
European Journal of Operational Research 155 (2004) 426–438

www.elsevier.com/locate/dsw
Discrete Optimization

Ant-colony algorithms for permutation flowshop scheduling
to minimize makespan/total flowtime of jobs

Chandrasekharan Rajendran a,*, Hans Ziegler b

a Industrial Engineering and Management Division, Department of Humanities and Social Sciences,

Indian Institute of Technology Madras, Chennai 600 036, India
b Faculty of Business Administration and Economics, Department of Operations, Production and Logistics Management,

University of Passau, D-94032 Passau, Germany

Received 18 October 2001; accepted 18 November 2002
Abstract

The problem of scheduling in permutation flowshops is considered with the objective of minimizing the makespan,

followed by the consideration of minimization of total flowtime of jobs. Two ant-colony optimization algorithms are

proposed and analyzed for solving the permutation flowshop scheduling problem. The first algorithm extends the ideas

of the ant-colony algorithm by Stuetzle [Proceedings of the 6th European Congress on Intelligent Techniques and Soft

Computing (EUFIT �98), vol. 3, Verlag Mainz, Aachen, Germany, 1998, p. 1560], called max–min ant system (MMAS),

by incorporating the summation rule suggested by Merkle and Middendorf [Proceedings of the EvoWorkshops 2000,

Lecture Notes in Computer Science No. 1803, Springer-Verlag, Berlin, 2000, p. 287] and a newly proposed local search

technique. The second ant-colony algorithm is newly developed. The proposed ant-colony algorithms have been applied

to 90 benchmark problems taken from Taillard [European Journal of Operational Research 64 (1993) 278]. First, a

comparison of the solutions yielded by the MMAS and the two ant-colony algorithms developed in this paper, with the

heuristic solutions given by Taillard [European Journal of Operational Research 64 (1993) 278] is undertaken with

respect to the minimization of makespan. The comparison shows that the two proposed ant-colony algorithms perform

better, on an average, than the MMAS. Subsequently, by considering the objective of minimizing the total flowtime of

jobs, a comparison of solutions yielded by the proposed ant-colony algorithms with the best heuristic solutions known

for the benchmark problems, as published in an extensive study by Liu and Reeves [European Journal of Operational

Research 132 (2001) 439], is carried out. The comparison shows that the proposed ant-colony algorithms are clearly

superior to the heuristics analyzed by Liu and Reeves. For 83 out of 90 problems considered, better solutions have been

found by the two proposed ant-colony algorithms, as compared to the solutions reported by Liu and Reeves.

� 2003 Elsevier B.V. All rights reserved.

Keywords: Flowshop; Scheduling; Makespan; Total flowtime; Heuristics; Ant-colony algorithm
* Corresponding author. Tel.: +91-44-22578431; fax: +91-44-

22578430.

E-mail address: craj@iitm.ac.in (C. Rajendran).

0377-2217/$ - see front matter. � 2003 Elsevier B.V. All rights reser

doi:10.1016/S0377-2217(02)00908-6
1. Introduction

Many exact and heuristic algorithms have been

proposed over the years for solving the static per-

mutation flowshop scheduling problem with the
ved.

mail to: craj@iitm.ac.in


C. Rajendran, H. Ziegler / European Journal of Operational Research 155 (2004) 426–438 427
objectives of minimizing makespan and total flow-
time of jobs, considered either separately or simul-

taneously (e.g. Johnson, 1954; Ignall and Schrage,

1965; Campbell et al., 1970; Gelders and Samban-

dam, 1978; Miyazaki et al., 1978; Miyazaki and

Nishiyama, 1980; Nawaz et al., 1983; Rajendran,

1993, 1995; Ho, 1995; Wang et al., 1997; Woo and

Yim, 1998; Liu and Reeves, 2001). In addition, meta-

heuristics such as genetic algorithms, simulated
annealing and tabu search are used to solve flow-

shop scheduling problems (e.g. Widmer and Hertz,

1989; Ishibuchi et al., 1995; Nowicki and Smutn-

icki, 1996; Ben-Daya and Al-Fawzan, 1998).

In recent times, attempts are being made to

solve combinatorial optimization problems by

making use of ant-colony optimization (ACO)

algorithms (or simply, ant-colony or ACO algo-
rithms). The pioneering work has been done by

Dorigo (1992), and an introduction to the ACO

algorithms has been dealt with in Dorigo et al.

(1996). Attempts have been made recently to solve

scheduling problems using ACO algorithms (e.g.

Stuetzle, 1998 dealing with permutation flowshop

scheduling problem with the objective of mini-

mizing the makespan, and Merkle and Midden-
dorf, 2000 considering the single-machine

scheduling problem with the objective of mini-

mizing the sum of weighted tardiness of jobs).

In this paper, we investigate the problem of

scheduling in permutation flowshops by using

ACO algorithms, first with the consideration of

minimizing the makespan, followed by the con-

sideration of minimizing the sum of total flowtime
of jobs. Two ant-colony algorithms are proposed

in this paper. The first algorithm incorporates the

concept of summation rule (presented by Merkle

and Middendorf, 2000), a modification with re-

spect to the selection of the job to be appended to

the partial ant-sequence, and a new local search

technique in the max–min ant system (MMAS)

which is an ant-colony algorithm developed by
Stuetzle (1998). The second proposed ant-colony

algorithm is based on new ideas that are developed

in the current work. By considering the objective

of minimizing the makespan, we evaluate the ACO

algorithms in comparison with the upper bound

values of makespan presented by Taillard (1993)

for the 90 benchmark permutation flowshop
scheduling problems taken from Taillard (1993).
Next, we consider the objective of minimizing the

total flowtime of jobs and evaluate the solutions

yielded by the two proposed ACO algorithms re-

lative to the best heuristic solutions reported by

Liu and Reeves (2001) for the same 90 benchmark

permutation flowshop problems.
2. Formulation of the static permutation flowshop

scheduling problem

The permutation flowshop scheduling problem

consists in scheduling n jobs with given processing

times on m machines, where the sequence of pro-

cessing a job on all machines is identical and uni-

directional for each job. In studying flowshop
scheduling problems, it is a common assumption

that the sequence in which each machine processes

all jobs is identical on all machines (permutation

flowshop). A schedule of this type is called a per-

mutation schedule and is defined by a complete

sequence of all jobs. We also consider only per-

mutation sequences in this work.

Let

tij be the processing time of job i on machine j;
n be the total number of jobs to be scheduled;

m be the total number of machines in the flow-

shop;

r be the ordered set of jobs already scheduled,

out of n jobs; partial sequence;

qðr; jÞ be the completion time of partial se-
quence r on machine j (i.e. the release time of

machine j after processing all jobs in partial se-

quence r);

qðri; jÞ be the completion time of job i on

machine j, when the job is appended to partial

sequence r.

For calculating the start and completion times
of jobs on machines in permutation flowshops,

recursive equations are used as follows.

Initialize qðri; 0Þ, the completion time of job i
on machine 0, equal to zero. This time indicates

the time of availability of a job in the flowshop,

and it is equal to 0 for all jobs in case of static

flowshops.



428 C. Rajendran, H. Ziegler / European Journal of Operational Research 155 (2004) 426–438
For j ¼ 1 to m do

qðri; jÞ ¼ maxfqðr; jÞ; qðri; j� 1Þg þ tij: ð1Þ
The flowtime of job i, Ci is given by

Ci ¼ qðri;mÞ: ð2Þ
When all jobs are scheduled, the total flow-

time F , and the makespan M are obtained as
follows:

F ¼
Xn
i¼1

Ci;

and

M ¼ maxfCi; i ¼ 1; 2; . . . ; ng: ð3Þ
It is to be noted that qð/; jÞ is equal to 0 for all j,
where / denotes a null schedule.
3. Description of the proposed ACO algorithms

3.1. General structure of ant-colony algorithms

The main idea in ant-colony algorithms is to

mimic the pheromone trail used by real ants as a

medium for communication and feedback among
ants. Basically, the ACO algorithm is a popu-

lation-based, cooperative search procedure that

is derived from the behavior of real ants. ACO

algorithms make use of simple agents called ants

that iteratively construct solutions to combina-

torial optimization problems. The solution genera-

tion or construction by ants is guided by (artificial)

pheromone trails and problem-specific heuristic
information. ACO algorithms can be applied to

combinatorial optimization problems by defining

solution components which the ants use to itera-

tively construct solutions and in the process, the

ants deposit pheromone. Basically, in the context

of combinatorial optimization problems, phero-

mones indicate the intensity of ant-trails with re-

spect to solution components, and such intensities
are determined on the basis of the influence or

contribution of each solution component with re-

spect to the objective function. An individual ant

constructs a complete solution by starting with a

null solution and iteratively adding solution com-
ponents until a complete solution is constructed.
After the construction of a complete solution,

every ant gives feedback on the solution by de-

positing pheromone (i.e., updating trail intensity)

on each solution component. Typically, solution

components which are part of better solutions or

used by ants over many iterations will receive a

higher amount of pheromone, and hence, such

solution components are more likely to be used by
the ants in future iterations of the ACO algorithm.

This is achieved by additionally making use of

pheromone evaporation in updating trail intensi-

ties (Stuetzle and Hoos, 2000).

It is to be noted that one can make use of only

one ant in every iteration of the ACO algorithm,

instead of using many ants in parallel in one ite-

ration. In the former case, the number of iterations
in the algorithm may increase, while the latter case

may result in increased computational complexity.

The consideration of parallel ants in one iteration

is highly relevant in the context of parallel-

processor computing systems because the updation

of pheromone trails due to one ant can be reflected

on the intensity of trails of other ants working in

parallel. On the other hand, the consideration of
one single ant renders the task of implementing

the ACO algorithm on a single-process comput-

ing system easy and less complex. In addition, a

complete solution that has been constructed by a

single ant can be subjected to an improvement or

local search scheme to unearth possibly the best

solution in the neighborhood. Such a consider-

ation of a single ant in ACO algorithms is quite
common (e.g. Stuetzle, 1998). In the current work,

the proposed ant-colony algorithms make use of a

single ant in every iteration.

The general structure of ACO algorithms can

be described as follows.

Step 1: Initialize the pheromone trails and para-

meters.
Step 2: While (termination condition is not met)

do the following:

construct a solution;

improve the solution by local search;

update the pheromone trail or trail inten-

sities.

Step 3: Return the best solution found.



C. Rajendran, H. Ziegler / European Journal of Operational Research 155 (2004) 426–438 429
The trails form a kind of adaptive memory
of previously found solutions and are modified

at the end of each iteration. In the context of

application of ACO algorithms to scheduling

problems, sik denotes the trail intensity (or desire)

of setting job i in position k of a sequence. It is

to be noted that for every job i for any possible

position k, a pheromone value is stored and up-

dated in each iteration of the ACO algorithm.
Hence there are (number of jobs)2 such values

of sik.

3.2. Description of the first proposed ant-colony

algorithm (M-MMAS)

The first algorithm, called M-MMAS, proposed

in this paper extends the ant-colony algorithm of
Stuetzle (1998), called MMAS, by incorporating

the summation rule developed by Merkle and

Middendorf (2000) for the single-machine total-

weighted-tardiness problem, and by modifying the

procedure for the selection of the job to be ap-

pended to the partial ant-sequence. In addition,

the M-MMAS makes use of a new local search

technique, called job-index-based local search (see
Section 3.2.2 for details of this technique), instead

of the modified first-move strategy used by Stuet-

zle.

3.2.1. Initialization of parameters in the M-

MMAS

For initializing the trail intensities, an initial

sequence is necessary. The initial sequence is gen-
erated depending upon the objective function

under consideration. In this paper the Nawaz,

Enscore and Ham (NEH) (1983) heuristic is used

to generate an initial sequence for the objective of

minimizing the makespan, and Rajendran�s (1993)

heuristic is used to generate an initial sequence for

the objective of minimizing the total flowtime of

jobs in permutation flowshops. Both these heuris-
tics are very simple to be implemented and fast to

be executed. The resulting sequence from one of

these heuristics, depending upon the objective

function under consideration, is subjected to the

proposed job-index-based local search technique,

applied three times (see Section 3.2.2). The final

sequence thus obtained is the seed sequence to the
M-MMAS. We compute the limits smax and smin

for the trail intensities sik by setting smax ¼ 1=
ðð1 � qÞZbestÞ and smin ¼ smax=5, where q denotes

the persistence of trail (1 � q being the evapora-

tion rate), and Zbest denotes the best objective-

function value obtained so far. Initially, Zbest

equals the objective-function value yielded by the

seed sequence. q is set to 0.75 in all iterations. The

initial trail intensities are chosen as sik ¼ smax for
all i and k.
3.2.2. Construction of an ant-sequence and its

improvement by a local search scheme

Starting from a null sequence, ACO algorithms

make use of trail intensities in order to determine

the job to be appended next in position k, where

16 k6 n. As indicated earlier, the trail intensity,

sik, denotes the �desire� of placing job i in position k
in a sequence. Even though this trail intensity

changes with respect to every iteration in the ant-

colony algorithm, the iteration counter is omitted
for the sake of simplicity of presentation. An ant

starts constructing a sequence by choosing a job

for the first position, followed by the choice of an

unscheduled job for the second position, and so

on. A dummy job 0 is introduced on which an ant

is set initially, and the construction of partial se-

quences begins, thereby leading to the build-up of

a complete sequence, an ant-sequence. In the case
of the M-MMAS, the following procedure is used

to choose an unscheduled job, say job i, probabi-

listically for position k:

SetTik ¼
Xk
q¼1

siq: ð4Þ

Sample a uniform random number u in the

range [0, 1].
If u6 ðn� 4Þ=n
then

among the first five unscheduled jobs as present

in the best sequence obtained so far, choose the

job with the maximum value of Tik;
else

job i is selected, from the set of first five un-

scheduled jobs as present in the best sequence
obtained so far, for position k by sampling from

the following probability distribution:



 !
430 C. Rajendran, H. Ziegler / European Journal of Operational Research 155 (2004) 426–438
pik ¼ Tik=
X
l

Tlk ; ð5Þ

where job l belongs to the set of first five un-
scheduled jobs, as present in the best sequence

obtained so far.

Note that when there are less than five jobs un-

scheduled, then all such unscheduled jobs are

considered.

The rationale behind the summation of trail

intensities is that the choice of the job for ap-
pending is based on the pheromone values up to

position k, instead of being based on the phero-

mone value with respect to position k. Moreover,

the summation value of pheromones indicates a

better estimate of the desirability of placing a job

in position k, as against the actual pheromone

value with respect to position k. In other words,

the sum of pheromone values of job i up to posi-
tion k indicates the �need� or �desire� to schedule job

i not later than position k. It is to be noted that

when the uniform random number, u, is less than

or equal to ðn� 4Þ=n, we choose the job with the

maximum value of Tik among the first five un-

scheduled jobs as present in the best sequence

obtained so far, whereas in the MMAS the job

with the maximum value of Tik among all un-
scheduled jobs is chosen.

Having thus generated a complete ant-sequence

or a complete sequence of jobs, a newly proposed

job-index-based local search procedure is applied

three times in order to improve the solution.

Let ½k	 denote the index of the job at position

k of the current seed sequence. Then the pro-

posed local search procedure can be described as
follows:

For i ¼ 1ð1Þn:

For k ¼ 1ð1Þn:

If ½k	 6¼ i
then insert job i in position k of the cur-

rent seed sequence and adjust the se-

quence accordingly by not changing the
relative positions of the other jobs;

calculate the value of objective function

of the modified sequence.
Choose the best sequence among such (n� 1)

modified sequences. If the objective-function

value is improved, then replace the current

sequence by the best one found.

The ant-sequence is taken as the initial current

seed sequence. A good feature of this local search

procedure is that it is not guided or biased by the
job ordering in any sequence, and hence, the

search may not get entrapped in local optima

early. We have experimented with a couple of

local search or improvement schemes such as the

modified first-move strategy by Stuetzle (1998) and

the overall-seed-sequence-based local search

scheme by Rajendran and Ziegler (1997a,b, 1999).

From the experimental analysis and its results, we
have found that the proposed local search tech-

nique, namely, job-index-based local search pro-

cedure, performs better than these local search

procedures in terms of enhancing the quality of

the ant-sequence. The details are not presented

here for the sake of restricting the length of the

paper.

3.2.3. Updating of trail intensities

Updating of the trail intensities is based on the

sequence obtained after the three-time application

of the job-index-based local search procedure on

the ant-sequence. Let the objective-function value

of this sequence be denoted by Zcurrent. The trail

intensities are updated as follows:

snew
ik ¼ q � sold

ik þ ð1=ZcurrentÞ;

if job i is placed in position k

in the generated sequence;

¼ q � sold
ik ; otherwise:

ð6Þ

In case of snew
ik > smax or snew

ik < smin, the trail in-

tensity snew
ik is set to smax or smin respectively.

The idea behind the setting of trail intensity is

that positions which are often occupied by certain

jobs receive a �higher amount of pheromone�, and

hence, those jobs will be placed in the corres-

ponding positions with higher probability. Fur-

thermore, evaporation of pheromone reduces the
trail intensity of a job with respect to a position

which is only seldom occupied by the job.



C. Rajendran, H. Ziegler / European Journal of Operational Research 155 (2004) 426–438 431
If the sequence obtained after the three-
time application of the job-index-based local

search procedure on the ant-sequence is superior

to the best sequence that has been obtained so far,

then the best sequence, Zbest, smax and smin are up-

dated accordingly. It is to be noted that in case of

updating the limits smax and smin, these new limits

are immediately applied to all trail intensities

snew
ik .

In the M-MMAS, we generate 40 ant-sequences

with the possible improvement of every ant-

sequence through the three-time application of the

job-index-based local search technique, and we fi-

nally obtain the best heuristic sequence. We have

ensured that the M-MMAS requires almost the

same computational time as that of the MMAS (as

implemented by us) yielding results comparable
to those presented by Stuetzle (1998). We have

observed that each of MMAS and M-MMAS

requires less than one hour of computational time

on a Pentium-3 computer with 800 MHz using

FORTRAN for solving the 90 benchmark prob-

lems from Taillard (1993).
3.3. Development of a new ACO algorithm

(PACO)

We now present the development of the pro-

posed ant-colony algorithm, called the PACO. The

PACO is quite different from MMAS in each of

the various components of the algorithm.
3.3.1. Initialization of parameters

The seed sequence for the ant-colony algo-

rithm is obtained in a way similar to the M-

MMAS, with the objective-function value set to

Zbest. This seed sequence obtained after the three-

time application of the job-index-based local

search procedure on the solution yielded by the

NEH (1983) heuristic (if the objective is to mini-

mize the makespan), or on the solution yielded by
Rajendran�s (1993) heuristic (if the objective is to

minimize the total flowtime of jobs), is indeed of

good quality. Hence, we suggest to have differen-

tial setting of the siks initially, instead of the same

or uniform setting of the siks, in the PACO as

follows:
Setsik ¼ ð1=ZbestÞ;

if ðjposition of job i in the seed

sequence to the PACO � kj þ 1Þ6 n=4;

¼ ð1=ð2 � ZbestÞÞ;

if n=4 < ðjposition of job i in the seed

sequence to the PACO � kj þ 1Þ6 n=2;

¼ ð1=ð4 � ZbestÞÞ; otherwise:

ð7Þ

The rationale behind this initial differential setting

of the siks is that the seed solution to the PACO

being good, those positions that are close to the

position of job i in the seed sequence should be
associated with larger values of the siks than those

positions that are away from the position of job i
in the seed sequence. In other words, the influence

of a good seed sequence is better reflected in such a

differential setting of the siks, as opposed to the

same setting of the siks, with respect to each posi-

tion k for job i.
Further, no limits (such as smax and smin) are im-

posed on the siks in the PACO. However, q is set

to 0.75 in all iterations, as in the case of M-

MMAS.

3.3.2. Construction of an ant-sequence and its

improvement by the proposed local search

In the PACO, the following procedure is used

to choose an unscheduled job i for position k.

Set Tik ¼
Pk

q¼1 siq and sample a uniform ran-

dom number u in the range ½0; 1	.
If u6 0:4
then

the first unscheduled job as present in the best

sequence obtained so far is chosen;

else
if u6 0:8
then

among the set of the first five unscheduled

jobs, as present in the best sequence obtained

so far, choose the job with the maximum

value of Tik;
else



432 C. Rajendran, H. Ziegler / European Journal of Operational Research 155 (2004) 426–438
job i is selected from the same set of five un-

scheduled jobs for position k as a result of

sampling from the following probability dis-

tribution:
pik ¼
�
Tik

�X
l

Tlk

�
;

where job l belongs to the set of first five

unscheduled jobs, as present in the best se-

quence obtained so far.
Note that when there are less than five jobs
unscheduled, then all such unscheduled jobs

are considered.

A complete ant-sequence is generated accord-

ingly. The resulting sequence is subjected to the job-

index-based local search scheme three times to

improve the solution. Let the objective-function

value of this resultant sequence be denoted byZcurrent.
The rationale behind the selection of the job to

be scheduled next is that the choice is governed

between the best sequence and the best value of Tik
with equal probability, and the probabilistic choice

of the job is done with half of the probability of

going in for the first unscheduled job found in the

best sequence. Moreover, the experimentation

with different probability ranges has shown the
proposed range to perform the best.

3.3.3. Updating of trail intensities

In the PACO, updating of the trail intensities is

based not only on the resultant sequence obtained

after the three-time application of the job-

index-based local search procedure on the ant-

sequence, but also on the relative distance between

a given position and the position of job i in the
resultant sequence. The trail intensities are updated

as follows.

Let h be the position of job i in the resultant

sequence.

If n6 40

then

snew
ik ¼ q � sold

ik þ ð1=ðdiff � ZcurrentÞÞ;
if jh� kj is6 1;

¼ q � sold
ik ; otherwise;
else

snew
ik ¼ q � sold

ik þ ð1=ðdiff � ZcurrentÞÞ;

if jh� kj6 2;

¼ q � sold
ik ; otherwise:

In the above, diff is defined as follows:

diff ¼ ðjposition of job i in the best sequence

obtained so far � kj þ 1Þ1=2
:

ð8Þ

The above differential setting for those positions

close to the position of job i in the resultant se-

quence is based on the premise that the trail in-

tensities of such positions close to the position of

job i should be updated in the same way, as op-
posed to those positions that are away from the

position of job i in the resultant sequence. Of

course, this differential setting is also dependent

upon the size of flowshop problem, determined

primarily by n, the number of jobs. The reasons for

the consideration of diff in updating trail intensi-

ties are that all jobs occupying their respective

positions in the resultant sequence should not have
their trail intensities increased by the same value

(as done normally in ant-colony algorithms), and

that the jobs occupying positions in the resultant

sequence closer to their respective positions in the

best sequence obtained so far should get their trail

intensities increased by larger values than the jobs

occupying positions farther from their respective

positions in the best sequence.
If the sequence obtained after the three-time

application of the job-index-based local search

procedure on the ant-sequence is superior to the

best sequence that has been obtained so far, then

the best sequence and Zbest are updated accord-

ingly.

In the PACO, we generate 40 ant-sequences

(with the possible improvement of every ant-
sequence through the three-time application of

the job-index-based local search technique), and

hence, we obtain the best heuristic sequence. The

best heuristic sequence thus obtained is finally

subjected to a job-index-based swap scheme, ap-

plied only once. In the case of job-index-based

swap scheme, we first consider job 1 (i.e., job with



Table 1

Relative performance of three heuristic procedures for the

large-sized problems, in comparison with the benchmark solu-

tions given by Taillard (1993), for the makespan-objective

n m Mean relative percentage increase

in makespan

MMAS M-MMAS PACO

20 5 0.408 0.762 0.704

10 0.591 0.890 0.843

20 0.410 0.721 0.720

50 5 0.145 0.144 0.090

10 2.193 1.118 0.746

20 2.475 2.013 1.855

100 5 0.196 0.084 0.072

10 0.928 0.451 0.404

20 2.238 1.030 0.985

Notes: 1. Sample size in every problem set is 10 and the total

number of problems is 90, generated by using the procedure

given by Taillard (1993).

2. A larger value of an entry indicates an inferior performance,

relative to the tabu search method of Taillard (1993).

3. MMAS denotes the ant-colony algorithm of Stuetzle, and M-

MMAS and PACO refer to the proposed ant-colony algo-

C. Rajendran, H. Ziegler / European Journal of Operational Research 155 (2004) 426–438 433
index 1 and not the job in position 1 in the se-
quence) and swap it with every other job, taken

one at a time. The best-swap sequence is compared

with the seed sequence, and if such a swap im-

proves the seed sequence, then the seed sequence is

updated corresponding to the best-swap sequence;

else the seed sequence is retained. The procedure is

repeated by considering the swapping of job 2,

followed by that of job 3, and so on, up to job n.
The sequence thus obtained is the final sequence

yielded by the PACO.

It is to be noted that we have undertaken a

sensitivity analysis of performance for the PACO

by varying different parameters such as those in-

volved in the choice of the job to be appended

next, and the updation of trail intensities. As for

the permutation flowshop scheduling problem, we
have found that the prescribed settings in Sections

3.3.1, 3.3.2, 3.3.3 have resulted in the best perfor-

mance of the PACO. The complete details are not

reported for the sake of concise presentation.
rithms.

4. The computational-time requirement of heuristics under

evaluation is adjusted to be the same by altering the number of

sequences generated in a heuristic, and all problems referred to

above have been solved by any heuristic in less than one hour

on a Pentium-3 computer with 800 MHz using FORTRAN.
4. Performance analysis of the M-MMAS and

PACO

We first present the performance evaluation of

the M-MMAS and PACO with respect to mini-

mization of the makespan. The test problems

for evaluating the two proposed ant-colony algo-

rithms are generated by following the procedure

given by Taillard (1993) for generating benchmark

permutation flowshop scheduling problems. These
test problems have varying sizes, with the number

of jobs varying from 20 to 100, and the number of

machines varying from 5 to 20. The problems are

solved by the M-MMAS and PACO. The values of

makespan given by the M-MMAS and the PACO

are relatively evaluated against the upper bound or

heuristic values for makespan reported by Taillard

(1993) for the benchmark problems. The mean
values of such percentage relative increases in

makespan yielded by the proposed ant-colony al-

gorithms, relative to the best makespan values re-

ported by Taillard, are noted for every problem

size, defined by (n� m). The results of evaluation

are presented in Table 1. In addition, we also report

the percentage relative increase in makespan yiel-
ded by the MMAS. Overall, it is observed from the
results that the M-MMAS and the PACO perform

better than the MMAS. The main reasons for such

a superior performance of the M-MMAS are due

to the use of summation rule and job-index-based

local search technique. It is also evident that the

PACO performs better, on an average, than the

M-MMAS, especially in the case of large-sized

problems. This better performance is mainly due
to the effectiveness of differential initial setting and

differential updation of trail intensities for different

positions with respect to a given job. In addition,

the choice of the job to be appended next to the

existing partial ant-sequence is done in the PACO

by making use of the best sequence obtained so

far, apart from considering the trail intensities.

These factors assume greater significance in en-
hancing the performance of the ant-colony algo-

rithm in the case of relatively large-sized flowshop



434 C. Rajendran, H. Ziegler / European Journal of Operational Research 155 (2004) 426–438
problems than in the case of relatively small-sized
problems.

It is evident that the best values for makespan

given by Taillard are better than the heuristic

values yielded by the proposed ant-colony algo-

rithms. The primary reason for such a perfor-

mance is that we have restricted the computational

time in the case of the proposed ant-colony algo-

rithms. To explain further, let us consider the
number of solutions enumerated by Taillard to

arrive at the best-solution values specified in his

work. For a 50-job, 20-machine permutation

flowshop problem, the total number of iterations

was 5 � 104 for each of the three replications (or

initial solutions or resolutions) in Taillard�s ap-

proach. When we follow the best-move strategy

in generating solutions in the neighborhood of a
sequence in a given iteration, we generate n se-

quences. In the proposed ant-colony algorithms

we generate 40 ant-sequences and the three-time

application of the local search procedure on each

ant-sequence generates 3 � n� ðn� 1Þ sequences.

It means that the best-solution values reported by

Taillard were obtained after generating a large

number of sequences, when compared to the total
number of sequences generated in the proposed

ant-colony algorithms. Apart from this factor of

computational effort, it is also evident that the

number of local searches required for a marginal

decrease in makespan is quite high, thereby ren-

dering the task of enhancing the performance of

ant-colony algorithms in permutation flowshop

scheduling with the makespan-objective quite dif-
ficult.

For evaluating the performance of the proposed

ant-colony algorithms with respect to the total-

flowtime objective, the results of a recent study by

Liu and Reeves (2001) are referred to. Liu and

Reeves developed a couple of new heuristics,

and compared their heuristics with a number of

existing heuristics such as those by Ho (1995),
Rajendran and Ziegler (1997b), Wang et al. (1997)

and Woo and Yim (1998). They considered the

benchmark problems of Taillard (1993), and re-

ported the best-heuristic solutions for these

benchmark problems with respect to the total-

flowtime objective. It is to be noted that no single

heuristic, considered by Liu and Reeves, has
emerged to be the best for all benchmark prob-
lems. In order to compare the solutions yielded by

the M-MMAS and PACO with the best-heuristic

solutions reported by Liu and Reeves, we proceed

as follows. It is to be noted that we need to use the

fast heuristic by Rajendran (1993), followed by the

three-time implementation of the proposed local

search scheme, to obtain the initial sequence to the

ant-colony algorithm with the objective of mini-
mizing total flowtime of jobs.

Let the best-heuristic solution, among all heu-

ristics under consideration by Liu and Reeves, and

the solutions yielded by the M-MMAS and PACO

for a given problem be denoted by F1, F2 and F3

respectively. These solutions are relatively evalu-

ated as follows:

Percentage relative increase in total flowtime of

the solution yielded by approach i

¼ ðFi � minfFk; k ¼ 1; 2 and 3gÞ
� 100=ðminfFk; k ¼ 1; 2 and 3gÞ: ð9Þ

The mean values are noted over 10 different

problems of a given size (n� m) and are reported

in Table 2. In addition, the maximum values of
percentage relative increase in total flowtime with

respect to different procedures are also reported in

the table.

It is evident from the table that the M-MMAS

and PACO yield solutions of superior quality, as

against the best-heuristic solutions reported by Liu

and Reeves, on an overall basis. We also observe

that the PACO performs better than the M-MMAS
in the case of relatively large-sized problems than in

the case of relatively small-sized problems. Such a

difference in the performance has already been

observed with respect to the makespan-objective,

and reasons have been discussed as well. We also

observe that the performance of the ant-colony

algorithms is better in the case of total-flowtime

minimization than in the case of makespan mini-
mization. The reason is that there exist different

sequences with different total-flowtime values, even

though their makespan values may be the same or

almost the same. In fact, even for a two-machine

flowshop problem, it has been found that the

variations in total flowtime of different sequences

are quite large even though their makespan values



Table 2

Relative performance of three heuristic procedures for the large-sized problems, measured in terms of mean and maximum percentage

relative increase in total flowtime with respect to the best heuristic solution

n m Relative percentage increase in total flowtime

BES (LR) M-MMAS PACO

Mean Maximum Mean Maximum Mean Maximum

20 5 1.183 2.036 0.021 0.121 0.278 0.848

10 1.393 2.170 0.010 0.105 0.284 0.680

20 1.155 1.863 0.051 0.352 0.120 0.619

50 5 0.691 1.108 0.274 0.621 0.090 0.400

10 1.377 2.377 0.392 1.167 0.144 1.120

20 1.611 3.280 0.304 0.648 0 0

100 5 0.179 0.499 0.134 0.435 0.252 0.809

10 0.755 1.671 0.351 0.998 0.065 0.428

20 1.548 3.015 0.297 1.345 0.066 0.476

Notes: 1. Sample size in every problem set is 10 and the total number of problems is 90, generated by using the procedure given by

Taillard (1993).

2. A larger value of an entry indicates an inferior performance, relative to the best performing heuristic.

3. BES (LR) refers to the best performing heuristic, among many heuristics investigated by Liu and Reeves (2001), and M-MMAS and

PACO refer to the proposed ant-colony algorithms.

C. Rajendran, H. Ziegler / European Journal of Operational Research 155 (2004) 426–438 435
are the same (see Rajendran, 1992, for details).

Hence, it appears that the permutation flowshop

scheduling problem with the makespan-objective is

�harder� to solve than the flowshop scheduling

problem with the total-flowtime objective with the
use of ant-colony algorithms.

We also report the absolute values of total

flowtime of jobs for various benchmark problems

that have been yielded by different approaches for

the benefit of future researchers who may like to

come up with new heuristics and compare their

results with our findings (see Table 3 for details).

In fact, a similar presentation of results by Liu and
Reeves has eased our burden in the sense that we

have not programmed again the heuristics con-

sidered by them in our study.
5. Summary

Of late, attempts are being made to solve
combinatorial optimization problems by making

use of ACO algorithms. Compared to other meta-

heuristics such as genetic algorithms, simulated

annealing and tabu search, relatively few attempts

have been made to solve scheduling problems using
ant-colony algorithms. In this paper, we have in-

vestigated the problem of scheduling in permuta-

tion flowshops by using ant-colony algorithms. We

have proposed two ant-colony algorithms, with

the first algorithm (M-MMAS) being an extended
version of an existing ant-colony algorithm with

the consideration of a new local search technique

and an existing methodology for the use of sum of

trail intensities. The second algorithm, called the

PACO, has been newly developed in this study.

First, the effectiveness of the proposed ant-colony

algorithms is evaluated by considering the bench-

mark problems and upper bound values for
makespan, given by Taillard. It has found that

both the proposed ant-colony algorithms perform

better than the existing ant-colony algorithm.

Subsequently, the effectiveness of the proposed

ant-colony algorithms has been evaluated by con-

sidering the objective of minimizing total flowtime

and by comparing with the best heuristic solutions

reported in a recent research study by Liu and
Reeves. The performance evaluation shows that

the proposedant-colony algorithms are clearly su-

perior to the heuristics analyzed by Liu and Re-

eves. For 83 out of 90 problems considered, better

solutions have been found by the two proposed



Table 3

Absolute total flowtime of jobs yielded by three heuristic pro-

cedures for the benchmark problems by Taillard (1993)

n m Total flowtime of jobs yielded by heuristics

for the benchmark problems by Taillard

BES (LR) M-MMAS PACO

20 5 14 226 14 056 14 056

15 446 15 151 15 214

13 676 13 416 13 403

15 750 15 486 15 505

13 633 13 529 13 529

13 265 13 139 13 123

13 774 13 559 13 674

13 968 13 968 14 042

14 456 14 317 14 383

13 036 12 968 13 021

20 10 21 207 20 980 20 958

22 927 22 440 22 591

20 072 19 833 19 968

18 857 18 724 18 769

18 939 18 644 18 749

19 608 19 245 19 245

18 723 18 376 18 377

20 504 20 241 20 377

20 561 20 330 20 330

21 506 21 320 21 323

20 20 34 119 33 623 33 623

31 918 31 604 31 597

34 552 33 920 34 130

32 159 31 698 31 753

34 990 34 593 34 642

32 734 32 637 32 594

33 449 33 038 32 922

32 611 32 444 32 533

34 084 33 625 33 623

32 537 32 317 32 317

50 5 65 663 65 768 65 546

68 664 68 828 68 485

64 378 64 166 64 149

69 795 69 113 69 359

70 841 70 331 70 154

68 084 67 563 67 664

67 186 67 014 66 600

65 582 64 863 65 123

63 968 63 735 63 483

70 273 70 256 69 831

50 10 88 770 89 599 88 942

85 600 83 612 84 549

82 456 81 655 81 338

89 356 87 924 88 014

88 482 88 826 87 801

89 602 88 394 88 269

91 422 90 686 89 984

89 549 88 595 88 281

Table 3 (continued)

n m Total flowtime of jobs yielded by heuristics

for the benchmark problems by Taillard

BES (LR) M-MMAS PACO

88 230 86 975 86 995

90 787 89 470 89 238

50 20 129 095 127 348 126 962

122 094 121 208 121 098

121 379 118 051 117 524

124 083 123 061 122 807

122 158 119 920 119 221

124 061 122 369 122 262

126 363 125 609 125 351

126 317 124 543 124 374

125 318 124 059 123 646

127 823 126 582 125 767

100 5 256 789 257 025 257 886

245 609 246 612 246 326

241 013 240 537 241 271

231 365 230 480 230 376

244 016 243 013 243 457

235 793 236 225 236 409

243 741 243 935 243 854

235 171 234 813 234 579

251 291 252 384 253 325

247 491 246 261 246 750

100 10 306 375 305 004 305 376

280 928 279 094 278 921

296 927 297 177 294 239

309 607 306 994 306 739

291 731 290 493 289 676

276 751 276 449 275 932

288 199 286 545 284 846

296 130 297 454 297 400

312 175 309 664 307 043

298 901 296 869 297 182

100 20 383 865 373 756 372 630

383 976 383 614 381 124

383 779 380 112 379 135

384 854 380 201 380 765

383 802 377 268 379 064

387 962 381 510 380 464

384 839 381 963 382 015

397 264 393 617 393 075

387 831 385 478 380 359

394 861 387 948 388 060

Note: BES (LR) refers to the best performing heuristic, among

many heuristics investigated by Liu and Reeves (2001), and M-

MMAS and PACO refer to the proposed ant-colony algorithms.

436 C. Rajendran, H. Ziegler / European Journal of Operational Research 155 (2004) 426–438
ant-colony algorithms, as compared to the solu-

tions reported by Liu and Reeves. It has also been



C. Rajendran, H. Ziegler / European Journal of Operational Research 155 (2004) 426–438 437
observed that the second proposed ant-colony al-
gorithm (PACO) performs better than the first

proposed ant-colony algorithm (M-MMAS) in the

case of relatively large-sized permutation flowshop

problems than in the case of relatively small-sized

flowshop problems. This difference in the perfor-

mance is attributed to the use of differential initial

setting and differential updation of trail intensities

in the PACO. It is hoped that more-efficient ant-
colony algorithms will be developed for scheduling

in various production systems such as flowshops,

jobshops and cellular manufacturing systems with

respect to different objectives.
Acknowledgements

The first author gratefully acknowledges the

Research Fellowship of Alexander–von-Humboldt

Foundation for carrying out this work in 2001.

The revision of the work was undertaken when the

first author was supported by the Foundation in

2002. The authors are thankful to the two referees

for the suggestions and comments to improve the

earlier version of the paper.
References

Ben-Daya, M., Al-Fawzan, M., 1998. A tabu search approach

for the flow shop scheduling problem. European Journal of

Operational Research 109, 88–95.

Campbell, H.G., Dudek, R.A., Smith, M.L., 1970. A heuristic

algorithm for the n-job, m-machine sequencing problem.

Management Science 16, B630–B637.

Dorigo, M., 1992. Optimization, learning and natural algo-

rithms (in Italian). PhD thesis, Dipartimento di Elettronica,

Politecnico di Milano, Italy.

Dorigo, M., Maniezzo, V., Colorni, A., 1996. The ant sys-

tem: Optimization by a colony of cooperating agents. IEEE

Transactions on Systems, Man and Cybernetics––Part B 26,

29–41.

Gelders, L.F., Sambandam, N., 1978. Four simple heuristics for

scheduling a flow-shop. International Journal of Production

Research 16, 221–231.

Ho, J.C., 1995. Flowshop sequencing with mean flow time ob-

jective. European Journal of Operational Research 81, 571–

578.

Ignall, E., Schrage, L., 1965. Application of the branch-and-

bound technique to some flowshop scheduling problems.

Operations Research 13, 400–412.

Ishibuchi, H., Misaki, S., Tanaka, H., 1995. Modified simulated

annealing algorithms for the flow shop sequencing prob-
lems. European Journal of Operational Research 81, 388–

398.

Johnson, S.M., 1954. Optimal two- and three-stage production

schedules. Naval Research Logistics Quarterly 1, 61–68.

Liu, J., Reeves, C.R., 2001. Constructive and composite

heuristic solutions to the PkRCi scheduling problem. Euro-

pean Journal of Operational Research 132, 439–452.

Merkle, D., Middendorf, M., 2000. An ant algorithm with a

new pheromone evaluation rule for total tardiness problems.

In: Proceedings of the EvoWorkshops 2000. In: Lecture

Notes in Computer Science, vol. 1803. Springer-Verlag,

Berlin, pp. 287–296.

Miyazaki, S., Nishiyama, N., 1980. Analysis for minimizing

weighted mean flowtime in flowshop scheduling. Journal of

the Operations Research Society of Japan 23, 118–132.

Miyazaki, S., Nishiyama, N., Hashimoto, F., 1978. An adjacent

pairwise approach to the mean flowtime scheduling prob-

lem. Journal of Operations Research Society of Japan 21,

287–299.

Nawaz, M., Enscore Jr., E.E., Ham, I., 1983. A heuristic

algorithm for the m-machine, n-job flowshop sequencing

problem. OMEGA 11, 91–95.

Nowicki, E., Smutnicki, C., 1996. A fast tabu search algorithm

for the permutation flow-shop problem. European Journal

of Operational Research 91, 160–175.

Rajendran, C., 1992. Two-machine flowshop scheduling prob-

lem with bicriteria. Journal of Operational Research Society

43, 871–884.

Rajendran, C., 1993. Heuristic algorithm for scheduling in a

flowshop to minimize total flowtime. International Journal

of Production Economics 29, 65–73.

Rajendran, C., 1995. Heuristics for scheduling in flowshop with

multiple objectives. European Journal of Operational Re-

search 82, 540–555.

Rajendran, C., Ziegler, H., 1997a. Heuristics for scheduling in a

flowshop with setup, processing and removal times sepa-

rated. Production Planning and Control 8, 568–576.

Rajendran, C., Ziegler, H., 1997b. An efficient heuristic for

scheduling in a flowshop to minimize total weighted

flowtime of jobs. European Journal of Operational Research

103, 129–138.

Rajendran, C., Ziegler, H., 1999. Heuristics for scheduling

in flowshops and flowline-based manufacturing cells to

minimize the sum of weighted flowtime and weighted

tardiness of jobs. Computers and Industrial Engineering

37, 671–690.

Stuetzle, T., 1998. An ant approach for the flow shop problem.

In: Proceedings of the 6th European Congress on Intelligent

Techniques and Soft Computing (EUFIT �98), vol. 3. Verlag

Mainz, Aachen, Germany, pp. 1560–1564.

Stuetzle, T., Hoos, H.H., 2000. Max–min ant system. Future

Generation Computer Systems 16, 889–914.

Taillard, E., 1993. Benchmarks for basic scheduling problems.

European Journal of Operational Research 64, 278–285.

Wang, C., Chu, C., Proth, J.-M., 1997. Heuristic approaches

for n=m=F =RCi scheduling problems. European Journal of

Operational Research 96, 636–644.



438 C. Rajendran, H. Ziegler / European Journal of Operational Research 155 (2004) 426–438
Widmer, M., Hertz, A., 1989. A new heuristic method for the

flowshop sequencing problem. European Journal of Oper-

ational Research 41, 186–193.
Woo, H.S., Yim, D.S., 1998. A heuristic algorithm for mean

flowtime objective in flowshop scheduling. Computers and

Operations Research 25, 175–182.


	Ant-colony algorithms for permutation flowshop scheduling to minimize makespan/total flowtime of jobs
	Introduction
	Formulation of the static permutation flowshop scheduling problem
	Description of the proposed ACO algorithms
	General structure of ant-colony algorithms
	Description of the first proposed ant-colony algorithm (M-MMAS)
	Initialization of parameters in the M-MMAS
	Construction of an ant-sequence and its improvement by a local search scheme
	Updating of trail intensities

	Development of a new ACO algorithm (PACO)
	Initialization of parameters
	Construction of an ant-sequence and its improvement by the proposed local search
	Updating of trail intensities


	Performance analysis of the M-MMAS and PACO
	Summary
	Acknowledgements
	References


