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DISCRETE MATHEMATICS IN MANUFACTURING 

MARTIN GRÖTSCHEL* 

Abs t r ac t . Manufacturing is a topic that provides rich opportunities for important mathematical contributions 
to real-world problems. The purpose of this paper is to show, by means of several examples, where and how mathe-
matical problems of a discrete nature arise in manufacturing and to demonstrate the savings and improvements that 
can be achieved by employing the techniques of combinatorial optimization. The topics covered range from the design 
phase of a product (e. g., routing, placement and via minimization in VLSI design), the control of CNC machines 
(e. g., drilling and plotting), to the management of assembly lines, storage systems and whole factories. We also 
point out difficulties in the modelling of complex situations and outline the algorithmic methods that are used for the 
solution of the mathematical problems arising in manufacturing. 

Key words , discrete mathematics, combinatorial optimization, applications to manufacturing 

1. Introduction. Computer aided design, flexible manufacturing and computer integrated 
manufacturing have become technological buzzwords of our time. We are fascinated when we see 
driverless vehicles transport parts through a factory, watch robots executing complicated movements, 
or observe automated assembly lines producing goods at a speed, and with a quality, unimaginable 
with manual production methods. However, when our initial fascination is gone, and we examine 
the details, we quickly realize that enormous improvements are still possible. In fact, improvements 
can often be made without costly technical changes: by organizing the production flow in a dif-
ferent way, by designing the products better, by scheduling the jobs differently, or by controlling 
the machines in a more effective manner. Manufacturing, in general, provides rich opportunities 
for important mathematical contributions to significant real-world problems and, simultaneously, 
provides a virtually untapped source of mathematical problems, interesting in their own right. 

Although the number of mathematically oriented journals, books and papers in the manufac-
turing field is rapidly increasing, there is still a huge gap between what could be done, and what 
actually is done. It is my opinion that there are at least two reasons for this phenomenon. In my 
experience, many of the talented engineers who build and operate complicated manufacturing sys-
tems so ingeniously, simply do not have the background in the rather new mathematical techniques 
that are necessary to handle the issues to be discussed in the sequel; and they sometimes do not 
believe that mathematics can help. Secondly, only a few mathematicians are willing to go through 
the laborious and occasionally painful process of understanding, analyzing and modeling complex 
manufacturing systems and then discussing their findings with the practitioners. Both parties suffer 
as a result. Companies in particular miss opportunities for more efficient and cost-effective produc-
tion, and mathematicians opportunities to identify and solve challenging problems, problems that 
arise in connection with one of the most fascinating technical developments of our time. 

It is not my intention here to survey the mathematical problems that arise in this area. Rather, 
I will concentrate on those aspects that involve the techniques of discrete mathematics. Many of the 
problems I am aware of are combinatorial optimization problems. Due to the richness of the field of 
manufacturing, it is impossible to list all the different problem types. Thus, I will concentrate on 
practical applications and their mathematical models, applications that the members of my research 
group have worked on in recent years in cooperation with industry. This work was begun at the 
University of Augsburg and is continuing in Berlin. In most of the cases reported here, the industry 
partners were, and often still are, branches of Siemens and Siemens Nixdorf. 

I have organized this paper following the natural method of design and production in a typical 
electronics company. The design phase marks the beginning of a product. I will outline issues from 
this phase in Section 2. In the next phase, components are produced. The related issues of machine 
control and the like will be discussed in Section 3. In the final phase, the parts are assembled. 
The complex management and scheduling problems of highly automated assembly systems will be 
described in Section 4. I will touch upon the various mathematical problems that arise in these 
phases only very briefly. A few remarks about the mathematical techniques involved can be found 

*Konrad-Zuse-Zentrum für Informationstechnik, Heilbrunner Str. 10, D-1000 Berlin 31, and Technische Univer-
sität Berlin, Germany. 
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in Section 5. A glimpse of further important issues such as logistics, distribution and safety aspects 
is also given in Section 5. 

An electronics company was a natural choice for my presentation since by far the largest fraction 
of our projects have been joint efforts with the Siemens corporation. However, other types of 
companies, such as automotive, chemical and machine construction companies, could just as well 
have served to demonstrate the use of mathematics in manufacturing applications. 

2. T h e Des ign P h a s e . Companies with bad products and effective production will not sur-
vive. Good products, products that customers value, are what makes a company successful. But the 
financial success of a company depends to a large extent on how an idea is realized and on how the 
resulting product is manufactured. The transformation of an idea into a producible item is called 
the design phase. Disregarding the (very vital) aspects of style, or look-and-feel of a product, what 
is important from our perspective is that a product is designed in such a way that it can be easily 
and cheaply manufactured. This task is hard to quantify and tremendously complex. The usual 
approach to tackle it is to break the task (often hierarchically) into several subproblems that are 
more manageable and to hope that the overall solution is "reasonable". 

We outline this general aspect here by describing a few tasks that arise in the design of electronic 
circuits. 

2 .1 . V L S I Des ign . By looking at the computers on our desks and comparing them with ma-
chines 10 or 20 years old, we can observe the incredible improvements that very large scale integration 
(VLSI) has brought about. Hundreds of thousands or even millions of transistors integrated on a few 
square centimeters of silicon (a chip) perform an enormous number of operations at breathtaking 
speed. This large scale integration is one of the most significant technological revolutions of our 
time. Mathematics is used here in various stages of the chip design phase. A brief outline follows. 

Once the full task of a circuit is described, the logic has to be determined that will perform all 
the desired operations. This logic is then cast in silicon. Today's approach for physically realizing 
the logic design is to begin with predefined small cells that perform certain simple logic operations, 
and then to connect these cells with wires (so-called nets) so that the combination of cells and nets 
realizes the abstract logic model physically. Depending on the chosen technology, the design rules 
and customer requirements, the cells have a certain shape (usually rectangular) and size, and the 
wires need a certain width and require a certain distance to other wires or units on the chip. Given 
cells and nets together with additional technological constraints, the task is to place the cells and 
route the nets so that either the size of the resulting chip is as small as possible, or the resulting chip 
fits into a given frame. There are many additional side constraints that have to be met. For instance, 
certain cells have to be close to each other, certain nets have to have a maximum or minimum length, 
etc. 

Why do we want the chip to be small? Of course, smaller chips can usually be run at higher cycle 
speeds and are faster, but a major reason is that the yield of chip production decreases nonlinearly 
with increasing chip size. Modern chip production in futuristic, extremely clean and almost fully 
automated factories is basically a fixed cost operation, relatively independent of the number of wafers 
processed. Therefore, it makes a tremendous difference whether 20% or 80% of the chips produced 
per day are defective or not. Also, the smaller the chip size, the more likely is a higher, top quality 
output. 

Let us now look at a specific technology, the so-called sea-of-cells technology, one that is currently 
in wide use. Here a rectangular "master chip" is given. Among the feasible master chips, a master 
is usually chosen that is as small as possible so that one can hope to realize the given circuit on it. 
This master is subdivided into, say, m base cells. All logic cells are rectangular and have a size equal 
to some multiple of the base cell size. Suppose n logic cells are given, connected by z nets. The task 
roughly is to assign the n logic cells to the base cells so that all cells fit, no two logic cells overlap, 
all nets can be routed, and such that the total net length (the sum of the lengths of all nets) is as 
small as possible. 

It turns out that this problem is enormously complicated. At least at present, it seems impossible 
to handle the placement and routing problem simultaneously in a sound mathematical model for 
realistic problem instances. 
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Thus, the whole task is subdivided into several hierarchical problems. Depending on instance 
sizes and algorithmic approaches, the following phases are considered in general chip design: global 
placement, global routing, local placement, local routing, layer assignment and (possibly) com-
paction. These phases are processed in an iterative manner and may be repeated until satisfactory 
results are achieved. An excellent account of this area can be found in [L90]. 

2.2. Placement in Sea-of-Cells Technology. We will now look at the placement problem 
(without distinguishing between global and local placement) for chip design in sea-of-cells technology. 
Figure 1 shows a small master consisting of 26 x 18 base cells and the outer frame of pad cells; the 
nine dark rectangles are logic cells placed on this master. 
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Figure 1: Example of a sea-of-cells master 

In the last decade many algorithms have been developed for a solution of this placement problem. 
They can be categorized as follows. 

The most popular and probably still most frequently used approach is based on the min-cut 
heuristic for bipartitioning graphs. We define a hypergraph G — (V, E), where the node set represents 
the logic cells. For eyery net of the given circuit, we define a hyperedge consisting of all logic cells 
that the net connects. The idea is to recursively partition the node set of the hypergraph into two 
sets of roughly equal size such that the number of edges in the associated cut is as small as possible; 
[SK72], [Br77]. The main drawback when working in this scheme is that the global view of the 
problem gets lost. Moreover, the seemingly easy problem of finding a minimum cut with both sides 
of about equal size is an A/'P-hard problem itself. 

Another class of algorithms has been developed that model the placement problem mathemat-
ically in such a way that a relaxation of it can be solved to optimality. One such relaxation can 
be interpreted as a (nonlinear) energy model, where the objective function approximates the total 
wiring length and the side constraints assure that the trivial placement (all cells are assigned to the 
same base cell) is excluded [K1SJ88]. The solution of such a relaxation is usually not feasible for the 
placement problem (e.g., cells overlap) and thus the solution of the relaxation has to be modified 
heuristically in order to obtain a solution of the underlying discrete optimization problem. 

We now address the placement problem by introducing boolean variables 

if cell i is assigned to base cell k, 
otherwise. 
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Let o(ik,jl) and d(ik,jl) denote, respectively, the number of overlapping base cells and the distance 
if cells J and j are assigned to base cells ib and /. Then a corresponding quadratic 0/1-optimization 
problem can be stated as follows: 

m m n n 

i = l 1=1 »=1 j = l 
m 

(1.1) s.t. YlXik = l for aI1 * = !•••»». 
Jt=i 

Xik £ {0,1} for all i — 1 . . . n, k = 1 . . . m, 

where A is the penalty parameter for the overlaps, and the coefficients cy denote the number of nets 
between cells * and j . Problem (1.1) is a (slightly imprecise) model of the placement problem. The 
equations in (1.1) guarantee that all cells are placed, but the requirement that two cells may not 
overlap on a chip has been dropped since it leads to a tremendous number of additional inequalities. 
This requirement is taken into account indirectly by a suitable increase of the objective function 
value, when cell overlaps occur. 

One can show that (1.1) is AfV-h&id. The complexity of (1.1) and its sheer size for real problems 
suggest the idea of decomposing large instances into smaller ones. For example, the problem "soc4", 
mentioned later, has 2776 logic cells and 13440 base cells on the master chip. This leads to a 
quadratic 0/1-program with 37,309,440 variables. The decomposition is carried out in such a way 
that the global view does not get lost. For a solution of the decomposed problems, several heuristics 
have been developed; cf. [JMRW92], [W92] for a detailed outline of the procedure. 

In Table 1 the quadratic 0/1-approach sketched above is compared to two state-of-the-art algo-
rithms used in industry, namely the min-cut placement procedure and a method based on the energy 
model in [K1SJ88]. The three algorithms were applied to four electronic circuits, called socl soc4, 
that consist of 602 to 2776 logic cells. Their performance was measured by the total wiring length 
estimated by an industrial routing algorithm for the respective placements. The resulting wiring 
lengths are reported in Table 1. 

min-cut energy 0/1 Q P 

socl 212258 180445 169892 

soc2 194732 189683 185592 

soc3 766622 652129 553575 

soc4 623159 506160 497285 

Table 1 

The running time of the quadratic 0/1-programming algorithm is about ten times as large as 
the roughly identical running times of the other two heuristics. Using certain clustering techniques 
for the quadratic approach in addition, see [W92], the running times can be made comparable with 
the running times of the other two heuristics without loss of the solution quality. The placement of 
chip "socl" obtained with the quadratic 0/1-programming approach is shown in Figure 2. 

2.3. Routing. Let us now focus on the next step in the hierarchical design process of electronic 
circuits, the routing problem. We assume that ail ceils (logic and I/O-cells) are placed, and a list of 
nets is given. Each net is viewed as a set of points, where each point corresponds to a terminal (also 
called pin) of a cell. The routing problem deals with connecting the pins of the nets by wires. In fact, 
the problem is quite complicated, because certain given design rules must be taken into account and 
an objective function, such as the total wire length, must be minimized. Since the routing problem 
is ,/VP-hard and usually of extremely large scale, the problem is often decomposed into special cases 
that can then be handled more easily. A large variety of such special cases is considered in practice 
and in the literature. 
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Figure 2: Cell placement in sea-of-cells technology 

We want to model the routing problem as a Steiner tree packing problem in a graph. One way 
of introducing a graph G = (V, E) here is to define nodes for subareas of the whole routing area, and 
to link nodes that represent adjacent subareas by an edge. In addition, we assign edge capacities 
and edge weights to each of the edges. The nets are represented in this graph by subsets of the 
node set. Let a graph G = (V, E) and a node set T C V be given. We call an edge set S C E a 
Steiner tree in G for T, if the graph (V(5), S) (consisting of the edge set S and all nodes V(S) that 
appear as endnodes of edges in S) contains an [s,i]-path for each pair of nodes s,t e T. With this 
definition, the routing problem can be stated formally as follows. 

(1.2) The Routing Problem 

Given: A graph G = (V, E) with edge capacities c« € IN and edge weights we € IN for all e e E 
and a netlist M = {7\ TN), Tk CV,k-l,...,N. 

Problem: Find edge sets Si,..., SN C E such thai 

(i) Sk is a tree in G for Tkl k = 1,.. . ,N, 

(ii) \{k\e e St} | < ce for all e£E, and 

(™) EfcLi Zees* w» is minimal. 

We call an iV-tuple of edge sets (5i,. . . ,5jv) that satisfies (i) and (ii) of (1.2) a packing of 
Steiner trees. Problem (1.2) can then be designated as the Steiner tree packing problem. It is not 
surprising that problem (1.2) is jVP-hard. Indeed, it includes several .A/lP-hard problems as special 
cases; see, for example, [GaJ77], [Ka72], [KrL84], [KPS90]. 
Figure 3 indicates a 5 x 3 underlying grid graph (the grid is not drawn), in which each edge has 
capacity 1, and three nets, each consisting of three pins. The three Steiner trees forming the nets 
are drawn with solid, dashed and dotted lines, respectively. 

Our approach to the Steiner tree packing problem is to consider it from a polyhedral point 
of view and to use linear programming techniques. We define, for a given instance (G,Af,c,w), a 
polyhedron P whose vertices correspond uniquely to the packings of Steiner trees for that instance. 
Thus, the Steiner tree packing problem reduces to the problem of minimizing the objective function 
wTx over the polyhedron P. 

file:///AAAAA
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Figure 3: A packing of three Steiner trees 

What we need for the application of linear programming techniques is a complete or at least 
"good" inequality description of the polyhedron P. In [M92] a large number of valid inequalities for 
P is described. In fact, many of these inequalities also define facets of P if the underlying graph G is 
complete and the terminal sets are disjoint. The machinery involved in describing these inequalities 
is rather complicated and thus we omit detailed statements of these results. These inequalities 
form the basis for the development of cutting plane algorithms. We have implemented a cutting 
plane algorithm for special instances of the Steiner tree packing problem, when the graph G is a 
rectangular grid graph and the terminals of the nets lie on the outer face of G. In VLSI design, 
these instances are known as switchbox routing problems. We have tested our algorithms on many 
benchmark problems from the literature. For a detailed documentation of these results see [M92]. 

At its current stage this approach is not yet able to handle instances as large as those that can 
be treated with the standard routing heuristics used presently in industry. The remarkable feature 
of this approach, however, is that very good (provable) lower bounds on the total wiring length 
can be computed, a result that none of the other currently used approaches can provide. In fact, 
for the (small) problem sizes considered so far, quality guarantees of less than 1% or even provable 
optimality have been achieved. 

2.4. Via Minimization. We continue with our chip design example and assume that the 
placement and the routing phase have been completed successfully. Usually routing algorithms 
disregard the requirement that two different nets may not cross. Routings with such defects are 
referred to as transient. A transient routing of eigth nets is shown in Figure 4. The reason for 
ignoring net crossings is that the physical routing can be done on two or more layers of a chip. In 
case two nets cross in a transient routing, a wire segment of one of the nets can be assigned to a 
different layer so that no physical wire crossing occurs. The connections between the wire segments of 
a net on different layers are provided by so-called vias. In chip manufacturing the vias are produced 
by means of a delicate chemical process. Many vias on a chip increase the probability that, at the 
end of the production process, the chip wiil have a short or not work correctly. Moreover, vias use 
considerably more space than wires and thus a large number of vias may lead to an increase of the 
chip size. N 

Virtually the same problem occurs in the design of printed circuit boards. Here, the vias are 
produced by mechanically drilling a hole through the board (lasers are also used). A danger is 
that boards may crack in the drilling phase, another reason for minimizing the number of vias. 
Furthermore, the drilling process is quite time-consuming (see Section 3.2), and hence reducing the 
number of vias leads to a reduction in the overall production time. 
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Figure 4: A transient routing 

Due to these facts, it is desirable to assign the wires to layers of a chip or a printed circuit board 
in such a way that no two wires cross and the number of vias is minimum. We call this task the via 
minimization or layer assignment problem. 

For the case of two layers (assuming that the transient routing contains no fc-way junctions for 
k > 4) [Pi84] and [CKC83] have shown independently that this problem is solvable in polynomial 
time through reduction to a max-cut problem in a planar graph. However, these reductions do not 
cover certain side constraints required in practice. In many cases one of the two layers is preferred 
and pins are preassigned to some layer. [BaGJR88] pointed out that Pinter's reduction can be 
generalized to the via minimization problem subject to layer preference and pin preassignments. 
However, the max-cut problem that results from this reduction is .A/!P-hard. The transformation is 
elegant but technically rather involved and will not be explained here. The reader is invited to find 
the minimum number of vias for the problem shown in Figure 4 before looking at Figure 5 where an 
optimum solution needing four vias is displayed. The vias are indicated by the little open squares 
(where the nets change color, i. e., lay 

4 2 6 

l a » 

2< 

3a. 

7 8 

3> 1 

3>2 

4 5 6 3 1 7 8 

Figure 5: A via-minimal layer assignment 

We have developed both simple and elaborate heuristics for the via minimization problem and an 
exact cutting plane algorithm that is based on polyhedral investigations of the max-cut problem. 
These algorithms are described in [BaGJR88] and [GJR89]. 
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Tables 2 and 3 report the success of this approach. The symbols C I , . . . ,C6 denote six chips 
from industry. For each chip, the via minimization problem comes in two versions. In one case, 
no pin was preassigned, and in the other, certain pins were required to be on one of the layers 
of the chip. Of course, this latter requirement will generally result in more vias. Table 2 reports 
on the results of the via optimization without pin preassignments, Table 3 shows those with pin 
preassignments. The row labels have the following meaning: 

# nodes = number of nodes of the so-called reduced layout graph, 
# edges = number of edges of the reduced layout graph. 

These two numbers indicate the sizes of the assoiated max-cut problems. 

# vias original = number of vias in the (original) industry design, 
# vias heuristic = number of vias in our best heuristic solution, 
# vias optimal = minimum number of vias for this chip 

found by the cutting plane algorithm, 
improvement = improvement in percent 

( ( # vias original — # vias optimal) / # vias original). 

C I C2 C 3 C 4 C 5 C 6 
# nodes 827 979 1326 1201 1365 924 
# edges 1445 1775 2480 2606 2234 1740 
# vias original 421 434 683 650 782 630 
# vias heuristic 272 347 513 475 610 525 
# vias optimal 264 334 500 467 608 516 

improvement 37.29% 23.04% 26.79% 28.15% 22.25% 18.10% 

Table 2: Via minimization without pin preassignment 

C I C2 C 3 C 4 C 5 C6 
# nodes 828 980 1327 1202 1366 925 
# edges 1749 2102 2844 2915 2557 2008 
# vias original 421 434 683 650 782 630 
# vias heuristic 302 376 563 504 645 585 
# vias optimal 302 376 561 482 643 585 

improvement 28.27% 13.36% 17.86% 25.85% 17.77% 7.14% 

Table 3: Via minimization with pin preassignment 

These results were achieved with algorithms designed and implemented by M. Jünger and G. Reinelt. 
The heuristics approximately solve these via minimization problems within a few seconds, while the 
cutting plane algorithm (yielding a provable optimum solution) only requires a few minutes on a 
workstation. The results displayed in these tables show that this optimization approach results 
in a considerable reduction of the number of vias compared to the industry solutions and thus 
leads to more favorable chip designs. Moreover, optimum solutions could easily be computed and 
the heuristics (these are special purpose methods taking the special features of this problem into 
account) did extremely well. 

This discussion of some features of the design phase of a manufacturing process was meant to 
show that even seemingly minor details such as via minimization lead to very interesting mathemat-
ical problems, and that their solution may have a significant impact on other aspects of production. 
The mathematical theory on topics of this type, whether combinatorial or continuous, is not very 
.well-developed. Only few isolated cases have been analyzed. There is still considerable room for 
further exciting developments. 

3. C o n t r o l of M a c h i n e s . Let us now suppose that the design phase has been completed. 
The product designers have determined how to subdivide the production process into various tasks 
and how the different parts of a product must be manufactured. 
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In this section we will consider the manufacturing process on a single machine. The additional 
problems that arise when taking transport and sequencing into account will be discussed in the 
next section. In the typical situation, an object enters a machine, and the machine, controlled by a 
computer program, performs various operations on that object. The questions that arise are: how to 
do the jobs as fast as possible, and how to schedule the jobs such that idle times, say those induced 
by retooling or positioning moves, are as short as possible. 

We have noticed in our work, dealing with situations like this, that slightly different technical 
devices, a few details in machine capabilities, and decisions of the production managers may lead 
to quite different mathematical models. In fact, whole new ranges of problems do arise in this area. 
We will exemplify these statements by considering two problems in printed circuit board production. 
We follow the paper [GJR91] in our presentation. 

3.1. The Plotting Problem. Complex printed circuit boards are usually produced by a 
photochemical process. For each layer of the board, the pattern of wires and contacts is produced 
by covering the board with light sensitive material, exposing this material to light, etching, cleaning, 
etc. The process is similar to the usual production of photographs. The structures that later should 
appear on the board are first "drawn" on a mask (a negative) that is placed between the board and 
the light source, so that certain parts of the board are not exposed to light. These unexposed areas 
are to form the conductors, pads and contacts of the layer. The question we address here is the 
generation of the masks. The masks are made of glass and the patterns on the glass are generated 
optically either using ultraviolet light or laser beams. In our case, a photo plotter is used for the 
mask production. Figure 6 shows an example of one layer of a printed circuit board. It is one of our 
test cases. 

Figure 6: A layer of a printed circuit board 

The photo plotter works as follows. It has two modes, a "drawing mode" for plotting lines and a 
"flashing mode" for plotting points. As one can see from Figure 6, points may be of various sizes 



10 MARTIN GROTSCHEL 

and shapes, and lines may be of various widths. Before plotting, an aperture is chosen that produces 
the required shape or width. 

Points are plotted by moving the light source to certain coordinates on the board, choosing 
the aperture, and flashing the light. Lines are plotted by moving the head to one end of the line, 
choosing the aperture, opening the shutter, moving along the line with the open shutter and closing 
the shutter at the end of the (not necessarily straight) line. 

The above is nothing but a basic description of the principle of the plotting process. Plotting 
machines are offered in various mechanical forms. In some cases, only the head of the light source is 
moved, in some cases only the compound table, and in others the head moves in one direction and 
the table in the other. For our purposes, the actual mechanics are irrelevant. We only need to know 
the time it takes to move from one point to another. For the sake of exposition we will assume a 
model in which only the head moves. 

There is, given a pattern, nothing to be done about the time needed for drawing and flashing. 
This process requires a certain fixed time depending on the plotter characteristics. What can be 
optimized is the time needed for positioning head moves, i. e., moves of the head without drawing. 
We will now describe the mathematical modelling of the plotting process in some detail. Depending 
on technological side constraints, there are several options of modelling this problem mathematically. 
We discuss two examples that came up in our application. 

a- : -5 

0- 4- -3 

i . . .2 
A 

Figure 7: First plotting problem 

Consider the line and point plotting problem shown in Figure 7. It seems obvious how to 
proceed. We begin at the starting position 0, move to point 1, choose the "drawing mode", and 
switch the aperture to "drawing thick lines". Then, while moving, we draw the line from 1 to 2, 
move to point 3 and change the aperture to "thin drawing", draw the line from 3 to 4, move to point 
5 and change to the "point flashing mode", etc. The trouble here is that during every positioning 
move the aperture has to be changed. The head is (in many cases) a mechanically delicate device 
that — after a certain number of aperture changes — has to be readjusted or substituted. This is 
a costly procedure. Therefore it may be wise to proceed as follows. One first chooses an aperture, 
plots everything that can be plotted with this aperture, changes the aperture, etc. This approach 
decomposes the problem into various plotting subproblems and adds a new problem, namely that 
of an optimal sequence of apertures. For Figure 7, an optimum solution in this case would be as 
follows. We first choose the thick drawing aperture, go from 0 to 1, draw the line from 1 to 2, move 
to point 6, draw the line from 6 to 7, change to the thin drawing aperture and move to 8, draw the 
line from 8 to 9, move to 3, draw the line from 3 to 4, change to the flashing mode and move to 5, 
flash, move to 10, flash, and return to 0. 

Clearly, the second choice produces longer (and sometimes substantially longer) positioning 
head moves and — provided that aperture changes do not require more time than the moves — 
longer machine running times. 

One has three choices in practice. Either one ignores aperture changes and uses the first option, 
or one decides to decompose the plotting problem into subproblems (one for each mode and each 
aperture), or one mixes the two by penalizing those positioning moves where also aperture changes 
occur. In each case, the person responsible for mastk plotting has to decide — based on his knowledge 
of the technical characteristics of the machine — whether or not aperture changes are considered 
crucial operations that have to be kept at a minimum and which of the three options should be used. 
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Figure 8: Second plotting problem 

There is another option that may produce shorter positioning head moves: preemption. Con-
sider Figure 8, where all three lines are drawn with the same aperture. An optimum solution here 
is to move from 0 to 1, draw the line from 1 to 2, move to 3, draw the line from 3 to 4, move to 5, 
draw the line from 5 to 6 and return to 0. We have so far made the assumption, without explicitly 
stating it, that whenever the plotter has started drawing a line it continues drawing until the other 
endpoint of the line is reached. If we allow interruptions (technically often called preemptions) we 
could do better. For instance, in Figure 8 we could draw the line from 1 to 2 only until point A is 
reached then we move to point 3, draw the line from 3 to 4, return to point A and continue drawing 
from A to 2, etc. This choice would produce shorter positioning head moves than the "optimum 
solution" sketched above. So the question is whether preemptions should be allowed or not. There 
is no general answer. In each individual case one has to make a decision based on the particular 
conditions. 

In our case the decision was to execute as few aperture changes as possible and not to allow 
preemptions. Therefore, the following combinatorial optimization problems arose. 

(3.1) Point Flashing Subproblem. 
Given an aperture, select all points that are flashed with this aperture and determine a shortest 
Hamiltonian path through these points. 

(3.2) Line Drawing Subproblem. 
Given an aperture, select all lines that have to be plotted with this aperture and determine a sequence 
of these lines such that the total distance travelled by positioning moves is as short as possible. 

(3.3) Aperture Sequencing Subproblem. 
Determine a sequence of apertures and, for each aperture, a starting point and a terminal point for 
the point flashing or line drawing process such that the total time for positioning moves (with and 
without aperture changes) is as short as possible. 

The aperture sequencing problem is by far the most complicated and we do not have any idea of 
how to solve it. Fortunately, in our practical problems, it was of almost no importance. We treated 
it by using a simple heuristic. 

The point flashing problem is, after an easy transformation, equivalent to a symmetric travelling 
salesman problem (TSP). The line drawing problem turns out be a so-called rural postman problem. 
A rich mathematical theory and a substantial algorithmic toolbox exist for the TSP, see [LLRS85], 
whereas the rural postman problem has basically been neglected in the literature up to now. 

To solve the plotting problem in practice we had to meet additional computational side con-
straints. The organization of the production process required the problem to be solved almost in real 
time, i. e., for each instance, five minutes of computation time were available on a 3 MIPS machine 
for the solution of the point flashing, the line drawing and the aperture sequencing problem. Within 
this time limit good solutions had to be produced. [GJR91] and [R92] describe some of the heuristics 
that were designed and implemented to satisfy these constraints. 

The methodology developed also involved the fast solution of problems from computational 
geometry, such as computing Voronoi diagrams, Delaunay triangulations or, convex hulls. These 
techniques were utilized to reduce problem sizes in order to satisfy the running time requirements. 
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Our codes were tested on real-world masks by the engineers at Siemens. The solutions of the 
industry heuristics were compared with our solutions by measuring the running times on the real 
plotting machines. The savings turned out to be tremendous. We had to solve line drawing problems 
with up to 38,621 lines and flashing problems with up to 2,496 flashes. The running time reductions 
for the positioning moves using our fastest heuristics ranged from 14% in the worst case up to 83% 
in the best case. Further improvements of an approximately additional 10% could be achieved by 
more elaborate and time-consuming heuristics. These savings resulted in capacity increases of the 
plotting machine in the range of 5% to 35%, see [GJR91] for more detail. 

3.2. The Drilling Problem. In Section 1.4 we introduced the via minimization problem for 
chips. Its analogue for printed circuit boards (PCBs) has direct consequences for the printed circuit 
board production process: the fewer the vias, the shorter the production time. 

The practical problem arising in this application is the following. To connect a conductor on 
one layer with a conductor on another layer or to position (in a later stage of the PCB production) 
the pins of IC's, holes have to be drilled through the board. The holes may be of different diameters. 
To drill two holes of different diameters consecutively, the head of the machine must move to a tool 
box and change the drilling equipment. This is quite time-consuming. Thus, it is clear at the outset 
that one has to choose some diameter, drill all holes of the same diameter, change the drill, drill the 
holes of the next diameter, etc. 

There is no tool changeover problem here since, in any case, after loading of the boards the 
machine head is at the initial position (where the tool box is) and after having drilled all holes of one 
diameter it has to return to the initial position to pick up the new drill. Thus, our drilling problem 
can be viewed as a sequence of symmetric travelling salesman problems, one for each diameter resp. 
drill, where the "cities" are the initial position and the set of all holes that can be drilled with 
one and the same drill. The "distance" between two cities is the time it takes to move the head 
from one position to the other. The aim here again is to minimize the travel time for the head of 
the machine. The (quite substantial) time needed to drill a hole cannot be influenced at all. This 
is a fixed production time. As for the plotting application described before, severe bounds on the 
running time were required for our heuristic. 

The problem sizes that came up in this particular application ranged from about 500 to about 
2500 "cities". For the real test cases we obtained from Siemens Nixdorf the following was achieved. 
All instances were solved in less than 2 minutes on a 3 MIPS computer by our heuristics. The time 
needed for positioning moves by our solutions was up to 55% lower than the respective time of the 
solution used in industry. Since the drilling time is quite substantial this does not mean a halfing 
of the production time. The reduction of the positioning moves resulted in a decrease of the total 
production time of 5% to 20% on the average. The results were considered quite remarkable by the 
engineers responsible for the CNC-machines and it was decided to incorporate our codes into the 
software controlling the machines in order to speed up production. 

The dots on Figures 9 and 10 indicate the holes of a typical drilling problem for printed circuit 
boards. Figure 9 shows the positioning moves of the original industry solution, Figure 10 the 
positioning moves of our solution. Our tour is 51.83% shorter. 

A detailed account of these results is given in [GJR91]. A thorough description of the design and 
analysis of the heuristics is contained in [R92], A side effect of this investigation was the compilation 
of a large number of real-world travelling salesman problems. A library, called TSPLIB, that includes 
the instances of this study and many other TSP instances was set up. It can be accessed by e-mail. 
A description of this library and its use can be found in [R91]. 
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Figure 9: Positioning moves, original solution 

Figure 10: Positioning moves, "optimized" solution 
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4. Assembling the Par t s . Having fine tuned the individual machines that produce the parts 
of a product and having improved their performance by using optimization methods as described 
in the previous section, we now focus on the task of putting the parts together to obtain the final 
product. A main problem here is to design the assembly process and to schedule the jobs to be 
executed in such a way that the production cost is small and the output per time unit high. These 
global goals are often replaced by (occasionally) more operational or measurable aims such as: all 
machines are utilized to the full, the work loads of the factory branches are balanced, stocks are kept 
at a minimum level under the condition that quick changes in the production volume and pattern 
are still possible, etc. No doubt, this is a tremendously difficult task. 

Mathematics is, at present, rarely used in the design phase of the assembly process, i. e., 
when the machines are chosen, the factory floor is layed out, the transport systems are selected 
and dimensioned, etc. However, once these basic decisions are made, simulation systems are often 
employed that are based on mathematical tools. These simulation systems are used to get a feeling 
for the flow of goods, the throughput, the possible bottlenecks of the system, etc. Simulation 
methods have become indispensable and valued tools for the design of large production systems. 
Nevertheless; there is considerable room for the use of further and more sophisticated mathematical 
tools in this design process. 

Mathematicians are, in general, only asked for their expertise in'cases where the system does 
not work as expected, or when the work load of the system has changed considerably and ways are 
sought to run the system efficiently without making significant technical changes, or when certain 
components of the system turn out to be severe bottlenecks and reorganization of work seems feasible 
for curing this disease. 

I will explain these aspects by means of two projects that were jointly carried out with Siemens 
Nixdorf, Augsburg. 

4.1. Flexible Printed Circuit Board Production. The Siemens Nixdorf, Werk für Sys-
teme in Augsburg produces, among other items, all main frame computers of the company. Impor-
tant parts of computers and other electronic products are printed circuit boards (PCBs). Printed 
circuit board production is a division that manufactures PCBs for Siemens Nixdorf itself and other 
outside customers. 

The whole PCB production process consists of various stages. We have already met two such 
phases in the previous section (plotting and drilling). We now focus on the final assembly. The PCB 
frame is finished and the task is to place various electronic components on the PCBs. There are 
components of different types and mechanical properties. For instance, some components are glued 
onto the board, some have "little legs" that have to be positioned into certain holes (drilled in a 
previous stage) and that are soldered in a later phase of the PCB production, etc. 

In general terms, the flexible PCB assembly line (called FALKE at Siemens Nixdorf) has the 
following properties. At the head of the system, the so-called HEAD-cell, the boards are put onto 
carriers and fed into the system. There are automatic conveyor belts for the transport of the carriers. 
The carriers may enter some or all of six "cells", where each cell consists of a series of CNC-machines 
each carrying out certain feeding or other operations. There are buffers in front of each machine 
that can hold up to 25 carriers. Except for the initial system feeding and certain manual operations 
for the insertion of special parts, the entire process including transport, component feeding, etc. is 
controlled by a computer system and is fully automated. The whole assembly line is an impressive, 
automatic flexible manufacturing system. 

The problem with the FALKE line was the following. Due to changes in the design of PCBs over 
time the distribution of work among the machines of the system was somewhat unbalanced. Certain 
machines were constantly working, while others were frequently idle. Although some machines had 
a higher total workload than others, it was not always the same machines that appeared to be the 
production bottleneck. So the question was: Is it possible to increase the throughput of the system 
without making any changes in the general control software or any technical changes? We were 
not allowed, for this type of investigation, to retool the machines, to change the order of jobs to be 
executed on individual PCB's, or to modify the control software for the conveyor system, the feeders 
or buffers. Such changes would simply have incurred costs and dangers too high for the reliability of 
the assembly fine. The only control parameter left to be influenced by optimization was the feeding 
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of the system. 
At the time of analysis of the FALKE system about 1500 to 2000 circuit boards were produced 

per day consisting of about 20 to 40 different types. In total, about 500 different PCB types could 
be automatically assembled on the system, without changing the machine settings. 

The managers of the FALKE system learn about the planned production volume for a day about 
one to two days ahead of time. This gives enough lead time to arrange for the shipment of required 
boards and components. Having no other option, we proposed using this time for also finding a 
sequence of the carriers such that the completion time of the whole set of PCBs is minimized. 

An immediate question arises. Given a sequence of PCBs, how can one compute the time it 
needs to finish the work? Of course, we assume here that no artificial idling occurs, i.e., that all 
machines work and that each job is done at the earliest possible time, etc. 

In fact, we were not able to come up with an analytic formula for the completion time. The 
difficulty is mainly due to long distance interdependencies that are hard to model analytically. For 
example, some carriers do not enter certain cells or machines (an average PCB is processed on about 
two thirds of the machines), carriers may overtake each other, a carrier that blocks another at some 
machine may be blocked in return by this other one at a later stage. 

So we decided to design, very carefully, a special purpose simulation model of the FALKE line 
by measuring all transport times, feeding times and obeying all rules and side constraints of the 
system. Programming and validating this simulation tool took about 9 month of two persons' work. 
In the end, we had a simulation tool that could simulate an eight hour shift of the FALKE line in 
about 5 minutes on a PC. Two weeks of real production were recorded and the parameters of our 
simulation tool were adapted in such a way that it faithfully reproduced the real production in our 
computer model of the production line. 

We then invented a number of heuristics to improve the sequencing of the jobs. A typical 
iterative improvement heuristic starts with some sequence of jobs and changes this sequence using 
some myopic optimization rule. Then it computes the completion time of the new sequence. If 
it is better (or only slightly worse), it takes the new sequence and applies the same rule. If after 
a number of applications of this rule, no improvements have been made, other sequence changing 
techniques are applied until no significant progress is visible. The trouble here is that evaluating 
the new sequence takes some minutes of running time, and thus, not too many sequences can be 
tested. To achieve acceptable running times for the heuristics, a fast lower bounding procedure for 
the completion time was invented. This lower bound was used as the objective function value for the 
heuristic. The real completion times were only occasionally computed by means of the simulation 
model. 

After having tuned these heuristics, we ran them on the production data of the two weeks 
available to us. We improved upon the completion time, compared to the runs of the real system, 
in the range of 3.3% to 12.7%. On the average the completion time could be reduced by 6.7%. 

This improvement was significantly less than the management had expected. But we could also 
show that the expectations were much too high. By means of our lower bounding procedure we 
could prove that there was not as much room for improvement as thought. We could show that, 
for the days considered, a maximum total speed up of about 20% might be possible. (We actually 
believe that this is an overestimation.) So, on the average, about 13% of further completion time 
reduction might be possible at most. 

What turned out to be the most significant drawback of our heuristic solutions was the following 
property. Since we know that the HEAD-cell is manually operated we expected the person in charge 
to make a few sequencing errors. Thus we randomly perturbed our "optimized" carrier sequences 
a little and noticed that a few changes could result in the loss of all the gains that we had worked 
for so hard, i. e., our solutions turned out to be quite unstable. Due to this fact and the not so 
significant improvements, the company decided not to change the present system. 

In some sense, our efforts were in vain. Techniques of combinatorial optimization did not lead 
here to significant improvements. What we learned is that we do not have a good understanding 
of such complex and complicatedly interlinked systems like the FALKE line. We do not seem to 
have the right tools yet to control these systems efficiently. In fact, what is really needed is an 
on-line control system that makes adjustments of the job schedule whenever interrupts, machine 
breakdowns, conveyor stops, etc. occur. I think we are still far away from a good mathematical 
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understanding of such systems. In fact, it may be reasonable to consider designing less complex 
production systems, production systems that are efficiently controllable. After all, flexibility does 
not help if it can't be used. 

This work has — to.a large extent — been carried out by Petra Bauer together with Siemens 
Nixdorf engineers and is documented in [Bau90]. A paper describing in detail the findings surveyed 
above will appear in the near future. 

4.2. Optimizing a PC Factory. The Werk für Arbeitsplatzsysteme, Augsburg is the plant 
of Siemens Nixdorf where all PCs (and some other related products) are manufactured. In the fall of 
1989, we started a joint project aimed at looking for possibilities for production improvements. The 
goal, in the long run, was to design and implement a software package that optimizes the material 
flow through the factory and allows for the production of the required PCs, monitors, keyboards, 
etc. in shortest possible time with high flexibility. This is obviously a very ambitious goal, and 
we are aware of the fact that we are unlikely to achieve it. The point, though, is to keep the real 
goal in mind whenever optimization and simulation tools are designed for particular components 
and branches of the factory. Clearly, the output and efficiency of the whole factory is what really 
matters and not the speed of a few machines. Figure 11 shows 
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Figure 11: Sketch of the factory floor 

a symbolic sketch of one hall of the factory. We give now a rough description of the operations 
involved in the assembly. 
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There is a receiving area, where all parts necessary for the production are supplied by trucks. 
Among these are, for instance, the printed circuit boards mentioned in the previous section. These 
are manufactured in a factory about one km away. The parts arrive in or are loaded into three 
types of boxes and given a bar code identifying them. These boxes are moved by a conveyor to 
several loading points where automatic driverless vehicles pick up the boxes and transport them to 
their destination. The vehicles are controlled by a software system that decides when which vehicle 
executes which transportation job. 

A typical destination of such a vehicle is the Input/Output buffer of one of the many automatic 
storage systems. When the driverless vehicle arrives, a mechanical device moves the box on the 
I/O-buffer and signals to the control of the storage system that the box has to be transported by 
the stacker crane to its storage location. 

The PC and other assembly lines are located on each side of the storage systems such that all 
parts needed at a certain point on the assembly line are delivered upon request automatically to the 
desired location by the stacker crane. The control system of the stacker crane decides where to put 
incoming boxes, when to remove empty boxes and in what sequence all current orders are processed. 
All this is done on-line. 

One of the assembly lines is fully automated, robots do all of the jobs. At the other lines, 
manual work is involved and the speed of production can be adjusted by varying the number of 
workers at the lines. 

Once a product like a PC is finished, a conveyor moves it to a "hot line" where it is tested by 
means of software for about twenty four hours. There is a scheduling and a capacity problem here. 
The control system of the hot line has to determine where to locate a PC, how to perform the tests 
and whether it pays to relocate the PCs at night in order to be in a position to do all the necessary 
transportation work fast in case of high traffic volume. 

The PCs that have failed the test are moved to a repair area and may reenter the hot line 
later. The other PCs will run through further manual tests before they are packed and moved to the 
distribution center. Storing all the products (including manuals, software, etc.), combining these 
parts to existing orders, and combining orders to reasonable truck loads is another complicated and 
highly automized process that we do not want to describe here. 

In a project that is mainly executed by Norbert Ascheuer and Atef Abdel Hamid with the 
help of some mathematics students and a support team of Siemens Nixdorf, we have designed and 
implemented a simulation model that covers, at present, the receiving area, the transportation 
system (i.e., the driverless vehicles), and the automatic storage systems. This simulation model has 
been validated by comparing its performance with the data of several weeks of real production. The 
various models have been validated individually and in joint operation. 

The role of the simulation system is twofold. Its use as part of a planning system where decisions 
about the work load of the day and the distribution of the jobs are made is currently being tested. 
The simulation system is employed here to check not only whether all parts needed for the planned 
production volume are available but also to check whether the work force is sufficient or whether 
bottlenecks in the transportation system and the parts supply will arise. 

The main objective of designing the simulation models, however, was to analyse the perfor-
mance of optimization approaches and compare them with the existing system. To convince the 
engineers that our analysis is sound and that our system speedup predictions will show up in prac-
tice, validation was indispensible. Since outlining the whole work would be too space-consuming, I 
will concentrate here on the automatic storage system and the stacker crane operation. 

The storage systems that are in use at the Siemens Nixdorf Werk für Arbeitsplatzsysteme are 
huge frames that hold all the material needed at the assembly lines next to them. The initial 
planning question is how to choose the size cf the storage frame to make sure that it will be large 
enough to hold all the items required in the production. At this point in time, it is also decided 
which type of transportation and which storage boxes are going to be utilized. In our case, there 
are three types of boxes of different sizes. Each box type needs differently shaped storage locations. 

We have mathematically modelled various optimization questions associated with the design 
and management of this storage system. A first problem is how to subdivide the frame into storage 
units such that the expected storage volume of different boxes is sufficient and all boxes are as close 
as possible to their output buffer, i.e., the problem is to determine locations such that all needed 
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boxes fit and the expected moves of the stacker crane for box transportation are as short as possible. 
This leads to general integer programming approaches or set packing models. We are not sure yet 
whether or not our models achieve what is needed in practice. Further modelling iterations may be 
necessary. 

Once the locations are fixed and once the system is in operation we have to decide, every time a 
new box arrives, where to locate it among the available empty storage locations such that the stacker 
crane moves are as short as possible. This requires on-line decisions that should take also into account 
which further boxes are already in the material flow pipeline and are likely to arrive soon. It turns 
out that, for two of the three box types, this problem can be formulated as an (ordinary) rectangular 
assignment problem. Typical sizes of such assignment problems are 20 x 800 and can be handled with 
the assignment code of Kleinschmidt, see [AKP89], in a few seconds on a PC. For one type of small 
boxes the associated model is a special case of the generalized assignment problem. Unfortunately, 
it is //!P-hard. We have developed fast heuristics, e.g., based on matching techniques, and a cutting 
plane algorithm for its solution. The heuristics provide satisfactory approximate solutions very 
quickly. 

For a detailed description of all these aspects of the storage system and the theoretical and 
algorithmical investigations of the generalized assignment problem, see [AH92]. 

Let us now turn to the moves of the stacker crane. By analysing all the technical details, 
measuring running times of the crane, reaction times of the systems, times for moving boxes, etc. 
Norbert Ascheuer has implemented a simulation system that models the behaviour of the stacker 
crane and has compared it with the real moves. Table 4 shows the validation results for all operations 
of one week. One job consists of the positioning move, the pick up of a box, the move with the 
box, and the delivery of the box. The time needed for moving and handling one box on day 1, for 
instance, was 76.27 sec. on the average, see column 0RL of Table 4. This time was obtained by 
measuring all operations of the day and averaging them out. The simulation model produced an 
average job length of 76.83 sec. for this day (column 0SIM) resulting in 0.73% deviation (column 
%DEV). Deviations are bound to occur since always some interruptions and manual interactions /-; 
occur that are not taken into account by the simulation model; see column 0DEV for average and 
column max DEV for maximun deviations that occured throughout a day. The time for executing 
the simulation model for a whole day was about 12 seconds on a PC. 

0RL 0SIM 0DEV max DEV %DEV Time 
1 76.27 76.83 2.42 20 0.73 11.47 
2 75.45 76.34 1.96 11 1.17 11.60 
3 78.81 78.95 2.01 9 0.18 11.17 
4 76.19 76.58 2.09 9 0.51 11.08 
5 77.11 76.73 2.06 20 0.49 12.30 

Table 4: Validation of the simulation model 

The results of the validation process, which was more elaborate than indicated here, were 
considered very satisfactory by our industry partners and it was decided to accept proposals that 
are based on the use of this simulation model. 

At any point in time, the stacker crane control system has to decide which of the jobs to execute 
next. In the old system this was done by a priority based FIFO rule. We proposed to replace this 
heuristic by solving the following problem. Whenever a set of jobs is given or modified, schedule 
the jobs in such a way that the unloaded travel time (or positioning time, i.e., the time the stacker 
crane moves without carrying a box) is as short as possible. This problem turns out to be a directed 
Hamiltonian path problem; it is trivially equivalent to an asymmetric TSP. We solve this directed 
Hamiltonian path problem as follows. At a general point in time, the stacker crane is executing 
some job or idle and there are some jobs that the stacker crane has to execute in the future. If 
one job is finished, the crane starts the first job of the sequence. Due to calls from the assembly 
line or deliveries of the driver less vehicles new jobs are created. Whenever a new job comes up, we 
run a very fast insertion heuristic to schedule the new job and call the resulting sequence our new 
solution. Then a more elaborate but still fast heuristic tries to improve the present solution. Finally, 
a branch-and-bound code is activated that determines an optimum solution of the present problem. 
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It may happen that a new job is created while we are still computing. In that case we stop the 
optimization process and turn to the new enlarged problem. 

# T T uTr-P uTr-0 1% max-TT 0 # T T 
1 416 8599 8325 3.18 6 2.31 
2 421 8655 8141 5.93 8 1.94 
3 405 8238 7956 3.42 6 2.27 
4 398 8017 7634 4.77 8 1.93 
5 447 9411 8951 4.88 8 2.13 

Table 5: Minimizing the unloaded travel time 
(normal conditions) 

The asymmetric TSPs that come up in this system are very small under normal conditions (see 
max-TT and 0#TT in Table 5 for largest and the average instance sizes). Even under heavy load 
conditions (see max-TT and 0#TT in Table 7) the sizes of the assymetric TSP instances arising 
have never exceeded 40 "cities" during the days for which we collected data. Thus we decided to 
use a branch-and-bound code instead of investing into the extensive effort of implementing a cutting 
plane algorithm. Currently we are using the code of Fischetti and Toth [FT92] that solves the 
instances arising here in reasonable time. We used the simulation model to compare our approach 
with the old system. Table 5 shows the results for the week that was used for the simulation model 
validation. The running time improvements (see column 1%) of 3% to 6% were very disappointing. 
By analyzing the data it turned out that the week considered was a week of low production volume. 
On the average, there were only two jobs to schedule at a time (see column 0#TT) and thus almost 
nothing to optimize. 

Tables 6 and 7 report about two different periods of heavy load. These usually occur after the 
breakdown of some part of the production system. In such cases jobs to be executed start to pile up. 
The running time improvements (see columns 1%) in these cases ranged from 15% to 40%. In fact, 
this is exactly what is needed in the system: quick recovery from "catastrophies". The results of our 
optimization approach were considered so satisfactory that our software for scheduling the moves of 
the stacker crane has been put into use at the Siemens Nixdorf Werk für Arbeitsplatzsysteme. It 
has considerably improved the capacity of the storage system. 

# T T uTr-P uTr-0 1% 
1 18 344 239 30.52 
2 10 194 143 26.28 
3 18 347 211 39.19 
4 26 507 330 34.91 
5 20 388 283 27.06 

Table 6: Minimizing the unloaded travel time 
(heavy load conditions) 

# T T uTr-P uTr-0 1% max-TT 0 # T T 
1 50 917 693 24.42 29 13.32 
2 49 974 749 23.10 20 8.32 
3 50 1007 783 22.24 26 12.23 
4 49 889 -662 25.53 31 15.24 
5 50 985 839 14.82 25 13.08 

Table 7: Minimizing the unloaded travel time 
(heavy load conditions) 
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number of transportation tasks (TT) 
unloaded travel time with priority rule (in sec.) 
unloaded travel time with optimization (in sec.) 
improvement in % ((( uTR-P) - (uTr-O) ) / (uTr-P) ) 
maximal number of T T handled at the same time 
average number of T T handled at the same time 

We are aware of the fact that our approach may not be the best way to handle on-line decisions 
of the type described above. But the scientific literature on handling complex on-line situations such 
as this is one is almost nonexisting. We were happy that we could improve a bottleneck situation 
in the factory considerably, but we know that deeper theoretical investigations are necessary to get 
a good understanding of such cases. We are currently experimenting with other approaches that 
lead to new combinatorial optimization problems and are going to compare these on a practical and 
theoretical basis with the approach outlined above. 

More details on the results of our stacker crane optimization will appear soon in joint papers with 
the Siemens Nixdorf partners. The mathematics involved and a thorough analysis of the practical 
achievements will be described in [As93]. 

5. M o r e App l i ca t ions a n d Some M a t h e m a t i c s . This paper consists of a list of a few 
problems arising in the world of manufacturing and my attempts to describe the use of mathematics 
in their solution. I have tried to indicate that the line of attack taken is a general approach, not 
confined to the special cases discussed here. But I also have to admit that there is no guarantee 
of success. In every particular case, substantial joint work of practitioners and theoreticians is 
necessary to contribute significantly to the solution of the problems coming up. Due to lack of space 
many important areas in manufacturing where discrete mathematics plays or could play an essential 
role could not be mentioned at all. I will indicate a few further fruitful topics in the subsequent 
subsection. I also note that the mathematical theory involved in the solution of the problems outlined 
above has been purposely avoided here. A glimpse at it will be provided in Section 5.2. 

5 .1 . A Few F u r t h e r App l i ca t ions . A vast application area for discrete mathematics is the 
field of logistics and transportation. Factory internal questions such as where to store parts and 
how to move them are vital for production speed. Due to the increasing emergence of just-in-time 
manufacturing processes and the high traffic volume associated with these production techniques, 
the planning and operating of shipments of parts and components have become a major topic. This 
involves questions of what to order when and in which quantities. This affects the planning of the 
fleets of trucks that are necessary to handle the transportation volume and concerns the actual 
planning of tours to satisfy all requirements and minimize transportation costs. Moreover, shifts of 
drivers have to be determined such that all work regulations are met and the labor costs are as low 
as possible. Clearly, the latter question extends to plant management. Finding a cost-effective mix 
of the work force, assigning the right people to the right job, and planning the work so that the idle 
time is minimum is of substantial importance. Problems of this type lead to integer, mixed-integer 
or combinatorial optimization problems of very large scale. 

Lot sizing problems have always been a major concern in industry. They play an increasing role 
since many advanced machines (for instance in the chemical industry) can be operated cheaply at 
high production volume but have very high set-up costs. Balancing these with the cost for inventory 
and the desire of keeping the stocks at a level such that all expected demands can be supplied is a 
Cii.3.i.i.£Ü£JIü=L uctSK. 

I would also like to mention a topic that is typically neglected. There are discussions in the 
public press about whether or not airplanes or nuclear power plants are safe. Machine safety is 
rarely a public issue in general. What I have in mind here is not only the security of workers or the 
ecological systems, but also the safeguarding of machines against unwanted moves or self-destruction. 
The ordinary machines on factory floors, the automatic assembly and transfer lines are becoming 
more and more complicated. Tools for engineers are scarcely available to help them design machines 
that do not only operate correctly in standard situations, but machines that are also safe in case 

# T T 
uTR-P 
uTr-0 
1 % 
max-TT 
0 # T T 
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certain components or control sensors break. Severe accidents or the breakdown of the production 
process may occur if the control system of a machine is unable to handle a complicated mix of errors. 

I have worked on such a topic together with Klaus Truemper (University of Texas at Dallas) 
jointly with the Grob Corporation (Mindelheim, Germany). Problems as indicated above can often 
be formulated as problems in algorithmic logic. A main task here is to design algorithms for the 
satisfyability problem of a logic formula (say, given in conjunctive normal form) that decide very 
quickly if a formula has a solution or not. It is not enough to have a fast answer in case there is 
a solution, but one also has to know quickly if there is none. This second requirement makes the 
design of a different type of algorithm for the AfP-complete satisfyability problem necessary. The 
standard algorithmic approaches do a reasonable job if solutions of a logic formula exist but have 
unpredictable running times otherwise. Predictability of the solution time here is paramount for the 
safety of the systems. For example, if a pilot learns after 5 minutes that an operation he performed 
was dangerous, it may be too late. Klaus Truemper has developed a very effective software system, 
called Leibniz, to handle such situations. It is based on new results on ternary matroids; see [T90], 
[T93]. 

Let me close this journey through applications with an important question that I am often asked 
by students and that I am unable to answer satisfactorily. How does one model practical situation 
mathematically? Are there guidelines for this approach? I simply don't know how to teach this 
methodology other than by giving examples, by describing basic situations that frequently arise, by 
showing "little tricks" that help, by outlining approaches that are hopeless, and by giving heuristic 
reasons why some models work and why others don't work. The work described in this paper reflects 
this fact. 

5.2. A Glimpse at the Mathematics. Due to lack of space it is impossible to describe all 
the mathematical theory that has been developed to solve the problems mentioned in the previous 
sections. I will list here a few of the techniques used and point to the literature where in-depth 
treatments can be found. 

It is indeed fortunate when one encounters a well-studied and polynomially solvable combi-
natorial optimization problem in a real-world application. Easy problems, such as shortest path, 
max-flow or min-cost flow problems do, in fact, frequently arise as subproblems of more general 
problem types. In such cases, one can look in standard textbooks like [Sch86] or [NW88] or recent 
survey papers such as [AM089] or [GoTT90] for flow problems to get information about available 
theory and existing fast algorithms. 

For example, among the cases discussed here, two of the box assignment problems described 
in Section 4.2 turned out to be ordinary assignment problems. We knew that Peter Kleinschmidt 
(Passau) had recently implemented a fast assignment code. He subsequently tuned his algorithm for 
the instance structure that arises in our application. It easily solves all of the instances of interest 
to us. 

In the via minimization case reported in Section 2.4, a certain setting of the parameters (occur-
ring in practice) results in max-cut problems for planar graphs. There exist a beautiful theory and 
several algorithmic approaches for solving this problem, but no implementation was available. In her 
master's thesis, Petra Mutzel [Mu90] closed this gap and came up with a practically and theoretically 
fast code for the solution of such cases. This involved the implementation of a planarity testing and 
the associated embedding algorithm, of a graph dualization algorithm and a certain transformation 
procedure, and of a shortest path and a matching algorithm. 

A/'P-hard problems need special treatment. What to do depends on the sizes of the problem 
instances that arise in the practical situation under investigation, the computers available and on 
the nirrning time bounds given. 

For instance, we noticed that in the stacker crane optimization problem of Section 4.2 asym-
metric travelling salesman problems arise that have small to moderate size. Branch and bound 
algorithms based on assignment relaxations, such as the one described in, are able to solve such 
instances reasonably well. Standard techniques that can be found in any textbook on combinatorial 
optimization suffice. There is no need to use more involved machinery in such cases. 

The design of heuristics for large-scale problems is of particular importance. In some cases 
known basic approaches work well only for small problems. Further investigation of the problem 
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structure, of suitable data structures and their running time analysis is required to extend these 
heuristics to large-scale problems. For example, in TSP applications like the plotting and drilling 
problems discussed in Chapter 3, where points are given by their coordinates and the distances are 
defined by a metric, the use of techniques from computational geometry (e.g., Voronoi diagrams 
and convex hulls) helped to speed up existing algorithms tremendously and to achieve good quality 
solutions in very short time. Such heuristic techniques were thoroughly investigated in [R92]. Even 
the design of relatively simple heuristics may lead to mathematical problems of general interest. 

Substantial mathematical work is necessary if one wants to design algorithms that produce 
provably optimal solutions or provide very good quality guarantees. At present, the most successful 
general approach in this case is the use of polyhedral combinatorics as the backbone of LP-based 
cutting plane or branch-and-cut algorithms. This technique associates with every instance of a com-
binatorial optimization problem a polyhedron such that the optimum solutions of the instance of the 
combinatorialoptimization problem are precisely the optimum vertex solutions of the corresponding 
programs over the associated polyhedron. The difficulty is that the construction of the polyhedron 
is nothing but a theoretical device. A complete and nonredundant description of the associated 
polyhedron by means of linear inequalities and equations has to be found by special case investi-
gations. Moreover, turning these theoretical investigations into efficient algorithmic tools requires 
further work and insight. 

Many combinatorial optimization problems are currently investigated by following this ap-
proach. The survey papers [GP85], [PaG85] describe this approach for the travelling salesman 
problem. A more general survey of the area of polyhedral combinatorics is [Pu89]. I would like to 
demonstrate this technique using the max-cut problem as an example. 

If G = (V, E) is a graph and W C V a node set, then the edge set 6(W) := {ij G E\i G W,j G 
V\W} is called a cut. (If 0 ^ W ^ V, the removal of this edge set will disconnect the nodes in 
W from the nodes in V\W.) An instance of the max-cut problem is given by a graph G — (V, E) 

with weights ce G M for all edges e G E. The task is to find a cut 8{W) of G of maximum 
weigth c(6(W)) := J2teS(W) c»- The max-cut problem comes up, for instance, in via minimization, 
see Section 2.4, and is used in statistical mechanics to calculate ground states of spinglasses, see 
[BaGJR88]. 

To associate a polyhedron with an instance of the max-cut problem we proceed as follows. Given 
G = (V, E) we consider the vector space JRE , where each component of a vector x = (xe)«e£ G ME 

is indexed by an edge of E. If F C E, we define the incidence vector xF € JRE of F by setting 
x f = 1 if e G F and x f = 0 if e 0 F. The cut polytope CUT(G) associated with G is nothing but 
the convex hull of all incidence vectors of cuts of G, i.e., 

(5.1) CUT(G) = c o n v f o ^ ) G iR ß | WC V}. 

It follows from this construction that the cuts of G are in one-to-one correspondence with the 
vertices of the cut polytope. This impjies that the optimum vertex solutions of the linear program 

/- „,. max cTx 

^•Z) s.t. x G C U T ( G ) 

are precisely the optimum solutions of the max-cut problem defined by G = (V, E) and the edge 
weights ce. Hence, we could solve the max-cut problem by linear programming techniques if we 
Knew a ucscxiption of CUT^G; by means of linear inequalities..To find inequalities that are valid for 
CUT(G) and define facets of CUT(G) is an interesting research topic. The paper [DL91] of over 80 
pages length surveys its state-of-the-art. The cut polytope has received so much attention because it 
arises in so many different ways. For instance, it is related to Eulerian subgraphs by graph duality; 
embedding problems of semi-metric spaces in functional analysis lead to investigations of cut cones 
[AsD82]; and cycles in binary matroids form a far reaching generalization [BaG86], [GT89]. 

A first step of investigation is usually to formulate (5.2) as an integer linear program. One of 
the first theorems taught in graph theory states that a cut and a circuit meet in an even number of 
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edges. Thus, if C C E is a circuit and F C C o f odd cardinality, then every incidence vector of a 
cut must satisfy the so-called "odd circuit inequality" 

t£F eeC\F 

Every incidence vector obviously satisfies the "trivial constraints" 0 < xe < 1 for all e G E and thus 
it follows that all inequalities, 

(i) 0 < xt < 1 for all e G E, 

(5.3) (ü) J2 xe - E *« < 1*1 - 1 f°r a ll circuits C C E, and 
«€*• «ec\F a l l F C C , |F | odd 

are valid for CUT(G). Let us set 

P(G) := {x G #?B| x satisfies (5.3) (i) and (ii)}. 

Then, clearly, CUT(G) C P(G). In fact, one can easily prove the following. 

(5.4) PROPOSITION. For every graph G = (V, E) 

CUT(G) = conv{x G P(G)| x integral}. 

This implies that 

max cTx 

(i) 0 < xt < 1 for all e G E, 

(5.5) (ii) ^ t e - 53 xe<\F\-l for all circuits G C E, and 
•e*" <!ec\F fot aii F C G, |F | odd 

(iii) Z,. G {0,1} for all e G F 

is an integer programming formulation of (5.2). 

An immediate question arises. Do we really need the integrality conditions in (5.5), i. e., does 
CUT(G) =P(G) hold? A result due to Barahona and Majhoub [BaM86] answers this question. 

(5.6) THEOREM. Let G = {V,E) be a graph. Then P(G) = CUT(G) if and only if G is not 
contractible to the complete graph K$. 

Theorem (5.6) together with the Wagner-Kuratowski theorem for planar graphs yields that P(G) = 
CUT(G) holds for planar graphs. A considerable generalization of (5.6) is the polyhedral character-
ization of those binary matroids that have the sums of circuits property; see [Sey81] and [GT89]. 

Let us return from this theoretical line of investigation, which is of interest in its own right, to 
more algorithmic issues. If we can solve the linear program that arises from (5.5) by dropping the 
integrality constraints, i. e., the so-called LP-relaxation of (5.5), then we will obtain an upper bound 
on the maximum weight of a cut. A quick count shows that the number of odd circuit inequalities 
grows exponentially with the graph size. Hence, there is no way to input these inequalities into a 
computer in polynomial time. Do we have to give up? 

An obvious idea now is to check whether we really need all odd circuit inequaiites and to 
determine which are redundant. This amounts to characterizing those inequalities of the system 
(5.3) (i), (Ü) that define facets of the cut polytope. The following is shown in [BaM86]. 

(5.7) THEOREM. Lei G = (V,E) be a graph. 

(a) The dimension o/CUT(G) is equal to \E\. 
(b) For every edge e G E, the following statements are equivalent: 

(b\) xe > 0 defines a facet o/CL7T(G), 
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(h) xt<l defines a facet o/CUT(G), 
(b^) e does not belong to a triangle. 

(c) Let C C E be a circuit and FCC, \F\ odd, then the odd circuit inequality 

E * - - E *e< |C| - i 
e€F e€C\F 
defines a facet of CUT\G) if and only if C has no chord. 

This result reduces the number of necessary inequalities considerably. For instance, for the 
complete graph Kn, no trivial constraint is facet-defining and only triangles are chordless circuits. 
Thus, only 0(n3) inequalities remain, i.e., in this case the LP- relaxation has polynomial size. But 
in general, there are still exponentially many facet-defining odd circuit constraints. 

Nevertheless, we do not have to give up. Help comes from powerful results that are based on 
the ellipsoid method. To formulate these we have to introduce further concepts. 

Let P be a polyhedron. By definition, there exist a matrix A and a vector b such that P= 
{x\Ax < 6}, and, equivalently, there are finite sets S, T of vectors such that P= conv{V) + cone{T), 
where cone(T) denotes the set of all points that are nonnegative linear combinations of elements of 
T. We call P rational if all entries of A and 6 (or equivalently, all entries of the vectors in S and 
T) are rational. The encoding length of an inequality aTx < a, a and a rational, is the number 
of binary digits needed to encode a and a, where a rational number is encoded by encoding its 
numerator and denominator. We say that a rational polyhedron P has facet-complexity at most 
<p (f 6 IN) if there is an inequality system Ax < b such that P = {x|̂ 4x < 6} and each inequality 
of the system has encoding length at most tp. 

Note that polyhedra with very many facets may have small facet-complexity. Consider, for 
example, the inequality system (5.3). The encoding length of the inequalities in (i) is 4, while 
the maximum encoding length of the inequalities in (ii) is 2|i?| + f/ô |JE7j"| + 1. Hence, the facet-
complexity of P(G) is at most 3|2?|, say. This implies that the facet-complexity of the polytopes 
P(G) is polynomial in the encoding length of G. One can similarly prove that the facet-complexity 
of cut polytopes is polynomial in the encoding length of the associated graphs. 

Let V be a class of rational polyhedra. We say that the optimization problem for V can be 
solved in polynomial time if, for any polyhedron P 6 V and any rational vector c, the linear program 

max cTx 
s.t. x £ P 

can be solved in time polynomial in the encoding length of c and the facet-complexity of P. 

The separation problem for a rational polyhedron P C IRp is the following. Given a rational 
vector y £ Mn, decide whether y 6 P and if not, determine a vector c 6 jRn such that cTy > 
max{cTx\x € P}. Observe that c yields a hyperplane separating y from P. 

Let V be a class of rational polyhedra. We say that the separation problem for V can be solved 
in polynomial time if, for any polyhedron P ET and any vector y, the separation problem for P 
and y can be solved in time polynomial in the encoding length of y and the facet-complexity of P. 

The following result, using the ellipsiod method, was proved in [GLS81], see also [GLS88] for 
an in-depth treatment of this subject. 

(5.8) THEOREM. LetV be a class of rational polyhedra. Then the following two statements are 
equivalent: 
(a) The optimization problem for V can be solved in polynomial time. 
(b) The separation problem forV can be solved in polynomial time. 

What help does (5.8) provide in the study of cut polytopes? Note that the classes Vi := 
{CUT(G)|G a graph}, V2 '•= {P{G)\G a graph} are classes of rational polyhedra where the polyhe-
dra in V\ and V2 have a facet-complexity that is polynomial in the encoding length of the associated 
graph. We really would like to prove that the optimization problem for V\ can be solved in polyno-
mial time and that means in time polynomial in ]J57| + | V|. Due to the .A/'P-hardness of the max-cut 
problem this seems to be impossible. But we can optimize over V2 using the equivalence of (a) and 
(b) in (5.8). Namely, it was shown in [BaM86] that the separation problem for P(G), G a graph, 
can be solved in polynomial time. The hard part, of course, is, given a vector y, to check whether y 
satisfies all odd circuit constraints and if not to find one of these inequalities that is violated by y. 
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The result follows by a tricky transformation of this problem to a sequence of shortest path problems 
as follows. 

Let G = (V,E) be a graph and y € QE. We first check whether 0 < ye < 1 for all e € E 
by substitution. If not, a separating hyperplane is at hand. Otherwise we construct a new graph 
H = (V U V", E' U E" U E'") consisting of two disjoint copies G' = (V, E') and G" = (V", E") of G 
and an additional edge set E'" that contains, for each uv £ E, the two edges u'v", u"v'. The edges 
u'v' 6 E' and u"t>" G £ " get the weight yuv, while the edges u'v",u"v' G i?"' get the weigth 1 — yuv. 
For each node u € V, we calculate a shortest (with respect to the weights just defined) path in H 
from u' € V to u" £ V". Such a path contains an odd number of edges of E'" and corresponds to 
a closed walk in G containing u. Clearly, if the shortest of these [u', u"]-paths has length at least 1 
then y satisfies all odd circuit constraints, otherwise there exists a circuit C and a set F C C, \F\ 
odd, such that y violates the corresponding inequality. 

Summing all these observations up, we obtain that for any graph G, the LP-relaxation of (5.5) 
can be solved in polynomial time and thus the max-cut problem for graphs not contractible to K$ 
(and hence for planar graphs) can be solved in polynomial time. One has to admit, though, that 
these algorithmic results are not practical. If one replaces the ellipsoid method (that is needed to 
derive the polynomial time bounds) by the simplex method and the use of cutting plane techniques 
one obtains a practically useful algorithm for solving the LP-relaxation of (5.5). 

This is the the central idea for a relatively efficient branch-and-cut algorithm for the max-cut 
problem that is based on the LP-relaxation of (5.5), that uses further classes of facet-defining cutting 
planes for CUT(G) heuristically and that employs additional heuristic techniques. This algorithm 
solves max-cut problems on graphs with several thousand nodes to optimality, see [BaGJR88]. 

Techniques like the one described above form the backbone of many recent successful attempts 
to solve hard large scale combinatorial optimization problems to optimality, see for example [GH91], 
[PaR91]. There are further approaches based, for instance, on Lagrangian relaxations and the use 
of nondifferentiable convex minimization or based on geometry of numbers and basis reduction for 
lattices, see [LS90], [CRSS92]. It is impossible to cover these approaches here. 

5.3. Final Remarks. The purpose of this paper was to show, by means of a few examples, 
how and where interesting mathematical problems of a discrete nature arise in the field of man-
ufacturing and to indicate the important role mathematics could play if all parties involved in 
manufacturing were aware of the contributions mathematics is able to make. The focus was on 
describing a few real-world applications and to indicate the difficulties that arise in mathematically 
modelling complex situations. There are cases where we have a solid understanding of the practical 
problems, a rich associated mathematical theory and sophisticated algorithmic tools. In other cases 
suitable mathematical models are still missing, sound theories have not yet emerged and substantial, 
probably quite difficult mathematical work still lies before us. 

REFERENCES 

[AH92] A. Abdel Hamid, Optimization aspects of automatic storage systems, Dissertation, Technische Universität 
Berlin, 1992. , 

[AKP89] H. Achatz, P. Kleinschmidt, K. Paparrizos, A dual algorithm for the assignment problem, Working Paper, 
- Universität Passau, 1989. 

[AM089] R.K. Ahuja, T.L. Magnanti, J. B. Orlin, Network flows, in: G. L. Nemhauser, A. H. R. Rinnooy Kan, M. 
J. Todd (eds.), Optimization, Handbook in Operations Research and Management Science, North-Holland, 
Amsterdam, 1989, pp. 211-369. 

[As93] N. Ascheuer, On-line-optimization of flexible manufacturing systems, Dissertation, Technische Universität 
Berlin, 1993, to appear. 

[AsD82] P. Assouad. M. Deza, Metric subspaces of L1, Publications Mathematiques d'Orsay, vol. 3, 1982. 
[BaG86] F. Barahona, M. Grötschel, On the cycle polytope of a binary mairoid, Journal of Combinatorial Theory 

B, 40 (1986), pp. 40-62. 
[BaGJR88] F. Barahona, M. Grötschel, M. Jünger, G. Reinelt, An application of combinatorial optimization to 

statistical physics and circuit layout design, Operations Research, 36 (1988), pp. 493-513. 
[BaM86] F. Barahona, A.R. Mahjoub, On the cut polytope, Mathematical Programming, 36 (1986), pp. 157-173. 



26 MARTIN GROTSCHEL 

[Bau90] P. Bauer, Optimale Steuerung des FALKE-Auiomaten, Projektdokumentation, Internal Report, Augs-
burg, 1990. 

[Br77] M.A. Breuer, Min Cut Placement, J. Design Aut. &. Fault Toi. Comp., 1 (1977), pp. 343-362. 
[CKC83] R.-W. Chen, Y. Katjitani, S.-P. Chan, A graph-theoretic via minimization algorithm for two-layer printed 

circuit bourds , IEEE Trans. Circuits and Syst., 30 (1983), pp. 284-299. 
[CRSS92] W. Cook, T. Rutherford, H. Scarf, D. ShaUcross, Integer Programming using Lovdsz-Scarf basis reduction, 

in preparation. 
[DL91] M. Deza, M. Laurent, A survey of the known facets of the cut cone, Institut für Ökonomie und Operations 

Research, Universität Bonn, Report No. 91722-OR, 1991. 
[FT92] M. Fischetti, P. Toth, An additive bounding procedure for the asymmetric TSP, Mathematical Program-

ming, 53 (1992), pp. 173-197. 
[GaJ77] M.R. Garey, D.S. Johnson, The rectilinear Steiner Tree problem is MT-complete, SIAM J. Appl. Math., 

32 (1977), pp. 826-834. 
[GoTT90] A. V. Goldberg, E. Tardos, R. E. Tarjan, Network flow algorithms, in: B. Korte, L. Lovasz, H. J. Prömel, 

A. Schrijver (eds.), Paths, Flows, and VLSI-Layout, Springer, Berlin, 1990, pp. 101-164. 
[GH91] M. Grotschel, O. Holland, Solution of large-scale symmetric travelling salesman problems, Mathematical 

Progamming, 51 (1991), pp. 141-202. 
[GJR89] M. Grotschel, M. Jünger, G. Reinelt, Via minimization with pin preassignments and layer preference, 

Zeitschrift für Angewandte Mathematik und Mechanik, 69 (1989), pp. 393-399. 
[GJR91] M. Grotschel, M. Jünger, G. Reinelt, Optimal control of plotting and drilling machines: a case study, 

Zeitschrift für Operations Research, 35 (1991), pp. 61-84. 
[GLS81] M. Grotschel, L. Lovasz, A. Schrijver, The ellipsiod method and its consequences in combinatorial opti

mization, Combinatoria, 1 (1981), pp. 169-197. 
[GLS88] M. Grotschel, L. Lovasz, A. Schrijver, Geometric Algorithms and Combinatorial Optimization, Springer, 

Berlin, 1988. 
[GP85] M. Grotschel, M. W. Padberg, Polyhedral theory in: E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, 

and D. B. Shmoys (eds.), The Traveling Salesman Problem, Wiley, Chichester, 1985, pp. 251-305. 
[GT89] M. Grotschel, K. Truemper, Decomposition and optimization over cycles in binary matroids, Journal of 

Combinatorial Theory B, 46 (1989), pp. 306-337. 
[JMRW92] M. Jünger, A. Martin, G. Reinelt, R. Weismantel, Quadratic 0/1 optimization and a. decomposition 

approach to the placement of electronic circuits, Mathematical Programming, 1992, to appear. 
[Ka72] R. M. Karp, Reducibiliiy among combinatorial problems, R. E . Miller, J. W. Thatcher (eds.), Complexity 

of Computer Computations, Plenum Press, New York, 1972, pp. 85-103. 
[K1SJ88] J. M. Kleinhans, G. Sigl, F. M. Johannes, Gordian: A neiu global optimization/ rectangle dissection 

method for cell placement, IEEE Int. Conference on CAD ICCAD-88, 1988, pp. 506-509. 
[KPS90] B . Korte, H. J. Prömel, A. Steger, Steiner trees in VLSI-Layout, in: B. Korte, L. Lovasz, H. J. Prömel, 

A. Schrijver (eds.), Paths, Flows, and VLSI-Layout, Springer, Berlin, 1990, pp. 185-214. 
[KrL84] M. R. Kramer, J. van Leeuwen, The complexiiiy of wire-routing and finding minimum area layout for 

arbitrary VLSI circuits, in: F.P. Preparata (ed.), Advances in Computing Research, 1984, pp. 129-146. 
[LLRS85] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B . Shmoys (eds.), The Traveling Salesman 

Problem Wiley, Chichester, 1985, pp. 251-305. 
[L90] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, Wiley, Chichester, 1990. 

[LS90] L. Lovasz, H. Scarf, The generalized basis reduction algorithm, Cowles Foundation, Discussion Paper No. 
946, Yale University, June 1990. 

[M92] A. Martin, Packen von Steinerbäumen: Polyedrische Studien und Anwendungen, Dissertation, Technische 
Universität Berlin, 1992. 

[Mu90] Petra Mutzel, Implementierung und Analyse eines Max-Cut-Algorithmus, Diplomarbeit, Universität 

Augsburg, 1990. 
[NW88] G. Nemhauser, L, A. Wolsey, Integer and Combinatorial Optimization, Wiley, Chichester, 1988. 
[PaG85] M. Padberg, M. Grotschel, Polyhedral computations, in: E. L. Lawler, J. K. Lenstra, A. H. G. Rin-

nooy Kan, and D. B. Shmoys, (eds.), The Traveling Salesman Problem, Wiley, Chichester, 1985, pp . 307-360. 
[PaR91] M. Padberg, G. Rinaldi, .4 branch-and-cut-algorithm for the resolution of large-scale symmetric traveling 

salesman problems, SIAM Review, 33 (1991) pp. 60-100. 
[Pi84] R.Y. Pinter, Optimal layer assignment for interconnect, J. VLSI Comput. Syst., 1 (1984), pp . 123-137. 

[Pu89] W. R. Pulleyblank, Polyhedral combinatorics, in: G. L. Nemhauser, A. H. R. Rinnooy Kan, M. J. Todd 
(eds.), Optimization, Handbook in Operations Research and Management Science, North-Holland, Amster-
dam, 1989, pp. 371-446. 

[R9lj G. Reinelt, TSPLIB - A traveling salesman problem library, ORSA Journai on Computing, 3 (1991), pp. 

43-49. 
[R92] G. Reinelt, Contributions to Practical Traveling Salesman Problem Solving, Springer, Heidelberg, 1992, 

pp. 43-49. 
[Sch86] A. Schrijver, Theory of Linear and Integer Programming, Wiley, Chichester, 1986. 
[Sey81] P.D. Seymour, Matroids and muliicommodiiy flows, European Journal of Combinatorics, 2 (1981), pp. 

257-290. 
[SK72] D.G. Schweikert, B. W. Kernighan A proper model for the partitioning of electrical circuits, Proceedings 

Design Automation Conference, 1972, pp. 56-62. 



DISCRETE MATHEMATICS IN MANUFACTURING 27 

[T90] K. Truemper, Leibniz System: User's Manual, Leibniz Company, Piano, Texas, 1990. 
[T93] K. Truemper, Logic Decomjiosition, 1993, in preparation. 

[W92] R. Weismantel, Plazieren von Zellen: Analyse und Lösung eines quadratischen O/1-Optimicrungspro-
blems, Dissertation, Technische Universität Berlin, 1992. 



Veröffentlichungen des Konrad-Zuse-Zentrum für Informationstechnik Berlin 
Preprints März 1992 

SC 91-1. F. A. Bornemann. An Adaptive Multilevel Approach to Parabolic Equations HI. 

SC 91- 2. R, Kornhuber; R. Roitzsch. Self Adaptive Computation of the Breakdown Voltage of 
Planar pn^Junctions with Multistep Field Plates. 

SC 91- 3. A. Griewank. Sequential Evaluation ofAdjoints and Higher Derivative Vectors by 
Overloading and Reverse Accumulation. 

SC 91-4. P. Deuflhard; F. Potra. A Refined Gauss-Newton-Mysovskii Theorem. 

SC 91- 5. B. Fiedler; J. Scheurle. Discretization of Homoclinic Orbits, Rapid Forcing and 
"Invisible" Chaos. 

SC 91- 6. R. H. W. Hoppe; R. Kornhuber. Multilevel Preconditioned CG-Iterations for 
Variational Inequalities. 

SC 91- 7. J. Lang; A. Walter. An Adaptive Discontinuous Finite Element Method for the 
Transport Equation. 

SC 91- 8. K. Gatermann; A. Hohmann. Hexagonal Lattice Dome - Illustration of a Nontrivial 
Bifurcation Problem. 

SC 91- 9. F. A. Bornemann. A Sharpened Condition Number Estimate for the BPX 
Preconditioner of Elliptic Finite Element Problems on Highly Nonuniform 
Triangulations. 

SC 91-10. G. M. Ziegler. Higher Bruhat Orders and Cyclic Hyperplane Arrangements. 

SC 91-11. B. Sturmfels; G. M. Ziegler. Extension Spaces of Oriented Matriods. 

SC 91-12. F. Schmidt. An Adaptive Approach to the Numerical Solution ofFresnel's Wave 
Equation. 

SC 91-13. R. Schöpf; P. Deuflhard. OCCAL:A mixed symbolic-numeric Optimal Control 
CALculator. 

SC 91-14. G. M. Ziegler. On the Difference Between Real and Complex Arrangements. 

SC 91-15. G. M. Ziegler; R. T. Zivaljevic. Homotopy Types of Subspace Arrangements via 
Diagrams of Spaces. 

SC 91-16. R. H. W. Hoppe; R. Kornhuber. Adaptive Multilevel- Methods for Obstacle 
Problems. 

SC 91-17. M. Wulkow. Adaptive Treatment ofPolyreactions in Weighted Sequence Spaces. 

SC 91-18. J. Ackermann; M. Wulkow. The Treatment of Macromolecular Processes with 
Chain-Length-Dependent Reaction Coefficients - An Example from Soot Formation. 

SC 91-19. C. D. Godsil; M. Grötschel; D. J. A. Welsh. Combinatorics in Statistical Physics. 

SC 91-20. A. Hohmann. An Adaptive Continuation Method for Implicitly Defined Surfaces. 

92-1. F. Bornemann; H. Yserentant. A Basic Norm Equivalence for the Theory of Multilevel 
Methods. 

92- 2. J. Ackermann; K. Helfrich. Radius of Convergence of the 1 IZ-Expansion for Diatomic 
Molecules: The Ground State of the Isoelectronic H2 Sequence. 

92- 3. M. Grötschel. Discrete Mathematics in Manufacturing. 

92- 4. Y. Wakabayashi. Medians of Binary Relations: Computational Complexity. 


