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Discrete Lyapunov Exponent and
Differential Cryptanalysis

G. Jakimoski and K. P. Subbalakshmi

Abstract—Partly motivated by the developments in chaos-based
block cipher design, a definition of the discrete Lyapunov expo-
nent for an arbitrary permutation of a finite lattice was recently
proposed. We explore the relation between the discrete Lyapunov
exponent and the maximum differential probability of a bijective
mapping (i.e., an S-box or the mapping defined by a block cipher).
QOur analysis shows that “good” encryption transformations have
discrete Lyapunov exponents close to the discrete Lyapunov expo-
nent of a mapping that has a perfect nonlinearity. The converse
does not hold.

Index Terms—Block ciphers, chaotic maps, differential crypt-
analysis, discrete chaos, Lyapunov exponent, maximum differen-
tial probability (DP).

1. INTRODUCTION

IGOROUSLY speaking, there is no chaos in a discrete

phase space, and some of the chaotic properties are “lost”
when the chaotic systems are studied using computer calcula-
tions. For instance, the aperiodicity of trajectories can not be
captured by a computer model of the dynamical system, and the
digital computers are incapable of showing the true long-time
dynamics of some chaotic systems [1], [2]. However, due to the
complexity of the studied phenomena, digital systems and com-
puters have been often used in dynamical systems analysis, and
vice versa, the chaotic behavior of digital systems and the appli-
cations of chaos in digital systems have been heavily addressed
in the past years (e.g., [2]-[12]). Some of these applications of
chaos such as compression, coding and encryption were recently
used as a motivation to introduce the notion of discrete Lya-
punov exponent [14]. In the case of a one-dimensional bijection
F:Zy — Zy, Zy =40, ..., M — 1}, the discrete Lyapunov
exponent is defined as

1 M-1
A= r > W|F(e) = F(i)] 0
=0

where ¢; is 7+ 1if2islessthan M — 1,and cpy1 = M — 2
(i.e., ¢; is the neighbor of 7). Analogous to its continuous coun-
terpart, the discrete Lyapunov exponent tells us how far apart
two neighboring points will get after one iteration of the map.
Differential cryptanalysis [15] is a general method of
attacking block encryption algorithms. It exploits the pre-
dictability of the propagation of a chosen plaintext difference.
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The complexity of a differential cryptanalysis attack is de-
termined by the maximum differential probability (DP): the
higher the maximum DP the lower the complexity of the attack.
In the case of a one-dimensional bijection F' : Zy; — Zjy, the
maximum DP is defined as

#{x € Zy|F(z + Ax) — F(z) = Ay}

DPp = max M
)
where ’+’ is addition modulo M, and ’—’ is addition with the

inverse element.

We characterize the discrete Lyapunov exponent in terms of
the maximum DP of a given map F'. That is, we derive a lower
bound and an upper bound on the discrete Lyapunov exponent
of the map F' given the size of the domain and the maximum DP
of the map. We can use these bounds to identify a region where
the discrete Lyapunov exponent of an encryption transformation
with a given domain size M and good maximum DP (close to
2/M) should belong.

The paper is organized as follows. In Section II, we derive
a lower and upper bounds on the discrete Lyapunov exponent
given the size of the domain and the maximum DP of the map.
The security implications of the derived bounds are discussed
in Section III. The paper ends with concluding remarks.

II. DP CHARACTERIZATION OF THE DISCRETE
LYAPUNOV EXPONENT

Both, the maximum DP and the Lyapunov exponent are de-
fined by the distribution of the output difference of a given map.
While the discrete Lyapunov exponent is defined by the distri-
bution of the output difference when the input difference is one,
the maximum DP is a more general characteristic of the map,
and it is defined by the distribution of the output difference for
every nonzero input difference. We used this observation to pro-
vide the following bounds on the discrete Lyapunov exponent
given the parameter M and the maximum DP.

Theorem 1: Let F : Zyr — Znyg (Zyr = {0,1,...,M —1})
be a bijection with DPr < 1/2. The following inequality holds
for the discrete Lyapunov exponent A g of the map F'

pln Q%J !> sArs el (M(i‘/f[;]lﬁ 1>!
¥ % In(M — 1)

where p = 2DPp.
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Proof: We can rewrite the discrete Lyapunov exponent sum

as
1 M-1 1
A\p = MA;InAylnAy+ 77 I (M = 2) = F(M - 1)]

where na, = #{z € Zy \ {M — 1}|Ay = |F(c.) — F(z)[}
is the number of occurrences of the output difference Ay (ex-
cluding the case x = M — 1). The number of occurrences na,
of any difference Ay is upper bounded by

nay = #{z € Zy \ {M — 1}|F(c,) — F(z) = Ay}
+#{zx € Zy \{M —1}|F(c;) — F(z) = —Ay}
<2DPpM = pM.

Note that the sum ny_:ll NAy is equal to M — 1 and constant
for a given map. Hence, the discrete Lyapunov exponent is max-
imal when the number of occurrences of the largest differences
is maximal. Similarly, the discrete Lyapunov exponent is min-
imal when the number of occurrences of the smallest differences
is maximal. So, using the inequality

|[F(M —2)—F(M-1)|<M-1

and the fact that the number of occurrences na, is at most
pM = |pM]| = [pM], we get

1 1
)\FSM Z lenAy—i—Mln(M—l)
Ay=M—_T11/5]
M —1)! 1
<pln ( ) +—In(M-1)
(r=[3]-)r M
and
1 L1/p] 1
AP > — MInAy > pl .
ez 2 sz ([

|

The term 1/M In(M — 1) in the upper bound is a result of

the different definition of the neighbor of M — 1 compared to

the rest of the points. This term approaches zero when M goes

to infinity, and often can be ignored for large values of M. For

example, if we analyze a block cipher with block size 128, then
the value of 1/M In(M — 1) is &~ 0.69 x 27121,

III. SECURITY IMPLICATIONS OF DISCRETE
LYAPUNOV EXPONENT

The minimum achievable maximum DP of a given map F :
Zn — ZarisDPoyy = 2/M since there are M elements in Z;
and M — 1 possible output differences. To simplify our analysis,
we assume that M is a multiple of four.! In that case, we have

1 B 1 1. 1 M 3)
2DP.p | | 2DPop |  2DPuy 4

IBlock ciphers operate on bit strings. So, the cardinality of the domains of
the maps in use are powers of two.

The rap%e of the discrete Lyeg;unov egqionents of maps
with optimal maximum differential probability
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Fig. 1. Range of the discrete Lyapunov exponents of maps with optimal max-
imum DP. The lower and the upper bound of relation (4) tightly bound the dis-
crete Lyapunov exponent of the perfect nonlinear maps too.

Using the bounds derived in the previous section, we see that the
discrete Lyapunov exponent for an optimal encryption mapping
is in the following region:

4 (M 4 (M-1)! 1

S (Z) AR < e — In(M — 1),

Mn(4>_ Pyt Er oy Ty M
“

Having an optimal maximum DP implies that for any nonzero
input difference, the distribution of the output difference is close
to uniform. A related concept, perfect nonlinearity, was defined
in [14]. The map F' has perfect nonlinearity if the differences
|F(i4+1)— F(i)],1=0,1,..., M — 2 take all possible values
1,2,..., M — 1. The discrete Lyapunov exponent of a perfectly
nonlinear map is

1 1
A = 37 (M =Dl 22 I [F(M = 1) = F(M =2)|. (5)

non

Using Stirling’s formula,? it is not hard to see that for large
M the lower and the upper bound in (4) are approximately
In(M/e) — 1.38 and In(M/e) 4 1.86 respectively, and the dis-
crete Lyapunov of a perfectly nonlinear map is approximately
In(M/e). In other words, the good encryption mappings have
discrete Lyapunov exponents close to the discrete Lyapunov ex-
ponent of a perfectly nonlinear map as depicted in Fig. 1. We
can use this fact as a security test. Assume that F' is the bijec-
tion defined by the block encryption algorithm for a given key.
If one can determine the discrete Lyapunov exponent (see [16]),
and the value of the discrete Lyapunov exponent is not close to
the value of the discrete Lyapunov exponent of a perfectly non-
linear map, then there exist a differential whose probability is
larger than 2/M.

The next question that naturally comes up is whether a dis-
crete Lyapunov exponent that is close to the discrete Lyapunov
exponent of a perfectly nonlinear map implies good maximum
DP. The answer is no. We demonstrate this using the perfectly
nonlinear map given in [14]

Fnon (ZE)

— k,
T\M-1-Fk,

2Stirling’s formula n! & +/27wn (n/e)™ is a well-known formula that ap-
proximates n! for large n.

if =2k k=0,....m-—1
if t=2k+1;, k=0,....m—1
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where M = 2m. The discrete Lyapunov exponent of this map
is Ap,_, = 1/MIn(M — 1)! as pointed out in [14]. However,
it is not hard to see that if the input difference is two, then the
output difference is one (or minus one) in m — 1 cases leading
toahigh DPDPg,__ > (m —1)/M = 1/2.

We end this section with the following generalization of our
observation regarding the discrete Lyapunov exponent of maps
with optimal maximal DP.

Corollary: Let F : Zyr — Z, where M = 2™, be a bijec-
tion with maximum DP DPy < 2¢/2™ <« 1. The following
inequality holds for the discrete Lyapunov exponent A\p of F'

(m—d)ln2—-(14+1In2) T Ap <mln2.

Proof: The upper bound follows trivially from the defini-
tion of discrete Lyapunov exponent. The lower bound is derived
by replacing p with 2471~ in the inequality of Theorem I,
and then using Stirling’s formula to simplify the expression.
The simplified expression is a good approximation even for rel-
atively small values of m — d (e.g., m —d = 5 or 6.).

The previous result implies the following: if the discrete Lya-
punov exponent of a given map is (significantly) lower than
(m — d)In 2, then the maximum DP of the map is greater than
2= (m=4) Ttis easy to show that the converse does not hold (e.g.,
using the aforementioned perfectly nonlinear map of [14]).

IV. CONCLUSION

We derive a relation between the maximum DP and the dis-
crete Lyapunov exponent of a bijection. One can use this rela-
tion to determine, in some cases, whether a given block cipher
is resistant to differential cryptanalysis or not.
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