
Discrete Mathematical Structures and Their Applications

HAROLD S. STONE, Stanford University

S R A SCIENCE RESEARCH ASSOCIATES, INC.

Chicago, Palo Alto, Toronto, Henley-on-Thames, Sydney A Subsidiary of IBM

Contents

Preface		vii
Introduction		x
One	 Foundations of Discrete Mathematics 1.1 Elementary Logic 1.2 Sets 1.3 Graphs 1.4 Relations 1.5 Functions 1.6 Composition of Functions 1.7 Binary Operations 1.8 Algebraic Structures and Structure- Preserving Maps 	1 20 23 30 35 39 45
Two	Groups 2.1 Group Axioms 2.2 Generators and Group Graphs 2.3 Permutation Groups 2.4 Subgroups, Cosets, and Group Homomorphisms 2.5 Special Families of Groups 2.6 Symmetry Groups	53 55 64 74 82 95 105
Three	 The Pólya Theory of Enumeration 3.1 Counting Equivalence Classes à la Burnside 3.2 Inventories of Functions 3.3 Cycle Index Polynomials 3.4 The Redfield-Pólya Theorem 3.5 Historical Background and Applications 	113 115 121 126 130 134

Four	 Applications of Group Theory to Computer Design 4.1 How Fast Can We Add? 4.2 The Residue Number System 4.3 Permutation Interconnections for Dynamic 	137 138 147
	Memories	151
Five	Group Codes 5.1 An Error Model for Computer Systems 5.2 Parity-Check Codes for Independent Errors 5.3 Arithmetic Codes	163 164 166 179
Six	Semigroups 6.1 Semigroups and Monoids 6.2 Subsemigroups and Submonoids	185 187 196
Seven	Finite-State Machines 7.1 Semigroups and Finite-State Machines 7.2 State Reduction and State Equivalence 7.3 Machine Homorphisms and Machine	203 205 214
	Simulation 7.4 Sequential Machines as Sequence Recognizers	223 238
Eight	Rings and Fields 8.1 Algebraic Structures with Two Operations 8.2 Finite Fields 8.3 The Structure of Finite Fields 8.4 The Representation of Finite Fields	259 261 267 276 290
Nine	Linear Finite-State Machines 9.1 Linear Machines 9.2 Autonomous Linear Machines 9.3 The Cycle Structure of Linear Feedback	295 296 302
	Shift-Registers 9.4 A Reprise : Pólya Theory 9.5 Primitive Shift-Registers and Maximum-	313 322
	Length Sequences 9.6 Shift-Register Decoders and Encoders	335 350
Ten	Boolean Algebra with Applications to Computer Design 10.1 Lattices 10.2 Boolean Algebras and Switching Functions	[°] 363 364 375
Bibliography		388
Index		393
Index to Notation	,	400