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A particularly powerful approach to the problem of dense 3D reconstruction
from images is to pose it as a volumetric labeling problem. The volume
is segmented into occupied and free space (the inside and theoutside of
an object) and the surface is extracted as the boundary in between. The
data costs are extracted from the input images either directly by computing
matching scores per voxel or by first computing depth maps andderiving a
per pixel unary potential based on the depth maps. Unary terms, approxi-
mately modelling the likelihood the depth for a given pixel agrees with the
estimate, encourage voxels in an interval just before the matched 3D point
to take the free-space label and voxels in an interval right after the matched
3D point to take the foreground label. However, this assumption does not
hold in general. Failures due to this problem lead to blowingup corners,
roofs of buildings or thin objects. Another problem is that the unary po-
tential does not model, whether the voxel is visible. The standard approach
is also not suitable for incorporating multiple candidate matches along the
viewing ray in the optimization together. Furthermore, most methods have
been designed for 3D reconstruction without semantic classes.

We propose to formulate an optimization problem which measures the
data fidelity directly in image space while still having all the benefits of a
volumetric representation. The main idea is to use a volumetric represen-
tation, but describe the data cost as a potential over rays. Traversing along
a ray from the camera center we observe free space until we first hit an
occupied voxel of a certain semantic class and we cannot assume anything
about the unobserved space behind. The potential we introduce correctly as-
signs for each ray the cost, based on the depth and semantic class of the first
occupied voxel along the ray. We are interested in finding thesmooth solu-
tion, whose projection into each camera agrees with the depth and semantic
observations. Thus, the energy will take the form:

E(x) = ∑
r∈R

ψr(xr )+ ∑
(i, j)∈E

ψp(xi ,x j ), (1)

where eachxi ∈ L is the voxel variable taking a label from the label setL

with a special labell f ∈ L corresponding to free space;R is the set of rays,
ψr(.) is the ray potential over the set of voxelsxr , E is the set of local voxel
neighbourhoods, andψp(.) is a smoothness enforcing pairwise regularizer.
Each rayr of lengthNr consists of voxelsxr

i = xr i , wherei ∈ {0,1, ..Nr −1}.
The ray potential takes the cost depending only on the first non-free space
voxel along the ray. For a 2-label problem, the potential takes the form:

ψr(xr ) :=

{

φr(min(i|xr
i 6= l f )) if ∃xr

i 6= l f

φr(Nr) otherwise,
(2)

whereNr is the length of the ray,φr(i) is the cost taken, ifi is the first
foreground pixel along the ray, andφr(Nr ) is the cost for the whole ray being
free space. We propose a solution using QPBO relaxation [1],where the
energyE(x) is transformed to a submodular energyE(x,x) with additional
variablesxi = 1−xi , and solved by relaxing these constraints. To make our
problem solvable using graph-cut, our goal is to transform these potentials
into a pairwise energy with additional auxiliary variablesz, such that:

ψr (xr) = min
z

ψq(xr
,xr

,z), (3)

whereψq(.) is pairwise submodular. Additionally, to keep the problem fea-
sible, we find a transformation, for which the number of edgesin the graph
with auxiliary variables grows at most linearly with lengthof a ray. To
achieve this goal we perform these five steps:

1. Polynomial representation of the ray potential,
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Figure 1:Our method successfully reconstructed challenging 3D datawith
high level of detail. Minor errors in the reconstructions were caused by
the combination of errors of the semantic classifier, insufficient amount data
from certain viewpoints or errors in the depth prediction for smooth texture-
less surfaces.

2. Transformation into higher order submodular potential using addi-
tional variablesx,

3. Pairwise graph construction of a higher order submodularpotential
using auxiliary variablesz,

4. Merging variables [5] to get the linear dependency of the number of
edges on length,

5. Transformation into a normal form, symmetric overx andx, suitable
for QPBO [1].

Following theα-expansion [2] approach, we decompose the multi-label op-
timization problem into a set of 2-label problems, where in each subproblem
every variable can either keep its old label or change it to anexpanded label
α. Each subproblem takes the same form as the general 2-label formulation,
and thus can be solved approximately using the proposed QPBOrelaxation.

As an input our method uses semantic likelihoods, predictedby a pixel-
wise context-based classifier from [4], and top 3 depth likelihoods obtained
by a plane sweep stereo matching algorithm using zero-mean normalized
cross-correlation. As a smoothness enforcing pairwise potential we used
the discretized anisotropic pairwise regularizer [3].

We tested our algorithm on 6 datasets - South Building, Catania, CAB,
Castle-P30, Providence and Vienna Opera. Our method managed to suc-
cessfully reconstruct all 3D scenes with a relatively high precision. Our
method managed to fix systematic reconstruction artifacts,caused by ap-
proximations in the modelling of the true ray likelihoods.
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