〕Open access • Journal Article • DOI:10.1287/MNSC.44.5.698

Discrete Lotsizing and Scheduling by Batch Sequencing - Source link

Carsten Jordan, Andreas Drex|
Institutions: University of Kiel
Published on: 01 May 1998 - Management Science (INFORMS)
Topics: Single-machine scheduling, Job shop scheduling, Batch processing, Branch and bound and Scheduling (production processes)

Related papers:

- Lot sizing and scheduling — Survey and extensions
- The discrete lot-sizing and scheduling problem
- The discrete lot-sizing and scheduling problem with sequence-dependent setup costs
- Solving the discrete lotsizing and scheduling problem with sequence dependent set-up costs and set-up times using the Travelling Salesman Problem with time windows
- The general lotsizing and scheduling problem

Jordan, Carsten; Drexl, Andreas
 Working Paper - Digitized Version
 Discrete lotsizing and scheduling by batch sequencing

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 438

Provided in Cooperation with:

Christian-Albrechts-University of Kiel, Institute of Business Administration

Abstract

Suggested Citation: Jordan, Carsten; Drexl, Andreas (1997) : Discrete lotsizing and scheduling by batch sequencing, Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 438, Universität Kiel, Institut für Betriebswirtschaftslehre, Kiel

This Version is available at:
http://hdl.handle.net/10419/149058

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

[^0]边
 waknew

\cdots

Abstract

 Watwor

 Fisw

 Exsw

 …

 Watway

Mown

 Ta

 - mosw

- wedt

电

 =10 Wisanser

 …0.

ㄱ․․ .

 … . .

 "and
 Werty
 - .
-

…

 -

- -1.9 - -7.

 5

以及

5ancoun

 … …

国
w－

$$
46
$$

cersemosis

 A

 26 6 Wiveray

 \cdots

这

Abstract

 - -等边 .

Abstract

\qquad


```
\(8-5-5=\)
```


 - 0 ort
\qquad

 Whan,

 wosk

zas
Waswan

Whan

420

haty $=\square \square \square \square \square \square \square \square \square \square$

\qquad

Faty

 Whathermon

 $40 \leq 1$ U

 CNO－W

中

．．．．．
 2 w

 Whathen

 $\cdots \notin \mathbb{N}$

5

26．

园学为
＊asamatak

0 ＊

元

$\rightarrow 2$
$-\infty$

 $\because-6$

$\omega_{0}^{\infty}-\infty$
$\stackrel{\%}{*}$

$$
\infty
$$

 …

-

 - 2x

 ...
边 .

wecretarex

\qquad

…

…
 20,

$$
1,-1-10
$$

 10 and Wh

ancousesusizurchumen

- mancone

Shern

- 1 .

Mand

$$
\tan \alpha \cos ^{2}+\mathrm{m}
$$

7

\rightarrow podats, 4 -

 bexic.

- - - - Myyyen

 …

-.

aratarerner

 Hhehy

为

$$
x^{2} a^{2}-5 y
$$

相納
 6×3
$\stackrel{ }{\circ}$

 2

7 Computational Results

From the analysis in Section 4 we know that we address the same planning problem in BSP and DLSP, and that we find corresponding solutions. Consequently, in this section we compare the performance of algorithms solving the BSP with procedures for solving variants of the DLSP. The comparison is made on the DLSP instances used to test the DLSP procedures; we take the instances provided by the cited authors and solve them as BSP(DLSP) or BSPUT(DLSP) instances (cf. Figure 1). An exception is made for reference [8] where we use randomly generated instances.

The different DLSP variants are summarized in Table 11. For the DLSP, in the first column the reference, in the second the DLSP variant is displayed. The fourth column denotes the proposed algorithm, the third column shows whether computational results for the proposed algorithm are reported for equal or unequal holding costs. Depending on the holding costs, the different DLSP variants are solved as BSP(DLSP) or BSPUT(DLSP) instances. With the exception of reference [18], the DLSP procedures are tested with equal holding costs, so that regenerative schedules are optimal in [4] and [8].

Table 11: Solving Different DLSP Variants as a BSP

Author	Variant	DLSP Holding	Costs Algorithm	Instances	$B S P$ Properties of Schedules
Cattrysse et al. [4]	SISTSC	$h_{i}=1$	DACGP	BSP(DLSP)	EDDWF and regenerative
Fleischmann [8]	SDSC	$h_{i}=1$	TSPOROPT	$B S P(D L S P)$	EDDWF and regenerative
Salomon et al. [18]	SDSTSC	$\begin{aligned} & h_{\mathrm{i}}>0 \\ & h_{i}=0 \end{aligned}$	TSPTWA TSPTWA B		EDDWF EDDWF and one block

uence Independent Setup Times and Setup Costs (SISTSC)

et al. [4], a mathematical programming based procedure to solve SISTSC is proposed. 1. [4] refer to their procedure as dual ascent and column generation procedure (DACGP). first formulated as a set partitioning problem (SPP) where the columns represent the dule for one item i; the costs of each column can be calculated separately because setups fependent. DACGP then computes a lower bound for the SPP by column generation, new generated solving a single item subproblem by a (polynomial) DP recursion. In DACGP ie, i.e. an upper bound, may be found in the column generation step, or is calculated algorithm with the columns generated so far. If in neither case a feasible schedule is is made with a simplex based procedure.

7.1 Seq

In Cattrysse
Cattrysse et The DLSP is production sche are sequence in columns can be a feasible schedu by an enumerativ found, an attempt

> -7.

 Whatrouss..

-mandexty

 OROM

 $-\infty$ whachaturam

 …

 - Manazalation

5ancoly

 "ascarandabay

人20
-
 G花 Naprar any

 arakn

\qquad

-

saxy and Conchasons

8 Sumss
 mexmens

 *sistrins,

 whin whasw

 Fownen

"

W5

 ...
 $x=1: x$

…

涧

 -

Fick

 …

 \cdots.

 -many

 Wus\％ －Wry

Wix metern

 185

Waser wrax

多多定 CTE

[^0]: Terms of use:
 Documents in EconStor may be saved and copied for your personal and scholarly purposes.

 You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

 If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

