Konrad-Zuse-Zentrum flr Informationstechnik Berlin
Heilbronner Strafle 10, D-1000 Berlin 31

‘Martin Grotschel

Discrete Mathematics

in Manufacturing

to appear in: ICIAM’91: Proceeding of the Second International Conference
on Industrial and Applied Mathematics, SIAM, 1992

Preprint 92-3 (Januar 1992)

Herausgegeben vem

Konrad-Zuse-Zentrum flir Informationstechnik Berlin
Heilbronner Str. 10

1000 Berlin 31

Verantwortlich: Dr. Klaus André

Umschlagsatz und Druck: Rabe KG Buch-und Offsetdruck Berlin

ISSN 0933-7911

Discrete Mathematics in Manufacturing
Martin Gro6tschel

Contents
1. Introduction

2. The Design Phase
2.1 VSLI Design
2.2 Placement in Sea-of-Cells Technology
2.3 Routing
2.4 Via Minimization

3. Control of Machines
3.1 The Plotting Problem
3.2 The Drilling Problem

4. Assembling the Parts v
4.1 Flexible Printed Circuit Board Production
4.2 Optimizing a PC Factory '

5. More Applications and Some Mathematics
5.1 A Few Further Applications
5.2 A Glimpse at the Mathematics
5.3 Final Remarks

References

DISCRETE MATHEMATICS IN MANUFACTURING
MARTIN GROTSCHEL*

Abstract. Manufacturing is a topic that provides rich opportunities for important mathematical contributions
to real-world problems. The purpose of this paper is to show, by means of several examples, where and how mathe-
matical problems of a discrete nature arise in manufacturing and to demonstrate the savings and improvements that
can be achieved by employing the techniques of combinatorial optimization. The topics covered range from the design
phase of a product.(e. g., routing, placement and via minimization in VLSI design), the control of CNC machines
(e. g., drilling and plotting), to the management of assembly lines, storage systems and whole factories. We also
point out difficulties in the modelling of complex situations and outline the algorithmic methods that are used for the
solution of the mathematical problems arising in manufacturing.

Key words. discrete mathematics, combinatorial optimization, applications to manufacturing

1. Introduction. Computer aided design, flexible manufacturing and computer integrated
manufacturing have become technological buzzwords of our time. We are fascinated when we see
driverless vehicles transport parts through a factory, watch robots executing complicated movements,
or observe automated assembly lines producing goods at a speed, and with a quality, unimaginable
with manual production methods. However, when our initial fascination is gone, and we examine
the details, we quickly realize that enormous improvements are still possible. In fact, improvements
can often be made without costly technical changes: by organizing the production flow in a dif-
ferent way, by designing the products better, by scheduling the jobs differently, or by controlling
the machines in a more effective manner. Manufacturing, in general, provides rich opportunities
for important mathematical contributions to significant real-world problems and, simultaneously,
provides a virtually untapped source of mathematical problems, interesting in their own right.

Although the number of mathematically oriented journals, books and papers in the manufac-
turing field is rapidly increasing, there is still a huge gap between what could be done, and what
actually is done. It is my opinion that there are at least two reasons for this phenomenon. In my
experience, many of the talented engineers who build and operate complicated manufacturing sys-
tems so ingeniously, simply do not have the background in the rather new mathematical techniques
that are necessary to handle the issues to be discussed in the sequel; and they sometimes do not
believe that mathematics can help. Secondly, only a few mathematicians are willing to go through
the laborious-and occasionally painful process of understanding, analyzing and modeling. complex
manufacturing systems and then discussing their findings with the practitioners. Both parties suffer
as a result. Companies in particular miss opportunities for more efficient and cost-effective produc-
tion, and mathematicians opportunities to identify and solve challenging problems, problems that
arise in connection with one of the most fascinating technical developments of our time.

It is not my intention here to survey the mathematical problems that arise in this area. Rather,
I will concentrate on those aspects that involve the techniques of discrete mathematics. Many of the
problems I am aware of are combinatorial optimization problems. Due to the richness of the field of
manufacturing, it is impossible to list all the different problem types. Thus, I will concentrate on
practical applications and their mathematical models, applications that the members of my research
group have worked on in recent years in cooperation with industry. This work was begun at the
University of Augsburg and is continuing in Berlin. In most of the cases reported here, the industry
partners were, and often still are, branches of Siemens and Siemens Nixdorf.

I have organized this paper following the natural method of design and production in a typical
electronics company. The design phase marks the beginning of a product. I will outline issues from
this phase in Section 2. In the next phase, components are produced. The reiated issues of machine
control and the like will be discussed in Section 3. In the final phase, the parts are assembled.
The complex management and scheduling problems of highly automated assembly systems will be
described in Section 4. I will touch upon the various mathematical problems that arise in these
phases only very briefly. A few remarks about the mathematical techniques involved can be found

*Konrad-Zuse-Zentrum fiir Informationstechnik, Heilbronner Str. 10, D-1000 Berﬁn 31, and Technische Univer-
sitat Berlin, Garmany.

[y

¥
\
2 MARTIN GROTSGHEL

in Section 5. A glimpse of further important issues such as logistics, distribution and safety aspects
is also given in Section 5.

An electronics company was a natural choice for my presentation since by far the largest fraction
of our projects have been joint efforts with the Siemens corporation. However, other types of
companies, such as automotive, chemical and machine construction companies, could just as well
have served to demonstrate the use of mathematics in manufacturing applications.

\

2. The Design Phase. Companies with bad products and effective production will not sur-
vive. Good products, products that customers value, are what makes a company successful. But the
financial success of a company depends to a large extent on how an idea is realized and on how the
resulting product is manufactured. The transformation of an idea into a producible item is called
the design phase. Disregarding the (very vital) aspects of style, or look-and-feel of a product, what
is important from our perspective is that a product is designed in such a way that it can be easily
and cheaply manufactured. This task is hard to quantify and tremendously complex. The usual
approach to tackle it is to break the task (often hierarchically) into several subproblems that are
more manageable and to hope that the overall solution is “reasonable”.

We outline this general aspect here by describing a few tasks that arise in the design of electronic
circuits.

2.1, VLSI Design. By looking at the computers on our desks and comparing them with ma-
chines 10 or 20 years old, we can observe the incredible improvements that very large scale integration
(VLSI) has brought about. Hundreds of thousands or even millions of transistors integrated on a few
square centimeters of silicon (a chip) perform an enormous number of operations at breathtaking
speed. This large scale integration is one of the most significant technological revolutions of our
time. Mathematics is used here in various stages of the chip design phase. A brief outline follows.

Once the full task of a circuit is described, the logic has to be determined that will perform all
the desired operations. This logic is then cast in silicon. Today’s approach for physically realizing
the logic design is to begin with predefined small cells that perform certain simple logic operations,
and then to connect these cells with wires (so-called nets) so that the combination of cells and nets
realizes the abstract logic model physically. Depending on the chosen technology, the design rules
and customer requirements, the cells have a certain shape (usually rectangular) and size, and the
- wires need a certain width and require a certain distance to other wires or units on the chip. Given
cells and nets together with additional technological constraints, the task is to place the cells and
route the nets so that either the size of the resulting chip is as small as possible, or the resulting chip
fits into a given frame. There are many additional side constraints that have to be met. For instance,
certain cells have to be close to each other, certain nets have to have a maximum or minimum length,
etc. . .

Why do we want the chip to be small? Of ¢course, smaller chips can usually be run at higher cycle
speeds and are faster, but a major reason is that the yield of chip production decreases nonlinearly
with increasing chip size. Modern chip production in futuristic, extremely clean and almost fully
automated factories is basically a fixed cost operation, relatively independent of the number of wafers
processed. Therefore, it makes a tremendous difference whether 20% or 80% of the chips produced
per day are defective or not. Also, the smaller the chip size, the more likely is a higher, top quality
output. _

Let us now look at a specific technology, the so-called sea-of-cells technology, one that is currently
in wide use. Here a rectangular “master chip” is given. Among the feasible master chips, a master
is usually chosen that is as small as possible so that one can hope to realize the given circuit on it.
This master is subdivided into, say, m base ceils. All logic ceils are rectanguiar and have a size equal
to some multiple of the base cell size. Suppose n logic cells are given, connected by z nets. The task
roughly is to assign the n logic cells to the base cells so that all cells fit, no two logic cells overlap,
all nets can be routed, and such that the total net length (the sum of the lengths of all nets) is as
small as possible. : '

It turns out that this problem is enormously complicated. At least at present, it seems impossible
to handle the placement and routing problem simultaneously in a sound mathematical model for
realistic problem instances.

DISCRETE MATHEMATICS IN MANUFACTURING 3

Thus, the whole task is subdivided into several hierarchical problems. Depending on instance
sizes and algorithmic approaches, the following phases are considered in general chip design: global
placement, global routing, local placement, local routing, layer assignment and (possibly) com-
paction. These phases are processed in an iterative manner and may be repeated until satisfactory
results are achieved. An excellent account of this area can be found in [L90].

2.2, Placement in Sea-of-Cells Technology. We will now look at the placement problem
(without distinguishing between global and local placement) for chip design in sea-of-cells technology.
Figure 1 shows a small master consisting of 26 x 18 base cells and the outer frame of pad cells; the
nine dark rectangles are logic cells placed on this master.

REODEROODORODO Ng—— péal

[| : n 0 A

. T 1 uE l core region

a]

D < . oell

0 a

O o

a i o

] |

0 0

E] D base cell !

sE N BB Ruiuisiuisl Rl B

Figure 1: Example of a sea-of-cells master

In the last decade many algorithms have been developed for a solution of this placement problem.
They can be categorized as follows. '

The most popular and probably still most frequently used approach is based on the min-cut
heuristic for bipartitioning graphs. We define a hypergraph G = (V, E), where the node set represents
the logic cells. For every net of the given circuit, we define a hyperedge consisting of all logic cells
that the net connects. The idea is to recursively partition the node set of the hypergraph into two
sets of roughly equal size such that the number of edges in the associated cut is as small as possible;
[SK72], [Br77]. The main drawback when working in this scheme is that the global view of the
problem gets lost. Moreover, the seemingly easy problem of finding a minimum cut with both sides
of about equal size is an A’P-hard problem itself. .

Another class of algorithms has been developed that model the placement problem mathemat-
ically in such a way that a relaxation of it can be solved to optimality. One such relaxation can
be interpreted as a (nonlinear) energy model, where the objective function approximates the total
wiring length and the side constraints assure that the trivial placement (all cells are assigned to the
same base cell) is excluded [KISJ88]. The solution of such a relaxation is usually not feasible for the
placement problem (e.g., cells overlap) and thus the solution of the relaxation has to be modified
heuristically in order to obtain a solution of the underlying discrete optimization problem.

We now address the placement problem by introducing boolean variables

~_J 1, if cell { is assigned to base cell k,
Tk =10, otherwise.

4 . MARTIN GROTSCHEL

Let oik, jl) and d(ik, jl) denote, respectively, the number of overlapping base cells and the distance
if cells 7 and j are assigned to base cells k and I. Then a corresponding quadratic 0/1-optimization
problem can be stated as follows:

m m n
min Z Z Z (cijd(ik, 51) + A - o(ik, j1))zir 21

(1.1) st. Y zp=1 forall i=1,
k_ N
zie € {0,1} fora.ll i=l...n,k=1...m

where A is the penalty parameter for the overlaps, and the coefficients ¢;; denote the number of nets
between cells i and j. Problem (1.1) is a (slightly imprecise) model of the placement problem. The
equations in (1.1) guarantee that all cells are placed, but the requirement that two cells may not
overlap on a chip has been dropped since it leads to a tremendous number of additional inequalities.
This requirement is taken into account indirectly by a suitable increase of the objective function
value, when cell overlaps occur.

One can show that (1.1) is NP-hard. The complexity of (1.1) and its sheer size for real problems
suggest the idea of decomposing large instances into smaller ones. For example, the problem “soc4”,
mentioned later, has 2776 logic cells and 13440 base cells on the master chip. This leads to a
quadratic 0/1-program with 37,309,440 variables. The decomposition is carried out in such a way
that the global view does not get lost. For a solution of the decomposed problems, several heuristics
. have been developed; cf. [JMRW92], [W92] for a detailed outline of the procedure.

In Table 1 the quadratic 0/1-approach sketched above is compared to two state-of-the-art algo-
rithms used in industry, namely the min-cut placement procedure and a method based on the energy
model in [KISJ88). The three algorithms were applied to four electronic circuits, called socl, . .., soc4,
that consist of 602 to 2776 logic cells. Their performance was measured by the total wiring length
estimated by an industrial routing algorithm for the respective placements. The resulting wiring’
lengths are reported in Table 1.

min-cut | energy |0/1 QP

socl| 212258 | 180445 | 169892
soc2 | 194732 | 189683 | 185592
socd | 766622 | 652129 | 553575
socd| 623159 | 506160 | 497285

Table 1

The running time of the quadratic 0/1-programming algorithm is about ten times as large as
the roughly identical running timies of the other two heuristics. Using certain clustering techniques
for the quadratic approach in addition, see [W92], the running times can be made comparable with
the running times of the other two heuristics without loss of the solution quality. The placement of
chip “socl” obtained with the quadratic 0/1-programming approach is shown in Figure 2.

2.3. Routing. Let us now focus on the next step in the hierarchical design process of electronic
circuits, the routing probiem. We assume thar ail ceils (logic and 1/O-celis) are placed, and a list of
nets is given. Each net is viewed as a set of points, where each point corresponds to a terminal (also
called pin) of a cell. The routing problem deals with connecting the pins of the nets by wires. In fact,
the problem is quite complicated, because certain given design rules must be taken into account and
an objective function, such as the total wire length, must be minimized. Since the routing problem
is NP-hard and usually of extremely large scale, the problem is often decomposed into special cases
that can then be handled more easily. A large vanety of such special cases is considered in practice
and in the literature.

DISCRETE MATHEMATICS IN MANUFACTURING 5

NN RN N RIS

)
.
?; 8
B N
5ol
& N~

AMMAAAAAA lA/I/[A...._JAZ[ﬂAAAM.. .

Figure 2: Cell placement in sea-of-cells technology

We want to model the routing problem as a Steiner tree packing problem in a graph. One way
of introducing a graph G = (V, E) here is to define nodes for subareas of the whole routing area, and
to link nodes that represent adjacent subareas by an edge. In addition, we assign edge capacities
and edge weights to each of the edges. The nets are represented in this graph by subséts of the
node set. Let a graph G = (V, E) and a node set T C V be given. We call an edge set S C F a
Steiner tree in G for T, if the graph (V(S), S) (consisting of the edge set S and all nodes V(S) that
appear as endnodes of edges in S) contains an [s, #]-path for each pair of nodes s,t € T. With this
definition, the routing problem can be stated formally as follows.

(3.2) The Routing Problem

Given: A graph G = (V, E) with edge ca.pacxtles ce € IN and edge weights w, € N for alee E
and a netlist N={T,...,TN},Tx CV,k=1,...,N.

Problem: Find edge sets Sy,...,Sn C E such that
(i) SkrisatreeinG forTy, k=1,...,N,
(ii) |{kle € Sk} < c. foralle € E, and
(iii) T, 2ees, We is minimal.

We call an N-tuple of edge sets (S1,...,S5n) that satisfies (i) and (ii) of (1.2) a packing of
Steiner trees. Problem (1.2) can then be designated as the Steiner tree packing problem. It is not
surprising that problem (1.2) is AP-hard. Indeed, it includes several A’P-hard problems as special
cases; see, for example, [GaJ77], [KaT72], [KrL84], [KPS90].

Figure 3 indicates a 5 x 3 underlying grid graph {the grid is not drawn), in which each edge has
capacity 1, and three nets, each consisting of three pins. The three Steiner trees forming the nets
are drawn with solid, dashed and dotted lines, respectively.

Our approach to the Steiner tree packing problem is to consider it from a polyhedral point
of view and to use linear programming techniques. We define, for a given instance (G,N,c,w), a
polyhedron P whose vertices correspond uniquely to the packings of Steiner trees for that instance.
Thus, the Steiner tree packing problem reduces to the problem of minimizing the objective function
w7 z over the polyhedron P.

file:///AAAAA

6 MARTIN GROTSCHEL

2 3 2 1
; |

3 : A E 3
: |
1]

1 S 1

Figure 3: A packing of three Steiner trees

What we need for the application of linear programming techniques is a complete or at least
“good” inequality description of the polyhedron P. In [M92)] a large number of valid inequalities for
P is described. In fact, many of these inequalities also define facets of P if the underlying graph G is
complete and the terminal sets are disjoint. The machinery involved in describing these inequalities
is rather complicated and thus we omit detailed statements of these results. These inequalities
form the basis for the development of cutting plane algorithms. We have implemented a cutting
plane algorithm for special instances of the Steiner tree packing problem, when the graph G is a
rectangular grid graph and the terminals of the nets lie on the outer face of G. In VLSI design,
these instances are known as switchbox routing problems. We have tested our algorithms on many
benchmark problems from the literature. For a detailed documentation of these results see [M92].

At its current stage this approach is not yet able to handle instances as large as those that can
be treated with the standard routing heuristics used presently in industry. The remarkable feature
of this approach, however, is that very good (provable) lower bounds on the total wiring length
can be computed, a result that none of the other currently used approaches can provide. In fact,
for the (small) problem sizes considered so far, quality guarantees of less than 1% or even provable
optimality have been achieved.

2.4. Via Minimization. We continue with our chip design example and assume that the
placement and the routing phase have been completed successfully. Usually routing algorithms
disregard the requirement that two different nets may not cross. Routings with such defects are
referred to as transient. A transient routing of eigth nets is shown in Figure 4. The reason for
ignoring net crossings is that the physical routing can be done on two or more layers of a chip. In
case two nets cross in a transient routing, a wire segment of one of the nets can be assigned to a
different layer so that no physical wire crossing occurs. The connections between the wire segments of
a net on different layers are provided by so-called vias. In chip manufacturing the vias are produced
by means of a delicate chemical process. Many vias on a chip increase the probability that, at the
end of the production process, the chip wiil have a short or not work correcily. Moreover, vias use
considerably more space than wires and thus a large number of vias may lead to an increase of the
chip size. N

Virtually the same problem occurs in the design of printed circuit boards. Here, the vias are
produced by mechanically drilling a hole through the board (lasers are also used). A’ danger is
that boards may crack in the drilling phase, another reason for minimizing the number of vias.
Furthermore, the drilling process is quite time-consuming (see Section 3.2), and hence reducing the
number of vias leads to a reduction in the overall production time.

DISCRETE MATHEMATICS IN MANUFACTURING 7
4 2 6 2 7 8
(N
la > 1
2a = 2
3l
5
L U L L. L L o
4 5 6 3 1 7 8

Figure 4: A transient routing

Due to these facts, it is desirable to assign the wires to layers of a chip or a printed circuit board

in such a way that no two wires cross and the number of vias is minimum. We call this task the via
minimization or layer assignment problem.

For the case of two layers (assuming that the transient routing contains no k-way junctions for
k > 4) [Pi84] and [CKC83] have shown independently that this problem is solvable in polynomial
time through reduction to a max-cut problem in a planar graph. However, these reductions do not
cover certain side constraints required in practice. In many cases one of the two layers is preferred
and pins are preassigned to some layer. [BaGJR88] pointed out that Pinter’s reduction can be
generalized to the via minimization problem subject to layer preference and pin preassignments.
However, the max-cut problem that results from this reduction is AP-hard. The transformation is
elegant but technically rather involved and will not be explained here. The reader is invited to find
the minimum number of vias for the problem shown in Figure 4 before looking at Figure 5 where an
optimum solution needing four vias is displayed. The vias are indicated by the little open squares
(where the nets change color, i. e., lay

2

«
[e——
<
g
(Y]

Figure 5: A via-minimal layer assignment

We have developed both simple and elaborate heuristics for the via minimization problem and an
exact cutting plane algorithm that is based on polyhedral investigations of the max-cut problem.
These algorithms are described in [BaGJR88] and [GJR89].

8 MARTIN GROTSCHEL

Tables 2 and 3 report the success of this approach. The symbols C1,...,C6 denote six chips
from industry. For each chip, the via minimization problem comes in two versions. In one case,
no pin was preassigned, and in the other, certain pins were required to be on one of the layers
of the chip. Of course, this latter requirement will generally result in more vias. Table 2 reports
on the results of the via optimization without pin preassignments, Table 3 shows those with pin
preassignments. The row labels have the following meaning:

nodes
edges

These two numbers indicate the sizes of the assoiated max-cut problems.

number of nodes of the so-called reduced layout graph,
number of edges of the reduced layout graph.

i

vias original
vias heuristic
vias optimal

number of vias in the (original) industry design,
number of vias in our best heuristic solution,
minimum number of vias for this chip

found by the cutting plane algorithm,

b1

improvement Z improvement in percent
((# vias original — # vias optimal) / # vias original).

Cl1 C2 C3 G4 C5 C6
nodes 827 979 1326 1201 1365 924
edges 1445 1775 2480 2606 2234 1740
vias original 421 434 683 650 782 630
vias heuristic 272 347 513 475 610 525
vias optimal 264 334 500 467 608 516

improvement |37.29% |23.04% [26.79% |28.15% |22.256% |18.10%

Table 2: Via minimization without pin preassignment

Cl1 C2 C3 C4 C5 [C6

nodes 828 980 1327 1202 1366 | 925

edges 1749 2102 2844 2915 2557 | 2008

vias original 421 434 683 650 782 | 630

vias heuristic 302 376 563 504 645 | 585

vias optimal 302 376 561 482 643 | 585
improvement |2827% }13.36% {17.86% |25.85% |17.77% |7.14%

Table 3: Via minimization with pin preassignment

These results were achieved with algorithms designed and implemented by M. Jiinger and G. Reinelt.
The heuristics approximately solve these via minimization problems within a few seconds, while the
cutting plane algorithm (yielding a provable optimum solution) only requires a few minutes on a
workstation. The results displayed in these tables show that this optimization approach results
in a considerable reduction of the number of vias compared to the industry solutions and thus
leads to more favorable chip designs. Moreover, optimum solutions could easily be computed and

the heuristics (these are special purpose methods taking the special features of this problem into
account) did extremely well.

This discussion of some features of the design phase of a manufacturing process was meant to
show that even seemingly minor details such as via minimization lead to very interesting mathemat-
ical problems, and that their soiution may have a significant impact on other aspecis of production.
The mathematical theory on topics of this type, whether combinatorial or continuous, is not very

well-developed. Only few isolated cases have been analyzed. There is still considerable room for
further exciting developments.

3. Control of Machines. Let us now suppose that the design phase has been completed.
The product designers have determined how to subdivide the production process into various tasks
and how the different parts of a product must be manufactured.

DISCRETE MATHEMATICS IN MANUFACTURING 9

In this section we will consider the manufacturing process on a single machine. The additional
problems that arise when taking transport and sequencing into account will be discussed in the
next section. In the typical situation, an object enters a machine, and the machine, controlled by a
computer program, performs various operations on that object. The questions that arise are: how to
do the jobs as fast as possible, and how to schedule the jobs such that idle times, say those induced
by retooling or positioning moves, are as short as possible..

We have noticed in our work, dealing with situations like this, that slightly different technical
devices, a few details in . machine capabilities, and decisions of the production managers may lead
to quite different mathematical models. In fact, whole new ranges of problems do arise in this area.
We will exemplify these statements by considering two problems in printed circuit board production.
We follow the paper [GJR91] in our presentation.

3.1. The Plotting Problem. Complex printed circuit boards are usually produced by a
photochemical process. For each layer of the board, the pattern of wires and contacts is produced
by covering the board with light sensitive material, exposing this material to light, etching, cleaning,
etc. The process is similar to the usual production of photographs. The structures that later should
appear on the board are first “drawn” on a mask (a negative) that is placed between the board and
the light source, so that certain parts of the board are not exposed to light. These unexposed areas
are to form the conductors, pads and contacts of the layer. The question we address here is the
generation of the masks. The masks are made of glass and the patterns on the glass are generated
optically either using ultraviolet light or laser beams. In our case, a photo plotter is used for the
mask production. Figure 6 shows an example of one layer of a printed circuit board. It is one of our

test cases.

«n

JRY

W & e—a

s i

LLL)

Fenwsus
Sahe

LY E T T N
)

~=._/??§‘....,.

') |

i |

=
‘-Il A
=

setv s
N
7

}

B wewy Hseae1-Dev-82

N

—r i
e
posmensy

S

H3€3e1-De3¢-S1-82-3€

-3p Er

PARS. u

Figure 6: A layer of a printed circuit board

The photo plotter works as follows. It has two modes, a “drawing mode” for plotting lines and a
“flashing mode” for plotting points. As one can see from Figure 6, points may be of various sizes

10 ' MARTIN GROTSCHEL

and shapes, and lines may be of various widths. Before plotting, an aperture is chosen that produces
the required shape or width. » ‘

Points are plotted by moving the light source to certain coordinates on the board, choosing
the aperture, and flashing the light. Lines are plotted by moving the head to one end of the line,
choosing the aperture, opening the shutter, moving along the line with the open shutter and closing
the shutter at the end of the (not necessarily straight) line.

The above is nothing but a basic description of the principle of the plotting process. Plotting
machines are offered in various mechanical forms. In some cases, only the head of the light source is
moved, in some cases only the compound table, and in others the head moves in one direction and
the table in the other. For our purposes, the actual mechanics are irrelevant. We only need to know
the time it takes to move from one point to another. For the sake of exposition we will assume a
model in which only the head moves.

There is, given a pattern, nothing to be done about the time needed for drawing and flashing.
This process requires a certain fixed time depending on the plotter characteristics. What can be
optimized is the time needed for positioning head moves, i. e., moves of the head without drawing.
We will now describe the mathematical modelling of the plotting process in some detail. Depending
on technological side constraints, there are several options of modelling this problem mathematically.
We discuss two examples that came up in our application.

A i
Figure 7: First plotting problem

Consider the line and point plotting problem shown in Figure 7. It seems obvious how-to
proceed. We begin at the starting position 0, move to point 1, choose the “drawing mode”, and
switch the aperture to “drawing thick lines”. Then, while moving, we draw the line from 1 to 2,
move to point 3 and change the aperture to “thin drawing”, draw the line from 3 to 4, move to point
5 and change to the “point flashing mode”, etc. The trouble here is that during every positioning
move the aperture has to be changed. The head is (in many cases) a mechanically delicate device
that — after a certain number of aperture changes — has to be readjusted or substituted. This is
a costly procedure. Therefore it may be wise to proceed as follows. One first chooses an aperture,
plots everything that can be plotted with this aperture, changes the aperture, etc. This approach
decomposes the problem into various plotting subproblems and adds a new problem, namely that
of an optimal sequence of apertures. For Figure 7, an optimum solution in this case would be as
follows. We first choose the thick drawing aperture, go from 0 to 1, draw the line from 1 to 2, move
to point 6, draw the line from 6 to 7, change to the thin drawing aperture and move to 8, draw the
line from 8 to 9, move to 3, draw the line from 3 to 4, change to the flashing mode and move to 5,
flash, move to 10, flash, and return to 0.

Clearly, the second choice produces longer (and sometimes substantially longer) positioning
head moves and — provided that aperture changes do not require more time than the moves —
longer machine running times.

One has three choices in practice. Either one ignores aperture changes and uses the first option,
or one decides to decompose the plotting problem into subproblems (one for each mode and each
aperture), or one mixes the two by penalizing those positioning moves where also aperture changes
occur. In each case, the person responsible for mask plotting has to decide — based on his knowledge
of the technical characteristics of the machine — whether or not aperture changes are considered
crucial operations that have to be kept at a minimum and which of the three options should be used.

DISCRETE MATHEMATICS IN MANUFAGCTURING 11
0 1 10 9 8 7
2 3 4 5 6

Figure 8: Second plotting problem

There is-another option that may produce shorter positioning head moves: preemption. Con-
sider Figure 8, where all three lines are drawn with the same aperture. An optimum solution here
is to move from 0 to 1, draw the line from 1 to 2, move to 3, draw the line from 3 to 4, move to 5, .
draw the line from 5 to 6 and return to 0. We have so far made the assumption, without explicitly
stating it, that whenever the plotter has started drawing a line it continues drawing until the other
endpoint of .the line is reached. If we allow interruptions (technically often called preemptions) we
could do better. For instance, in Figure 8 we could draw the line from 1 to 2 only until point A4 is
reached then we move to point 3, draw the line from 3 to 4, return to point A and continue drawing
from A to 2, etc. This choice would produce shorter positioning head moves than the “optimum
solution” sketched above. So the question is whether preemptions should be allowed or not. There
is no general answer. In each individual case one has to make a decision based on the particular
conditions. ‘ '

In our case the decision was to execute as few aperture changes as possible and not to allow
preemptions. Therefore, the following combinatorial optimization problems arose.

(3.1) Point Flashmg Subproblem.

Given an aperiure, select all points that are flashed with this aperiure and determine a shortest
Hamiltonian path through these points.

(3.2) Line Drawing Subproblem.
Given an aperture, select all lines that have 10 be plotied with this aperture and delermine a sequence
of these lines suck that the total distance travelled by positioning moves is as short as possible.

(3.3) Aperture Sequencing Subproblem.

Determine a sequence of apertures and, for each aperture, a starting point and a terminal point for
the point flashing or line drawing process such ihal the total time for posztzonmg moves (with and
without aperture changes) is as short as possible.

‘The aperture sequencing problem is by far the most complicated arid we do not have any idea of
how to solve it. Fortunately, in our practical problems, it was of almost no importance. We treated
it by using a simple heuristic. ,

The point flashing problem is, after an easy transformation, equivalent to a symmetric travelling
salesman problem (TSP). The line drawing problem turns out be a so-called rural postman problem.
‘A rich mathematical theory and a substantial algorithmic toolbox exist for the TSP, see [LLRS85],
whereas the rural postman problem has basically been neglected in the literature up to now.

To solve the plotting problem in practice we had to meet additional computational side con-
straints. The organization of the production process required the probiem to be soived aimost in reai
time, i. e., for each instance, five minutes of computation time were available on a 3 MIPS machine
for the solution of the point flashing, the line drawing and the aperture sequencing problem. Within
this time limit good solutions had to be produced. [GIJR91] and [R92] describe some of the heuristics
that were designed and implemented to satisfy these constraints.

The methodology developed also involved the fast solution of problems from computational
geometry, such as computing Voronoi diagrams, Delaunay triangulations or convex hulls. These
techniques were utilized to reduce problem sizes in order to satisfy the running time requirements.

12 MARTIN GROTSCHEL

QOur codes were tested on real-world masks by the engineers at Siemens. The solutions of the
industry heuristics were compared with our solutions by measuring the running times on the real
plotting machines. The savings turned out to be tremendous. We had to solve line drawing problems
with up to 38, 621 lines and flashing problems with up to 2,496 flashes. The running time reductions
for the positioning moves using our fastest heuristics ranged from 14% in the worst case up to 83%
in the best case. Further improvements of an approximately additional 10% could be achieved by
more elaborate and time-consuming heuristics. These savings resulted in capacity increases of the
plotting machine in the range of 5% to 35%, see [GIR91] for more detail.

3.2, The Drilling Problem. In Section 1.4 we introduced the via minimization problem for
chips. Its analogue for printed circuit boards (PCBs) has direct consequences for the printed circuit
board production process: the fewer the vias, the shorter the production time.

The practical problem arising in this application is the following. To connect a conductor on
one layer with a conductor on another layer or to position (in a later stage of the PCB production)
the pins of IC’s, holes have to be drilled through the board. The holes may be of different diameters.
To drill two holes of different diameters consecutively, the head of the machine must move to a tool
box and change the drilling equipment. This is quite time-consuming. Thus, it is clear at the outset
that one has to choose some diameter, drill all holes of the same diameter, change the drill, drill the
holes of the next diameter, etc.

There is no tool changeover problem here since, in any case, after loading of the boards the
machine head is at the initial position (where the tool box is) and after having drilled all holes of one
diameter it has to return to the initial position to pick up the new drill. Thus, our drilling problem
can be viewed as a sequence of symmetric travelling salesman problems, one for each diameter resp.
drill, where the “cities” are the initial position and the set of all holes that can be drilled with
* one and the same drill. The “distance” between two cities is the time it takes to move the head

from one position to the other.” The aim here again is to minimize the travel time for the head of
the machine. The (quite substantial) time needed to drill a hole cannot be influenced at all. This
is a fixed production time. As for the plotting application described before, severe bounds on the
running time were requlred for our heuristic.

The problem sizes that came up in this particular application ranged from about 500 to about
2500 “cities”. For the real test cases we obtained from Siemens Nixdorf the following was achieved.
All instances were solved in less than 2 minutes on a 3 MIPS computer by our heuristics. The time
needed for positioning moves by our solutions was up to 55% lower than the respective time of the
solution used in industry. Since the drilling time is quite substantial this does not mean a halfing
of the production time. The reduction of the positioning moves resulted in a decrease of the total
production time of 5% to 20% on the average. The results were considered quite remarkable by the
engineers responsible for the CNC-machines and it was decided to incorporate our codes into the
software controlling the machines in order to speed up production.

The dots on Figures 9 and 10 indicate the holes of a typical drilling problem for printed circuit
boards. Figure 9 shows the positioning moves of the original industry solution, Figure 10 the
positioning moves of our solution. Our tour is 51.83% shorter.

A detailed account of these results is given in [GIR91]. A thorough description of the design and
analysis of the heuristics is contained in [R92]. A side effect of this investigation was the compilation

- of a large number of real-world travelling salesman problems. A library, called TSPLIB, that includes
the instances of this study and many other TSP instances was set up. It can be accessed by e-mail.
A description of this library and its use can be found in [R91].

DISCRETE MATHEMATICS IN MANUFACTURING

i
N
Wil

i
.\
4

f

i

X
ll :
¢
ik
il

| e
i iﬁh; '
i

Figure 9: Positioning moves, original solution

=
=

3 e

b) 2 SREA =%

] et wra Ry =4
== = 2E e e
' = » 5
:__—_z/ =

1

=Y

é ! 3 W

g 2 Lt 3
7 4
/ i

Figure 10: Positioning moves, “optimized” solution

\n

14 MARTIN GROTSCHEL

4. Assembling the Parts. Having fine tuned the individual machines that produce the parts
of a product and having improved their performance by using optimization methods as described
in the previous section, we now focus on the task of putting the parts together to obtain the final
product. A main problem here is to design the assembly process and to schedule the jobs to be
executed in such a way that the production cost is small and the output per time unit high. These
global goals are often replaced by (occasionally) more operational or measurable aims such as: all
machines are utilized to the full, the work loads of the factory branches are balanced, stocks are kept
at a'minimum level under the condition that quick changes in the production volume and pattern
are still possible, etc. No doubt, this is a tremendously difficult task.

Mathematics is, at present, rarely used in the design phase of the assembly process, i. e.,
when the machines are chosen, the factory floor is layed out, the transport systems are selected
and dimensioned, etc. However, once these basic decisions are made, simulation systems are often
employed that are based on mathematical tools. These simulation systems are used to get a feeling
for the flow of goods, the throughput, the possible bottlenecks of the system, etc. Simulation
methods have become indispensable and valued tools for the design of large production systems.
Nevertheless; there is considerable room for the use of further and more sophisticated mathematical
tools in this design process.

Mathematicians are, in general, only asked for their expertise in"cases where the system does
not work as expected, or when the work load of the system has changed considerably and ways are
sought to run the system efficiently without making significant technical changes, or when certain
components of the system turn out to be severe bottlenecks and reorganization of work seems feasible
for curing this disease. _

1 will explain these aspects by means of two projects that were jointly carried out with Siemens
Nixdorf, Augsburg.

4.1. Flexible Printed Circuit Board Production. The Siemens Nixdorf, Werk fir Sys-
teme in Augsburg produces, among other items, all main frame computers of the company. Impor-
tant parts of computers and other electronic products are printed circuit boards (PCBs). Printed
circuit board production is a division that manufactures PCBs for Siemens Nixdorf itself and other
outside customers.

The whole PCB production process consists of various stages. We have already met two such
phases in the previous section (plotting and drilling). We now focus on the final assembly. The PCB
frame is finished and the task is to place various electronic components on the PCBs. There are
components of different types and mechanical properties. For instance, some components are glued
onto the board, some have “little legs” that have to be positioned into certain holes (drilled in a
previous stage) and that are soldered in a later phase of the PCB production, etc.

In general terms, the flexible PCB assembly line (called FALKE at Siemens Nixdorf) has the
following properties. At the head of the system, the so-called HEAD-cell, the boards are put onto
carriers and fed into the system. There are automatic conveyor belts for the transport of the carriers.
The carriers may enter some or all of six “cells”, where each cell consists of a series of CNC-machines
each carrying out certain feeding or other operations. There are buffers in front of each machine

that can hold up to 25 carriers. Except for the initial system feeding and certain manual operations

for the insertion of special parts, the entire process including transport, component feeding, etc. is
controlled by a computer system and is fully automated. The whole assembly line is an impressive,
automatic flexible manufacturing system.

The problem with the FALKE line was the following. Due to changes in the design of PCBs over
time the distribution of work among the machines of the system was somewhat unbalanced. Certain
machines were constantly working, while others were frequently idle. Although some machines had
a higher total workload than others, it was not always the same machines that appeared to be the
production bottleneck. So the question was: Is it possible to increase the throughput of the system
without making any changes in the general control software or any technical changes? We were
not allowed, for this type of investigation, to retool the machines, to change the order of jobs to be
executed on individual PCB’s, or to modify the control software for the conveyor system, the feeders
or buffers. Such changes would simply have incurred costs and dangers too high for the reliability of
the assembly line. The only control parameter left to be influenced by optimization was the feeding

DISCRETE MATHEMATICS IN MANUFACTURING 15

of the system.

At the time of analysis of the FALKE system about 1500 to 2000 circuit boards were produced
per day consisting of about 20 to 40 different types. In total, about 500 different PCB types could
be automatically assembled on the system, without changing the machine settings.

The managers of the FALKE system learn about the planned production volume for a day about
one to two days ahead of time. This gives enough lead time to arrange for the shipment of required
boards and components. Having no other option, we proposed using this time for also finding a
sequence of the carriers such that the completion time of the whole set of PCBs is minimized.

An immediate question arises. Given a sequence of PCBs, how can one compute the time it
needs to finish the work? Of course, we assume here that no artificial idling occurs, i.e., that all
machines work and that each job is done at the earliest possible time, etc.

In fact, we were not able to come up with an analytic formula for the completion time. The
difficulty is mainly due to long distance interdependencies that are hard to model analytically. For
example, some carriers do not enter certain cells or machines (an average PCB is processed on about
two thirds of the machines), carriers may overtake each other, a carrier that blocks another at some
machine may be blocked in return by this other one at a later stage.

So we decided to design, very carefully, a special purpose simulation model of the FALKE line
by measuring all transport times, feeding times and obeying all rules and side constraints of the
system. Programming and validating this simulation tool took about 9 month of two persons’ work.
In the end, we had a simulation tool that could simulate an eight hour shift of the FALKE line in
about 5 minutes on a PC. Two weeks of real production were recorded and the parameters of our
simulation tool were adapted in such a way that it faithfully reproduced the real production in our
computer model of the production line.

We then invented a number of heuristics to improve the sequencing of the jobs. A typical
iterative improvement heuristic starts with some sequence of jobs and changes this sequence using
some myopic optimization rule. Then it computes the completion time of the new sequence. If
it is better (or only slightly worse), it takes the new sequence and applies the same rule. If after
a number of applications of this rule, no improvements have been made, other sequence changing
techniques are applied until no significant progress is visible. The trouble here is that evaluating
the new sequence takes some minutes of running time, and thus, not too many sequences can be
tested. To achieve acceptable running times for the heuristics, a fast lower bounding procedure for
the completion time was invented. This lower bound was used as the objective function value for the
heuristic. The real completion times were only occasionally computed by means of the simulation
model.

After having tuned these heuristics, we ran them on the production data of the two weeks
available to us. We improved upon the completion time, compared to the runs of the real system,
in the range of 3.3% to 12.7%. On the average the completion time could be reduced by 6.7%.

This improvement was significantly less than the management had expected. But we could also
show that the expectations were much too high. By means of our lower bounding procedure we
could prove that there was not as much room for improvement as thought. We could show that,
for the days considered, a maximum total speed up of about 20% might be possible. (We actually
believe that this is an overestimation.) So, on the average, about 13% of further completion time
reduction might be possible at most.

What turned out to be the most significant drawback of our heuristic solutions was the following
property. Since we know that the HEAD-cell is manually operated we expected the person in charge
to make a few sequencing errors. Thus we randomly perturbed our “optimized” carrier sequences
a little and noticed that a few changes could result in the loss of all the gains that we had worked

for so hard, i. e., our solutions turned out to be quite unstable. Due to this fact and the not so
" significant improvements, the company decided not to change the present system.

In some sense, our efforts were in vain. Techniques of combinatorial optimization did not lead
here to significant improvements. What we learned is that we do not have a good understanding
of such complex and complicatedly interlinked systems like the FALKE line. We do not seem to
have the right tools yet to control these systems efficiently. In fact, what is really needed is an
on-line control system that makes adjustments of the job schedule whenever interrupts, machine
breakdowns, conveyor stops, etc. occur. I think we are still far away from a good mathematical

16 MARTIN GROTSCHEL
understanding of such systems. In fact, it may be reasonable to consider designing less complex
production systems, production systems that are efficiently controllable. After all, flexibility does
not help if it can’t be used.

This work has — to.a large extent — been carried out by Petra Bauer together with Siemens
Nixdorf engineers and is documented in [Bau90]. A paper describing in detail the findings surveyed
above will appear in the near future.

4.2. Optimizing a PC Factory. The Werk fiir Arbeitsplatzsysteme, Augsburg is the plant
of Siemens Nixdorf where all PCs (and some other related products) are manufactured. In the fall of
1989, we started a joint project aimed at looking for possibilities for production improvements. The
goal, in the long run, was to design and implement a software package that optimizes the material
flow through the factory and allows for the production of the required PCs, monitors, keyboards,
etc. in shortest possible time with high flexibility, This is obviously a very ambitious goal, and
we are aware of the fact that we are unlikely to achieve it. The point, though, is to keep the real
goal in mind whenever optimization and simulation tools are designed for particular components
and branches of the factory. Clearly, the output and efficiency of the whole factory is what really
matters and not the speed of a few machines. Figure 11 shows

[HALLE 33 ; SINIX- SYSTEME]

Ladestationen

Ladestationen

s]

[

3

Z=li==]

|

] 2]
I

MONITOHE

TASTATU REN

[4

Kiiﬁiﬁtﬁiﬂfﬂﬂﬂ//’///////’/////////// ///////// |

osc (M A

UHW\HH ity

{1

!
il

i

i

JERSEEENENDNARANNSSENNSNEVEREARNENENE]
DA TESY

LTI IOl rT JITTLIITTIILTY

DI R B 0 O W 3 6 O A A O 0 A 0 00 00 N R R

JEEEAREANAERARS AGAREENgANARRanl

jzessaaRRARAERARAY! isgauanges

S18r- Ablall
2elle

Figure 11: Sketch of the factory floor

a symbolic sketch of one hall of the factory. We give now a rough description
involved in the assembly.

Versand

~a

Cotdtg—

of the operations

DISCRETE MATHEMATICS IN MANUFACTURING 17

There is a receiving area, where all parts necessary for the production are supplied by trucks.
Among these are, for instance, the printed circuit boards mentioned in the previous section. These
are manufactured in a factory about one km away. The parts arrive in or are loaded into three
types of boxes and given a bar code identifying them. These boxes are moved by a conveyor to
several loading points where automatic driverless vehicles pick up the boxes and transport them to
their destination. The vehicles are controlled by a software system that decides when which vehicle
executes which transportation job.

A typical destination of such a vehicle is the Input/Output buffer of one of the many automatic
storage systems. When the driverless vehicle arrives, a mechanical device moves the box on the
I/O-buffer and signals to the control of the storage system that the box has to be transported by
the stacker crane to its storage location.

The PC and other assembly lines are located on each side of the storage systems such that all
parts needed at a certain point on the assembly line are delivered upon request automatically to the
desired location by the stacker crane. The control system of the stacker crane decides where to put
incoming boxes, when to remove empty boxes and in what sequence all current orders are processed.
All this is done on-line.

One of the assembly lines is fully automated, robots do all of the jobs. At the other lines,
'manual work is involved and the speed of production can be adjusted by varying the number of
workers at the lines.)

Once a product like a PC is finished, a conveyor moves it to a “hot line” where it is tested by
means of software for about twenty four hours. There is a scheduling and a capacity problem here.
The control system of the hot line has to determine where to locate a PC, how to perform the tests
and whether it pays to relocate the PCs at night in order to be in a position to do all the necessary
transportation work fast in case of high traffic volume.

The PCs that have failed the test are moved to a repair area and may reenter the hot line
later. The other PCs will run through further manual tests before they are packed and moved to the

distribution center. Storing all the products (including manuals, software, etc.), combining these
~ parts to existing orders, and combining orders to reasonable truck loads is another complicated and
highly automized process that we do not want to describe here.

In a project that is mainly executed by Norbert Ascheuer and Atef Abdel Hamid with the
help of some mathematics students and a support team of Siemens Nixdorf, we have designed and
implemented a simulation model that covers, at present, the receiving area, the transportation
system (i.e., the driverless vehicles), and the automatic storage systems. This simulation model has
been validated by comparing its performance with the data of several weeks of real production. The
various models have been validated individually and in joint operation.

The role of the simulation system is twofold. Its use as part of a planning system where decisions
about the work load of the day and the distribution of the jobs are made is currently being tested.
The simulation system is employed here to check not only whether all parts needed for the planned
production volume are available but also to check whether the work force is sufficient or whether
bottlenecks in the transportation system and the parts supply will arise. :

The main objective of designing the simulation models, however, was to analyse the perfor-
mance of optimization approaches and compare them with the existing system. To convince the
engineers that our analysis is sound and that our system speedup predictions will show up in prac-
tice, validation was indispensible. Since outlining the whole work would be too space-consuming, I
will concentrate here on the automatic storage system and the stacker crane operation.

The storage systems that are in use at the Siemens Nixdorf Werk fiir Arbeitsplatzsysteme are
huge frames that hold all the material needed at the assembly lines next to them. The initial
planning question is how o choose the size cf the storage frame to make sure that it will be large
enough to hold all the items required in the production. At this point in time, it is also decided
which type of transportation and which storage boxes are going to be utilized. In our case, there
are three types of boxes of different sizes. Each box type needs differently shaped storage locations.

We have mathematically modelled various optimization questions associated with the design
and management of this storage system. A first problem is how to subdivide the frame into storage
units such that the expected storage volume of different boxes is sufficient and all boxes are as close
as possible to their output buffer, i.e., the problem is to determine locations such that all needed

18 ' i " MARTIN GROTSCHEL

boxes fit and the expected moves of the stacker crane for box transportation are as short as possible.
This leads to general integer programming approaches or set packing models. We are not sure yet
whether or not our models achieve what is needed in practice. Further modelling iterations may be
necessary. ,

Once the locations are fixed and once the system is in operation we have to decide, every time a
new box arrives, where to locate it among the available empty storage locations such that the stacker
crane moves are as short as possible. This requires on-line decisions that should take also into account
which further boxes are already in the material flow pipeline and are likely to arrive soon. It turns
out that, for two of the three box types, this problem can be formulated as an (ordinary) rectangular
assignment problem. Typical sizes of such assignment problems are 20x 800 and can be handled with
the assignment code of Kleinschmidt, see [AKP89], in a few seconds on a PC. For one type of small
boxes the associated model is a special case of the generalized assignment problem. Unfortunately,
it is A’P-hard. We have developed fast heuristics, e.g., based on matching techniques, and a cutting
plane algorithm for its solution. The heuristics provide satisfactory approximate solutions very
quickly. '

For a detailed description of all these aspects of the storage system and the theoretical and
algorithmical investigations of the generalized assignment problem, see [AH92].

Let us now turn to the moves of the stacker crane. By analysing all the technical details,
measuring running times of the crane, reaction times of the systems, times for moving boxes, etc.
Norbert Ascheuer has implemented a simulation system that models the behaviour of the stacker
crane and has compared it with the real moves. Table 4 shows the validation results for all operations
of one week. One job consists of the positioning move, the pick up of a box, the move with the
box, and the delivery of the box. The time needed for moving and handling one box on day 1, for
instance, was 76.27 sec. on the average, see column ORL of Table 4. This time was obtained by
measuring all operations of the day and averaging them out. The simulation model produced an
average job length of 76.83 sec. for this day (column @SIM) resulting in 0.73% deviation (column
%DEV). Deviations are bound to occur since always some interruptions and manual interactions
occur that are not taken into account by the simulation model; see column @DEV for average and
column max DEV for maximun deviations that occured throughout a day. The time for executing
the simulation model for a whole day was about 12 seconds on a PC.

ORL |@SIM |@DEV |max DEV (% DEV |Time
1 176.27 76.83 2.42 20 0.73 | 1147
2 |75.45 76.34 1.96 11 1.17 11.60
3 |78.81 78.95 2.01 9 0.18 | 11.17
4 |76.19 76.58 2.09 9 0.51 |} 11.08
5 |77.11 76.73 2.06 20 0.49 | 12.30

Table 4: Validation of the simulation model

The results of the validation process, which was more elaborate than indicated here, were
considered very satisfactory by our industry partners and it was decided to accept proposals that
are based on the use of this simulation model.

At any point in time, the stacker crane control system has to decide which of the jobs to execute
next. In the old system this was done by a priority based FIFO rule. We proposed to replace this
heuristic by solving the following problem. Whenever a set of jobs is given or modified, schedule
the jobs in such a way that the unloaded travel time (or positioning time, i.e., the time the stacker
crane moves without carrying a box) is as short as possible. This problem turns out to be a directed
Hamiltonian path probiem; it is trivially equivalent to an asymmetric TSP. We solve this directed
Hamiltonian path problem as follows. At a general point in time, the stacker crane is executing
some job or idle and there are some jobs that the stacker crane has to execute in the future. If
one job is finished, the crane starts the first job of the sequence. Due to calls from the assembly
line or deliveries of the driverless vehicles new jobs are created. Whenever a new job comes up, we
run a very fast insertion heuristic to schedule the new job and call the resulting sequence our new
solution. Then a more elaborate but still fast heuristic tries to improve the present solution. Finally,
a branch-and-bound code is activated that determines an optimum solution of the present problem.

DISCRETE MATHEMATICS IN MANUFACTURING 19

It may happen that a new job is created while we are still computing. In that case we stop the
optimization process and turn to the new enlarged problem.

ZTT [ulr.P |uir0 1% |max-TT |0F# TT
T | 416 | 8599 | 8325 [3.18 6 | 241
2 | 421 | 8655 | 8141 |5.93 8 | 1.94
3 | 405 | 8238 | 7956 |3.42 6 | 227
4 | 398 | 8017 | 7634 |4.77 8 | 193
5 | 447 | 9411 | 8951 |4.88 8 | 2.3

Table 5: Minimizing the unloaded travei time
(normal conditions)

The asymmetric TSPs that come up in this system are very small under normal conditions (see
ax-TT and @#TT in Table 5 for largest and the average instance sizes). Even under heavy load
. conditions (see max-TT and O#TT in Table 7) the sizes of the assymetric TSP instances arising
have never exceeded 40 “cities” during the days for which we collected data. Thus we decided to
use a branch-and-bound code instead of investing into the extensive effort of implementing a cutting
plane algorithm. Currently we are using the code of Fischetti and Toth [FT92] that solves the
instances arising here in reasonable time. We used the simulation model to compare our approach
with the old system. Table 5 shows the results for the week that was used for the simulation model
validation. The running time improvements (see column 1%) of 3% to 6% were very disappointing.
By analyzing the data it turned out that the week considered was a week of low productxon volume.
On the average, there were only two jobs to schedule at a time (see column @#TT) and thus almost
nothing to optimize.

Tables 6 and 7 report about two different periods of heavy load. These usually occur after the
breakdown of some part of the production system. In such cases jobs to be executed start to pile up.
The running time improvements (see columns I%) in these cases ranged from 15% to 40%. In fact,
this is exactly what is needed in the system: quick recovery from “catastrophies”. The results of our
optimization a.pproach were considered so satisfactory that our software for schedulmg the moves of
the stacker crane has been put into use at the Siemens Nixdorf Werk fiir Arbeitsplatasysteme. It
has considerably improved the capacity of the storage system.

TT [uTr-P [uTr-O | I %
18 344 239 |30.52
10 194 143 126.28
18 347 211 |[39.19
26 507 330 |34.91
20 388 283 |27.06

TOU B OB

‘Table 6: Minimizing the unloaded travel time
(heavy load conditions)

TT juTr-P |uTr-O 1% {max-TT |O# TT

1 50 917 693 124.42 29 13.32

2 49 974 749 |23.10 20 8.32
3 50 1007 783 22.24 26 12.23
14 49 889 -662 125.53 31 15.24
5 50 985 839 [14.82 25 13.08

Table 7: Minimizing the unloaded travel time
(heavy load conditions)

20 MARTIN GROTSCHEL

TT : number of transportation tasks (TT)

uTR-P : unloaded travel time with priority rule (in sec.)

uTr-O : unloaded travel time with optimization (in sec.)

1% : improvement in % (((uTR-P) - (uTr-0)) / (uTr-P))
max-TT : maximal number of TT handled at the same time

©@# TT : average number of TT handled at the same time

We are aware of the fact that our approach may not be the best way to handle on-line decisions
of the type described above. But the scientific literature on handling complex on-line situations such
as this is one is almost nonexisting. We were happy that we could improve a bottleneck situation
in the factory considerably, but we know that deeper theoretical investigations are necessary to get
a good understanding of such cases. We are currently experimenting with other approaches that
lead to new combinatorial optimization problems and are going to compare these on a practical and
theoretical basis with the approach outlined above.

More details on the results of our stacker crane optimization will appear soon in joint papers with
the Siemens Nixdorf partners. The mathematics involved and a thorough analysis of the practical
achievements will be described in [As93].

5. More Applications and Some Mathematics. This paper consists of a list of a few
problems arising in the world of manufacturing and my attempts to describe the use of mathematics
in their solution. I have tried to indicate that the line of attack taken is a general approach, not
confined to the special cases discussed here. But I also have to admit that there is no guarantee
of success. In every particular case, substantial joint work of practitioners and theoreticians is
necessary to contribute significantly to the solution of the problems coming up. Due to lack of space
many important areas in manufacturing where discrete mathematics plays or could play an essential
role could not be mentioned at all. I will indicate a few further fruitful topics in the subsequent
subsection. I also note that the mathematical theory involved in the solution of the problems outlined
above has been purposely avoided here. A glimpse at it will be provided in Section 5.2.

5.1. A Few Further Applications. A vast application area for discrete mathematics is the
field of logistics and transportation. Factory internal questions such as where to store parts and
how to move them are vital for production speed. Due to the increasing emergence of just-in-time
manufacturing processes and the high traffic volume associated with these production techniques,
the planning and operating of shipments of parts and components have become a major topic. This
involves questions of what to order when and in which quantities. This affects the planning of the
fleets of trucks that are necessary to handle the transportation volume and concerns the actual
planning of tours to satisfy all requirements and minimize transportation costs. Moreover, shifts of
drivers have to be determined such that all work regulations are met and the labor costs are as low
as possible. Clearly, the latter question extends to plant.-management. Finding a cost-effective mix
of the work force, assigning the right people to the right job, and planning the work so that the idle
time is minimum is of substantial importance. Problems of this type lead to integer, mixed-integer
or combinatorial optimization problems of very large scale.

Lot sizing problems have always been a major concern in industry. They play an increasing role
since many advanced machines (for instance in the chemical industry) can be operated cheaply at
high production volume but have very high set-up costs. Balancing these with the cost for inventory
and the desire of keeping the stocks at a level such that all expected demands can be supplied is a
challenging task. .

I would also like to mention a topic that is typically neglected. There are discussions in the
public press about whether or not airplanes or nuclear power plants are safe. Machine safety is
rarely a public issue in general. What I have in mind here is not only the security of workers or the
ecological systems, but also the safeguarding of machines against unwanted moves or self-destruction.
The ordinary machines on factory floors, the automatic assembly and transfer lines are becoming
more and more complicated. Tools for engineers are scarcely available to help them design machines
that do not only operate correctly in standard situations, but machines that are also safe in case

DISCRETE MATHEMATICS IN MANUFACTURING 21

certain components or control sensors break. Severe accidents or the breakdown of the production
process may occur if the control system of a machine is unable to handle a complicated mix of errors.

I have worked on such a topic together with Klaus Truemper (University of Texas at Dallas)
jointly with the Grob Corporation (Mindelheim, Germany) Problems as indicated above can often
be formulated as problems in algorithmic logic. A main task here is to design algorithms for the
satisfyability problem of a logic formula (say, gwen in conjunctive normal form) that decide very
~quickly if a formula has a solution or not. It is not enough to have a fast answer in case there is
a solution, but one also has to know quickly if there is none. This second requirement makes the
design of a different type of algorithm for the A’P-complete satisfyability problem necessary. The
standard algorithmic approaches do a reasonable job if solutions of a logic formula exist but have
unpredictable running times otherwise. Predictability of the solution time here is paramount for the
safety of the systems. For example, if a pilot learns after 5 minutes that an operation he performed
was dangerous, it may be too late. Klaus Truemper has developed a very effective software system,
called Leibniz, to handle such situations. It is based on new results on ternary matroids; see [T90],
[T93].

Let me close this journey through applications with an important question that I am often asked
by students and that I am unable to answer satisfactorily. How does one model practical situation
mathematically? Are there guidelines for this approach? I simply don’t know how to teach this
methodology other than by giving examples, by describing basic situations that frequently arise, by
showing “little tricks” that help, by outlining approaches that are hopeless, and by giving heuristic
reasons why some models work and why others don’t work. The work described in this paper reflects
this fact. »

5.2. A Glimpse at the Mathematics. Due to lack of space it is impossible to describe all
the mathematical theory that has been developed to solve the problems mentioned in the previous
sections. I will list here a few of the techniques used and point to the literature where in-depth
treatments can be found. '

It is indeed fortunate when one encounters a well-studied and polynomially solvable combi-
natorial optimization problem in a real-world application. Easy problems, such as shortest path,
max-flow or min-cost flow problems do, in fact, frequently arise as subproblems of more general
problem types. In such cases, one can look in standard textbooks like [Sch86] or [NW88] or recent
survey papers such as [AMO89] or [GoTT90] for flow problems to get information about available
theory and existing fast algorithms.

For example, among the cases discussed here, two of the box assignment problems described
in Section 4.2 turned out to be ordinary assignment problems. We knew that Peter Kleinschmidt
(Passau) had recently lmplemented a fast assignment code. He subsequently tuned his algonthm for
the instance structure that arises in our application. It easily solves all of the instances of interest
to us.

In the via minimization case reported in Section 2.4, a certain setting of the parameters (occur-
ring in practice) results in max-cut problems for planar graphs. There exist a beautiful theory and
several algorithmic approaches for solving this problem, but no implementation was available. In her
master’s thesis, Petra Mutzel [Mu90] closed this gap and came up with a practically and theoretically
fast code for the solution of such cases. This involved the implementation of a planarity testing and
the associated embedding algorithm, of a graph dualization algorithm and a certain transformation
procedure, and of a shortest path and a matching algorithm.

MNP-hard problems need special treatment. What to do depends on the sizes of the problem
instances that arise in the practical situation under investigation, the computers available and on
the running time bounds given.

For instance, we noticed that in the stacker crane optimization problem of Séction 4.2 asym-
metric travelling salesman problems arise that have small to moderate size. Branch and bound
algorithms based on assignment relaxations, such as the one described in, are able to solve such
instances reasonably well. Standard techniques that can be found in any textbook on combinatorial
optimization suffice. There is no need to use more involved machinery in such cases.

The design of heuristics for large-scale problems is of particular importance. In some cases
known basic approaches work well only for small problems. Further investigation of the problem

22 MARTIN GROTSCHEL

structure, of suitable data structures and their running time analysis is required to extend these
heuristics to large-scale problems. For example, in TSP applications like the plotting and drilling
problems discussed in Chapter 3, where points are given by their coordinates and the distances are
defined by a metric, the use of techniques from computational geometry (e.g., Voronoi diagrams
and convex hulls) helped to speed up existing algorithms tremendously and to achieve good quality
solutions in very short time. Such heuristic techniques were thoroughly investigated in [R92]. Even
the design of relatively simple heuristics may lead to mathematical problems of general interest.

Substantial mathematical work is necessary if one wants to design algorithms that produce
provably optimal solutions or provide very good quality guarantees. At present, the most successful
general approach in this case is the use of polyhedral combinatorics as the backbone of LP-based
cutting plane or branch-and-cut algorithms. This technique associates with every instance of a com-
binatorial optimization problem a polyhedron such that the optimum solutions of the instance of the
combinatorial optimization problem are precisely the optimum vertex solutions of the corresponding
programs over the associated polyhedron. The difficulty is that the construction of the polyhedron
is nothing but a theoretical device. A complete and nonredundant description of the associated
polyhedron by means of linear inequalities and equations has to be found by special case investi-
gations. Moreover, turning these theoretical investigations into efficient algorlthrmc tools requires
further work and insight.

Many combinatorial optimization problems are currently investigated by following this ap-
proach. The survey papers [GP85), [PaG85] describe this approach for the travelling salesman
problem. A more general survey of the area of polyhedral combinatorics is [Pu89]. I would like to
demonstrate this technique using the max-cut problem as an example.

If G=(V,E) is a graph and W C V a node set, then the edge set §(W) := {ij € Eli € W,j €
VAW} is called a cut. (If @ # W . # V, the removal of this edge set will disconnect the nodes in
W from the nodes in V\W.) An instance of the max-cut problem is given by a graph G = (V, E)
with weights ¢, € IR for all edges ¢ € E. The task is to find a cut §(W) of G of maximum
weigth c(6(W)) := ZCGJ(W ce. The max-cut problem comes up, for instance, in via minimization,
see Section 2.4, and is used in statistical mechanics to calculate ground states of spmglasses see
[BaGJRASS].

To associate a polyhedron with an instance of the max-cut problem we proceed as follows. Given
G = (V, E) we consider the vector space IRE , where each component of a vector z = (z.).c£ € IRE
is indexed by an edge of E. If F C F, we define the incidence vector xF € IRE of F by setting
x¥ =1ife€ F and xf =0ife ¢ F. The cut polytope CUT(G) associated with G is nothing but
the convex hull of all incidence vectors of cuts of G, i.e.,

(5.1) CUT(G) = conv{x*W) e RE | W C V}.

It follows from this construction that the cuts of G are in one-to-one correspondence with the
vertices of the cut polytope. This implies that the optimum vertex solutions of the linear program

max cTz
(52) st. z€CUT(G)

are precisely the optimum solutions of the max-cut problem defined by G = (V, E) and the edge
weights c.. Hence, we could solve the max-cut problem by linear programming techniques if we
knew a description of CUT{G) by means of linear inequalities.. To find inequalities that are valid for
CUT(G) and define facets of CUT(G) is an interesting research topic. The paper [DL91] of over 80
pages length surveys its state-of-the-art. The cut polytope has received so much attention because it
arises in so many different ways. For instance, it is related to Eulerian subgraphs by graph duality;
embedding problems of semi-metric spaces in functional analysis lead to investigations of cut cones
[AsD82]; and cycles in binary matroids form a far reaching generalization [BaG86], [GT89].

A first step of investigation is usually to formulate (5.2) as an integer linear program. One of
the first theorems taught in graph theory states that a cut and a circuit meet in an even number of

DISCRETE MATHEMATICS IN MANUFACTURING 23

edges. Thus, if C C F is a circuit and F C C of odd cardinality, then every incidence vector of a
cut must satisfy the so-called “odd circuit inequality”

Eze—- Z z, <|F|-1.

eeF e€C\F

Every incidence vector obviously satisfies the “trivial constraints” 0 < z, < 1 for all e € F and thus
it follows that all inequalities,

(i) 0<ez. <1 foralle € E,
(5.3) i) I ze— Y ze<|F|=1 forallcircuits CCFE, and
eeF e€C\F all F C C,|F| odd

are valid for CUT(G). Let us set
P(G) := {z € IRE| z satisfies (5.3) (i) and (ii)}.

Then, clearly, CUT(G) C P(G). In fact, one can easily prove the following.
(5.4) PROPOSITION. For every graph G = (V, E)

CUT(G) = conv{z € P(G)| z integral}.
This implies that

max Tz
i) 0<ez. <1 for alle € E,
(5.5) (i > ze— Y =z, <|F|-=1 forallcircuits C C F, and
c€F e€C\F for all F C C,|F| odd
(i) =z.€{0,1} forallee F

is an integer programming formulation of (5.2).

An immediate question arises. Do we really need the integrality conditions in (5.5), i. e., does
CUT(G) =P(G) hold? A result due to Barahona and Majhoub [BaM86] answers this question.

(5.6) TREOREM. Let G = (V, E) be a graph. Then P(G) = CUT(G) .z'f and only if G is not
contractible 1o the complele graph Ks. ’

Theorem (5.6) together with the Wagner-Kuratowski theorem for planar graphs yields that P(G) =
CUT(G) holds for planar graphs. A considerable generalization of (5.6) is the polyhedral character-
ization of those binary mattoids that have the sums of circuits property; see [Sey81] and [GT89).

Let us return from this theoretical line of investigation, which is of interest in its own right, to
more algorithmic issues. If we can solve the linear program that arises from (5.5) by dropping the
integrality constraints, i. e., the so-called LP-relaxation of (5.5), then we will obtain an upper bound
on the maximum weight of a cut. A quick count shows that the number of odd circuit inequalities
grows exponentially with the graph size. Hence, there is no way to input these inequalities into a
computer in polynomial time. Do we have to give up?

An obvious idea now is to check whether we really need all odd circuit inequalites and to
determine which are redundant. This amounts to characterizing those inequalities of the system
(5.3) (i), (ii) that define facets of the cut polytope. The following is shown in [BaM86).

(5.7) THEOREM. Let G = (V,E) be a graph.
(a) The dimension of CUT(G) is equal to |E|.

(b) For every edge e € E, the following statements are equivalent:
(41) z. > 0 defines a facet of CUT(G),

24 MARTIN GROTSCHEL

(b2) ze <1 defines a facet of CUT(G),
(b3) e does not belong to a triangle.
(c) Let C C E be a circuit and F C C, |F| odd, then the odd circuit inequality
L ze— 3 z.<|Cl-1
eEF eeC\F
defines a facet of CUT(G) if and only if C has no chord.

This result reduces the number of necessary inequalities considerably. For instance, for the
complete graph Ky, no trivial constraint is facet-defining and only triangles are chordless circuits.
Thus, only O(n3) inequalities remain, i.e., in this case the LP- relaxation has polynomial size. But
in general, there are still exponentially many facet-defining odd circuit constraints.

Nevertheless, we do not have to give up. Help comes from powerful results that are based on
the ellipsoid method. To formulate these we have to introduce further concepts.

Let P be a polyhedron. By definition, there exist a matrix A and a vector b such that P=
{z]Az < b}, and, equivalently, there are finite sets S, T of vectors such that P= convu(V) + cone(T),
where cone(T) denotes the set of all points that are nonnegative linear combinations of elements of
T. We call P rational if all entries of A and b (or equivalently, all entries of the vectors in S and
T) are rational. The encoding length of an inequality aTz < «, @ and « rational, is the number
of binary digits needed to encode a and ¢, where a rational number is encoded by encoding its
numerator and denominator. We say that a rational polyhedron P has facet-complexity at most
¢ (¢ € IN) if there is an inequality system Az < b such that P = {z]Az < b} and each inequality
of the system has encoding length at most ¢.

Note that polyhedra with very many facets may have small facet-complexity. Consider, for
example, the inequality system (5.3). The encoding length of the inequalities in (i) is 4, while
the maximum encoding length of the inequalities in (ii) is 2|E| + [log|E]|] + 1. Hence, the facet-
complexity of P(G) is at most 3|E|, say. This implies that the facet-complexity of the polytopes
P(G) is polynomial in the encoding length of G. One can similarly prove that the facet-complexity
of cut polytopes is polynomial in the encoding length of the associated graphs.

Let P be a class of rational polyhedra. We say that the optimization problem for P can be
solved in polynomial time if, for any polyhedron P € P and any rational vector ¢, the linear program

max c¢Tz
s.t. z€P

can be solved in time polynomial in the encoding length of ¢ and the facet-complexity of P.

The separation problem for a rational polyhedron P C IR" is the following. Given a rational
vector y € IR", decide whether y € P and if not, determine a vector ¢ € IR® such that Ty >
maz{cTz|z € P}. Observe that ¢ yields a hyperplane separating y from P.

Let P be a class of rational polyhedra. We say that the separation problem for P can be solved
in polynomial time if, for any polyhedron P € P and any vector y, the separation problem for P
and y can be solved in time polynomial in the encoding length of y and the facet-complexity of P.

The following result, using the ellipsiod method, was proved in [GLS81], see also [GLS88] for
an in-depth treatment of this subject.

(5.8) THEOREM. Let P be a class of rational polyhedra. Then the following two statements are
equivalent:]
(a) The optimization problem for P can be solved in polynomial time.
(b) The separation problem for P can be solved in polynomial time.

What help does (5.8) provide in the study of cut polytopes? Note that the classes P; :=
{CUT(G)|G a grapk}, P2 := {P{G)IG & graph} are classes of raticnal polyhedra where the polyhe-
drain P; and P have a facet-complexity that is polynomial in the encoding length of the associated
graph. We really would like to prove that the optimization problem for P; can be solved in polyno-
mial time and that means in time polynomial in |E|+ |V|. Due to the A’P-hardness of the max-cut
problem this seems to be impossible. But we can optimize over P, using the equivalence of (a) and
(b) in (5.8). Namely, it was shown in [BaM86] that the separation problem for P(G), G a graph,
can be solved in polynomial time. The hard part, of course, is, given a vector y, to check whether y
satisfies all odd circuit constraints and if not to find one of these inequalities that is violated by y.

DISCRETE MATHEMATICS IN MANUFACTURING 25

The result follows by a tricky transformation of this problem to a sequence of shortest path problems
as follows. '

Let G = (V,E) be a graph and y € &, We first check whether 0 < y. < l1foralle € E
by substitution. If not, a separating hyperplane is at hand. Otherwise we construct a new graph
H = (V'uV", E'UE"U E") consisting of two disjoint copies G’ = (V*, E’) and G = (V/",E") of G
and an additional edge set E'” that contains, for each uv € E, the two edges u/v”, u"v’/. The edges
w'v' € E' and u’v” € E* get the weight y,y, while the edges u/v”, u”v' € E' get the weigth 1 — yy,.
For each node u € V, we calculate a shortest (with respect to the weights just defined) path in H
from v € V! to u” € V. Such a path contains an odd number of edges of E' and corresponds to
a closed walk in G containing u. Clearly, if the shortest of these {u’, u”]-paths has length at least 1
then y satisfies all odd circuit constraints, otherwise there exists a circuit C and a set F C C,|F|
odd, such that y violates the corresponding inequality.

Summing all these observations up, we obtain that for any graph G, the LP-relaxation of (5.5)
can be solved in polynomial time and thus the max-cut problem for graphs not contractible to K5
(and hence for planar graphs) can be solved in polynomial time. One has to admit, though, that
these algorithmic results are not practical. If one replaces the ellipsoid method (that is needed to
derive the polynomial time bounds) by the simplex method and the use of cutting plane techniques
one obtains a practically useful algorithm for solving the LP-relaxation of (5.5). '

This is the the central idea for a relatively efficient branch-and-cut algorithm for the max-cut
problem that is based on the LP-relaxation of (5.5), that uses further classes of facet-defining cutting
planes for CUT(G) heuristically and that employs additional heuristic techniques. This algorithm
solves max-cut problems on graphs with several thousand nodes to optimality, see [BaGJR88].

Techniques like the one described above form the backbone of many recent successful attempts
to solve hard large scale combinatorial optimization problems to optimality, see for example [GH91],
[PaR91]. There are further approaches based, for instance, on Lagrangian relaxations and the use
of nondifferentiable convex minimization or based on geometry of numbers and basis reduction for
lattices, see [LS90], [CRSS92). It is impossible to cover these approaches here.

5.3. Final Remarks. The purpose of this paper was to show, by means of a few examples,
how and where interesting mathematical problems of a discrete nature arise in the field of man-
ufacturing and to indicate the important role mathematics could play if all parties involved in
manufacturing were aware of the contributions mathematics is able to make. The focus was on
describing a few real-world applications and to indicate the difficulties that arise in mathematically
modelling complex situations. There are cases where we have a solid understanding of the practical
problems, a rich associated mathematical theory and sophisticated algorithmic tools. In other cases
suitable mathematical models are still missing, sound theories have not yet emerged and substantial,
probably quite difficult mathematical work still lies before us.

REFERENCES

[AH92] A. Abdel Hamid, Optimization aspects of automatic storage systems, Dissertation, Technische Universitat
Berlin, 1992. |
[AKP89] H. Achatz, P. Kleinschmidt, K. Paparrizos, A dual algorithm for the assignment problem, Working Paper,
- Universitit Passau, 1989.

[AMOS89] R.K. Ahuja, T.L. Magnanti, J. B. Orlin, Network flows, in: G. L. Nembhauser, A. H. R. Rinnooy Kan, M.
J. Todd (eds.), Optimization, Handbook in Operations Research and Management Science, North-Holland,
Amsterdam, 1989, pp. 211-369.

[As93] N.Ascheuer, On-line-optimization of flezible manufacturing systems, Dissertation, Technische Universitdt
Berlin, 1993, to appear.
[AsD82] P. Assouad. M. Deza, Metric subspaces of L}, Publications Mathématiques d'Orsay, vol. 3, 1982.
[BaG86] F. Barahona, M. Grétschel, On the cycle polytope of o binary matroid, Journal of Combinatorial Theory
B, 40 (1986), pp. 40-62.
[BaGIR88] F. Barahona, M. Gr&tschel, M. Jiinger, G. Reinelt, An application of combinatorial optimization to
statistical physics and circuit layout design, Operations Research, 36 (1988), pp. 493-513.
{BaM86] F. Barahona, A.R. Mahjoub, On the cut polytope, Mathematical Programming, 36 (1986), pp. 157-173.

26 ‘ MARTIN GROTSCHEL

[Bau90] P. Bauer, Optimale Steuerung des FALKE-Automalen, Projektdokumentation, Internal Report, Augs-
burg, 1990.
[Br77] M.A. Breuer, Min Cut Placement, J. Design Aut. &. Fault Tol. Comp., 1 (1977), pp. 343-362.
[CKC83] R.-W. Chen, Y. Katjitani, S.-P. Chan, 4 greph-theoretic via minimization algorithm for two-layer prinied
circuit bourds , IEEE Trans. Circuits and Syst., 30 (1983), pp. 284-299.
[CRSS92] W. Cook, T. Rutherford, H. Scarf, D. Shallcross, Integer Programming using Lovdsz-Scarf basis reduction,
in preparation. .
[DL91] M. Deza, M. Laurent, 4 survey of the known facets of the cut cone, Institut fiir Okonomie und Operations
Research, Universitit Bonn, Report No. 91722-OR, 1991.
[FT92] M. Fischetti, P, Toth, An additive bounding procedure for the asymmetric TSP, Mathematical Program-
ming, 53 (1992), pp. 173-197. _
{GaJ77) M.R. Gaxey, D.S. Johnson, The rectilinear Steiner Tree problem s N'P-complete, SIAM J. Appl. Math.,
32 (1977), pp. 826-834.
[{GoTT90] A.V. Goldberg, E. Tardos, R. E. Tarjan, Network flow algorithms, in: B, Korte, L. Lovédsz, H. J. Prémel,
A. Schrijver (eds.), Paths, Flows, and VLSI-Leyout, Springer, Berlin, 1990, pp. 101-164.
[GH91] M. Grétschel, O. Holland, Solution of large-scale symmetric travelling salesman problems, Mathematical
Progamming, 51 (1991}, pp. 141-202.
[GIR89] M. Grbtschel, M. Jinger, G. Reinelt, Vie minimization with pin preassignments and layer preference,
Zeitschrift fiir Angewandte Mathematik und Mechanik, 69 (1989), pp. 393-399.
[GIR91] M. Grbdtschel, M. Jiinger, G. Reinelt, Optimal control of plotting and drilling machines: a case study,
Zeitschrift fiir Operations Research, 35 (1991), pp. 61-84.
[GLS81} M. Grétschel, L. Lovédsz, A. Schrijver, The ellipsiod method and its consequences in combinatorial opti-
mizetion, Combinatoria, 1 (1981), pp. 169-197.
[GLS88] M. Grétschel, L. Lovdsz, A. Schrijver, Geometric Algorithms and Combinatorial Optimization, Springer,
Berlin, 1988.
[GP85] M. Grétschel, M. W. Padberg, Polyhedral theory in: E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan,
and D. B. Shmoys (eds.), The Traveling Salesman Problem, Wiley, Chichester, 1985, pp. 251-305.
[GT89] M. Grédtschel, K. Truemper, Decomposition and optimization over cycles in binary matroids, Journal of
Combinatorial Theory B, 46 (1989), pp. 306-337.
[IMRW92] M. Jinger, A. Martin, G. Reinelt, R. Weismantel, Quadratic 0/1 optimization and a decomposition
approach to the placement of electronic circuits, Mathematical Programming, 1992, to appear.
(Ka72] R. M. Karp, Reducibility among combinatorial problems, R. E. Miller, J. W, Thatcher (eds.), Complezity
of Computer Computations, Plenum Press, New York, 1972, pp. 85-103,
[K1SJ88] J. M. Kleinhans, G. Sigl, F. M. Johannes, Gordian: A new global optimization/ nctangle dissection
method for cell placement, IEEE Int. Conference on CAD ICCAD-88, 1988, pp. 506-509.
[KPS90] B. Korte, H. J. Promel, A, Steger, Steiner trees in VLS[-Layout, in: B. Korte, L. Lovész, H. J. Prémel,
A. Schrijver (eds.), Paths, Flows, and VLSI-Layout, Springer, Berlin, 1990, pp. 185-214.
[KrL84] M. R. Kramer, J. van Leeuwen, The complezitiy of wire-routing and finding minimum area layout for
arbitrary VLSI circuits, in: F.P. Preparata (ed.), Advances in Computing Research, 1984, pp. 129-146.
[LLRSS;} E. L. Iv;;xwler, J.ci. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys (eds.), The Traveling Salesman
roblem Wiley, Chichester, 1985, pp. 251-305.
~ [L90] T. Lengauer, Combinaiorial Algorithms for Iniegrated Circuit Layout, Wiley, Chichester, 1990.
[LS90] L. Lov4sz, H. Scarf, The generalized basis reduction algorithm, Cowles Foundation, Discussion Paper No.
948, Yale University, June 1990.
[M92] A.Martin, Packen von Steinerbd dumen: Polyedrische Studien und Anwendungen, Dissertation, Technische
Universitit Berlin, 1992.
[MuS0] Petra Mutzel, Implementierung und Analyse eines Maz-Cut-Algorithmus, Diplomarbeit, Universitdt
Augsburg, 1990.
’ 1 i 1 ’
[NW88] G. Nemhauser, L, A. Wolsey, Integer and Combmatonal Optimization, Wiley, Chichester, 1988.
[PaG85] M. Padberg, M. Grédtschel, Polyhedral computations, in: E. L. Lawler, J. K. Lenstra, A. H. G. Rin-
nooy Kan, and D. B. Shmoys, (eds.), The Traveling Salesman Problem, Wiley, Chichester, 1985, pp. 307-360.
[PaR91] M. Padberg, G. Rinaldi, A dranch-and-cut-algorithm for the resolution of large-scale symmetric traveling
salesman problems, SIAM Review, 33 (1991) pp. 60-100.
[Pi84] R.Y. Pinter, Optimal leyer assignment for interconnect, J. VLSI Comput. Syst., 1 (1984), pp. 123-137.
[Pu89] W. R. Pulleyblank, Polyhedral combinatorics, in: G. L. Nemhauser, A. H. R. Rinnooy Kan, M. J. Todd
(eds.), Optimization, Handbook in Operations Research and Management Science, North-Holland, Amster-
dam, 1989, pp. 371-446.
[R91] G. Reineit, TSPLIB - A traveling salesman probiem iibrary, ORSA Journai on Computing, 3 (1551}, pp-
43-49.
[R92] G. Reinelt, Contributions to Practical Traveling Salesman Problem Solving, Springer, Heidelberg, 1992,
Pp. 43-49.
[Sch86] A. Schrijver, Theory of Linear and Integer Programming, Wiley, Chichester, 1986.
[Sey81} P.D. Seymour, Matroids and multicommodity flows, European Journal of Combinatorics, 2 (1981), pp.
257-290.
[SK72] D.G. Schweikert, B. W. Kernighan A proper model for the partitioning of electrical circuits, Proceedings
Design Automation Conference, 1972, pp. 56-62.

DISCRETE MATHEMATICS IN MANUFACTURING 27

[T90) K. Truemper, Lesbniz System: User’s Manual, Leibniz Company, Plano, Texas, 1990.

[T93] K. Truemper, Logic Decomposition, 1993, in preparation.

[W92] R. Weismantel, Plazieren von Zellen: Analyse und Lsung eines quadratischen 0/1-Optimierungspro-
blems, Dissertation, Technische Universitit Berlin, 1992.

Veréffentlichungen des Konrad-Zuse-Zentrum fiir Informationstechnik Berlin
Preprints Miirz 1992

SC91- 1. F. A. Bornemann. An Adaptive Multilevel Approach to Parabolic Equations III.

SC 91- 2. R, Kornhuber; R. Roitzsch. Self Adaptive Computation of the Breakdown Voltage of
Planar pn-Junctions with Multistep Field Plates.

SC 91- 8. A. Griewank. Sequential Evaluation of Adjoints and Higher Derivative Vectors by
Overloading and Reverse Accumulation.

SC 91- 4. P. Deuflhard; F. Potra. A Refined Gauss-Newton-Mysovskii Theorem.

SC 91- 5. B. Fiedler; J. Scheurle. Discretization of Homoclinic Orbits, Rapid Forcing and
"Invisible" Chaos.)

SC 91- 6. R. H. W. Hoppe; R. Kornhuber. Multilevel Preconditioned CG-Iterations for
Variational Inequalities.

SC 91- 7, J. Lang; A. Walter. An Adaptive Discontinuous Finite Element Method for the
Transport Equation.

SC 91- 8. K. Gatermann; A. Hohmann. Hexagonal Lattice Dome - Illustration of a Nontrivial
Bifurcation Problem.

SC 91- 9. F. A. Bornemann, A Sharpened Condition Number Estimate for the BPX
Preconditioner of Elliptic Finite Element Problems on Highly Nonuniform
Triangulations.

SC 91-10. G. M. Ziegler. Higher Bruhat Orders and Cyclic Hyperplane Arrangements.

SC 91-11, B. Sturmfels; G. M. Ziegler. Extension Spaces of Oriented Matriods.

SC91-12. g Schmidt. An Adaptive Approach tothe Numerzcal Solution of Fresnel’s Wave
quation.

SC 91-13. R. Schopf; P. Deufthard. OCCAL: A mixed symbolic-numeric Optimal Control
ALculator.

SC 91-14. G. M. Ziegler. On the Difference Between Real and Complex Arrangements.

SC 91-15. G. M. Ziegler; R. T. Zivaljevic. Homotopy Types of Subspace Arrangements via
Diagrams of Spaces.

SC 91-16. R. H. W. Hoppe; R. Kornhuber. Adaptive Multilevel - Methods for Obstacle
Problems.

SC 91-17. M. Wulkow. Adaptive Treatment of Polyreactions in Weighted Sequence Spaces.

SC 91-18. J. Ackermann; M. Wulkow. The Treatment of Macromolecular Processes with
Cham'Length-Dependent Reaction Coefficients - An Example from Soot Formation.

SC 91-19. C. D. Godsil; M. Grétschel; D. J. A. Welsh. Combinatorics in Statistical Physics.
SC 91-20. A. Hohmann. An Adaptive Continuation Method for Implicitly Defined Surfaces.

92-1.F. B%;nehn;gnn; H. Yserentant. A Basic Norm Equivalence for the Theory of Multilevel
et S.

92- 2. J. Ackermann; K. Helfrich. Radius of Convergence of the 1/Z-Expansion for Diatomic
Molecules- The Ground State of the Isoelectronic H 2 Sequence.

92- 8. M. Gritschel. Discrete Mathematics in Manufacturing.
92- 4. Y. Wakabayashi. Medians of Binary Relations: Computational Complexity.

