dutch society85; documen-
tation of a national survey on religious and secular attitudes in 1985. Amsterdam:

Steinmetz Archive.

Fischer, G.H. (1970). A further note on estimation in Rasch's measurement model
with two categories of answers. Wien: Research Bulletin Nr.3/70, Psychologisch

Institut Universitiit Wien.

Fischer, G.H. (1974). Einfiihrung in die Theorie psychologischer Tests.Wien: Verlag

Hans Huber.

Fischer, G.H. (1983). Logistic latent trait models with linear constraints. Psychome-

trika, 48, 3-26.

Fischer, G.H. (1987). Applying the principle of specific objectivity and of generalizabilty
to the measurement of change.Psychometrika, 52, 565-587.

Fischer, G.H. (1989). An IRT-based model for dichotomous longitudinal data. Psy-

chometrika, 54, 599-624.

Fischer, G.H. & Scheiblechner, H.H. (1970). Algorithmen und Programmen fiir das
probabilistische Testmodell von Rasch.Psychologische Beitrage,12, 23-5l.

Fischer, G.H. & Parzer, P. (1991). An extension of the rating scale model with an
application to the measurement of change.Psychometrika, 56, 637-65l.

Fienberg, S.E. (1977, 1980).The analysis of cross-classified categorical data.Cambridge

MA: MIT Press.

Follman, D. (1988). Consistent estimation in the Rasch model based on nonparametric

margins. Psychometrika, 53, 553-562.

Formann, A.K (1984). Die Latent-Class-Analyse. Einfiihrung in Theorie und Anwen-

dung. Weinheim: Beltz.

Formann, A.K (1985). Constrained latent class analysis.British Journal of Mathe-

matical and Statistical Psychology,38, 87-111.

Formann, A.K (1988). Latent class models for nonmonotone dichotomous items. Psy-

chometrika, 53, 45-62.

Formann, AX. (1992). Linear logistic latent class analysisfor polytomous data. Journal

of the American Statistical Association,87, 476-486.

Gla:-;, C.A.W. (1989).zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC(mll'i/m/.io7l.s to (!st'imatin.fJ and t(!.~ti1!.fJRasch models. Unpuh-
lished doctoral dissertation. Enschede, The Netherlands.

Glas, C.A.W. & Verhelst, N.D. (1989). Extensions-of the partial credit model. Psy-

chometrika, 54, 635-659.

Goodman, L.A. (1964). Simultaneous confidence limits for cross-product ratios in con-
tingency tables. Journal of the Royal Statistical Society. Series B.26, 86-102.

Goodman, L.A. (1968). The analysis of cross-classified data: independence, quasi-
independence and interaction in contingency tables with orwithout missing cells.
Journal of the American Statistical A.5sociation,63, 1019-1131.



336 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Goodman, L.A. (1971). The analysis of multidimensional contingency tables: step-
wise procedures and direct estimation methods for buildingmodels for multiple
classification.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATechnometrics, 13, 33-61.

Goodman, L.A. (1972a). A modified multiple regression approach to the analysis of
dichotomous variables.American Sociological Review,37, 28-46.

Goodman, L.A. (1972b). A general model for the analysis of surveys. American Journal
of Sociology, 77, 1035-1086.

Goodman, L.A. {1973a}. Guided and unguided methods for the selection of models for
a set of T multidimensional contingency tables.Journal of the American Statistical
Association, 68, 165-175.

Goodman, L.A. (1973b). The analysis of multidimensional contingency tables when
some variables are posterior to others: A modified path analysis approach.
Biometrika, 60, 179-192.

Goodman, L.A. (1973c). Causal analysis of panel studies andother kinds of surveys.
American Journal of Sociology,78, 1135-1191.

Goodman, L.A. {1974a}. The analysis of systems of qualitative variables when some
of the variables are unobservable. Part I - a modified latentstructure approach.
American Journal of Sociology,79, 1179-1259.

Goodman, L.A. (1974b). Exploratory latent structure analysis using both identifiable
and unidentifiable models.Biometrika, 61, 215-231.

Goodman, L.A. (1975). The relationship between modified and usual multiple regres-
sion approaches to the analysis of dichotomous variables. In D.R. Heise (Ed.),
Sociological Methodology1976 (pp. 83-110). San Francisco: Jossey-Bass.

Goodman, L.A. {1978}. Analyzing qualitative/categorical data. Log-linear models and
latent structure analysis.Cambridge, MA: Abt Books. and Wesley.

Goodman, L.A. (1979). Simple models for the analysis of association in cross-
classifications having ordered categories.Journal of the American Statistical As-
sociation, 74, 537-552.

Goodman, L.A. (1981). Three elementary views of log-linearmodels for the analysis of
cross-classifications having ordered categories. In S. Leinhardt (Ed.), Sociological
Methodology 1981 (pp. 193-239). San Francisco: Jessey-Bass.

Goodman, L.A. (1983). The analysis of dependence in cross-classifications having or-
dered categories, using log-linear models for frequenciesand loglinear models for
odds. Biometrics, 39, 149-160.

Goodman, L.A. (1984). The analysis of cross-classified data havin9 ordered categories.
Cambridge, MA: Harvard University Press.

Goodman, L.A. (1990). Total-score models and Rasch-type models for the analysis
of a multidimensional contingency table, or a set of multidimensional contingency
tables with specified and/or unspecified order for response categories. In C.C.
Clogg (Ed.), Sociological Methodology 1990(pp. 249-294). Oxford: Basil Blackwell.

Goodman, L.A. & Kruskal, W.H. (1954). Measures of association for cross-
classifications. Journal of the Royal Statistical Association,49, 732-764.



337

Guttman, L.A. (1950). The basis for scalogram analysis. In S.A. Stouffer et al. (Eds.),zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Measurement and Prediction(pp. 60-90). Princeton (New Yersey): Princeton Uni-

versity Press.

Haberman, S.J. (1974a). Log-linear models for frequency tables derived by indirect
observation. Annals of Statistics, 2, 911-924.

Haberman, S.J. (1974b). The analysis of frequency data.Chicago: University of

Chicago Press.
Haberman, S.J. (1976). Iterative scaling procedures for log-linear models for frequency

data derived by indirect observation.Proceedings of the American Statistical As-

sociation 1975: Statistical Computing Section,(pp. 45-50).

Haberman, S.J. (1977a). Log-linear models for frequency tables with small expected

cell counts. Annals of Statistics, 5, 1148-1169.

Haberman, S.J. (1977b). Maximum likelihood estimates in exponential response mod-

els. Annals of Statistics, 5, 815-84l.

Haberman, S.J. (1978).Analysis of qualitative data, vol1. Introductory Topics. New

York: Academic Press.

Haberman, S.J. (1979).Analysis of qualitative data, vol2. New Developments. New

York: Academic Press.

Haberman, S.J. (1988). A stabilized Newton-Raphson algorithm for log-linear models
for frequency tables derived by indirect observation. InC.C. Clogg (Ed.), Socio-

logical Methodology 1988 (pp. 193-212). Washington, DC: American Sociological

Association.
Haertel, E.H. (1990). Continuous and discrete latent structure models for item response

data. Psychometrika, 55, 477-494.

Hagenaars, J.A. (1985).Loglineaire analyse van herhaalde surveys: Panel-, trend-en
cohortonderzoek. Unpublished doctoral dissertation. Tilburg, The Netherlands.

Hagenaars, J.A. (1988). LCAG - loglinear modelling with latent variables: a modified
LISREL approach. In W.E.Saris& LN. Gallhofer (Eds.), Sociometric research,

vol. 2. Data analysis (pp. 111-131). London, England: MacMillan.

Hagenaars, J.A. (1990).Categorical longitudinal data; log-linear panel, trend and cohort

analysis. Newbury Park, CA: Sage.

Hagenaars, J.A. (1992a). Exemplifying longitudinal log-linear analysis with latent vari-
ables. In P.G.M. van der Heijden, W. Jansen, B. Francis& G.U.H. Seeber (Eds.),

Statistical Modelling (pp. 105-120). Amsterdam: Elsevier.

Hagenaars, J .A. (1992b). Latent variables in log-linear models of repeated observations,
Working Paper Series #67, Tilburg University, Faculty of Social Sciences.

Hagenaars, J.A., Heinen A.G.J.& Hamers, P.A.M. (1980). Causale modellen met
diskrete latente variabelen: een variant op de Lisrel-benadering. MDN, 5, 38-54.

Hagenaars, .l.A.& Luijkx, R. (lg87). LCAG; Latent class models and other log-linear
models with latent variables. User's manual, Working Paper Series #17, Tilburg

University, Department of Sociology.
Hambleton, R.K. & Swaminathan, H. (1985).Item response theory.Boston: Kluwer-

Nijhoff Publishing.



338

Heckman, J.& Singer, B. (1982). The identification problemin econometric models for
duration data. In: W. Hildebrand (Ed.),zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAdvances in Econometrics(pp. 39-77).
Cambridge: Cambridge University Press.

Heinen, A., Hagenaars, J.& Croon, M. (1988). Latent trait models in LCA perspective.
Paper presented at the SMABS-conference, Groningen.

Heinen, A.& Vermaseren, P. (1992). Diltran users guide. Tilburg University, Depart-
ment of Social Sciences.

Heinen, A. & Croon, M. (1992). Latent structure measurement models for poly to-
mous items. Paper presented on the International Conference on Social Science
Methodology. Trento, Italy, June 1992.

Hoijtink, H. (1990). A latent trait model for dichotomous choice data. Psychometrika,
55, 641-656.

Holland, P.W. (I990a). The Dutch identity: a new tool for thestudy of item response
models. Psychometrika, 55, 5-18.

Holland, P.W. (1990b). On the sampling theory foundations of item response theory
models. Psychometrika, 55, 577-60l.

Holland, P.W. & Rosenbaum, P.R. (1986). Conditional association and unidimension-
ality in monotone latent variable models.Annals oj Statistics, 14, 1523-1543.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian
Journal of Statistics, 6, 65-70.

Holt, J.A. & MacReady, G.B. (1989). A simulation study of the differencechi-square
statistic for comparing latent class models under violation of regularity conditions.
Applied PsuclioloqicalzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMeasurement, 1.'1,221-23l.

Hout., M., Duncan, 0.0. & Sobel, M.E. (1987). Association and heterogeneity: struc-
tural models of similarities and differences. In C.C. Clogg (Ed.), Sociological
Methodology 1987 (pp. 145-184). Washington, DC: American SociologicalAsso-
ciation .

. Irtel, H. (1987). On specific objectivity as a concept in measurement. In E.E. Roskam&
R. Suck (Eds.), Progress in Mathematical Psychology,1. Amsterdam, The Nether-
lands: Elsevier.

Jansen, P.G.W. (1983).Rasch analysis of attitudinal data.'s-Gravenhage, PTT. Un-
published doctoral dissertation.

Jansen, P.G.W.& Roskam, E.E. (1986). Latent trait models and dichotomization of
graded responses.Psychometrika, 51, 69-91.

Joreskog, K.G.& Sorbom, D. (1988). LISREL 7. A guide to the program and applica-
tions. Chicago: SPSS Inc.

Karlin, S. & Studden, W.J. (1966).Tchebycheff systems: with applications in analysis
and statistics. New York: John Wiley.

Kelderman, H. (1984). Log-linear Rasch model tests.Psychometrika, 49, 223-245.

Kelderman, H. (1987). Quasi-loglinear models for test and item analysis.Unpublished
doctoral dissertation, Enschede.



339

Kelderman, H. (1988). Loglinear multidimensional IRT models for polytomously scored
items. Research report 88-17. Enschede: University of Twente, department of
education.

Kelderman, H. (1989). Item bias detection using log-linearIRT.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPsychometrika, 54,

681-697.

Kelderman, H.& Macready, G.B. (1990). The use of loglinear models for assessing
differential item functioning across manifest and latent examinee groups. Journal

of Educational Measurement,27, 307-327.

Kerlinger, F.N. & Pedhazur, E.J. (1973).Multiple regression in behavioral research.

New York: Holt, Rinehart & Winston.

Kiefer, J. & Wolfowitz, J. (1956). Consistency of the maximum likelihood estimator
in the presence of infinitely many incidental parameters.Annals of Mathematical

Statistics, 27, 887-906.

Kreiner, S. (1987). Analysis of multidimensional contingency tables by exact conditional
tests: techniques and strategies.Scandinavian Journal of Statistics,14, 97-112.

Langeheine, R. (1988). New developments in latent class theory. In R. Langeheine& J.
Rost (Eds.), Latent trait and latent class models(pp. 77-108). New York: Plenum
Press.

Langchein«, IL & 110sI., .1. (I!JH8) lut.ruduct.ion and overview. III 11. Langeheino & .1.

Rost (Eds.}, Latent trait and latent class models(pp. 1-7). New York: Plenum

Press.

Lawley, D.N. (1943). On problems connected with item selection and test construction.
Proceeding of the Royal Statistical Society of Edinburgh,61,273-287.

Lazarsfeld, P.F. (1950a). The logical and mathematical foundation of latent structure
analysis. In S. Stouffer (Ed.),Measurement and prediction(pp. 362-412), Prince-
ton, N.J: Princeton University Press.

Lazarsfeld, P.F. (1950b). The interpretation and mathematical foundation of latent
structure analysis. In S. Stouffer (Ed.),Measurement and prediction(pp. 413-472),

. Princeton, N.J: Princeton University Press.

Lazarsfeld, P.F.& Henry, N.W. (1968). Latent structure analysis. Boston: Houghton

Mifflin Company.

Lindsay, B., Clogg, C.C.& Grego J. (1991). Semiparametric estimation in the Rasch
model and related models, including a simple latent class model for item analysis.
Journal of the American Statistical Association,86, 96-107.

Long, J.S. (1984). Estimable functions in log-linear models. Sociological MethodszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfj

Research, 12, 399-432.

Lord, F.M. (1952). A theory of test scores.Psychometrika Monograph No.7, 17(4,

Pt. 2).

Lord, F.M. (1967). An analysis of the Verbal Scholastic Aptitude Test using Birnbaum's
three-parametric logistic model(ETS Research Bulletin RB-67-34). Princeton, NJ:

Educational Testing Service.

Lord, F.M. & Novick, M.R. (1968). Statistical theories of mental test scores.Reading,

MA: Addison-Wesley.



340zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Louis, Th.A. (1982). Finding the observed information matrix when using the EM
algorithm.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJournal of the Royal Statistical Society. Series B44, 226-233.

Luce, R.D. (1959). Individual choice behavior.New York: Wiley.

Martin-Lof, P. (1973). Statistika Modeller. Anteckningar fran seminaries: Lasiiret 1969-

1970 uinrbetade av Rolf Sunberq obetydligt iindrat nytryk,oktober 1973. Stockholm:
Institutet for Forsakringsmatematik och Matematisk Statistik vid Stockholms Uni-
versitet.

Masters, G.N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47,
149-174.

Masters, G.N. (1985). A comparison of latent trait and latent class analyses of Likert-
type data. Psychometrika, 50, 69-82.

Masters, G.N.& Wright, B.D. (1984). The essential process in a family of measurement
models. Psychometrika, 49, 529-544.

McCullagh, P.& Nolder, .I.A. (1983, 1989). Generalized linear models.London, Eng-
land: Chapman and Hall.

McCutcheon, A.L. (1987). Sage university paper64. Latent class analysis. Newbury
Park, CA: Sage.

McCutcheon, A.L. (1993) Logit models with latent response and polytomous effects
variables.ZYXWVUTSRQPONMLKJIHGFEDCBAIn A. von Eye & C.C. Clogg (Eds.) Analysis of Latent Variables in
Developmental Research.New York: Academic Press.

McDonald, R.P. (1967). Non-linear factor analysis.Psychometric Monographs,No. 15.

McDonald, R.P.& Marsh, H.W. (1990). Choosing a multivariate model: noncentrality
and goodness offit. Psychological Bulletin, 107, 247-255.

McLaghlan, G.J. & Basford, K.E. (1988).Mixture models: inference and applications
to clustering. New York: M. Dekker, Inc.

Meilijson, I. (1989). A fast improvement to the EM algorithmon its own terms. Journal
of the Royal Statistical Society. SeriesB. 51, 127-138.

Mellenbergh, G.J.& Vijn, P. (1981). The Rasch model as a log-linear model.Applied
Psychological Measurement,S, 369-376.

Mislevy, R.J. (1984). Estimating latent distributions.Psychometrika, 49, 359-381.

Mislevy, R.J. (1986). Bayes modal estimation in item response models. Psychometrika,
51,177-195.

Mislevy, R.J. & Verhelst, N. (1990). Modeling item responses when different subjects
employ different solution strategies.Psychometrika, 55, 195-215.

Molenaar, I.W. (1983a). Item steps.Heymans Bulletins (Report No. HB~83-630-EX).
Groningen: Rijks Universiteit Groningen.

Molenaar, I.W. (1983b). Some improved diagnostics for failure of the Rasch model.
Psychometrika, 48, 49-72.

Mood, A., Graybill, F.A. & Boes, D.C. (1974).Introduction to the theory of statistics.
Tokyo, Japan: McGraw-Hill.

Mooijaart, A. & van der Heijdcn, P.G.M. (1992). The EM algorithm for latent class
analysis with equality constraints. Psychometrika, 57, 261-269.



341

Muraki, E. (1992). A generalized partial credit model: application of an EM algorithm.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Applied Psychological Measurement,16,159-176.

Nelder, J.A. & Wedderburn, R.W.M. (1972). Generalized linear models.Journal oj the
Royal Statistical Society. Series A.135, 370-384.

Neyman, J.& Scott, E.L. (1948). Consistent estimates based on partially consistent
observations. Econometrika, 16, 1-32.

Proctor, C.H. (1970). A probabilistic formulation and statistical analysis of Guttman
scaling. Psychometrika, 35, 73-78.

Raftery, A.E. (1986a). Choosing models for cross-classifications. American Sociological
Review, 51, 145-146.

Raftery, A.E. (1986b). A note on Bayes factors for log-linear contingency table models
with vague prior information. Journal of the Royal Statistical Society. SerieszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB.

48, 249-250.

Rao, C.R. (1973). Linear statistical inference and its applications.(2nd edn). New
York: John Wiley.

Rasch, G. (1960). Probabilistic models for some intelligence and attainmenttests.
Copenhagen: Danish institute of educational research.

Rasch, G. (1961). On general laws and the meaning of measurement in psychology. Pro-
ceedings oj the Fourth Berkeley Symposium on Mathematical Statistics and Proba-

bility, 321-333.

Rasch, G. (1977). On specific objectivity: an attempt at formalizing the request for gen-
erality and validity of scientific statements.In M. Blegvad (Ed.), Danish Yearbook

of Philosophy. Copenhagen: Munksgaard.

Read, T.R. & Cressie, N.A. (1988). Goodness-oj-fit statistics [or discrete multivariate

data. New York/Berlin: Springer-Verlag.

Reckase, M.D. (1985). The difficulty of test items that measure more than one ability.
Applied Psychological Measurement,9, 401-412.

Reiser, M. (1981). Latent trait modeling of attitude items.In C.W. Bohrnstedt & E.F.
Borgatta (Eds.), Social Measurement (pp. 117-144). Beverly Hills: Sage.

Rigdon, S.E. & Tsutakawa, R.K. (1983). Parameter estimation in latent trait models.
Psychometrika, 48, 567-574.

Roskam, E.E. & Jansen, P.G.W. (1984). A new derivation of the Rasch model. In E.
Degreef & J. van Buggenhaut (Eds.),Trends in Mathematical Psychology.Ams-
terdam, The Netherlands: Elsevier.

Rost, J. (1985). A latent class model rating data.Psqchometrika, 50,37-49.

Rost, J. (1988a). Rating scale analysis with latent class models. Psuchomeirika, 5,'1,

327-348.

Rost, J. (1988b). Test theory with qualitative and quantitative latent variables. InR.

Langeheine & .J. Rost (Eds.), Latent trait and latent class models(pp. 147-171).
New York: Plenum Press.

Rost, J. (1990). Rasch models in latent classes: an integration of two approaches to
item analysis. Applied Psychological Measurement,14, 271-282.



342zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Rost, .T. (1991). A logistic mixture distribution model for polychotomous item ro-
sponses.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABritish Journal of Mathematical and Statistical Psychology, 44, 75-92.

Sarncjima, F. (1969). Estimation of latent ability using a response pattern of graded
scores, I'syc!unndrika Monoqrapl: No.17, 34 (4. Pt. 2).

Schwarz, G. (1978). Estimating the dimensions of a model.Annals of Statistics, 6,
461-464.

Sclove, S.L. (1987). Application of model selection criteria to some problems in multi-
variate analysis. Psychometrika, 52, 333-343.

Sobel, M.E. & Bohrnstedt, G.W. (1985). Use of null models in evaluating the fit of
covariance structure models. In N.B. Tuma (Ed.),Sociological Methodology 1985
(pp. 152-178). San Francisco: Jossey-Bass,

Spray, J.A., Davey, T.C., Reckase, M. D., Ackerman, T.A.& Carlson, J.E. (1990).
Comparison of two logistic multidimensional item responsetheory models. ACT
Research Report Series, research report ONR90-S. Iowa City: American College
Testing Program.

Steiger, J.H. (1979). Factor indeterminacy in the 1930's and the 1970's: some interest-
ing parallels. Psychometrika, 44, 157-167.

Stouthard, Ph.C. (1965).Data modellen. Enkele toepassingen en een methodologische
kritiek. Unpublished doctoral dissertation. Tilburg, The Netherlands.

Stroud, A.H. & Secrest, D. (1966). Gaussian quadrature formulas. Englewood Cliffs
NJ: Prentice-Hall.

Swaminathan, H. & Gifford, J.A. (1982). Baysian estimationin the Rasch model.
Journal of Educational Statistics, 7, 175-191.

Sympson, J.B. (1978). A model for testing with multidimensional items. In D.J.
Weiss (Ed.), Proceedings of the1977 Computerized Adaptive Testing Conference

(pp. 82-98). Minneapolis: University of Minnesota, Department of Psychology,
Psychometric Methods Program.

Thissen, D. (1982). Marginal maximum likelihood estimation for the one-parameter
logistic model. Psychometrika, 47, 175-186.

Thissen, D. (1988). Multilog; multiple, categorical item analysis and test scoring using
item response theory.Version 5.1. Mooresville IN: Scientific Software Inc.

Thissen, D. & Steinberg, L. (1984). A response model for multiple choice items. Psy-
chometrika, 49, 501-519.

Thissen, D. & Steinberg, L. (1986). A taxonomy of item response models. Psychome-
trike; 51, 567-577.

Thissen, D. & Mooney, J.A. (1989). Log-linear item responsemodels with applications
to data from social surveys. In C.C. Clogg (Ed.),Sociological Methodology 1989
(pp. 299-330). Oxford: Basil Blackwell.

Tjur, T. (1982). A connection between Rasch's item analysismodel and a multiplicative
Poisson model. Scandinavian Journal of Statistics,9, 23-30.

Tucker, L.R. (1946). Maximum validity of a test with equivalent items. Psychometrika,
11,1-14.



343zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Torgerson, W.S. (1962).zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATheory and methods of scaling.New York: John Wiley.

Van de Pol, F. & de Leeuw,J. (1986). A latent Markov model to correct for measure-
ment error. Socioloqical MethodszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf1 Research, 15, 118-141.

Van den Wollenberg, A.L. (1979).The Rasch model and time-limit tests.Unpublished
doctoral dissertation. Nijmegen, The Netherlands.

Van den Wollenberg, A.L. (1982a). A simple and effective method to test the dimen-
sionality axiom of the Rasch model.Applied Psychological Measurement,6, 83-91.

Van den Wollenberg, A.L. (1982b). Two new test statistics for the Rasch model.Psy-

chometrika, 47, 123-139.

Van den Wollenberg, A.L. (1988). Testing a latent trait model. In R. Langeheine & J.
Rost (Eds.), Latent trait and latent class models(pp. 31-50). New York: Plenum

Press.

Verhelst, N.D., Glas, C.A.W.& van der Sluis, A. (1984). Estimation problems in the
Rasch model: the basic symmetric functions.Computational Statistics Quarterly,

1, 245-262.

Verhelst, N.D. (1992). Ret. oenpararnetcr logistisch model (OPLM); een theoretische
inleiding en een handleiding bij hot computerprogramma. OPD Memorandum 92-
3. Aruheru, The Netherlands: CITO.

Vermunt, J. (1992). LEM: log-linear and event history analysis with missing data.
User's manual. Tilburg University, Department of Social Sciences.

Wheaton, B. (1987). Assessment of fit in overidentified models with latent variables.

Sociological Methods f3 Research, 16, 118-154.

Whittaker, J. (1990). Graphical models in applied multivariate statistics.Chichester,

England: John Wiley.

Wiggins, L.M. (1955). Mathematical models for the analysis of multi-wave panels.Doc-

toral dissertation series No. 12.481. Ann Arbor, MI.

Wiggins, L.M. (1973). Panel analysis: latent probability models for attitude andbehav-

ior processes. Amsterdam, The Netherlands: Elsevier.

Wright, B.D. & Panchapakesan, N.A. (1969). A procedure for sample-free item analysis.
Educational and PS?Jchologiml Measurement,6, 83-91.

Wright, B.D. & Douglas, G.A. (1977a). Best procedures for sample-free item analysis.
Applied Psychological Measurement,1, 281-295.

Wright, B.D. & Douglas, G.A. (1977b). Conditional versus unconditional procedures
for sample-free analysis.Educational and Psychological Measurement,37, 573-586.

Wright, B.D. & Masters, G.N. (1982).Rating scale analysis.Chicago: MESA Press.

Zwinderman, A.H. (1991a).Studies of estimating Rasch models.NICI Technical Report

91-02. Nijmegen, The Netherlands.

Zwinderman, A.H. (1991b). A generalized Rasch model for manifest predictors. Psy-

chometrika, 56, 589-600.



Bibliotheek K. U. BrabantZYXWVUTSRQPONMLKJIHGFEDCBA

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1

1700001125076 9zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Latent trait and latent class models are both measurement models for discrete
manifest indicators. Many authors have stressed the differences between the
two'kinds'oflmodels. In latent trait modelsit is assumed that the latent variable
is metrical and continuous; while latent class models are developed to handle
discrete latent variables thatcanbe measured oneVer)!meashrementlevel (so,
nominal, ordinal or metrlcal], The.facttliat for along tIme the two models have
been considered as related butessentiaIl:9differ.ent 93-nalso beexplainedbytheir
different origins. Latent. trait models were developed by psychometriciads, .
latent class models by sociologists. Only quite recently latent trait models have
been applied to the analysisQf attitudinal data.

lhzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl!:)iscre,ttLate/It Variable! Models, theeauthor shows how to bridge the,gflp
..between both models. When thepatametersin latent trait models are estimi~
,nsing semi arametricMML, the QonOnuouslatent variable can bediscretized.
'1'fif~res' a latent trait model that is identicat to a;'latent class model with
cel,ichn f~tdctii;i1ls>o1ftfie log-linear parameters,

Tte\eneill~;rli~glatentt~llitandlatentclflssmodelsinthiswayisth~~reslJlls
oJjtained~ clitionCaQ. be,psed 1:0 the other tradition. The definitiou,"ot
mulfi~irt;J;. atentvaria:ble~and the.ineorporation of extermtl varlablesiif
the 'Il1~a®teJ~g~~,fQol1e\>.cwhichcan.straightforwardly be aonein late,fit clas~
models, areeasily tJ:ltn~rred to disoretized.latent trait models ..

Discrete LattJint Variable Models offers a review of latentclass and lat~tb;ait
mod~ls. :Methods fOf estimating parameters and: testing Jhe modeltit are
described in detail. Moreover, this book helpsto understand bow thet~o types

of models are related to each other byusi,ng a commonlO$:"li neatpru:ameterization.
'"

ISBN 90-361-9753-8


	Content
	Chapter 1 
Introduction
	1.1 Latent structure models
	1.2 Local independence
	1.3 Latent structure models for discrete data
	1.3.1 The unrestricted latent class model
	1.3.2 Linear relations between the latent and the manifest 
variables
	1.3.3 Latent structure models for ordinal data
	1.4 Latent class analysis versus latent trait models
	1.5 An outline of this book
	Chapter 2 
Latent Class Analysis
	2.1 Introduction
	2.2 Log-linear models
	2.2.1 Estimation in the log-linear model
	2.2.2 Testing and assessing model fit
	2.3 Latent class models
	2.3.1 Estimation in the latent class model
	2.3.2 Testing and model selection in latent class analysis
	2.3.3 Strength of association between latent and manifest
 variables
	2.4 Restricted latent class models
	2.4.1 Latent class models for scale response patterns
	2.4.1.1 Models with error of measurement
	2.4.1.2 Models with an intrinsically unscalable class of respondents
	2.4.1.3 Guttman scaling with Rasch models
	2.4.2 Latent class models for Likert-type data
	2.4.3 Ordinal latent class analysis
	2.4.4 Latent class models with linear restrictions upon the
log-linear parameters
	2.5 Latent class models with several latent variables
	2.6 Latent class models with external manifest variables
	2.7 Evaluation
	Chapter 3
 Latent Trait Models
	3.1 Introduction
	3.2 Some basic latent trait models
	3.2.2 Latent trait models for polytomous data
	3.2.2.1 Divide-by-total models
	3.2.3 A brief outline of estimation procedures
	3.3 Discretized latent trait models
	3.3.1 A typology of latent trait models
	3.3.2 A general latent trait model: the Nominal Response
model
	3.3.3.1 Discrimination parameters restricted to be equal over
items
	3.3.3.2 The Partial Credit Model
	3.3.3.3 Item-specific scaling parameters
	3.3.4 Restrictions on the difficulty parameters
	3.3.4.1 The Rating Scale model
	3.4 Evaluation
	Chapter 4
 Estimation and Testing in Latent
Trait Models
	4.1 Introduction
	4.2 Estimation
	4.2.1 Joint maximum likelihood
	4.2.2 Conditional maximum likelihood
	4.2.2.1 CML estimation by log-linear models
	4.2.3.1 Parametric estimation
	4.2.3.2 Semi-parametric estimation
	4.2.3.3 Fully semi-parametric estimation
	4.3 Testing latent trait models
	Chapter 5b
Some extensions of latent trait
 models: introducing additional 
latent and manifest external
 variables
	5.1 Introduction
	5.2 Multidimensional latent trait models
	5.2.1 A general multidimensional latent trait model
	5.2.2 Restricted multidimensional latent trait models
	5.3 Relations with external variables
	5.3.1 Estimating latent scores
	5.3.2 Including external variables in the model
	5.3.2.1 Relating the latent trait to external variables using a
regression model
	5.3.2.2 Relating the latent trait to external variables through
log-linear models
	5.3.2.3 Relating the latent trait to unobserved external variables
	5.4 Causal models for latent and external variables
	5.5 Evaluation
	Appendix A
	Maximum-likelihood estimation for
log-linear and latent class models
	Marginal distributions and
response patterns with frequencies
	Derivatives of Pl/ with respect to   the model parameters 1
	First and second derivatives of the
 log-likelihood with respect to the 
item parameters for a number of
 discretized latent trait models
	First and second derivatives of the 
log-likelihood with respect to Bi for 
a number of discretized latent trait 
models
	The DILTRAN program
	Summary
	Samenvatting
	References

