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Abstract: This article provides a status report on discrete
mathematics in America’s schools, including an overview of
publications and programs that have had major impact. It
discusses why discrete mathematics should be introduced in the
schools and the authors’ efforts to advocate, facilitate, and
support the adoption of discrete mathematics topics in the
schools. Their perspective is that discrete mathematics should
be viewed not only as a collection of new and interesting
mathematical topics, but, more importantly, as a vehicle for
providing teachers with a new way to think about traditional
mathematical topics and new strategies for engaging their
students in the study of mathematics.

Kurzreferat: Der Artikel beschreibt, wie Inhalte der Diskreten
Mathematik im Curriculum amerikanischer Schulen beriicksich-
tigt werden. Er gibt dariiber hinaus einen Uberblick iiber rele-
vante Forschungsprogramme und einschldgige Publikationen zu
diesem Thema. Die Autoren diskutieren, warum die Diskrete
Mathematik in der Schule unterrichtet werden sollte. Es geht
nicht nur darum, dass damit neue und interessante Inhalte
vermittelt werden konnen. Vielmehr ist die Diskrete Mathema-
tik geeignet, Lehrerinnen und Lehrern ein neues Bild von
Mathematik zu vermitteln. Diese Sichtweise ist geeignet,
Schiilerinnen und Schiiler fiir mathematisches Arbeiten zu
motivieren.

ZDM-Classifikation: B70, D30, E40, N70

1 Overview

The introduction of discrete mathematics in primary and
secondary schools in the United States (referred to in this
article as K-12 schools') was encouraged and facilitated
by the recommendations of the National Council of
Teachers of Mathematics (NCTM) in the Curriculum and
Evaluation Standards for School Mathematics (1989).
John Dossey provides historical background for these
recommendations in his article, Discrete Mathematics:
The Math for Our Time (1991). He describes the emer-
gence of discrete mathematics as a separate area of study
beginning in the late 1960s with influential texts appear-
ing at the upper undergraduate level throughout the 1970s

! The terms “primary” and “secondary” are not used as widely
in the United States as elsewhere, and, when used, do not have
the same meaning as in other countries, because most American
school systems involve three levels, rather than two. The terms
used to describe specific schools are “primary school” (for
grades Kindergarten to 3), “elementary school” (usually grades
K to 4 or 5), “middle school” or “intermediate school” (usually
grades 5 or 6 to 7 or 8), “junior high school” (usually grades 7
to 9), and “high school” (grades 9 or 10 to 12). The entire
system is often referred to as “K-12” to reflect the thirteen years
of schooling provided from kindergarten (5 years of age) to
grade 12 (18 years of age).
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(Bondy and Murty 1976, Liu 1968, Roberts 1976, Stanat
and McAllister 1977, and Tucker 1980). Recommenda-
tions followed for the inclusion of discrete mathematics
in programs of study for undergraduate mathematics
majors. By 1983, the effects of the new college curricu-
lum on high school mathematics were being considered
(Maurer, 1983), and additional recommendations on the
need to develop ideas of discrete mathematics earlier in
the mathematics curriculum were being discussed. The
report of the Conference Board of the Mathematical Sci-
ences (CBMS), The Mathematical Sciences Curriculum
K-12: What Is Still Fundamental and What Is Not (1983),
along with the NCTM report, Computing and Mathemat-
ics: The Impact on Secondary School Curricula (Fey,
1984), called for the incorporation of discrete mathemat-
ics in the school mathematics curriculum. An NCTM
report, Discrete Mathematics and the Secondary Mathe-
matics Curriculum (Dossey, 1991), outlined the discrete
mathematics topics appropriate for grades 7-12.

The Curriculum and Evaluation Standards for School
Mathematics (1989) was intended to set standards for
what mathematics all students should know, understand
and be able to do in three grade bands, K-4, 5-8, and 9-
12. In this document, referred to informally as “the
NCTM standards” or simply as “the standards,” “discrete
mathematics” was a separate curriculum standard for
grades 9-12. Some discrete mathematics topics appeared
in the grades K-4 and 5-8 sections of the standards, but
they were basically presented as “problem-solving activi-
ties;” these activities were not embedded in any specific
mathematical context, and there was no recommendation
that any specific topics should be included in the K-8
curriculum.

Discrete mathematics was included in the high school
standards because its content was seen as important for
high school students. However, there seemed to be no
reason to introduce that content into the K-8 curriculum.
This may have been partly because many mathematics
educators were unfamiliar with the content of discrete
mathematics, and partly because they had not recognized
its value for K-8 teachers and students.

NCTM dedicated its 1991 yearbook, Discrete Mathe-
matics Across the Curriculum K-12, to this topic in order
to give the mathematics education community a better
understanding of what discrete mathematics is. The book
is a compilation of articles on issues relating to discrete
mathematics, the teaching of discrete mathematics in
grades K-8, and topics in discrete mathematics for grades
9-12 (graph theory, counting methods, recursion, itera-
tion, induction, and algorithms). While the Curriculum
and Evaluation Standards for School Mathematics pro-
vided a framework for creating and implementing
changes in the teaching and learning of mathematics, and
Discrete Mathematics Across the Curriculum K-12 pro-
vided some specific examples of how to implement these
ideas, most classroom teachers were uncertain about what
was discrete mathematics and how and why they should
implement these topics into an already crowded curricu-
lum. As a result, discrete mathematics was introduced in
few schools.

It should be noted that the United States does not have,
and most probably will never have a national curriculum,
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because of the prevailing sentiment that education should
be controlled at the local level. For the same reason,
none of the fifty states has a state curriculum, so that the
curriculum of a school is developed within the commu-
nity (that may be a large city, but may also be a small
town). After the emergence of the NCTM standards and,
subsequently, parallel standards documents for other
content areas, the idea of “standards” became widely
accepted; that is, there was agreement on the importance
of specifying what students should know, understand, and
be able to do at various grade levels. As a result, each
state (except Iowa) has adopted state standards in each of
two or more content areas (mathematics and read-
ing/writing) and has developed statewide assessments to
measure the degree to which students are meeting the
standards. Note that although it is now acceptable that
states set the goals of education (the “standards™), it is
generally not acceptable for states to try to determine ow
school districts should achieve those goals. An important
exception is that in a number of states (including some of
the largest states, like California and Texas) a list of ac-
ceptable textbook series is prepared periodically, and
public schools within the state must use a textbook series
that is on that list.

Thus the presence of discrete mathematics in the
NCTM standards did not necessarily mean that it would
enter the curriculum of any school district. Indeed, a
topic will only be included in a district’s curriculum if it
is included in the state’s standards. In most states, this is
a remote possibility since few educators, few teachers of
educators, and few policy makers have much idea of what
the term “discrete mathematics” refers to and why dis-
crete mathematics is valuable for their students and
teachers. The focus therefore had to be on informing
educators about discrete mathematics and the opportuni-
ties it provides.

After the publication of the NCTM standards, a number
of programs were developed to train teachers in the area
of discrete mathematics and to engage them in meaning-
ful discussions as to how best to implement these ideas in
K-12 classrooms. Several of these programs were funded
at the national level by the National Science Foundation
(NSF). Our program, the Leadership Program in Discrete
Mathematics (LP-DM), based at Rutgers University,
which began in 1989, received funding from NSF from
1990 to 2001 (see Rosenstein & DeBellis, 1997), and
provided professional development programs for K-12
teachers; since 1995, the LP-DM has focused on K-8
teachers. A second NSF-funded program, the NCTM
Standard in Discrete Mathematics Project, was based at
Boston College from 1992 to 1997. Under the direction
of Professor Margaret J. Kenney, it produced in its initial
years a cadre of teachers of grades 7-12 who acquired a
basic knowledge of discrete mathematics topics, imple-
mented the discrete mathematics standard in their respec-
tive classrooms, and shared what they had learned with
other teachers in subsequent years.

One important lesson learned early in the LP-DM was
that the value of discrete mathematics was not only its
content, but also the opportunity it provided to revitalize
school mathematics (see Section 2).
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The LP-DM is an educational component of a major
research-oriented Science and Technology Center funded
by NSF — the Center for Discrete Mathematics and Theo-
retical Computer Science, known as DIMACS, that is
based at Rutgers, the State University of New Jersey, and
is a collaboration involving Princeton University and
major telecommunications corporations.

The K-8 LP-DM program has expanded beyond the
NSF-funded programs in several ways. First, the LP-DM
program continues to be replicated in other states where
university mathematicians and/or mathematics educators
work with the LP-DM staff to implement the LP-DM
workshops at their sites, with funding from state educa-
tion departments. Second, the K-8 LP-DM program has
been adapted for use in the undergraduate mathematics
classroom and has been offered by Valerie DeBellis to
third-year college students at East Carolina University for
the past five years. Third, the authors are developing
(with NSF funding) a discrete mathematics text, Making
Math Engaging: Discrete Mathematics for Prospective
K-8 Teachers, for use in the undergraduate classroom, so
that prospective K-8 teachers will soon have access to
high quality training in the area of discrete mathematics.

Since the LP-DM has been offered to teachers at all
grade levels, and those teachers have implemented dis-
crete mathematics in their classrooms, we have been able
to view discrete mathematics from a developmental per-
spective and to indicate what are appropriate expectations
for students at all grade levels. These expectations are
reflected in the K-12 standard on discrete mathematics
that was incorporated into the mathematics standards
adopted in New Jersey in 1996. A more detailed and
comprehensive K-12 view of discrete mathematics was
developed as part of the effort to create a “curriculum
framework” that would assist K-12 New Jersey teachers
in implementing the state’s mathematics standards in
their classrooms. The resulting document, “A Compre-
hensive View of Discrete Mathematics” (Rosenstein,
1997), appears both in the New Jersey Curriculum
Framework (Rosenstein, Crown, & Caldwell, 1997) and
in Discrete Mathematics in the Schools, a DIMACS vol-
ume published jointly by the American Mathematical
Society and NCTM (Rosenstein, Franzblau, & Roberts,
Eds., 1997). It provides a detailed picture of important
discrete mathematics topics accessible to children at each
grade level along with illustrative classroom activities
that show how each recommendation in the standards can
be addressed at that grade level.

In 2000, NCTM published a new version of the stan-
dards, entitled Principles and Standards for School
Mathematics. On the one hand, this document (referred
to as “PSSM”) recommends that discrete mathematics be
taught across all grade levels and that it be incorporated
throughout the curriculum; on the other hand, PSSM no
longer has a separate standard in discrete mathematics for
grades 9-12. Three areas of discrete mathematics were
highlighted as the areas that should be addressed in all
grades, from pre-kindergarten through grade 12: combi-
natorics, iteration and recursion, and vertex-edge graphs.
The term “vertex-edge graphs” was used to distinguish
these graphs from those that arise in data analysis (e.g.,
bar graphs) or algebra (e.g., graphs of functions).
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In order to assist teachers in implementing these rec-
ommendations, NCTM’s “Navigations” series® includes a
volume entitled Navigating Through Discrete Mathe-
matics in Pre-kindergarten to Grade 12, by Eric Hart,
Valerie DeBellis, Margaret Kenney, and Joseph G.
Rosenstein; this book (currently under preparation) will
provide content recommendations and classroom units for
each grade level.

To date, at the national level, there is no clear-cut vi-
sion for discrete mathematics in K-12 schools on which
American educators agree; indeed there is disagreement
on almost every issue related to mathematics education,
and different decisions are made in different places. Each
of the fifty state departments of education operates
autonomously with respect to defining its mathematics
standards. States that value discrete mathematics may
incorporate topics into their state standards but there is no
national mandate to do so. The result is that some states
have mathematics content requirements that incorporate
topics of discrete mathematics and some states have only
traditional mathematics content requirements. New Jer-
sey’s mathematics curriculum framework has been quite
progressive in leading the way for establishing a mean-
ingful presence of discrete mathematics in the schools.
However, this came about because of unique circum-
stances: DIMACS and the LP-DM are based in New
Jersey, and LP-DM Director Rosenstein, who also serves
as Director of the policy-oriented New Jersey Mathemat-
ics Coalition, played critical roles in the development of
New Jersey’s mathematics standards and framework.

New Jersey’s vision is not shared by many other states.
Indeed, as was the case ten years ago, many educators are
unaware of discrete mathematics and the opportunities
that it offers for mathematics education. As a result,
implementation of discrete mathematics in schools and
districts often happens only when individual teachers take
a leadership role in introducing discrete mathematics in
their own schools.

2 A Vision of Discrete Mathematics for K-12 Schools

2.1 What is discrete mathematics?

From one perspective, discrete mathematics is an inter-
esting set of mathematical topics. Discrete mathematics
can be viewed as the three major areas listed above —
combinatorics, iteration and recursion, and vertex-edge
graphs — that NCTM’s Principles and Standards for
School Mathematics says, “should be an integral part of
the school mathematics curriculum” (NCTM, 2000, p.
31). It can be viewed more broadly as encompassing

2 The “Navigations” series of books published by NCTM in
different mathematical content areas are intended to help
teachers “navigate” through the new standards and provide
standards-based activities for classrooms at different grade
levels.  Navigating Through Discrete Mathematics Pre-
Kindergarten through Grade 12 has a chapter for each of the
three content areas of discrete mathematics in PSSM -- vertex-
edge graphs, combinatorics, and iteration and recursion -- and
within each chapter has four sections, one for each of the PreK-
2, 3-5, 6-8, and 9-12 grade levels, each of which discusses the
content appropriate for that grade level, as well as classroom
activities that convey that content to students at that grade level.
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topics as diverse as fairness (including fair division, elec-
tions, and apportionment), information (including codes
and cryptography), optimization (including scheduling
and critical paths), and new directions in geometry (in-
cluding fractals and taxicab geometry). As noted in the
Vision Statement from the 1992 DIMACS conference,
Discrete Mathematics in the Schools: How Do We Make
an Impact?, “discrete mathematics needs to be introduced
into the K-12 curriculum for its own sake.” The Vision
Statement continues:

“During the past 30 years, discrete mathe-
matics has grown rapidly and has become a
significant area of mathematics. Increasingly,
discrete mathematics is the mathematics that
is used by decision-makers in business and
government; by workers in such fields as
telecommunications and computing that de-
pend upon information transmission; and by
those in many rapidly changing professions
involving health care, biology, chemistry,
automated manufacturing, transportation, etc.
Increasingly, discrete mathematics is the lan-
guage of a large body of science and underlies
decisions that individuals will have to make
in their own lives, in their professions, and as
citizens.” (Rosenstein, Franzblau, and Rob-
erts, 1997)

Thus, for example, students should be able to model
networks using vertex-edge graphs and use graphs to
solve a variety of problems — for example, linking sites
using minimal connections, finding a shortest path or
circuit, or applying graph coloring to conflict situations.
They should be able to solve counting problems — like
finding the number of different pizzas that use four out of
eight toppings, and applying counting strategies to solve
problems in probability. And they should be able to
model and solve growth problems, such as the number of
animals in a habitat, using iterative procedures.

However, from our perspective, discrete mathematics
is not just mathematics content with which students
should become familiar. For K-12 schools, discrete
mathematics is more than just a collection of new and
interesting mathematical topics.

The introductory article Discrete Mathematics in the
Schools: An Opportunity to Revitalize School Mathemat-
ics (Rosenstein, 1997) in Discrete Mathematics in the
Schools (Rosenstein, Franzblau, and Roberts, 1997) notes
that “in two major ways, discrete mathematics offers an
opportunity to revitalize school mathematics:

“Discrete mathematics offers a new start for stu-
dents. For the student who has been unsuccessful
with mathematics, it offers the possibility for suc-
cess. For the talented student who has lost interest
in mathematics, it offers the possibility of challenge.

Discrete mathematics provides an opportunity to fo-
cus on how mathematics is taught, on giving teach-
ers new ways of looking at mathematics and new
ways of making it accessible to their students. From
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this perspective, teaching discrete mathematics in
the schools is not an end in itself, but a tool for re-
forming mathematics education.”

The article notes that this theme “grew out of the first two
years of the LP-DM” because:

“Participants reported changes in their classrooms,
in their students, and in themselves. Their successes
taught us that discrete mathematics was not just an-
other piece of the curriculum. Many participants
reported success with a variety of students at a vari-
ety of levels, demonstrated a new enthusiasm for
teaching in new ways, and proselytized among their
colleagues and administrators.” (Rosenstein, 1997)

Our vision of discrete mathematics is that it is a vehicle
for giving teachers a new way to think about traditional
mathematical topics and a new strategy for engaging
their students in the study of mathematics — engage stu-
dents in mathematics by involving them in discrete
mathematics. Discrete mathematics offers a “new start”
for teachers and a “new start” for students.’

2.2 A perspective on teaching and learning mathematics
Children need to be able to understand and use a variety
of concepts and techniques from different areas of
mathematics and to build a toolbox of problem-solving
strategies from which they draw on to solve non-routine
problems. Learning the basics is no longer enough. In
previous generations, competency in the basic operations
that were needed to run a small store (what the 1989
report Everybody Counts called “shopkeeper mathemat-
ics”) may have been sufficient, but that is no longer the
case. Today’s children live in a technological age where
they all will need to think critically, solve problems, and
make decisions using mathematical reasoning and strate-
gies.

A major obstacle to students' going beyond the basics
is that their teachers often have never gone beyond the
basics. Many teachers, particularly those who teach at
lower grade levels, have never themselves been engaged
in a single true mathematical problem-solving activity or
been asked to explain or justify their reasoning. They use
worksheets to provide lots of practice for their students,
thinking that they are engaging their students in problem
solving, but not realizing that there is a difference be-
tween a problem and an exercise. What makes a problem
“a problem” is that the solution is not directly linked to
previous activities. The mathematics standards expect
students to go beyond the basics — in terms of additional
content and a substantial increase in problem solving and
reasoning, and in terms of applying the mathematics they
learn in school to daily situations. Teachers who have
never gone beyond the basics themselves, then, cannot
reach all students as recommended in the standards, and
will therefore “leave some children behind.”

3 The major focus of this article is on the new start for teachers
provided by discrete mathematics, and in particular by the LP-
DM; the new start for students will be discussed elsewhere.

*  The theme of the United States government’s current
educational initiatives is that each child should complete school
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Moreover, since teachers, particularly at the high
school level, frequently use only direct instruction, they
often do not engage their students in the learning of
mathematics; students are expected to recite mathematics
or apply rules and formulas, but are rarely expected to be
actively engaged in figuring out the answers to more
difficult questions or in discussing alternate methods of
solving problems. Those students whose learning style
thrives on direct instruction do well; not so, however, for
the substantial numbers of students who need to build
their own understanding of a concept or technique.
Teachers need to learn and use a variety of instructional
strategies to ensure that all students will indeed learn
mathematics. This is best achieved when the feachers
first experience a mathematical learning environment
where all of them learn the mathematics. This perspec-
tive on teaching and learning mathematics and our view
of a positive mathematical learning environment focuses
on:

e mathematics as critical thinking, problem solving,
sense making, and decision making;

e engaging students in the learning of mathematics;
and

e using teaching strategies that enable all students to
learn mathematics.

2.3 What discrete mathematics offers

We begin with an example. In our institutes, groups of
participants sit around large maps of the United States,
where the interiors of all the states are white, and try to
determine (using chips of different colors) the minimum
number of colors that must be used if you want to color
each state and ensure that bordering states are colored
using different colors (so that you can recognize the bor-
ders).

Note that the focus of the instruction is not on stating
the Four Color Theorem that all such maps can be col-
ored using four colors’, although that is discussed some-
what later, but on having the teachers experience for
themselves the challenge of trying to determine the few-
est number of colors that can be used. Through this ac-
tivity, participants discover the four color conjecture and
come to recognize why the Four Color Theorem makes
sense. It is not so much the content of discrete mathe-
matics that makes it a vehicle for reforming mathematics
instruction, but the opportunity that the content offers to
engage people in mathematical activity.® All teachers are

with the skills and understandings necessary for his or her
future. This theme is reflected in the name of the major
legislation passed by the administration in 2002 entitled “No
Child Left Behind.” (See No Child Left Behind: A Desktop
Reference, U.S. Department of Education, 2002.)

> Until 1976, when it was proved by Kenneth Appel and
Wolfgang Haken, the Four Color Theorem had been known as
the “four color conjecture” for almost a hundred years. The
introduction of this topic thus provides teachers and students
with both an important example of newly discovered
mathematics and an entrée into the development of mathematics
over time.

% If instead discrete mathematics is introduced in the schools as
a set of facts to be memorized and strategies to be applied
routinely (see Gardiner, 1991, pg. 12), then the qualities of
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engaged in the map-coloring activity, all find it both fun
and challenging, all are exercising their problem-solving
and reasoning skills, and all realize that the same activity
will engage all of their students, independent of grade
level or ability level. Since most teachers are unfamiliar
with discrete mathematics, questions like this are not
even posed in traditional mathematics classes, depriving
students of a rich source of problem-solving situations.

This unfamiliarity is an asset, however. It makes it
possible for the teachers to participate in the program as
new learners. They find that they can learn new mathe-
matical material and solve challenging problems, and that
their students can also. Discrete mathematics is a domain
where interesting questions can be posed that are easily
understood and that lend themselves readily to experi-
mentation. (For example, how many paths are there
between two vertices in a vertex-edge graph, and which
path is the “shortest”?) In “small” situations, solutions
can easily be obtained, and can be used to make conjec-
tures about larger situations. As the number of possibili-
ties increase, solutions are not so easily obtained, but the
discussion can shift to examining strategies that can be
used to obtain solutions.

Teachers in the LP-DM learn that giving students an-
swers just to avert frustration takes away opportunities to
increase problem-solving skills and the pleasure that
comes from meeting challenges successfully (DeBellis &
Goldin, 1997, 1999). They learn this not by being “told”
that this is true, but by being in challenging problem-
solving situations where they don’t give up, but rather
continue to work on a problem until their frustration
gives way to the “Aha!” of success.

Participants are surprised by their own mathematical
ability, and begin to recognize that their students also
have greater mathematical ability than they may have
originally believed. In the LP-DM, teachers learn in-
structional strategies that work, strategies that are mod-
eled by the program’s instructors. Discrete mathematics
in this program serves as a vehicle for bringing about
changes in teachers’ view of mathematics and how it is
learned, which in turn result in changes in their classroom
practices.

These kinds of experiences provide teachers with an
understanding of what their students can achieve mathe-
matically, and the tools necessary for them to become
effective teachers of mathematics. Teachers are also in-
troduced to real-world mathematical applications since
techniques for coloring maps efficiently are used in
solving a variety of scheduling problems, such as class
scheduling, where courses that share a student have to be
assigned different meeting times, or traffic light schedul-
ing, where conflicting flows of traffic must be assigned
different green light intervals. By making the mathemat-
ics relevant, these applications facilitate the sense-making
process for teachers, as well as other novice mathemati-
cians.

In our institutes, we expect, first of all, that all partici-
pants will be learners themselves, learning the mathe-
matics that underlies the activities. Discrete mathematics

discrete mathematics as an arena for problem solving,
reasoning, and experimentation are of course destroyed.
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provides teachers with non-intimidating access to inter-
esting and important mathematical ideas and strategies
that they can use in their classrooms to strengthen rea-
soning and problem-solving skills for students at all lev-
els and of all abilities.

Providing non-intimidating access to mathematics is
particularly important for elementary school teachers
because many of them have negative attitudes about their
own mathematical abilities that we would like to dispel
so that they don’t pass these attitudes on to their students.
We have found the map-coloring problem to be so non-
intimidating that we use it as the very first activity in the
institutes for K-8 teachers. Discrete mathematics also
appeals to the learning style of many elementary school
teachers because of its visual and kinesthetic nature.
They see discrete mathematics as “a different kind of
mathematics” since they are actually doing mathematics,
often for the first time in their lives, and are learning new
mathematical content in a way that makes sense to them.

Our vision of what discrete mathematics can do to
transform K-12 mathematics teachers, and, in turn, their
classrooms has been largely formed by our experience in
developing and implementing the Rutgers Leadership
Program in Discrete Mathematics. In Section 3, we
provide a history of that program, our model for K-8
professional development, and some concluding remarks
on how our institutes have enhanced the effectiveness of
K-12 instruction.

2.4 Problem solving approach of LP-DM

Many K-8 teachers come to the LP-DM with a wide
range of emotions about mathematics, their history with
mathematics, and their perceived ability to do mathemat-
ics. Their view of problem solving involves the follow-
ing: given a word problem, translate the words into
mathematical symbols, solve the resulting equation using
algebra (if you remember it), and state the answer using
your own words. This view presupposes that a solver
should “always know what to do next.” If for some rea-
son they are unable to solve a problem, it is usually at-
tributed to the fact that they forgot how to do something.
This view of problem solving is closely related to their
view of how mathematics should be taught. When they
begin the LP-DM, K-8 teachers typically want the in-
structor to tell them (or show them) how to solve the
problem; they expect that the next step will be for them to
go off and repeat the actions of the instructor so they can
“solve” the problem themselves. They also expect to
teach mathematics the same way to their students. This
perspective should not be surprising, since, their experi-
ence of “higher mathematics” was typically taking a high
school algebra course while in college.

We know that this limited view of problem solving im-
pedes successful mathematical performance. If we truly
want teachers to become engaged in the mathematics, we
need to expose them to the emotional dynamics of prob-
lem solving and help them work through the difficulties.
They need to see that doing mathematics is more than
following algorithms. It involves a complex interplay
between thinking and feeling that often involves wrong
turns, bad decisions, and frustration, and these seemingly
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negative results can make way to positive outcomes,
correct solutions, and elation (DeBellis & Goldin, 1991;
DeBellis, 1996; Goldin, 1988, 2000). Our teachers come
to understand how affect appears to guide problem-
solving decisions, and how powerful problem solvers use
it effectively. It is through experience that they learn why
persistence with mathematics is important, what roles
(both positive and negative) confidence can play in
solving problems, and that not knowing is inherent in any
mathematical situation that is considered to be a
“problem.” They see that mathematical learning can be
enhanced when they acknowledge what they don’t know
and that having mathematical integrity matters when you
care about acquiring mathematical knowledge (DeBellis,
1996; DeBellis & Goldin, 1997, 1999).

We also identify, describe, and model aspects of
mathematical intimacy (DeBellis, 1996, 1998; DeBellis
& Goldin, 1997, 1999) and meta-affect (DeBellis, 1996;
DeBellis & Goldin, 1997; Goldin, 2002) so that partici-
pants can understand the interplay that such psychologi-
cal constructs have on problem-solving performance. In
LP-DM, as participants solve problems and demonstrate
particular aspects of affect, we identify the positive
problem-solving byproducts — such as willingness to take
mathematical risks or remaining dedicated to solving a
particularly tough problem, as well as expose negative
byproducts — such as giving up, frustration, or anger. We
reflect on the impact that these emotional dynamics can
have on their willingness to engage in mathematical
problem solving so that through the experience of solving
problems and our frank discussions about their experi-
ence, they are better equipped to see, identify, and discuss
the problem-solving behaviors of their students.

This is possible because of the number and variety of
problems in discrete mathematics that are at the right
level of difficulty. They are simply stated, easy to under-
stand, challenging to solve, and yet can be solved. Most
important, they invariably are solved, within the schedule
of the program, by almost all participants. Not every
participant solves every problem, but each person solves
a large enough fraction of the problems so that he or she
feels successful as a problem solver.

In LP-DM, we take problem-solving theory and put
it into practice. We work to develop powerful affect
among participants in a mathematical environment that
exposes teachers to the culture of mathematics so that
they are better able to pass on that culture to their stu-
dents.

3 Development of The Leadership Program in Dis-
crete Mathematics

Over the course of the past 15 years, the Rutgers Leader-
ship Program in Discrete Mathematics (LP-DM) has
provided over 1200 K-12 teachers with an intensive,
exciting, and substantial introduction to topics in discrete
mathematics through extensive summer programs and
follow-up sessions during the school-year. These pro-
grams were funded with three grants from the National
Science Foundation (NSF) and were co-sponsored by
DIMACS and the Rutgers Center for Mathematics, Sci-
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ence, and Computer Education (CMSCE). There have
been five phases of the LP-DM:

e Phase 0 (1989). A two-week pilot program for high
school teachers, Networks and Algorithms, that took
place in the summer of 1989 with 27 high school
teachers and was funded entirely by DIMACS.

e  Phase 1 (1990-1992). A four-week summer program
for high school teachers, with school-year follow-up
sessions. This was funded by NSF and had two co-
horts, with a total of 67 teachers.

o  Phase 2 (1992-1995). A three-week summer pro-
gram for high school teachers, and a parallel program
for middle-school teachers, with school-year follow-
up sessions and a two-week summer program the
next year. This was also funded by NSF and had
three cohorts of high school teachers and three co-
horts of middle school teachers, with altogether 237
teachers (118 middle school and 119 high school).

e  Phase 3 (1995-2001). A two-week summer program
for K-8 teachers, with school-year follow-up sessions
and a one-week summer program the next year. This
was also funded by NSF and was repeated altogether
25 times (in Arizona, Massachusetts, North Carolina,
Rhode Island, and Virginia, as well as New Jersey)
with a total of 732 teachers.

e Phase 4 (2001-present). In this dissemination phase,
the LP-DM for K-8 teachers has been replicated 10
times with a total of 204 participants in Alabama,
Indiana, Massachusetts, Rhode Island, and South
Dakota.

The total number of teachers who have participated in

these programs since 1989 is 1267; this includes nine

institutes in 1989-1994 that involved 331 middle and high

school teachers, and thirty-five institutes in 1995-2003

that involved 936 K-8 teachers.

These programs have been developed and implemented
by Project Director Joseph G. Rosenstein (a mathemati-
cian), Associate Project Director Valerie A. DeBellis, (a
mathematics educator), and Assistant Project Director
Janice Kowalczyk (a veteran LP-DM participant and
classroom teacher).

The focus of Phase 4 of the LP-DM is on dissemination
and replication — that is, supporting new programs at new
sites under new educational leadership across the country.
This effort is made possible by a number of factors:

e the development of detailed program materials that
enable mathematicians and mathematics educators to
offer the LP-DM at other sites;

e the pilot replication programs at four sites (in AL,
MA, NC, and NJ in the summers of 2000 and 2001)
supported by a supplementary grant from NSF that
also funded a training program at Rutgers in the
summer of 2000 for prospective LP-DM leaders;

e a grant from the Educational Foundation of America
that provides replication programs with ongoing
technical and programmatic support from Rutgers
staff; and
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e submitting successful proposals for funding the LP-
DM to a number of state departments of education
and higher education.

Participating teachers have a long-term involvement
with the LP-DM and on-going discussions via email
regarding mathematics and its implementation in their
classrooms. They are expected to introduce discrete
mathematics in their classrooms, incorporate discrete
mathematics into their schools' curricula, and introduce
their colleagues, both locally and broadly, to topics in
discrete mathematics. A substantial percentage of LP-
DM participants have fulfilled these expectations and
have remained active in LP-DM activities beyond their
formal affiliation with the program.

The broader goals of LP-DM are not defined exclu-
sively in terms of the accomplishments of the participants
in the area of discrete mathematics, but also in terms of
their attitudes and understandings toward mathematics
and the teaching and learning of mathematics.

e By being engaged in problem-solving, they came to
understand that mathematics was about solving
problems, not just learning facts and procedures.

e By themselves being engaged and excited by mathe-
matics, they learned that they could engage and ex-
cite their students with mathematics.

e By seeing mathematics as exploration, sometimes
leading into uncharted territory, they could take their
students on mathematical adventures.

e By seeing themselves as mathematicians, they were
empowered to teach their students that when they are
engaged in mathematical thought and exploration
they too are mathematicians.

By 1991, we had learned that discrete mathematics was
not just another interesting area of mathematics that
teachers could use in their classrooms, but that it was also
an excellent vehicle for changing mathematics education.

These broader goals are reflected in the design of our
professional development programs, such as the K-8
teacher training program described below.

4 A Professional Development Model for K-8 Teach-
ers

In order to appreciate the design of our model for profes-
sional development of K-8 teachers, one must first under-
stand the population that it serves. In the United States,
the usual mathematical training for prospective K-8
teachers is minimal; at best, they may have taken two
undergraduate mathematics courses that focus on mathe-
matical topics for elementary school teachers’. Prospec-
tive K-8 teachers often view mathematics exclusively as a
body of knowledge, as a set of facts and procedures; their
job, when they get to be teachers, will be to transmit these
facts and procedures to their students. This should not be
surprising, since this has likely been their experience in

’ This situation may change in the coming years, since an
important national report has now recommended at least three
courses for elementary school teachers and at least seven
courses for middle school teachers (CBMS, 2001, p. 8).
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learning mathematics. Many of these students attribute
their lack of success in mathematics to their inability to
remember all of the required facts, formulas, and tech-
niques. In addition, many of these students report experi-
encing math anxiety and try to avoid the topic rather than
embrace it. Yet these will become the teachers of
mathematics for our children. We believe that a profes-
sional development model is needed that will change
these perspectives of mathematics.

Our basic design for K-8 teachers involves four parts:

1) learn the mathematics,

2) reinforce the mathematical learning,

3) consolidate the learning, and

4) implement the mathematics.

This sequence is a fundamental part of our professional
development process, since we view that it is only after
K-8 teachers and prospective K-8 teachers experience
success in learning mathematics can their anxiety be
transformed into energy. We view this sequential experi-
ence as a vehicle for changing participants’ attitudes
about mathematics.

Recommendations from the CMBS report, “The
Mathematical Education of Teachers — Part I’ include
that, along with building mathematical knowledge,
“teachers should develop the habits of mind of a mathe-
matical thinker and demonstrate flexible, interactive
styles of teaching” (CMBS, 2001, pg. 8). The pedagogi-
cal format for our institutes models this flexible, interac-
tive approach to instruction by using a variety of types of
instructors (college mathematics faculty, college mathe-
matics education faculty, and expert K-8 classroom
teachers), by incorporating a variety of participant learn-
ing groups (individual, heterogeneous small group, ho-
mogeneous by grade-level, and whole-group), and by
demonstrating a variety of instructional formats (whole-
group instruction, small-group activity, and peer presen-
tations). We do not simply advocate these different in-
structional strategies; rather, we model them for the par-
ticipants, ask the participants to reflect on how they were
used, and discuss with them their value and their appro-
priate use.

Each day of our program, we cycle through the four
phases below:

4.1 Learn the mathematics

We would like teachers to view mathematics in terms of
reasoning and problem solving; in order to do that we
must expect teachers to reason and solve problems. We
would like teachers to recognize the applications of
mathematics to the world; in order to do that we must
show them how to wear eyeglasses through which they
can see the world mathematically. Wrestling with a
mathematical situation, what mathematicians would call
“doing” mathematics, is not something with which many
teachers are familiar; we need to introduce them to the
idea of doing mathematics, and foster the idea that they
themselves can function as mathematicians.

And, as educators of teachers, we need to provide
teachers with a supportive learning environment so that
they will be comfortable with working on challenging
problems in mathematics, and will come to believe that
they can meet high expectations. The high expectations
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that we have created for participants are reflected in the
schedule of the institute itself.

Each morning, participants are involved in a two-hour
content-based workshop on new mathematical topics
taught by college faculty. The workshops involve a
mixture of whole-group instruction and small-group
activity. The pattern that is repeated throughout each
workshop involves introduction of new content material,
participants' working on a problem in small groups, and
discussion of the problem and the material. This interac-
tive learning environment is supported by the instructor
(college faculty) and by lead teachers who work together
to facilitate participants’ mathematical learning. (Lead
teachers are past participants in the program who have
incorporated into their own classrooms both the content
and the perspectives they have learned in the program.)

Although the focus of this section is the professional
development model, it is important to take note of the
actual content of the program, since learning the content
is a significant component of the model. Each day of the
program has a particular theme that is initiated in the
workshop session and is echoed through the remaining
sessions of the day. On the first day, building on coloring
maps, we introduce vertex-edge graphs and discuss graph
coloring and its applications to resolving conflicts. On
the second day, the theme is Euler paths and circuits and
optimal routes for snow plows and postal deliveries. On
the third day, we focus on Hamilton circuits and the trav-
eling Salesperson Problem and applications to delivering
packages and optimal circuits. On the fourth day, the
theme is how to connect sites efficiently (the minimum
weight spanning tree problem). The fifth day is devoted
to finding the best route between two sites on a map or a
graph. Although the overall topic of the first five days is
vertex-edge graphs and their applications, issues involv-
ing systematic listing and counting (e.g., tree diagrams
and factoricals) arise each day, in preparation for the next
three days, where the focus is on counting. The sixth day
we focus our attention on systematic listing and counting,
and in particular on applications of the addition and mul-
tiplication principles of counting. The seventh day is
devoted to what we call "the choose numbers" — the
number of ways of choosing m out of a set of n objects —
and the focus of the eighth day is number patterns (e.g.,
triangular numbers and Pascal's triangle) and iteration.
This leads in to the ninth and tenth days when the focus is
on patterns and iteration in both number and geometry
and an investigation into fractals. Looking back on the
program, at the end of the two weeks, participants are
absolutely amazed at what and how much they have
learned.®

4.2 Reinforce the mathematical learning

The workshop session is followed by a one-hour study
session in which participants work in small groups on a
set of “homework™ problems based on the topic of the
workshop. Here, participants begin developing their

¥ Most of the participants return for follow-up sessions during
the subsequent school year, and then for another program the
following summer, so their learning of new discrete
mathematics doesn’t end after these ten days.
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mathematical discourse in both spoken and written forms
of mathematical communication. They learn precision in
language as they are left to explain and defend their solu-
tions among peers, and they experience, often for the first
time, that mathematical learning can take place “without
the instructor.” Each group of participants is expected to
present solutions of some of the homework problems to
the entire group before the morning workshop on the next
day.

In these three types of sessions — workshop session,
study group session, and homework session — we expect
participants to suspend their role of teacher and take on
the role of mathematical learner.

4.3 Consolidate the learning

While people with some learning styles need opportuni-
ties to talk about what they are thinking, people with
other learning styles need an opportunity for quiet intro-
spection. A teacher needs to experience learning mathe-
matics in a variety of environments so as to be better able
to understand and facilitate the variety of learning styles
of the students that will appear in his or her classroom.
However, we believe it is not enough to talk to teachers
about learning styles in their classrooms; rather, we pro-
vide them the opportunities to experience different ways
of learning in the context of doing mathematics.

Journal writing is used as a way to experience quiet
introspection. Participants are provided with a ten-page
“journal” in which they make daily entries regarding their
mathematical learning on that day’s workshop. This
gives participants an opportunity to describe their experi-
ence with and understanding of the new material and to
highlight areas where they are having difficulty with the
material. Mathematical learning is enhanced through
individual introspection, acknowledgement of content
material that remains unclear, and continued discussions
about that content. Teachers often think they should
“know all the answers.” We use journal writing to get
them to discuss “what they don’t know.” Journals are
collected near the end of each day and are reviewed by
lead teachers who respond daily, in writing, to the entries.
This continuous, immediate feedback is important for
consolidating the mathematics — often, it takes several
days to clearly understand some mathematical topic and
this process allows learners to independently discuss
previous topics for as long as they need.

In addition, presenting homework problems during the
homework session (discussed above) also serves to con-
solidate the mathematics. The idea behind this session is
that teachers often gain mathematical insights when they
are expected to present and field questions on the mathe-
matical material — even when they don’t know all the
answers. To help ease anxiety, participants make pres-
entations in groups of two, and are encouraged to discuss
not only their solution, but also how they thought through
the problem — what confused them, and how they gained
insight. This experience encourages a reflection on their
own problem-solving behaviors and makes explicit that
“doing mathematics” is often a series of decision-making
steps on what to do next!
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4.4 Implement the mathematics

We understand that change in the classroom will not take
place by simply giving teachers the opportunity to “do
mathematics.” Hence, the final stage in our professional
development cycle includes opportunities for teachers to
see teacher-tested, age-appropriate classroom demonstra-
tions on the mathematical topics they just learned, and to
discuss other ways of bringing the mathematics into their
classrooms. Participants now resume their teacher role,
with a new sense of mathematical accomplishment that
helps foster high expectations for their students in what
they are able to accomplish mathematically.

In these sessions, participants are clustered into three
groups according to the grade level they teach; K-2, 3-5,
and 6-8. Initially, lead teachers provide presentations on
workshop topics that they have adapted and implemented
into their own classrooms, and model ways of bringing
the institute format into K-8 classrooms. They share
materials they’ve made, resources they like, and samples
of their student work. Following these presentations,
participants share their own good ideas for implementing
discrete mathematics topics into their own classrooms
and discuss aspects of classroom implementation they are
important to them. These incredibly popular sessions
enable participants to immediately bring discrete mathe-
matics topics into their classrooms in that they leave the
institute with several ready-made classroom lessons.

At the heart of our efforts rests collaborative relation-
ships — among mathematicians, mathematics educators,
and classroom teachers. Each brings a particular per-
spective and focus that, when taken collectively in a
training program, yields an optimal institute experience
for practicing and/or prospective teachers. For instruc-
tional effectiveness, we continue to evolve our design,
based on feedback from participants and the needs of
individual school districts, until it meets the message of
“mathematics for all” participants. This constant assess-
ment of program activities is a routine part of our ongo-
ing programs and models for teachers that the process of
teaching never ends.

5 Concluding Remarks

Teaching discrete mathematics is not an end in itself,
whether in our institute or in the K-8 classroom, but is a
vehicle for improving understanding of all mathematical
topics. By improving teachers’ understanding of mathe-
matics, it is anticipated that they will in turn improve
students’ understanding of mathematics. Our institutes
enhance the teaching effectiveness of its participants

(including their teaching of traditional mathematics top-

ics) in the following ways:

e Allowing teachers themselves to become successful
learners of mathematics — so that they can translate
into their own instruction high achievable expecta-
tions for all students.

e Changing teachers’ attitudes about mathematics — so
that they view mathematics more in terms of problem
solving and reasoning, and not exclusively in terms
of remembering facts, formulas, and techniques.

e Changing teachers’ instructional practices in mathe-
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matics — so that they use a variety of instructional
formats, have students solve problems in groups, and
address students with various learning styles.

e Learning how to meet mathematical challenges — so
that they will understand that problems that seem dif-
ficult to solve can be solved through persistence, and
so that they will recognize frustration as a normal
stage of the problem-solving process’.

e Having a high level of expectation for their students.
The operative assumption of our institutes is that
each participant can and will solve challenging
problems and learn mathematics at a level far beyond
what they could have imagined and far beyond what
they would teach; when they see what they accom-
plish, as elementary school teachers with apprehen-
sions about mathematics and their own mathematical
abilities, they come to believe that their students, that
all of their students, can come to have similar ac-
complishments.

e Empowering participants to initiate mathematical
explorations in their classrooms, and giving their
students permission to travel to uncharted territory.
In order to do so, participants will learn in the pro-
gram that it is acceptable for them to tell students
that they don’t know the answer to a question. (They
will of course need to develop a plan for finding the
answer.)

e Learning a good deal of mathematics content, both in
discrete mathematics and in traditional areas, like
numbers, algebra and geometry, all of which are
strongly linked to discrete mathematics.

After having these experiences, they return to their class-
rooms with a different view of mathematics, with a dif-
ferent understanding of how to teach it, and with a differ-
ent perspective of what each of their own students can
achieve; with this perspective, they can strive to truly
leave no child behind.
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