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Abstract

This work extends the Discrete Material and Thickness

Optimization approach to structural optimization problems

where strength considerations in the form of failure criteria

are taken into account for laminated composite structures.

It takes offset in the density approaches applied for stress

constrained topology optimization of single-material prob-

lems and develops formulations for multi-material topology

optimization problems applied for laminated composite

structures. The method can be applied for both stress-

and strain-based failure criteria. The large number of local

constraints is reduced by the use of aggregate functions, and

the developed approach is demonstrated for optimization

problems involving both constant and varying thickness

laminated composites.

Keywords Discrete Material Optimization; Discrete

Material and Thickness Optimization; Failure criteria;

Laminated composites

1 Introduction

Laminated composite structures consisting of Glass or

Carbon Fiber Reinforced Polymers (GFRP/CFRP) make

it possible to achieve efficient and lightweight structural

designs due to their superior strength and stiffness charac-

teristics. The large design freedom associated with these

structures makes it attractive to apply structural optimiza-

tion techniques in the design process, and many different

approaches have been developed since the earliest works

like Schmit and Farshi (1973) in the seventies. An overview

of optimization methods for laminated composites can

be found in Ghiasi et al. (2009) and Ghiasi et al. (2010),

where the methods are divided into constant and variable

stiffness methods. One of the methods for variable stiffness

design is the family of Discrete Material Optimization

(DMO) approaches by Stegmann and Lund (2005) and

Lund and Stegmann (2005), and these parameterization

approaches are applied in this paper.

Laminated composites are built of layers of e.g. GFRP

or CFRP, and in case of sandwich structures a light-weight

∗ Email: el@mp.aau.dk

core material like PVC foam or balsa wood are placed

inside the structure. Thus, the designer can decide on

the type of material and layer (ply) thickness and in case

of fiber reinforced materials also the fiber orientation. In

many cases the material has to be oriented at given chosen

angles, e.g., −45◦, 0◦, 45◦, and 90◦ due to design guidelines.

Thus, the design problem from the starting point is a

combinatorial problem that require integer or combinatorial

optimization. However, as it is much easier to solve

continuous optimization problems using gradient based

optimization, much work has been done using continuous

thicknesses and fiber orientations as design variables.

Due to the stiffness properties of the orthotropic ma-

terials applied for laminated composites, the optimization

problems often have multiple solutions with the same

performance. For example, fiber orientations of −45◦ and

45◦ for a unidirectional (UD) GFRP may be equally good

in many design problems. Gradient based optimization

using thicknesses and fiber orientations directly as design

variables may easily end in a local minima due to a

nonconvex design space, and the material choice problem

of selecting, e.g., GFRP, CFRP or foam material cannot

be handled by this parameterization. It is important to

note that thickness optimization of plates and shells is

an ill-posed optimization problem that needs some kind

of regularization as described for solid isotropic elastic

plates in Cheng and Olhoff (1981, 1982). For laminated

composites this is typically achieved by adding constraints

on the allowable rate of thickness variation, i.e. ply-drop

constraints, or by using a patch parameterization where

a number of finite elements in the numerical model are

enforced to have the same thickness.

A very popular method for optimization of laminated

composites is genetic algorithms (GA). Very often the

layer thickness of each material is fixed, and the fiber

orientations are limited to a set of discrete values. Then

the optimization problem is reduced to a discrete stacking

sequence problem, and Haftka, Gürdal and their coworkers

in the 1990s developed specialized GAs for stacking

sequence optimization, see e.g. Le Riche and Haftka

(1993, 1995), Gürdal et al. (1994), Kogiso et al. (1994),

and Nagendra et al. (1996). The advantage of GAs and
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many other meta-heuristic algorithms is that they return a

number of near optimal designs with only minor variation

in performance index instead of a single design. Many other

global optimization algorithms dedicated to optimization of

laminated composites have also been developed. Stacking

sequence optimization of laminated composite structures to

satisfy requirements on ply continuity (also referred to as

blending) has been studied by many including Gürdal et al.

(1999), Kristinsdottir et al. (2001), Liu and Haftka (2001),

Seresta et al. (2007), Liu et al. (2011), Zein et al. (2012),

Liu et al. (2015), and Zein et al. (2016). Recent work on

stacking sequence optimization including blending and ply-

drop design guidelines include Irisarri et al. (2014, 2016)

and Peeters and Abdalla (2016).

For monolithic laminates a very popular parameterization

approach is to apply lamination parameters as introduced by

Tsai and Pagano (1968). The laminate stiffnesses are linear

functions of lamination parameters, which has convexity

advantages for stiffness design problems. Furthermore, the

number of design variables is independent of the number

of layers, so the number of design variables can be reduced

significantly for laminates with many layers. The relation-

ships between in-plane and out-of-plane lamination param-

eters are available for a number of cases, such that gradient

based optimization can be performed efficiently using

lamination parameters, see e.g. Miki and Sugiyama (1993),

Hammer et al. (1997), Gürdal et al. (1999), Herencia et al.

(2008), and Bloomfield et al. (2009).

Liu et al. (2000) presented a two-step (global and bot-

tom) strategy for minimizing the mass of composite wing

panels subject to strain and buckling constraints, and

similar bi-level approaches have been applied by many

including Herencia et al. (2008), IJsselmuiden et al. (2009)

and Liu et al. (2011). In the first step the laminate is

parameterized using lamination parameters, and a number

of industry layup rules can be imposed on the feasible

region for the lamination parameters, for example by

restricting the design space to symmetric and balanced

laminates. Nonsymmetric laminates may warp in response

to an applied uniform temperature change across their

thickness. This warping can occur during cool-down from

the cure temperature during manufacturing and during in-

service operations, and thus many design guidelines require

symmetric layups. The optimization problem at the global

level (first step) was solved efficiently using gradient based

optimization, and a GA was used at the bottom level

(second step) to optimize the stacking sequence in order

to meet the target values of lamination parameters coming

from the top level. A number of different approaches have

been developed for the bottom level problem in order to

obtain realizable laminate designs that satisfy structural

constraints as well as manufacturing constraints governed

by layup rules. The two-step approach may have some

drawbacks as pointed out by Zein and Bruyneel (2015)

because the stacking sequences determined at the bottom

level do not have a direct control over the thicknesses

determined at the global level. They proposed a new

algorithm such that the optimization problem is solved

without splitting it into two steps as in common practice.

The approach applied by Altair Engineering in the

commercial software OptiStruct relies on a three-phase

optimization process guiding the composite laminate de-

signs from a concept to the final ply-book details, see

Zhou et al. (2011) and Zhou and Fleury (2012). The first

phase concerns the conceptual ply layout, the second phase

determines the specific number of plies, and the last phase

determines the final stacking sequence of the laminate,

taking performance demands and manufacturing constraints

into account.

Typically strength requirements are taken into account

in the form of strain constraints when applying lamination

parameters, due to lack of information about the actual lam-

inate configuration, and the failure envelope is dependent

on ply angles and thicknesses. To overcome this problem

IJsselmuiden et al. (2008) proposed to find the region in

strain space that is safe regardless of the ply angles,

such that a conservative Tsai-Wu failure envelope in the

laminate parameter space was obtained. Unlike minimum

compliance problems, there is no analytical proof that

strength optimization with lamination parameters is convex

and thus global optimality is not assured. Khani et al.

(2011) proposed a convexifying approach, where a hybrid

approximation for the failure index was developed.

The definition of lamination parameters is valid for

monolithic laminates, and thus the optimization procedures

described above can only be applied for such single-

material laminates. However, de Faria (2015) extended

the definition of laminate parameters to allow for hybrid

laminates, and thus it should be possible to apply this

parameterization for multi-material laminates.

In this work the aim is to be able to optimize multi-

material laminated composites while taking failure crite-

ria into account, and the Discrete Material Optimization

(DMO) parameterization approaches are applied, as they

can be applied for any combination of materials. In the

DMO method a number of candidate materials are defined,

which could be different FRP materials oriented at given

chosen angles, e.g., −45◦, 0◦, 45◦, and 90◦. The discrete

problem of choosing the best candidate material is con-

verted to a continuous problem that can be solved efficiently

using gradient based optimizers. Multi-material interpo-

lation functions with penalization of intermediate design

variable values are applied, and the first DMO interpolation

functions as described in detail in Stegmann and Lund

(2005) were self-balancing with the aim of obtaining a

distinct choice of material. As an alternative to the self-

balancing procedure, Hvejsel et al. (2011) introduced a

series of linear equality constraints to ensure that the sum

of weighting functions for the candidate materials would

equal unity. Here the distinct selection of a single can-

didate was achieved by a non-linear inequality constraint.

Hvejsel and Lund (2011) introduced an alternative to the

explicit non-linear constraint by proposing multi-material

variations of the well-known SIMP and RAMP interpola-

tion schemes, see Bendsøe (1989) and Stolpe and Svanberg

(2001), respectively. Blasques and Stolpe (2012) also

applied such interpolation schemes for multi-material

topology optimization of laminated composite beam cross

sections, and this parameterization approach has been

the preferred choice in our work for constant thickness

laminates since 2011. With these multi-material variations

of the SIMP and RAMP interpolation schemes, linear
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equality constraints are introduced to ensure that the sum

of design variables for the candidate materials is equal

to unity. Nonlinear interpolation functions are applied

by appropriate choice of penalization parameter in the

SIMP and RAMP interpolation schemes in order to make

intermediate design variable values unfavourable. As

an alternative, Kennedy and Martins (2013) used linear

interpolation and added a series of non-linear equality

constraints as a penalty term to the objective function,

effectively penalizing intermediate design variable values.

An alternative to these DMO interpolation functions

is the Shape Functions with Penalization (SFP) method

proposed by Bruyneel (2011) where the author applied

four node shape functions known from the finite element

method to interpolate between four material candidates

using only two design variables. The SFP method was

later extended to include three and eight node elements, see

Bruyneel et al. (2011). The SFP method was generalized

by Gao et al. (2012) by introducing the Bi-valued Coding

Parameterization (BCP) method which has no upper limit

on the number of applied material candidates. The main

advantage of SFP and BCP methods is the substantial

reduction of the number of design variables required to

do the material interpolation compared to the other DMO

interpolation schemes. Furthermore, no linear equality

constraints are needed. However, the results of the BCP

method may depend on the numbering of the candidate

materials, if the number of design variables is different from

2,4,8,16, etc. Kiyono et al. (2017) has recently proposed a

new parameterization approach named Normal Distribution

Fiber Optimization (NDFO) for fiber angle optimization.

It takes offset in the same formulation as DMO, SFP

and BCP, but only one design variable is needed to any

number of candidates. The normal distribution function

is used as a parameterization of the weighting functions,

and the formulation is straightforward to implement. A

filtering technique can be easily implemented to achieve

fiber continuity, and good convergence properties have been

reported.

As mentioned previously, for laminated composite struc-

tures thickness variations are often needed in order to opti-

mize the design. The thickness variations are accomplished

by dropping plies along the length to match varying in-plane

and bending loads. Sørensen and Lund (2013) proposed

an extension to the DMO method for simultaneously

determining an optimum thickness variation and material

distribution. The proposed method was developed for

problems concerning mass constrained minimization of

compliance. Sørensen et al. (2014) extended the work and

proposed the Discrete Material and Thickness Optimization

(DMTO) method. In the DMTO approach the DMO multi-

material interpolation schemes are extended by including

a topology (density) variable so to effectively terminate

individual plies throughout the laminate. The DMTO

method was demonstrated on a generic main spar used in

some designs of wind turbine blades where the objective

was to minimize the total mass while maintaining structural

performance by means of constraints on buckling load

factors, eigenfrequencies, and displacements.

The DMO and DMTO approaches are typically imple-

mented in in-house finite element codes with full access

to the source code, but it has recently been demon-

strated in Wu et al. (2017) how the DMO approach can

be implemented in a commercial finite element code for

compliance problems including eigenfrequency and local

displacement constraints. However, the DMO and DMTO

approaches have only been applied for structural criteria

like compliance, eigenfrequencies, buckling load factors,

and displacements. In this work it will be described how

the approaches can be extended to take strength criteria into

consideration in the optimization formulation.

The inclusion of strength criteria in structural topology

optimization problems is a challenging problem due to the

local nature of these criteria and their behaviour in the

context of topology optimization. Sved and Ginos (1968)

described how stress constraints can be violated for truss

topology optimization problems when the bar area goes to

zero, such that it can not be removed, and they discovered

singular optimal topologies. The singularity problem

is discussed in many papers, see e.g. Kirsch (1990),

Cheng and Jiang (1992), Rozvany and Birker (1994) and

Guo et al. (2001). The singularity problem may also appear

in laminate design where these singular optima are linked

to the removal of zero thickness plies from the stacking

sequence as demonstrated in Bruyneel and Duysinx (2006).

One way to avoid the singularity problem is to use an

ǫ-approach as suggested by Cheng and Guo (1997) for

truss topology optimization. This ǫ-approach was adopted

by Duysinx and Sigmund (1998) and Duysinx and Bendsøe

(1998) for stress constrained topology optimization of

continuum structures. Due to the local nature of stress

constraints, such topology optimization problems are com-

putationally challenging due to the high number of design

variables and local constraints. In order to reduce the

computational effort Duysinx and Sigmund (1998) intro-

duced a global stress measure using two different P-norm

methods, such that all stresses were grouped into a single

stress constraint. This reduced the computational effort by

orders of magnitude because the size of the mathematical

programming problem became much smaller and the design

sensitivity analysis was much faster due to the use of an

adjoint formulation. However, using only a single global

stress measure made it difficult to control the local stress

level. This was also observed in the work by Yang and Chen

(1996) where two different global stress measures were

investigated.

The ǫ-approach consists of solving a sequence of prob-

lems for decreasing values of the ǫ relaxation parameter,

and its successful application has been demonstrated for

many different types of topology optimization problems.

An ǫ-approach that regularizes the stress singularity for

vanishing material selection and topology variables using

the DMTO parameterization and solved using a barrier

method tailored for stress-constrained mass minimization

has been developed in Kennedy (2016). In recent years

the most popular approach for stress constrained topology

optimization has been to use a SIMP type relaxation as

introduced in Bruggi (2008). In this approach a SIMP

interpolation scheme is used for stress constraints, using

suitable penalization exponents that are different from those

that interpolate stiffness parameters.

The success of stress constrained topology optimization
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relies on the application of clustering the large num-

ber of local stress constraints into a lower number of

global stress constraints. Reviews of existing results

obtained using local and global stress constraints can

be found in Le et al. (2010). It is difficult to find

a general and robust function for clustering the local

stress constraints, such that the local peak values are

controlled efficiently. The most commonly used func-

tions are P-norm functions (Duysinx and Sigmund, 1998;

Holmberg et al., 2013; Le et al., 2010) and Kreisselmeier-

Steinhauser (KS) functions (Kennedy and Martins, 2014;

Kreisselmeier and Steinhauser, 1979; Parı́s et al., 2009;

Yang and Chen, 1996). In many recent works the local and

global stress constraint approaches are combined as in the

regional stress measure approach by Le et al. (2010) and

the block aggregation approach by Parı́s et al. (2010). This

makes it possible to reduce the large number of constraints

efficiently by using global stress measures, but the number

of local stresses included in each aggregate function is

limited in order to improve the accuracy of the constraint

lumping.

This work can be considered as an extension of

stress constrained topology optimization using density

approaches to multi-material topology optimization prob-

lems where the parameterizations applied are the DMO

and DMTO approaches for laminated composites. As

in the work of Bruggi (2008) and subsequent topology

optimization papers with stress constraints, suitable penal-

ization parameters are introduced in the parameterizations.

Combined with the use of aggregate functions for reducing

the large number of local strength values, it will be shown

how challenging optimization problems related to design of

laminated composite structures can be solved.

The analysis will be based on layered shell finite

elements using Reissner-Mindlin assumptions, i.e. first

order shear deformation theory. These finite elements are

commonly used for stress analysis of laminated composite

structures, as they give a good estimation of the overall

strain and stress distributions through-the-thickness of the

laminate. However, local effects and out-of-plane stresses

will not be captured accurately, and thus it is advantageous

to include design rules/manufacturing constraints that im-

plicitly limit these effects. Two manufacturing constraints

described in detail in Sørensen and Lund (2013) for the

DMTO parameterization will be applied. The first is a

constraint on the allowable rate of thickness variation, i.e. a

ply-drop constraint, so to avoid abrupt changes in stiffness

which can lead to delamination. The second is a so-called

contiguity constraint that defines an upper limit on the

number of identical contiguous plies, as larger transverse

stresses may be build-up in thick plies, again leading to a

larger risk of delamination failure.

The remaining of the paper is organized as follows.

First, the DMO and DMTO parameterizations are presented

in Section 2. This is followed by a description of the

failure analysis developed for computing effective failure

indices for the multi-material topology problem in Section

3. The gradient based optimization approach is described

in Section 4 before four different numerical examples are

presented and discussed in Section 5. Finally, Section 6

contains the overall conclusions of the work.

2 Parameterization

In the following the parameterizations applied for constant

and varying thickness laminates are described.

2.1 Design parameterization using DMO

In case of optimizing constant thickness laminates, the

design parameterization is based on the DMO formulation

by Stegmann and Lund (2005), Lund and Stegmann (2005)

and Hvejsel and Lund (2011). The laminated composite

structure is modeled by layered shell finite elements, and

the structure is divided into a number of patches, consisting

of a number of finite elements, where the same layup should

apply. A number of candidate materials, nc, are defined

for each material patch p. The candidate materials can be,

for example, a unidirectional (UD) fiber reinforced polymer

(FRP) material oriented at different chosen fiber angles

together with possible core materials in case of designing

sandwich structures as illustrated in Figure 1. The number

of layers of the laminate is denoted nl.

(Foam) (GFRP)

y/90◦

x/0◦
θ

c = 1 (E1)

c = 2 (E2)

c = 3 (E3)

Figure 1: Top: Potential outcome of a tapered laminated

plate example. Bottom: Each material candidate c is

described by the constitutive matrix Ec. Material candidates

can be, for example, a foam type (left) or glass fiber

reinforced polymer (GFRP) fiber mats (right), characterized

by the fiber orientation θ.

The candidate material variables xplc are defined for all

np material patches such that

xplc =















1 if candidate c is selected in layer l of patch p

0 otherwise

(1)

The constitutive matrix Eel for a given layer l in a given

shell element e contained in patch p is thus determined by

Eel =

nc
∑

c=1

xplcEc (2a)

nc
∑

c=1

xplc = 1 ∀(p, l) (2b)
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xplc ∈ {0; 1} ∀(p, l, c) (2c)

where Ec is the constitutive matrix associated with material

candidate c and (2b) is a resource constraint which ensures

that only one distinct material candidate can be selected.

The combinatorial problem of selecting the material can-

didate variables xplc is converted to a continuous problem

using interpolation functions with penalization, such that

it is possible to apply efficient gradient based optimization

algorithms for solving the multi-material topology opti-

mization problem. The multi-material generalizations of

the well-known SIMP and RAMP interpolation schemes,

see Bendsøe (1989) and Stolpe and Svanberg (2001), re-

spectively, can be used as proposed in Hvejsel and Lund

(2011), see also Blasques and Stolpe (2012). Thus, the

integer problem is relaxed by treating the design variables

xplc as continuous variables, i.e. the method can be

considered as a multi-material density approach. The

constitutive properties for a given layer l in a given element

e associated with patch p are now interpolated as

Eel =

nc
∑

c=1

w(x) Ec (3a)

nc
∑

c=1

xplc = 1 ∀(p, l) (3b)

xplc ∈ [0; 1] ∀(p, l, c) (3c)

The weight function w(x) for the multi-material generalized

SIMP scheme is given as

w(x) = xq
plc (4)

whereas for the generalized RAMP scheme it is given as

w(x) =
xplc

1 + q(1 − xplc)
(5)

Here q is a penalization factor and Ec the constitutive

matrix for candidate c in the given layer. Penalization

of intermediate design variable values xplc is necessary as

the optimizer otherwise can generate superior, but non-

physical, pseudo materials by combining the properties

of different material candidates. With these interpolation

schemes the design variables xplc can be considered as

volume fractions of each material candidate as seen from

the resource constraint (3b). If holes are allowed in

the structure, then the resource constraint (3b) should

be changed to a less-than constraint, see examples in

Hvejsel and Lund (2011).

This generalized RAMP parameterization for multi-

material topology optimization leads to very many sparse

linear constraints due to the resource constraint (3b), and

thus it is necessary to apply an optimization algorithm that

can handle such linear constraints efficiently. Design sensi-

tivity analysis of criterion function will involve derivatives

of the constitutive properties, which are found analytically

by differentiation of (3a).

2.2 Design parameterization using DMTO

The DMO approach was extended to varying thickness

laminates in Sørensen and Lund (2013) and Sørensen et al.

(2014) where the Discrete Material and Thickness Op-

timization (DMTO) approach was developed, making it

possible to simultaneously determine an optimum thickness

variation and material distribution of the laminated compos-

ite structure. The idea is to introduce a density variable

to govern the presence of material in a given layer, and

thereby determine the thickness variation throughout the

laminate. The layerwise density variables can be defined

either on element level or by groups of elements having the

same thickness. In this work, they are defined by groups of

elements termed geometry design domains as illustrated in

Figure 2 such that

ρdl =















1 if there is material in layer l for domain d

0 otherwise

(6)

Geometry domain 1

Layer 1

Patch 1 (candidate material domain 1)

ρ11

ρ12

ρ13

ρ14

ρ15

ρ21

ρ22

ρ23

ρ24

ρ
25

ρ31

ρ32

ρ33

ρ
34

ρ
35

ρ41

ρ42

ρ
43

ρ
44

ρ
45

ρ51

ρ
52

ρ
53

ρ
54

ρ
55

x
11c

x
12c

x
13c

x
14c

x
15c

Figure 2: Example of a patch (candidate material domain 1)

combined with 5 geometry domains. The design variables

associated with the domains are listed.

In a similar way as described for the material design

variables, the density variables ρdl are treated as continuous

variables and the constitutive properties for a given layer l
in a given element e associated with material patch p and

geometry domain d are now interpolated as

Eel =

nc
∑

c=1

w(x, ρ) Ec (7a)

nc
∑

c=1

xplc = 1 ∀(p, l) (7b)

xplc ∈ [0; 1] ∀(p, l, c) (7c)

ρdl ∈ [0; 1] ∀(d, l) (7d)

The weight function can be computed using a generalized

SIMP scheme as

w(x, ρ) = ρq
dl xq

plc (8)

or a generalized RAMP scheme as

w(x, ρ) =
ρdl

1 + q(1 − ρdl)

xplc

1 + q(1 − xplc)
(9)
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For simplicity, the same penalization factor q is applied

for material design variables xplc and density variables

ρdl. The resulting parameterization is non-convex and

therefore the solutions obtained are typically local optima.

In order to prevent holes to appear inside the laminated

structure, i.e. interior layers with zero density, a number

of explicit constraints must be added. If the bottom layer

l = 1 must have full density, i.e. be present, a series of

constraints of the form ρdl ≥ ρd(l+1)
are added as described

in Sørensen and Lund (2013) and Sørensen et al. (2014)

where a number of other manufacturing constraints also are

described.

If all density variables ρdl can vary freely during the

optimization, the constraints ρdl ≥ ρd(l+1)
are not sufficient for

forcing the optimization algorithm to yield a 0/1 solution.

Two different approaches have successfully been applied

for circumventing this problem, either using a dedicated

move limit strategy or a thickness filter approach as devel-

oped in Sørensen and Lund (2015). In this work the move

limit strategy described in Sørensen and Lund (2013) and

Sørensen et al. (2014) combined with a Sequential Linear

Programming (SLP) approach is documented. Basically, in

each iteration the following constraints are applied

ρd(l+1) ≤ f (ρdl,T ) , ∀d, l = 1, 2, . . . , nl − 1 (10)

Here f (ρdl,T ) is a function that controls the limit on

the density variable of the contiguous upper layer based

upon the current value of the density variable below and

a threshold parameter T which is set to 0.1. The function

f (ρdl,T ) is defined as

f (ρdl,T ) =















f1 = T
1−T ρdl if ρdl < (1 − T )

f2 = 1−T
T ρdl +

2T−1
T else

(11)

The function f (ρdl,T ) is illustrated in Figure 3. With

these modified constraints on the density variables, it is

possible to avoid interior holes and obtain 0/1 solutions

with the DMTO parameterization. The use of geometry

design domains with the same thickness parameterization

regularizes the thickness optimization problem and thereby

removes the mesh dependence. Adding ply-drop constraints

in the form of allowable rate of thickness variation between

geometry domains also regularizes the optimization prob-

lem.

A number of manufacturing constraints can be

considered in the DMTO approach as described in

Sørensen and Lund (2013) and Sørensen et al. (2014). For

constant thickness laminates symmetric laminates can

be enforced in the DMO approach, see e.g. Yan et al.

(2017) where other design guidelines like the 10% rule,

etc., are taken into account. For the DMTO approach

applied in this paper the thickness is reduced from the

upper layer, such that it mimics the typical manufacturing

process of, e.g., wind turbine blades where the fiber mats

are placed in a single sided mould, and the tapering is

performed on the outer layers. Enforcing symmetry around

the midplane according to the current thickness of the

laminated composite is not possible during the optimization

process with the applied DMTO approach, and thus

symmetric laminates are not enforced by the optimization

a

T

1(1 − T )

1

ρd(l+1)

ρdl

f1

f2

Figure 3: Illustration of function f (ρdl,T ) applied for

preventing voids inside the laminate.

procedure. This might be considered a disadvantage

compared to many existing bi-level optimization procedures

for monolithic laminates where symmetric laminates are

enforced in the parameterization. However, with the

DMTO approach multi-material laminates with varying

thickness can be optimized, and as it will demonstrated

by numerical examples in this paper, the DMTO approach

very often yields nearly symmetric layups as solution to the

optimization problem as such layups minimize extension-

bending couplings and yield better structural performance.

3 Failure analysis

The prediction of failure for the laminated composite

structure is based on linear static stress analysis, and for

simplicity only one load case is considered in the following,

even though most practical design cases should take several

load cases into account. The analysis is performed using

Equivalent Single Layer (ESL) 9-node isoparametric shell

finite elements, and the linear elastic static problem is

solved for displacements D using the equilibrium equation

K D = F (12)

F is the global load vector and the global stiffness matrix K
is determined as

K =
np
∑

p=1

∑

e∈Pp

Ke

=

np
∑

p=1

∑

e∈Pp

nl
∑

l=1

∫

Ωel

BT
el

Eel Bel dΩel

(13)

Here summation denotes assembly of the local element

stiffness matrices Ke where element e belongs to the list of

elements, Pp, for patch p. Eel is the effective constitutive

matrix for layer l in element e, and Bel is the standard

strain-displacement matrix. When evaluating an element

stiffness matrix, the effective constitutive properties for any
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layer are determined using the SIMP or RAMP schemes

in either Eq. 4, 5, 8 or Eq. 9 with weight functions wk.

In stiffness driven design, e.g. for compliance problems,

the penalization factor q is set such that the constitutive

properties are reduced for intermediate design variable

values, i.e., a below-linear penalization is used to guide the

optimizer to select discrete 0/1 valued design variables.

Next the strength of the laminated composite must be

evaluated. The layered shell elements used for the analysis

in general give good prediction of inplane stresses in

the laminated composite with linear variation within each

layer. Due to the first order shear deformation theory

applied, constant transverse shear stresses are obtained

for each layer, whereas no information is available about

transverse normal stresses. Thus, the prediction of strength

using such layered shell elements in general is acceptable,

but local effects from edges, ply drops, etc., can not be

captured with these elements and thereby by the models

applied in this work. However, the procedure described

in this paper has also been implemented using solid shell

elements, such that more detailed models can be applied, for

example in combination with adaptive remeshing of zones

of interest as documented in Johansen and Lund (2009) and

Johansen et al. (2009).

The candidate materials will initially have equal design

variables and thereby equal weight functions, and a relaxed

effective failure index FIe f f ,el for each layer l of element

e must be establish. The failure criteria used for FRP

materials are evaluated in the material coordinate system

123, and based on the associated volume fraction of each

candidate material, an effective failure index is computed.

The approach follows the idea of Bruggi (2008) for stress

constrained topology optimization, such that suitable penal-

ization parameters different than those used for evaluating

stiffness are used when evaluating the effective failure

index.

The element strain vector ǫ
xyz
el in the structural coordinate

system is computed at both the bottom and top of each layer

using

ǫ
xyz
el = Bel d (14)

where d is the element displacement vector.

In case of having a stress-based failure criterion, the

element layer stress vector σ
xyz
el is computed at the bottom

and top of each layer as

σ
xyz
el = Eelǫ

xyz
el (15)

The strength prediction of candidate materials may be

evaluated using different stress- or strain-based failure

criteria, and thus stresses should vary in the same way as

strains as function of design variables. Thus, the weight

functions wσ used for computing Eel in Eq. 15 are linear

functions, such that no penalization of stresses is obtained.

In this way strain- and stress-based failure criteria can be

combined and penalized consistently.

For each candidate material c of the given layer, the

strain vector ǫ
xyz
el and stress vector σ

xyz
el are transformed

to the material coordinate system 123 of the candidate

material using appropriate standard transformation matri-

ces, such that strain vector ǫ123
elc and stress vector σ123

elc are

obtained. For each candidate material a failure index FIelc is

evaluated using the preferred strain- or stress-based failure

criteria. A number of different failure criteria have been

implemented. This includes failure criteria not associated

with failure modes like Tsai-Wu and Tsai-Hill together with

criteria associated with failure modes. Here the two non-

interactive criteria maximum strain and maximum stress are

implemented together with the interactive Puck, LaRC 2-D

and LaRC 3-D criteria. For simplification only maximum

strain and maximum stress failure criteria are used for the

examples in this work. Definitions of these criteria can be

found in, e.g. Gürdal et al. (1999), and the result is a failure

index FIelc that must be ≤ 1 in order to avoid failure.

When failure indices FIelc have been computed for each

of the candidate materials, a resulting effective failure index

FIe f f ,el is evaluated using

FIe f f ,el =

nc
∑

c=1

wFI FIelc (16)

The weight functions wFI used for interpolation between

failure indices for the different candidate materials must

make it unfavorable to have intermediate design variable

values, i.e. a linear or above-linear interpolation is

applied. Using an above-linear interpolation the effective

failure index is increased for intermediate design variable

values, making such values disproportionately expensive.

Furthermore, combined with the below-linear interpolation

applied for wk this yields the desired relaxation of stress

based failure criteria, such that the contribution to FIe f f ,el

approaches 0 as function of a design variable approaching

0. This might not be the case if wk = wFI .
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Figure 4: Typical choice of interpolation functions wk, wσ,

and wFI using the generalized RAMP scheme.

The main difference between using generalized SIMP

and RAMP is that RAMP has a finite gradient for a design

variable of value 0. For a SIMP scheme, see Eqs. 4 and

8, the derivative goes to infinity when a design variable

approaches 0 and 0 < q < 1 in order to obtain an above-

linear interpolation. Thereby a positive lower bound on

the design variable must be used for SIMP. For the RAMP

scheme a lower bound of 0 can be applied for the design

variables, which is an advantage of RAMP. Therefore all

results presented in this work are based on the RAMP

scheme, but quite similar results are obtained with the

SIMP scheme when having a small positive lower limit
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on the design variables. A typical choice of the weight

functions wk, wσ, and wFI using the generalized RAMP

scheme is illustrated by Figure 4. The values applied for the

penalization power q are described in detail in the following

section.

4 Optimization approach

Having established the parameterization and failure anal-

ysis approach, the optimization problem to be solved can

be established and solved using standard mathematical

programming techniques.

4.1 Design sensitivity analysis and SLP ap-
proach

The computation of gradients has been implemented using

both analytical and semi-analytical approaches based on

direct differentiation and adjoint methods. Details for these

methods of design sensitivity analysis can be found in e.g.

Haftka and Gürdal (1992) and Tortorelli and Michaleris

(1994). Failure criteria not associated with failure modes

like Tsai-Wu and Tsai-Hill are continuous and differ-

entiable functions, so the computation of gradients of

failure indices can be performed as described in e.g.

Groenwold and Haftka (2006). The failure criteria used

in the examples in this paper are all associated with

failure modes, like the non-interactive maximum strain

and maximum stress criteria. Thus, the failure surfaces

are continuous but have nondifferentiable points at the

intersection between surfaces associated with the different

failure modes. In practice, it is very rare that such points

are reached in the evaluation of failure indices, and for the

gradient evaluation, the sensitivity is computed assuming

fixed failure mode. For example, if the analysis predicts

failure due to compressive transverse inplane stress in

the material coordinate system, then the sensitivity of the

failure index is computed for this failure mode.

The optimization problems are solved using SLP as

described in detail in Sørensen and Lund (2013) and

Sørensen et al. (2014). The DMO and DMTO parame-

terizations introduce a very large number of sparse linear

constraints, see Eqs. 3b and 7b, and thus it is an advantage

to use an optimizer that has good support for such sparse

constraints. In this work the LP optimizers in IBM ILOG

CPLEX version 12.6, see IBM ILOG (2015), and version

7.2-9 of the Sparse Nonlinear OPTimizer (SNOPT) by

Gill et al. (2005) have been applied, both with default

settings.

The presented approach results in a very large number

of failure indices that must be taken into account. For

a finite element model consisting of ne elements, each

with nl layers, the number of failure indices is 2 · ne · nl.

Combined with the large number of design variables needed

for the DMO and DMTO approach, it is necessary from

a computational point of view to cluster a large number

of the local failure indices into a lower number of global

values. A number of different aggregate functions have

been implemented including P-norm, P-mean-norm and

Kreisselmeier-Steinhauser functions. For simplicity, only

results obtained using the P-norm function are presented.

If the failure indices to include are stored as FIk, k =
1, . . . , nFI , then the P-norm function FIPN is computed as

FIPN =















nFI
∑

k=1

(FIk)P















1/P

(17)

The parameter P controls the level of smoothness, and the

P-norm value approaches the value of the largest failure

index from above as P→ ∞. Thus, it is desirable to select a

large value of P, but it also makes the optimization problem

increasingly non-linear and more difficult to solve. In this

work a value of 8 is used for P in all examples.

A number of different approaches for determining the

failure indices to include in the optimization problem have

been implemented in this work. Some approaches are

purely based on sorting all failure indices, like including

a fixed number of the largest values or active set strategies

where values exceeding a given percentage of the largest

value are included. Other approaches are related to

the material and geometry patches introduced with the

parameterization, such that values from all patches are

included in the aggregate function. For all examples

presented it is specified how the failure indices FIk are

extracted from the full set of values.

The efficiency of using global strength approaches de-

creases when a large number of values are lumped into

a single global value, but this problem can be handled

by associating a global strength measure with each ma-

terial/geometry patch used for the parameterization. The

approach then has similarities with the block aggregation

approach Parı́s et al. (2010) and the regional stress measure

approach Le et al. (2010) used for single-material structural

topology optimization problems with stress constraints.

In case of having failure indices as objective function,

i.e. solving problems with minimizing the maximum failure

index, the P-norm overestimation of the largest failure

index value in general is not a problem. However, when

failure indices are included as constraints, the overestima-

tion typically results in a design where the true failure index

constraint is not active. This is solved using the adaptive

constraint scaling scheme proposed in Le et al. (2010).

With this approach the constraint is scaled according to

the ratio of the current maximum failure index value and

the P-norm value together with history information about

the constraint scaling, see details about our implementation

in Oest and Lund (2017). This adaptive constraint scaling

scheme has the advantage that lower values of P can be

applied, which makes the optimization problem easier to

solve.

The computational cost of including strength criteria in

the optimization problem is comparable to include buckling

constraints, i.e. it is computationally much more intensive

than solving compliance problems. Quite often stiffness is

used as a surrogate objective function for obtaining a high

strength design, but the difference between strength and

stiffness optimized designs may be significant as illustrated

by several examples in IJsselmuiden et al. (2008). Their re-

sults clearly indicate that the degree of correlation between

stiffness and strength driven designs of laminates depends

on the properties of the materials and the loading situation.
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4.2 Continuation approach

All numerical examples shown in Section 5 are solved

using a continuation approach for the generalized RAMP

scheme. Due to the non-convexity of the optimization

problem, any gradient based optimization approach is likely

to end in a local minimum. Even for stiffness topology

optimization problems using a single isotropic material and

the SIMP interpolation, a continuation approach may help

in obtaining a strong local minimum because the stiffness

penalized problem is non-convex. This is illustrated in the

recent paper by Aage et al. (2017) where a 3D compliance

optimization problem with more than 1 billion design

variables is solved. They had to slowly raise the SIMP

penalization power in steps of 0.25 from 1 to 3, distributed

over a total of 400 design iterations, in order to obtain

a strong local minimum. The same observations are

made for the density approach in this paper. Starting the

optimization problems with high penalization parameters

will quickly force the design to a sub-optimal 0/1 solution.

Applying a continuation scheme results in more design

iterations but better solutions. The sensitivity to choice

of penalization parameters for the presented approach

seems to be similar to the sensitivity observed for standard

topology optimization problems using a density approach.

In general, best results will be obtained by keeping the

values of q fixed until convergence in design variables, be-

fore their values are increased in the continuation approach,

but this may yield quite many iterations. Therefore the

values of q are updated after a fixed number of iterations.

This will be specified in the numerical examples (it is

typically 10-30). If the convergence criterion applied

is fulfilled before the final continuation step, then the q
parameter is increased, such that the final continuation

values of q always are applied.

The values used for the penalization parameter q in

the continuation approach are listed in Table 1. Values

of q used for interpolation of mass, mass matrix for

eigenfrequency analysis, and stress stiffness matrix applied

for linear buckling analysis are also given. These values of q
represent a good trade-off between computational cost and

quality of the solution obtained. The optimization problems

are always initialized with equal weighting of the candidate

materials as the optimization procedure otherwise typically

converge to a local minimum.

Table 1: Continuation approach used for RAMP scheme.

Weight function Values of q Applied for

wk 1, 4, 20 Stiffness matrix

wσ 0 Stresses

wFI 0, -0.4, -0.8 Failure indices

wm 0 Mass and mass matrix

wkσ 1, 4, 20 Stress stiffness matrix

The convergence criterion of having a relative change in

design variables less than 0.1% is applied for all examples.

In order to measure the obtained level of discreteness of

the design variables, two measures of non-discreteness are

computed. The measure of density non-discreteness is

calculated as suggested by Sigmund (2007) as

Mdnd =
4
∑

d,l Vel ρel (1 − ρ̃el)
∑

d,l Vel
· 100% (18)

where Vel is the layer volume of the e’th element. The

measure of candidate non-discreteness is calculated ac-

cording to Sørensen et al. (2014), and repeated here for

completeness

Mcnd =

∑

e,l Vel ρ̃
2
el

∏nc

c=1

(

1−xplc

1− 1
nc

)2

∑

e,l Vel ρ̃el
· 100% (19)

5 Numerical examples

In the following a series of numerical examples are

presented. The material properties used for all examples are

given by Table 2. The candidate materials include glass-

epoxy (GFRP) UD material, glass-epoxy biax material

(cross-ply), and PVC H130 foam.

Table 2: Properties of UD GFRP, biax GFRP and PVC

H130 foam material (ESAComp, 2016)

Property Units UDBiaxPVC 130

Young’s modulus E11 [GPa] 38.0 24.0 0.148

Young’s modulus E22 [GPa] 9.0 24.0 -

Shear modulus G12 [GPa] 3.6 3.6 -

Shear modulus G23 [GPa] 3.46 3.5 -

Shear modulus G13 [GPa] 3.6 3.5 -

Poisson’s ratio ν12 - 0.30 0.11 0.45

Density ̺ [kg/m3]18701870 130

Long. tensile strength Xt [MPa] 930 84 4.8

Long. compressive strength Xc [MPa] 570 260 3.0

Transv. tensile strength Yt [MPa] 33 84 -

Transv. compressive strength Yc[MPa] 110 260 -

In-plane (12) shear strength S 12 [MPa] 70 60 2.2

Trans. (13) shear strength S 13 [MPa] 70 35 -

Trans. (23) shear strength S 23 [MPa] 42 35 -

Long. tensile strain ǫ1t [%] 2.45 0.35 3.24

Long. compressive strain ǫ1c [%] 1.5 1.08 2.03

Transv. tensile strain ǫ2t [%] 0.37 0.35 -

Transv. compressive strain ǫ2c [%] 1.22 1.08 -

In-plane (12) shear strain γ12u [%] 1.94 1.66 4.4

Transv. (13) shear strain γ13u [%] 1.94 1.0 -

Transv. (23) shear strain γ23u [%] 1.2 1.0 -

5.1 Fiber angle optimization of clamped
single-layer square plate with uniform
pressure

The first example illustrates how fiber angle optimization of

a clamped single-layer square plate with uniform pressure

can be performed. This example is a standard test example

where symmetric fiber angle distributions are expected

for the optimized solution, and as such it is a very

good benchmark example for testing the performance for

difference material parameterizations, i.e. DMO material
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patches. Manufacturability is not considered for this

benchmark problem. The problem is defined by Figure 5.

The candidate materials are GFRP UD with −45◦, 0◦, 45◦,

and 90◦ fiber orientations, and the objective is to minimize

the maximum failure index in the plate.

x
y

z

θ

1m

1m

Figure 5: Illustration of the clamped single-layer square

plate. The plate is subjected to a uniform pressure at its

upper surface with a magnitude of 1 MPa. The thickness of

the plate is 0.04m.

The plate is discretized with 32 x 32 9-node isopara-

metric shell finite elements, and the example is solved for

five different DMO material patches, where the plate is

divided into 2x2, 4x4, 8x8, 16x16, and 32x32 material

domains having the same fiber angle. Failure indices are

computed at the bottom and top of each layer, such that

a total number of 2,048 failure indices are computed. It

is chosen to include the two largest values of each patch

in the P-norm function used for computing the aggregated

global strength measure. The number of failure criteria

nFI included thereby varies for each parameterization. The

penalization parameter q varies according to Table 1, and

it is changed after every 10 iterations. The optimization

problem is solved using SLP using a 10% adaptive move

limit strategy as described in Sørensen et al. (2014). The

results obtained when failure indices are computed using

the maximum strain failure criterion are presented in

Table 3. In order to compare the DMO solutions with

the fiber angle distribution obtained with continuous fiber

angle optimization (CFAO), the 32x32 parameterization,

i.e. when fiber angles can vary within each element, is also

solved with CFAO.

Table 3: Tabular overview of results of all parameterizations

for the single-layered clamped plate example when using

the maximum strain failure criterion. The maximum failure

index is for the final (rounded) 0/1 design. #It denotes the

total number of iterations.

Parameterization NFI max FI Mcnd [%] #It

2 x 2 DMO patches 8 0.682 96.15 16

4 x 4 DMO patches 32 0.292 0.00 46

8 x 8 DMO patches 128 0.288 0.00 39

16 x 16 DMO patches 512 0.244 0.02 88

32 x 32 DMO patches 2048 0.235 0.07 152

Elementwise CFAO 2048 0.167 - 93

From Table 3 it is seen that most of the discretizations

converge to a 0/1 solution, except for the 2 x 2 DMO

patch problem which is simply parameterized too coarsely.

This optimization problem fulfills the convergence criterion

of having a relative change in design variables less than

0.1% after 16 iterations, even though the measure of

candidate non-discreteness Mcnd is more than 96%. The

maximum failure index listed in the examples is always

computed for the (rounded) 0/1 design. In general, the

number of iterations needed increases with the number of

design variables. This is expected for such strength related

optimization problems as they are much more difficult to

solve than compliance problems.

(a) 2x2 DMO patches (b) 4x4 DMO patches

(c) 8x8 DMO patches (d) 16x16 DMO patches

(e) 32 x 32 DMO patches (f) Continuous angles

Figure 6: Optimized fiber angle distributions for single-

layer clamped plate examples. The FE model consists of

32 x 32 9-node shell elements.

The fiber angle distributions obtained are illustrated in

Figure 6. Most of the DMO fiber angles are as expected,

except for a few angles for the 32x32 patch model. One

would expect symmetric solutions for this example as the

four candidate angles have equal weighting initially, but due

to the non-convexity of the problem a few angles converge

to a local minimum. This is also demonstrated for the

solution obtained using continuous fiber angles. The initial

fiber angles are 0◦, and the solution obtained is definitely a

local minimum. However, due to the larger design freedom

with continuous fiber angles, the maximum failure index is

lower than for the DMO solution. The distribution of failure
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indices for the bottom of the optimized plates is shown in

Figure 7. The fiber angle distributions in the corners of

the plate are different from the classical analytical grillage

solutions obtained in Rozvany (1972). This difference is

expected to be due to the assumptions in the analytical

grillage theory. The fiber angle distributions in the corners

of the plate are similar, if the objective is to minimize

compliance, whereas differences are seen in many other

parts of the plate.
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Figure 7: Maximum strain failure index at bottom of

optimized single-layer clamped plates.

A typical iteration history is shown in Figure 8 for

the model with 16x16 DMO patches. The change of

penalization power after iteration 10 and 20 is seen to

cause a large increase in the failure index value, but the

optimization algorithm converges to a distinct choice of

fiber angles.

Next the same example is solved using the maximum

stress failure criterion in order to document that both strain

and stress based failure criteria can be applied. The results

are shown in Table 4. In general, the results are very

similar to the results obtained using the maximum strain

failure criterion, except for the 8x8 patch parameterization

that ends in a local minimum. For other choices of move

limits, this problem can converge to the same fiber angle

solution as shown in Figure 6 which again illustrates the

non-convexity of the optimization problem. The sensitivity

to move limit values for the SLP algorithm is similar to the

sensitivity seen for other topology optimization problems.

The move limits have to be sufficiently small, such that the

linear approximations applied are sufficiently accurate. The

number of iterations used is more or less the same for both

criteria.
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Figure 8: Iteration history for 16x16 DMO patch model

when using the maximum strain failure index

Table 4: Tabular overview of DMO results of all parameter-

izations for the single-layered clamped plate example when

using the maximum stress failure criterion.

Parameterization NFI max FI Mcnd [%] #It

2 x 2 DMO patches 8 0.778 96.11 20

4 x 4 DMO patches 32 0.327 0.00 30

8 x 8 DMO patches 128 0.343 0.02 45

16 x 16 DMO patches 512 0.305 0.02 65

32 x 32 DMO patches 2048 0.277 0.03 131

These examples have also been solved using the general-

ized SIMP scheme with a lower limit of 10−4 on the design

variables, and the results and performance are quite similar

to the above results obtained with generalized RAMP.

5.2 Five-layer cantilever beam

The remaining examples illustrate the performance of the

DMTO approach, i.e. simultaneous determination of

thickness variation and material distribution. The first

example is another benchmark example as the solutions can

be verified by exhaustive search. Again, manufacturability

is not considered for this benchmark problem. The example

is defined in Figure 9.

F = 10N

0.1m

0.5
m

Thickness
h =

5t =
0.0

05m
x/0◦

y/90◦

Figure 9: Five-layer cantilever beam subjected to load F
= 10 N and discretized by five 9-node shell elements. Ply

thickness t is 0.001 m.

The objective is to minimize the maximum failure index
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of the five-layer GFRP cantilever beam, subject to the mass

constraint that 15/25 of the domain can be occupied by

material. Again the candidate materials are GFRP UD

oriented at −45◦ , 0◦, 45◦, and 90◦, but now the same

material should be selected for each layer, i.e. only one

material patch is defined. The thickness can vary for each of

the five geometry domains (here equal to the finite element

discretization), however, slope constrains are added to the

problem in order to limit the thickness changes. These slope

constraints specify that the thickness can only increase by

one layer between the geometry domains. Details about the

linear inequalities used for specifying slope constraints can

be found in Sørensen and Lund (2013) and Sørensen et al.

(2014). The bottom layer must always exist, i.e. it

has full density. The two largest failure indices of each

geometry domain are included in the computation of the

P-norm global failure index, such that 10 failure indices are

included in total.

The result of the optimization is seen in Figure 10

(a) where layer thicknesses are scaled by a factor of 20.

The problem is also solved with the additional constraint

that no identical contiguous plies are allowed. This is

a manufacturing rule used in many cases in order to

avoid a number of layers with the same fiber angle, as

this may result in a larger build-up of transverse stresses

causing delamination. The formulation of such linear

inequality constraints for specifying limits on contiguous

plies can also be found in Sørensen and Lund (2013) and

Sørensen et al. (2014). The result of this case is shown in

Figure 10 (b). In both cases the starting design has full

density of all layers, i.e. the starting point is infeasible,

and the optimization problem is solved using the SLP

approach described in Sørensen and Lund (2013) with 10%

move limits. As in the previous example, the penalization

parameter q varies according to Table 1 and is changed after

every 10 iterations.

Angles

 0

(a) DMTO design with ply drop constraint

Angles

 45
 0
-45

(b) DMTO design with ply drop constraint and no identical

contiguous plies allowed

Figure 10: Optimized fiber angle and thickness distributions

for five-layer cantilever beam example. The thicknesses are

scaled by a factor of 20.

The solutions are found after 31 and 52 iterations,

respectively, and in both cases full convergence is obtained,

i.e. Mdnd = Mcnd = 0.0%. The two solutions shown agree

with the global integer optimum determined by exhaustive

search. For the second case, the +45◦ and −45◦ candidate

angles are equally good to select due to symmetry, so the

material choice for layer 2 and 4 can be interchanged with

the same result for the computed failure index.

It should be noted that the DMTO parameterization

yields exterior ply drops which in general should be

avoided when designing varying thickness laminates, see

e.g. Cairns et al. (1999) and Mukherjee and Varughese

(2001). However, it is outside the scope of this paper

to present DMTO parameterizations aimed at generating

interior ply drops, as the main objective is to present the

inclusion of strength criteria in existing DMO and DMTO

parameterizations.

5.3 Corner hinged eight-layer plate

Next a corner hinged eight-layer GFRP plate is considered.

F = 400N

2.0m

2.0
m

8t = 0.008m

x/0◦

y/90◦

Figure 11: Corner hinged eight-layer plate. Ply thickness is

0.001 m.

The objective is to minimize the maximum failure index

of the eight-layer GFRP plate, subject to the mass constraint

that half of the domain can be filled with material. The

bottom layer must exist, i.e. it has full density, and the

material choice should be the same for each layer in order to

ease manufacturability. It should be noted that the DMTO

parameterization applied results in exterior ply drops, which

in general should be avoided due to risk of delamination.

Thus, an improved DMTO parameterization would be

useful, if the optimized design should directly be ready for

manufacturing. However, the main aim of this paper is to

document the possibility of including failure criteria for the

multi-material density approach, and the development of an

improved DMTO parameterization is left for future work.

As in the previous examples the candidate materials are

GFRP UD with −45◦, 0◦, 45◦, and 90◦ fiber orientations,

and for the thickness parameterization 24x24 geometry

domains are defined. The plate is discretized with a 48 x

48 mesh of 9-node shell elements, such that each geometry

domain consists of 2x2 elements. Four contiguous identical

layers are allowed, and slope constraints are specified,

such that the layer thickness can only change by one layer

between geometry domains. In total the problem has 36,864

potential failure indices computed using the maximum

strain criterion and 1,041 design variables. Failure indices

exceeding 50% of the largest failure index in a given

iteration are included in the computation of the P-norm

global failure index, taking the conditions into account that

at least 300 values and at most 1000 failure index values are

included.

Again all layers have full density for the initial design,

such that the starting point is infeasible. The penalization

parameter q varies according to Table 1 and is changed

after every 30 iterations. A 10% move limit is applied.
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The problem needs 58 iterations before the convergence

criterion is fulfilled. The choice of material is distinct,

i.e. Mcnd = 0.0%, while the measure of density non-

discreteness is Mdnd = 3.1%. The mass constraint is active

for the optimized design, and with the parameterization

applied combined with the value of the mass constraint, a

couple of geometry domains do not obtain a distinct number

of layers. Results are shown for a rounded 0/1 design. In

this case the mass constraint is accidently still fulfilled for

the rounded design, but this is in general not the case using

simple rounding.

The choice of fiber angle and thickness distribution of the

final design is illustrated using a solid model in Figure 12

where thicknesses are scaled by a factor of 20.

Fiber
angle

90

0

a) Top view

b) Front (xz) view

c) Side (yz) view

Figure 12: Optimized design of corner hinged eight-layer

plate.

The solution resembles a cross ply laminate with varying

thickness, except that 90◦ has been selected for both layer 7

and 8. A slight asymmetry is introduced which is expected

to be due to the mass constraint. Note that the layup is

symmetric, except for the fiber angle chosen for the small

amount of material in the upper layer 8. Thus, even though

a symmetric layup is not enforced by the parameterization,

the optimization approach yields such a layup with high

performance.

Max Strain
Failure Index

 3.167E-001

 2.640E-001

 2.113E-001

 1.586E-001

 1.059E-001

 5.320E-002

 5.069E-004

Figure 13: Failure index distribution for optimized design

of corner hinged eight-layer plate.

The maximum strain failure index of the final design is

illustrated in Figure 13, again using a solid model where

thicknesses are scaled by a factor of 20. A quite uniform

distribution of the failure indices is seen, taking into account

that the same fiber angle must be chosen for each layer.

5.4 Multi-criteria optimization of main spar
from wind turbine blade

The final study is related to a complex multi-criteria

optimization example of designing a simplified main spar

from a wind turbine blade. It was studied in detail for

the DMTO formulation in Sørensen et al. (2014), and here

the example is extended with the inclusion of strength

constraints. It is outside the scope of this paper to describe

the example in detail, as it is mainly included in order

to demonstrate the behaviour of the optimization process

when many different structural criteria are included.

Ø0.86

0.05

0
.4

0

0.42

0.020.02

0
.1

4

0.226

Root section

Distributed
load

Tip section Mid section

Figure 14: Simplified model of main spar from wind turbine

blade.

The geometry of the 25 m simplified main spar is shown

in Figure 14. The model is clamped at the circular root end

and the applied loads resemble the most critical extreme

flapwise bending situation, happening in a so-called 50

year gust scenario. The loads are taken from experimental

tests of the real wind turbine blade and are applied as

a distributed load, corresponding to a resulting load of

164.7 kN, see details in Overgaard et al. (2010). The finite

element model consists of 7,168 9-node shell elements with

20 layers everywhere. The inner geometry of the main spar

is used as reference, and ply thickness of each of the 20

layers is 0.0025 m, resulting in a maximum total laminate

thickness of 0.05 m. A total number of 448 patches are

applied for parameterization of both material and thickness.

Six different candidate materials commonly applied in the

wind turbine industry are defined. The first four candidates

represent GFRP UD plies with −45◦, 0◦, 45◦, and 90◦ fiber

orientations relative to the axial direction of the main spar.

The 5th candidate represents a GRFP biax ply and the last

candidate represents a lightweight isotropic foam material

such that a sandwich structure is a possible outcome of

the optimization problem. The problem thereby involves

62,720 design variables.

The objective is to minimize mass while fulfilling a

number of structural constraints. The lowest linear buckling

load factor must be ≥ 3 and the lowest eigenfrequency must

be ≥ 1 Hz. For both eigenvalue criteria the five lowest
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values are included in the optimization problem. The tip

displacement must be ≤ 1 m and the failure indices must be

≤ 1. The total number of failure indices is 286,720 failure

indices which are reduced to 448 constraints using P-norm

functions, each consisting of the 10 largest failure index

values within each patch. Finally, a maximum number of

8 consecutive identical layers are allowed, and ply drop

constraints enforce that thickness changes between patches

is limited to the thickness of one layer.

The problem is solved with 10% move limits and the

q values are updated according to Table 1 for every 30

iterations. The iteration history is given by Figure 15. The

convergence criterion is fulfilled after 87 iterations, where

the measure of candidate non-discreteness is Mcnd = 0.13%

and the measure of density non-discreteness is Mdnd =

0.20%. Thus, the optimized solution is very close to a pure

0/1 design.

The lowest linear buckling load factor is 3.02, the tip

displacement is 1.00 m, and the maximum failure index

is 0.99, i.e. these three constraints are at or very close to

their allowable values. The lowest eigenfrequency is 3.38

Hz and it is never active during the optimization process.

The structural criteria are conflicting in the sense, that the

buckling load factor will be increased by having several

layers at the top and bottom of the main spar with −45◦, 45◦,

and 90◦ fiber orientations, whereas the 0◦ fiber angle (axial

direction) will be the main preferred choice for the other

structural criteria. Thus, the distribution of fiber angles and

thicknesses is a tradeoff between conflicting criteria, and

it is quite similar to the design presented in Sørensen et al.

(2014), except that the mass is increased by approximately

100 kg to 1273 kg when failure criteria are included in the

optimization problem. Thus, the distribution of fiber angles

and thicknesses of the 448 design domains with up to 20

layers is not shown here due to the similarities with the

design presented in detail in Sørensen et al. (2014).

The iteration history given by Figure 15 illustrates how

the failure criterion constraint increases significantly when

the q penalization parameter is changed after 30 iterations.

Subsequently, the mass is increased in order to obtain a

feasible solution, and most of the design variables have

converged after 60 iterations when the q parameter is

changed to its final value. This multi-criteria design

optimization problem illustrates that failure criteria can be

successfully included in complicated laminated composite

design problems with conflicting structural criteria.

6 Conclusions

In this paper the DMO and DMTO parameterization ap-

proches for optimization of laminated composite structures

have been extended to include failure criteria. The

interpolation schemes are multi-material variations of the

well-known SIMP and RAMP interpolation schemes where

suitable penalization parameters are applied. Thus, the

work can be considered as an extension of stress constrained

topology optimization of single-material problems to multi-

material problems. The large number of local constraints

is reduced by the use of aggregate functions, and four

different design optimization problems have demonstrated

the efficiency of the approach. This includes minimiza-

tion of the maximum failure index in single- and multi-

layer plate examples, and a challenging example of mass

minimization of a main spar from a wind turbine blade,

taking strength, buckling load factors, eigenfrequency and

displacement constraints into account.

The DMTO parameterization applied results in exterior

ply drops, that produce internal and local stress concen-

trations not captured by the shell finite elements applied

as a consequence of geometric discontinuities and shear

lag. Factors that effect the performance of laminated

composite structures with ply drops include thicknesses, ply

stacking sequences, ply drop geometries and manufacturing

considerations, and a continuation of the work presented

in this paper would be to develop an improved DMTO

parameterization that can generate interior ply drops with

improved strength performance. The DMTO approach is

still a tool to be applied in the conceptual design phase

as postprocessing is needed for the final manufacturable

design.
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(1994). Genetic algorithms with local improvement for

composite laminate design. Structural Optimization 7(4),

207–218.

Kreisselmeier, G. and R. Steinhauser (1979). Systematic

control design by optimizing a vector performance index.

In International federation of active controls symposium
on computer-aided design of control systems, Zurich,
Switzerland, pp. 113–117.

Kristinsdottir, B. P., Z. B. Zabinsky, M. E. Tuttle, and

S. Neogi (2001). Optimal design of large composite

panels with varying loads. Composite Structures 51(1),

93–102.

Le, C., J. Norato, T. Bruns, C. Ha, and D. Tortorelli

(2010). Stress-based topology optimization for continua.

Structural and Multidisciplinary Optimization 41(4),

605–620.

Le Riche, R. and R. T. Haftka (1993). Optimization of lam-

inate stacking sequence for buckling load maximization

by generic algorithm. AIAA Journal 31, 951–956.

16



Le Riche, R. and R. T. Haftka (1995). Improved genetic

algorithm for minimum thickness composite laminate

design. Composites Engineering 5(2), 143–161.

Liu, B. and R. T. Haftka (2001, apr). Composite

Wing Structural Design Optimization with Continuity

Constraints. In A01-25021, Seattle, WA, pp. 1–12. Struc-

tural Dynamics and Materials Conference and Exhibit;

American Institute of Aeronautics & Astronautics.

Liu, B., R. T. Haftka, and M. A. Akgün (2000). Two-level

composite wing structural optimization using response

surfaces. Structural and Multidisciplinary Optimiza-
tion 20(2), 87–96.

Liu, D., V. V. Toropov, D. C. Barton, and O. M.

Querin (2015). Weight and mechanical performance

optimization of blended composite wing panels using

lamination parameters. Structural and Multidisciplinary
Optimization 52, 549–562.

Liu, D., V. V. Toropov, O. M. Querin, and D. C. Barton

(2011). Bilevel Optimization of Blended Composite

Wing Panels. Journal of Aircraft 48(1), 107–118.

Lund, E. and J. Stegmann (2005). On structural opti-

mization of composite shell structures using a discrete

constitutive parametrization. Wind Energy 8(1), 109–

124.

Miki, M. and Y. Sugiyama (1993). Optimum design of

laminated composite plates using lamination parameters.

AIAA Journal 31, 921–922.

Mukherjee, A. and B. Varughese (2001, jan). Design guide-

lines for ply drop-off in laminated composite structures.

Composites Part B: Engineering 32(2), 153–164.

Nagendra, S., D. Jestin, Z. Gürdal, R. T. Haftka, and
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