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Discrete Least Squares and Quadrature Formulas

By M. Wayne Wilson

Abstract. The purpose of this paper is two-fold. Firstly, we explore some of the intimate connec-

tions between discrete least squares processes and quadratures. Secondly, we present an algorithm

to construct Gauss-type integration formulas, and consider briefly the method proposed by

Gautschi [2].

1. Introduction. Primarily, this paper is an attempt to explore the intimate con-

nection between numerical integration rules and discrete least squares methods. If L

is a linear functional on C[— 1, 1], the set of continuous functions defined on [— 1,1],

then (Taylor [7, p. 195]) there exists a function a e BV[— 1, 1], the set of functions

of bounded variation on [- 1, 1], such that

(LI) Lif) = fit)doit),   V/eC[-l, 1].

We call ¡x the integrator of L.

For a e BK[— 1, 1], we can consider a linear functional

L(f) =  i    /(f) dait)
J-1

or a bilinear form

if,g)=  P   fitMt)doit).

Clearly, for such an a, (/, g) = Lifg) sind Lif) = (1, /) and these we call an

associated pair. Note that if a is a step function, with a finite number of discontinuities,

then L, and ( , ) are finite weighted sums of function values. Similarly, finite

weighted sums can be represented as Stieltjes integrals, with integrators which are

step functions.

For a given linear functional L, we call a linear functional L„ of the form

(1.2) l„u) = i ay m
¡ = o

an (A/ + l)-point degree n quadrature formula for L if

(1.3) L„ip) = Lip),   VpePn,

where P„ is the set of polynomials of degree at most n.
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272 M.  WAYNE WILSON

If a E BV\_— 1, 1], then its Ath moment is

-i

pk(a) = tk da(t).

J -1

Condition (1.3) is then equivalent to

(1.4) Pt(aiv) = P*(«),       fe = 0, l,...,n,

where aft is the integrator of (1.2).

Section 2 is dedicated to the principle that formulas should use available data, if

at all possible. The first result, Construction 2.1 shows how to obtain an (A/ + 1)-

point degree n quadrature formula, utilizing a user prescribed point set. One inter-

pretation of this construction is as a transformation, taking a degree n quadrature

formula with prescribed data points (for example, a known Gauss-type rule for a

particular weight function), into an (N + l)-point degree n rule, utilizing the desired

N + 1 data points, N = n. Theorem 2.1 gives a characterization of these rules,

from which a statistical interpretation is drawn.

Construction 2.1 is then used as a basis for Construction 2.2, showing how to

obtain a discrete inner product, utilizing again N + 1 user specified points, whose

first r + 1 orthogonal polynomials, N = 2r — 1 are precisely those of a user speci-

fied continuous distribution. This allows one to use the power of discrete Fourier

series expansion, utilizing data points, and the polynomial system of one's choice.

An example is given.

Section 3 applies the previous construction in the computation of Gauss-type

quadrature formulas. In Section 4, we consider the method of Gautschi [2], suggest

a modification, and show that in some sense, he still utilizes moment data.

2. Discrete Least Squares and Quadrature Formulas. Throughout, we will con-

sider the linear function L of (1.1), with integrator a. Our first result is a method of

constructing an (¿V + 1 (-point degree n quadrature formula for L, using a prescribed

set of data points.

Construction 2.1. Let — 1 <¡ f0 < fi < ... < fjv ̂  1 be N + 1 prescribed

points in [—1,1], N ^ n. Let w¡, i = 0, 1,..., N be a set of strictly positive numbers,

such that

N

(2.1) I w¡ = po(a).
/ = 0

The inner product [    ,     ], given by

(2.2) [./', g] =  X wJUMfd,
¡ = o

possesses an orthonormal sequence of polynomials q0, qx, ..., qN.  Then an (N + 1 )-

point degree n quadrature formula for L is given by

(2.3) LtJ) = X XYfUi)

where
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DISCRETE LEAST SQUARES AND QUADRATURE FORMULAS 273

(2.4) A, = w, il +  ¿ ^mA ,       ¿ = 0, 1,..., N,

and

(2.5) Mj = Liqj).

Proof For /sC[-l, 1], its nth Fourier segment s„if) is given by

sJtf) =  Î if, «J«,,       » ̂  W.
j=o

(If N = n, s„if) is the interpolation polynomial.)

Defining L„(/) by L(s„(/)), we have

U/) =  î if, 9j]Mj
j=0

=   £ fit,) {w, t qffiWl ■
¡ = 0 (.       j = 0 J

But (2.1) implies [1, 1] = fi0 = L(l) so that

ioW =-.   and   M0 = v'po-
V/'o

Thus, L„if) is given by (2.3)-(2.5). For pePn, sn(p) = p, so Lnip) = Lip), 1pePn,

and (2.4) is indeed a quadrature formula of degree n. Q.E.D.

Of course, if N = n, (2.3) is the unique interpolatory quadrature formula for the

data points, regardless of how the numbers w¡ were chosen. We delay discussion of

calculation of Aj"' to prove the following characterization of the rule.

Theorem 2.1. For a given set of points t0, tlt ..., tN, and a given set of weights

w0, w,,..., Wjv, then amongst all possible (A/ + l)-point degree n quadrature formulas

for L, of the form

QJtf) =  t 4f(td,       n ̂  N.
;=o

L„, defined by (2.3)-(2.5), is the unique formula minimizing

N        Al

*A)=  1^-.
i = 0  wi

Proof. We express the problem as that of minimizing the norm of an element sub-

ject to linear constraints, and apply a theorem in Davis [1, p. 229]. For a vector

x = (x0, xlt..., xN) in EN+1, define an inner product ((    ,    )) by

«x,y»= íf-
¡ = 0    Wi

Define h0, h,,..., h„ by

h¡ = (wo<?i(t0), Wxqfcx),..., wNq¡itN)).

By definition,
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274 M. WAYNE WILSON

«h,, h,» = [?J, qj] = ôij,       i,j = 0, 1,..., n.

Now, L„ip) = Lip), Vp 6 P„ iff Lniqf) = Liqj), j = 0, 1, ..., n; that is, the vector

A = iA0, Ax,..., AN) must satisfy the constraints

«A, h,» = Mj,       j = 0,l,...,n.

Applying the theorem in Davis, the unique element A* of EN+1 satisfying these con-

straints and minimizing d(A) = (<A, A)) is given by

A* =  ¿ Mjh;,
j = 0

whose ¿th component,

n

A? = £ WÑJtdMj,
J«0

is precisely Aj"0, given by (2.4). Q.E.D.
By computation, or as a corollary to the theorem in Davis, the minimum value

d(A*) is Ya=o Mf. These quadratures contain, as a special case, the quadratures

described in Wilson [10], and in the author's thesis.

This characterization has the following statistical interpretation. Let each function

value /(t,-) have an error e¡, which, considered as an independent random variable,

has variance a2. Taking w¡ = I/o-?, Theorem 2.1 shows that the variance a2

of the total error, E,

Us ¿AaJ    ofQN

is minimized if A¡ are determined according to Construction 2.1.

Turning now to the calculation of Xf\ the values q,{t^ are obtained by generating

the set q0,Qx, ■■ -,q„ by the three-term recurrence formula. For any inner product

( , ) the orthonormal polynomials p0, pt,..., and their monic forms p0, p,,...

satisfy the recurrence

p-x=0,       Poit)=l,       jSo=0

(26) P¿+i(f) = (t - a¡)P. - ßißi-:.   i = 0,1,...   where

a¡ = it Pi, PiViPi ,P¡),       ßi = (ßi, PiViPi -1, Pi - x )   and

Pi = Pi/iPi,Pi)m

which we collectively call (2.6)

Note that the square root operation indicated above is easily avoided in computing

X{Y, since

qffdMj = qfiQLiqyiqj, qj).
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DISCRETE LEAST SQUARES AND QUADRATURE FORMULAS 275

The values M} = Liqj), or alternatively L{qj)t are known in principle. They may

be obtained from the moments pk(a), fc = 0, 1.n, via an (unstable) recurrence

given in Gautschi [2]. If the q¡ can be identified with a set of classical polynomials

(wishful thinking in general), analytic techniques might be employed. However, if

there exists some degree n quadrature formula for L, say Q„, then M¡ or Liqj) are

easily computed. In effect, we are then transforming the known quadrature Q„ (for

example, a Gauss-type rule, involving approximately 1/2" data points) into a degree

n formula, with (AT + 1) specified data points, N = n. One advantage of this method

of creating quadrature formulas is that we do not require the solution of a system of

equations.

This process has application in creating quadrature formulas for data arising from

experimentation, where it may be impractical, if not impossible, to obtain data to fit

known rules. It has the added advantage that, via Theorem 2.1, known error charac-

teristics of data can be incorporated.

The construction can be modified to handle the more general situation, where by

degree n we mean that L„if) = L(/) for all function / in an (n + 1) dimensional

subspace of C[ — 1,1], spanned by (n + 1) linearly independent continuous functions

<p0,<Px, ...,q>„. The three-term recurrence formulas, which orthonormalize 1, t, t2,

..., t" are replaced by the Gram-Schmidt orthogonalization process.

Next, we consider further ways the choice of weights w¡ affect the computation of

Xin). Let J be the linear functional associated with the inner product [   ,   ]. That is

(2.7) Jif) = \l,fl   V/eC[-l,l].

Condition (2.1) implied that J was an (A/ + l)-point degree 0 quadrature formula

forL.

Lemma 2.1. Suppose J is a degree m quadrature formula for L. Then, for m < n,

(2.8) Aj"' = Wt\l +     £    q¿tdM\
I j=m+l J

while for m — n, A|B) = w¡.

Proof. Since Jip) = Lip), VpePm, we have M} = Liqj\ = Jiqj) = [1, qj] = 0,
for j ss 1,2,..., min(n, m), by definition, assumption, and orthogonality. Q.E.D.

Thus, X(Y can be considered as wt, with a correction factor, which takes account

only of the increase in degree. If m — n, J is already a degree n formula with the re-

quired N + 1 data points.

If we treat (2.2) as a bilinear form, we can relax the strict positivity requirements

on the weights w¡. Everything previous will hold, with nonzero weights, provided the

bilinear form [ , ] will generate a set of monic "orthogonal" polynomials q0, q^,

...,q„ via the three-term recurrence formulas (2.6). Struble [5] shows that the recur-

rence breaks down only if, for some k < n, \_qk, qk] = 0. Thus, the existence of

q0, qx.q„ implies the existence of "orthogonal" polynomials q0, qx, ■ ■ ■, q„- x,

normalized in the usual fashion. We admit the possibility of [q„, q„] = 0.

Starting with [ , ] and assuming J is of degree m < n, < n, nx an integer,

observe that in addition to creating L„, we could create L„t. Taking as a new set of

weights w, the coefficient XlY\ (which need not be strictly positive), we can create an-

other degree n formula, by a second application of the construction. Unless N = n,

(so that L„ is the unique interpolatory quadrature for L), the two-degree n formulas
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276 M.  WAYNE WILSON

are not in general the same. This is easily seen from Theorem 2.1, or from experi-

mentation.

Lemma 2.2. Let ( , ), the bilinear form associated with L, possess a sequence of

monk orthogonal polynomials, p0, Pi > • • • > Pi • Let J, the associated linear functional

of [ , ] be of degree m. Then [ , ] possesses a sequence of monic polynomials

q0, q~x, ■ ■ ■, qr, for any r satisfying r = I, 2r — 1 iS m.

Further, q~j = pj, j = 0,1,..., r, and q¡ = pj, j = 0,1,... ,r — 1. If in addition

r satisfies 2r i£ m, r ^ /, then qr = pr, provided (pr, pr) J= 0.

Proof. From Szegö [6, Section 2.2], or Stroud and Secrest [4, Section 1.2], or

directly from the recurrence formulas, the polynomial pk is determined by the mo-

ments Hjioi), a the integrator of L or ( , ), for j = 0,1,.... 2k — 1. If ipk, pk) ¥= 0,

pk is determined by p.,{<x), i = 0,1,..., 2k. Since J is a quadrature formula of degree m,

its integrator has the same first m + 1 moments as L. Q.E.D.

In the statement of the lemma, if / is finite (we allow / to be finite or infinite), then,

unless degeneracy occurs, p, is also available. If a(i) is monotonie increasing, we have

orthogonal polynomials in the classical sense, and degeneracy cannot occur.

This leads to the following

Construction 2.2. Let ( , ) be a bilinear form, possessing a sequence of monic

orthogonal polynomials, p0, p1; ..., pr. Taking n = 2r - 1, N = n, the discrete

bilinear form (    ,    ), given by

<f,g> = î^fitMh)
i = 0

where X\n) are obtained by Construction 2.1, using positive weights w¡, and prescribed

points —1 ■— t0 < i] <■•• < tN —^ 1, possesses a set of monic polynomials q0, qx,

...,q~i, where I ^ r, such that q¡ = p¡, i = 0, 1,..., r, and q¡ = p¡, i = 0, 1,..., r — 1.

If n — 2r, we have, in addition, qr = pr, provided degeneracy does not occur.

Proof. Immediate from Lemma 2.2

Thus, for the given data points, t„, t,,..., i^, we can create coefficients A<n), not

necessarily positive, to obtain a discrete orthogonality relation for a prescribed set

of (classical) polynomials.

It is interesting to note that just writing

</, g>= Í ajitdgiti)
i = 0

for N + 1 prescribed points, and imposing the r(r + 3)/2 constraints

<Pí,pY = 0,       Ogiájár,

<pi,pi> = l,        ¿ = 0,l,...,r-l,

we can find coefficients a¡, i = 0, 1,..., N, for any N — 2r — 1, which satisfy the

constraints, provided that there exists an a e BF[ — 1,1], such that

Piit)Pjit) da.it)

satisfies the same constraints, where pk is a polynomial, of degree k, k = 0, 1,..., r.

In addition to its use in the next section, Construction 2.2 allows one to use all
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DISCRETE LEAST SQUARES AND QUADRATURE FORMULAS 277

the methods of (discrete) least squares, with both the data points, and the polynomial

system, of one's choice, whether or not (    ,    ) is in fact an inner product.

As an example of the methods outlined here, take a(t) = t in (1.1), so that L is

ordinary integration. For a point set, take equidistant points, t¡= —1 + iß, i =

0,1,..., 8. Constructing a degree 6,9 point quadrature formula, we obtain the weights

A0 = A8 = 0.078747,       A, = X7 = 0.343570,

X2 = X6 = 0.185866,       A3 = A5 = 0.237791,       A4 = 0.308052

using Construction 2.1, with w, = 2/9, i = 0,1,..., 8.

The known classical polynomials of a(i) = t are of course, the Legendre poly-

nomials, P;. The orthogonal polynomials of < , >, given by Construction 2.2,

when suitably normalized, are

Qi = Pi,       1 = 0,1,2,3,4,

e5 = P5-0.380533P3,

Q6 = p6 - 0.475798P4 - 0.298990P2,

Q7 = p1 - 0.224238P5 - O.5OH86P3 - 0.222107P1;

Q8 = P8 + 0.242958P6 - 0.536490P4 - 0.559967P2 - 0.138817P0.

The normalization was to expand each ¿¡j as a Legendre series, and then to make

the coefficient of the highest degree Legendre polynomial unity. The calculations

were done in double precision, on an IBM 360 model 67, although only reported

to six figures.

If we expand fe C[— 1,1] as a discrete Fourier series, using <    ,    ),

/. = j>A   where   a,--^,

then 2a0 is the value L(/), i.e., of ¡-1 fit)dt to degree 7 accuracy. That is if / is

sufficiently differentiable, then there is a constant K, and a £e( — 1,1), such that

2a0 - L(f) = Kf8\Q.
That the rule is actually of degree 7, not 6, follows from the symmetry of the

points and weights.

3. Gaussian Quadrature Formulas. The preceding analysis gives rise to another

approach in creating an r-point Gauss quadrature formula for the integral

(3.1) Lif) =      fit) docit)
J-t

where we now assume a(t) is monotonie increasing, with at least r + 1 points of

increase. Recall that the more usual integral f !_ x wit)f(t) dt where wit) = 0 on [ — 1,1],

and not identically zero, can be put into the above form. If p0, p,, ..., pr are the

orthonormal polynomials associated with a, then, the Christoffel numbers can be

calculated from

(3-2) Cf = (ï[p,(CJ)]2)"1,
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where £,, C21 ■••» £r are tne zeros of pr. If the polynomials are readily available,

this is the most direct process for finding the r- point Gauss rule for a.

If the polynomials are not known, and if we have available an (A + l)-point

degree n quadrature formula for L, where N = n — 2r — 1, we can apply Con-

struction 2.2, to obtain p0, p,, ..., pr_i, pr. Then, root finding techniques, (3.2),

and improvement techniques can be applied. Gautschi [2] and [3] give details

and algorithms for such techniques. This process would, under the assumptions,

probably still be the most direct approach.

Gautschi [2] shows that the usual methods for finding Gauss-type rules, starting

with the first 2r moments, and either solving a nonlinear system, or inverting a

Gram matrix, are highly ill conditioned. He proposes a scheme that obtains ap-

proximations to p0, p,, ..., pr, and uses the zero of the rth degree approximant

as described earlier. Since his scheme (we consider it in more detail in Section 4)

appears relatively stable, proceeding as we do from an (A/ + l)-point degree n

quadrature formula, and also generating approximants to p0, p., ..., pr, the pro-

posed scheme should also be stable, providing the quadrature formula involved

is also stable. Although we can give no formal definition of stability of a quadrature

rule, practically, the coefficients should all be of the same order of magnitude with

few, if any, negative coefficients. In this connection, recall that Tchakaloff [8] (see

also Wilson [9]) shows that for any n, there does exist an (h + l)-point degree n

quadrature formula for L, with positive weights. One method of finding such rules

has been given in Wilson [11].

Let us now consider a different problem, that of creating, for L, a quadrature

rule of degree n, in a stable fashion. This does not mean the rule obtained is neces-

sarily stable. However, if it is reasonably stable, we can proceed to the calculation

of the Gauss-type rule as outlined above.

If we are extremely fortunate, we might be able to calculate analytically

s,{t)docit),      j = 0,l,...,n,

where s0, slt ..., sn are a known set of classical orthogonal polynomials, with re-

spect to an integrator ßeBV[-l,l]. Further, let us suppose that s0, s,, ..., s„

satisfy a discrete orthogonality relation, over a set of A -I- 1 points, A7 ̂  n. (The
polynomials s0, s1} ..., s„ always have such a relation with respect to the discrete

inner product formed from any (A + l)-point Gauss-type rule for the integrator ß,

A — n.) Then Construction 2.2 will create an (A + l)-point degree n quadrature

rule for L, i.e. for the integrator a.

One important example occurs when we take Sj = T¡, the first kind Chebyshev

polynomial, where we can examine, for N = n, the condition of the process. Defining

» 1 1
Yj'ai = 7. ao + ax + a2 + ... + an-x + -an

i = 0 ¿ ¿

we have the natural orthogonality

t" T&iiTjitd = 0, i = j,
¡=o

(3.3) = n,i = j = 0, = n,

= n/2, i = j # 0, # n,
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DISCRETE   LEAST SQUARES AND QUADRATURE FORMULAS 279

where í, = cos(í7t/n), i = 0,1,..., n.

Applying Construction 2.1, we obtain the quadrature rule, of degree n,

Kif) = I" APfiti)

where

AY = 2 Í"TjLxdMJ,       1 = 0,1,...,«,
n j=o

and MJ = L(Ty).
This is equivalent to solving the matrix system B~k = M* where

-(:)• —es
and bi} = T,{tj), i,j = 0,1,..., n.

The matrix B has a known exact inverse, immediate from the discrete orthogonality

condition (3.3), namely

,¿To(f0), ÍTi(ío), - - -, ?Tn- ,(f0), hTJito)

iPo(fi), TI(i1),...,rn_1(f1),|P„(tt)

2

n

jToitn-x), Txit„-x),..., Tn-i(i„-i), iT„(tn- i)

^kToiQ, 7T,(t„),..., ir„_ ,(t„), ir„(g

Using the vector norm  ||x|| = max,- |x,|, and the corresponding matrix norm

llBll = max Y \a¡i\M II .—   I      ' 'I '

we see, since the entries are essentially cosines, |ß|| = n + 1 and ||P~'|| — 2 so

that the condition number of the system

K(B) = \\B\\ -¡B-'W S 2(n + 1).

Knowing MJ then leads to a reasonably conditioned process for determining a

(n + l)-point degree n quadrature rule for (3.1).

The importance of this example is now apparent. Even if we cannot calculate

MJ =  i     Tj{t) dx(t)

analytically, accurate approximation of the values, which may readily be possible,

does not alter the rule obtained substantially, since the matrix system is reasonably

conditioned.

If we are actually dealing with the special case fL ,/(r)w(f)dt, where wit) = 0

on [- 1, 1], it is pertinent to remark that many methods of obtaining polynomial

approximations to w(t), particularly minimax methods, lead directly to approximants
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of the form £¡=0 a^^x) where a¡ rapidly decrease in magnitude. Since JL, T¡it)Tjit)dt

can be calculated, quite accurate estimates to MJ may be obtained.

There is one class of integrators where M? are clearly analytically available,

namely, suppose a is piecewise linear. For example, suppose

•i

fit) da® = fit) dt + /(0) +
i

fit) dt.
3/4

Since Tj{x) is essentially a cosine, analytic calculation is easy.

Finally, for completeness only, if moment data is available, Gautschi [2] gives

recurrence formulas for generating "moments" with respect to given classical orthogo-

nal polynomials, although, as he indicates, such recurrences are not stable.

The scheme given here is not meant to replace classical methods, or the scheme

proposed by Gautschi [2], but is an alternative which, like any scheme, may or may

not be practical, depending on the data available. It is eminently practical if one has

an (A + l)-point degree 2r — 1 quadrature scheme handy, N — 2r — 1, or if one

is easily calculated. Several situations where the latter case occurs have been outlined

above.

The proposed scheme appears to show the stability of Gautschi's scheme. Finally,

the proposed scheme may be applied to more general situations than Gautschi's.

4. Gautschi's Scheme. Consider now the scheme proposed by Gautschi, which is

applicable in situations where L is given by

fit)wit) dt,Lif) =
i

where w(t) = 0 on [—1, 1]. We outline his scheme, indicate a modification, and

show that in some sense, his scheme is not totally free of moment data.

Assume a sequence IM of (M + l)-point quadrature formulas, of degree nM respec-

tively, with points tfjM),..., r^' in [— 1, 1] and whose weights are positive. Although

he specifically recommends two particular sequences of rules, they are not important

to the description of the method, although they have great practical importance.

We do require that, asM-> oo, the norm of the partition ti0M), t\M\ ..., t^' must go

to zero.

If we write IM as

M

¡M) = i *\M)MM\
¡ = o

then he considers the sequence of orthogonal polynomials qY\ j = 0,1, ...,r, gen-

erated by the discrete inner product [/, g]M = ¡iiiiwfg) where wit) is the weight

function.
He shows the sequence of polynomials qkM), k = 0,l,...,r converge, as M -> x,

to the sequence/;>,,, k = 1,2,...,r, the orthonormal polynomials associated with vv(r).

We will define

M

if, g\u = «« I «,M,vv(f,M))/U!M,)<7(rr)

and assume aM is such that
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DISCRETE LEAST SQUARES AND QUADRATURE FORMULAS 281

[1, 1]m = w(t)dt = ßo,

so that the corresponding quadrature formula is degree 0. The choice has no effect

on the monic polynomials, but will affect the normalization somewhat. For some M

sufficiently large, he takes qrM\t) as an approximation to prit) and calculates the

Christoffel numbers C\M from its zeros YcM, as in (3.2).

We now describe a simple modification. For n = 2r — 1, let A ^ n, and, as

above, calculate qiN\t), k = 0, 1, ..., n, orthonormal with respect to [ , ]N. For

M > N, we consider [1, f]M as the linear functional L(/') of Section 2, and using

Construction 2.2, create the orthogonal polynomials q\Y\ ..., q{nM>. Recall that the

inner product (    ,    ) will correctly normalize qf\j = 0, 1,..., r — 1.

This modification has value computationally if M $> A, or if we compute a se-

quence M1 < M2 < ... of such sets of polynomials. In the latter case, one may

examine the convergence of the weights for use in the inner product ( , ), before

obtaining the q\M) polynomials. Although a similar type of procedure is easily incor-

porated into Gautschi's method, (by examining the convergence of the coefficients

of the three-term recurrence formulas) at roughly equivalent cost, a definite advantage

occurs if the initial rules IMif) have some form of point economization (as his sug-

gested rules do). This advantage accrues because at each step, the Gautschi procedure

involves inner products [$M), q\M)]M, i = 0, 1,..., r, of differing sets of polynomials,

while the modification suggested involves only inner products [1, c¡)N)]M, i = 0, 1,

..., n, of a fixed set of polynomials.

However, the variation above shows that in some sense, Gautschi's algorithm

still depends on moment data, namely, on [1, qk]M, k = 0, 1,..., n which is an ap-

proximation to

^qkN\t)wit)dt.

(However, as M increases, the approximation improves.) Since Gautschi states that

his procedure appears to be stable, it is conjectured that the modification will also

be stable.
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