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Abstract

This article addresses an extension of the multi-depot vehicle routing problem in which vehicles may be replenished
at intermediate depots along their route. It proposes a heuristic combining the adaptative memory principle, a tabu
search method for the solution of subproblems, and integer programming. Tests are conducted on randomly generated
instances.
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1. Introduction

We study a variant of the multi-depot vehicle routing problem where depots can act as intermediate
replenishment facilities along the route of a vehicle. This problem is a generalization of the Vehicle Routing
Problem (VRP). The classical version of the VRP is defined on a graph G = (Vc [ Vd, A), where
Vc = {v1, v2, . . . , vn} is the customer set, Vd = {vn+1} is the depot set and A = {(vi, vj): vi, vj 2
Vc [ Vd, i 5 j} is the arc set of G. A fleet of m vehicles of capacity Q is located at vn+1. Each customer
has a demand qi and a service duration di. A cost or travel time cij is associated with every arc of the graph.
The VRP consists of determining m routes of minimal cost satisfying the following conditions: (i) every cus-
tomer appears on exactly one route; (ii) every route starts and ends at the depot; (iii) the total demand of the
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customers on any route does not exceed Q; (iv) the total duration of a route does not exceed a preset
value D.

Several algorithms are available for the VRP. Because this is a hard combinatorial problem, exact meth-
ods tend to perform poorly on large size instances, which is why numerous heuristics have been developed.
These include classical heuristics such as construction and improvement procedures or two-phase
approaches, and metaheuristics like simulated annealing, tabu search, variable neighborhood search and
evolutionary algorithms. For surveys, see Laporte and Semet [22], Gendreau et al. [15] and Cordeau
et al. [8].

In some contexts, one can assign more than one route to a vehicle. The Vehicle Routing Problem with

Multiple Use of Vehicles (VRPM) is encountered, for example, when the vehicle fleet is small or when
the length of the day is large with respect to the average duration of a route. Fleischmann [12] was probably
the first to propose a heuristic for this problem. It is based on the savings principle for route construction
combined with a bin packing procedure for the assignment of routes to vehicles. Taillard et al. [29] have
developed an adaptative memory and a tabu search heuristic, again using a bin packing procedure for
assigning routes to vehicles. Other heuristics have been proposed for the VRPM, such as those of Brandão
and Mercer [3,4] or Zhao et al. [34] based on tabu search or, in the ship routing context, the methods pro-
posed by Suprayogi et al. [28] and Fagerholt [11] which create routes by solving traveling salesman prob-
lems (TSPs) and solve an integer program (Suprayogi et al. proposed a set partitioning problem) for the
assignment part.

Another well-known generalization of the VRP is the Multi-Depot Vehicle Routing Problem (MDVRP).
In this extension every customer is visited by a vehicle based at one of several depots. In the standard
MDVRP every vehicle route must start and end at the same depot. There exist only a few exact algorithms
for this problem. Laporte et al. [20] as well as Laporte et al. [21] have developed exact branch-and-bound
algorithms but, as mentioned earlier, these only work well on relatively small instances. Several heuristics
have been put forward for the MDVRP. Early heuristics based on simple construction and improvement
procedures have been developed by Tillman [30], Tillman and Hering [32], Tillman and Cain [31], Wren
and Holliday [33], Gillett and Johnson [16], Golden et al. [17], and Raft [24]. More recently, Chao et al.
[6] have proposed a search procedure combining Dueck�s [10] record-to-record local method for the reas-
signment of customers to different vehicle routes, followed by Lin�s 2-opt procedure [23] for the improve-
ment of individual routes. Renaud et al. [26] described a tabu search heuristic in which an initial solution is
built by first assigning every customer to its nearest depot. A petal algorithm developed by the same authors
[25] is then used for the solution of the VRP associated with each depot. It finally applies an improvement
phase using either a subset of the 4-opt exchanges to improve individual routes, swapping customers
between routes from the same or different depots, or exchanging customers between three routes. The tabu
search approach of Cordeau et al. [7] is probably the best known algorithm for the MDVRP. An initial
solution is obtained by assigning each customer to its nearest depot and a VRP solution is generated for
each depot by means of a sweep algorithm. Improvements are performed by transferring a customer
between two routes incident to the same depot, or by relocating a customer in a route incident to another
depot. Reinsertions are performed by means of the GENI heuristic [13]. One of the main characteristics of
this algorithm is that infeasible solutions are allowed throughout the search. Continuous diversification is
achieved through the penalization of frequent moves.

The Multi-Depot Vehicle Routing Problem with Inter-Depot Routes (MDVRPI) has not received much
attention from researchers. A simplified version of the problem is discussed by Jordan and Burns [19]
and Jordan [18] who assumed that customer demands are all equal to Q and that inter-depot routes consist
of back-and-forth routes between two depots. The authors transform the problem into a matching problem
which is solved by a greedy algorithm. Angelelli and Speranza [2] have developed a heuristic for a version of
the Periodic Vehicle Routing Problem (PVRP) in which replenishments at intermediate facilities are allowed.
Their algorithm is based on the tabu search heuristic of Cordeau et al. [7]. A version of the problem where
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time windows are considered is proposed by Cano Sevilla and Simón de Blas [5]. The algorithm is based on
neural networks and on an ant colony system.

Our interest in the MDVRPI arises from a real-life grocery distribution problem in the Montreal area.
Several similar applications are encountered in the context where the route of a vehicle can be composed of
multiple stops at intermediate depots in order for the vehicle to be replenished. When trucks and trailers are
used, the replenishment can be done by a switch of trailers. Angelelli and Speranza [1] present an applica-
tion of a similar problem in the context of waste collection.

Our aim is to develop a heuristic for the MDVRPI and to introduce a set of benchmark instances for this
problem. The remainder of this article is organized as follows. The problem is formulated in Section 2 and
the heuristic is described in Section 3. Computational results are presented in Section 4, followed by the
conclusion in Section 5.
2. Formulation

The MDVRPI can be formulated as follows. Let G = (Vc [ Vd, A) be a directed graph where
Vc = {v1, . . . , vn} is the customer set, Vd = {vn+1, vn+2, . . . , vn+r} is a set of r depots, and
A = {(vi, vj) : vi, vj 2 Vc [ Vd, i 5 j} is the arc set. A demand qi and a service duration di are assigned to
customer i, and a cost or travel time cij is associated with the arc (vi, vj). Here we use the terms cost, travel
time, and distance interchangeably. A homogeneous fleet of m vehicles of capacity Q is available. Let s be
the fixed duration representing the time needed for a vehicle to dock at a depot. The set of all routes
assigned to a vehicle is called a rotation whose total duration cannot exceed a preset value D. A single-depot

route starts and ends at the same depot while an inter-depot route connects two different depots.
A route h is characterized by the set of customers it contains. Hence define eih and fhl coefficients as

follows:
eih ¼
1 if customer i is on route h;

0 otherwise;

�

fhl ¼

2 if route h starts and ends at depot l;

1 if route h starts or ends at

depot l; but not both;

0 otherwise.

8>>><
>>>:
Let T denote the set of all routes h satisfying
Xn

i¼1

eihqi 6 Q; ð1Þ
and
 Xr

l¼1

fhl ¼ 2. ð2Þ
Our formulation for the MDVRPI uses binary variables xk
h equal to 1 if and only if route h 2 T is

assigned to vehicle k. Also define binary variables yk
l equal to 1 if and only if the rotation of vehicle k starts

at depot l, and integer variables zk
l equal to the number of times vehicle k arrives and leaves depot l on an

inter-depot route. Define the parameter ph as the travel duration of route h. If route h starts and ends at the
same depot, then ph is obtained by solving a TSP on the vertices of h; if h is an inter-depot route, then ph is
obtained by determining a shortest Hamiltonian path linking the two depots. In addition, define the param-
eter lh corresponding to the total duration of route h as follows:
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lh ¼ sþ ph þ
Xn

i¼1

eihdi;
and define the sets:

I � T: the set of inter-depot routes;
D(S) � T: the set of routes starting and ending in S, where S � Vd;
W(S) � T: the set of routes with one depot in S and the other depot outside S, where S � Vd.

The formulation is then
Minimize
Xm

k¼1

XjT j
h¼1

phxk
h; ð3Þ

subject to
Xm

k¼1

XjT j
h¼1

eihxk
h ¼ 1; i ¼ 1; . . . ; n; ð4Þ

Xr

l¼1

yk
l 6 1; k ¼ 1; . . . ;m; ð5Þ

X
h2I

fhlxk
h � 2zk

l ¼ 0; k ¼ 1; . . . ;m; l ¼ 1; . . . ; r; ð6Þ

XjT j
h¼1

lhxk
h 6 D; k ¼ 1; . . . ;m; ð7Þ

X
h2DðSÞ

xk
h 6 jDðSÞj

X
h2WðSÞ

xk
h þ

X
l2S

yk
l

 !
;

8S � V d; k ¼ 1; . . . ;m; ð8Þ
xk

h 2 f0; 1g; 8h; 8k; ð9Þ
yk

l 2 f0; 1g; 8k; 8l; ð10Þ
zk

l integer; 8k; 8l. ð11Þ
Constraints (4) guarantee that each customer will be visited exactly once, while constraints (5) state that at
most one rotation will be assigned to every vehicle. Constraints (6) ensure that when a vehicle goes to an
intermediate depot, it also leaves it. Constraints (7) impose a limit on the total duration of a rotation. Fi-
nally, (8) are subtour elimination constraints: given S � Vd, if at least one route of vehicle k belongs to D(S)
(in which case the left-hand side of the inequality is positive), then there must exist at least one route of that
rotation in W(S), or else one of the depots of S has to be the starting depot of that vehicle�s rotation (since
otherwise the right-hand side of the inequality is equal to zero).
3. Algorithm

Because the MDVRPI is an extension of the VRP and only small instances of the VRP can be solved
exactly, it is clear that one cannot expect to solve the MDVRPI with the above formulation. We have there-
fore opted for the development of a tabu search (TS) heuristic. This choice is motivated by the success of TS
for the classical VRP and the MDVRP (see, for example, Cordeau et al. [8]).
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In this section, we will describe our algorithmic approach for the MDVRPI. It is based in part on the
adaptative memory principle proposed by Rochat and Taillard [27] where solutions are created by combin-
ing elements of previously obtained solutions. Here single-depot and inter-depot routes will be combined.
These routes will be generated by means of a tabu search heuristic applied to three types of problems result-
ing from the decomposition of the MDVRPI into an MDVRP, VRPs and inter-depot subproblems. In an
inter-depot problem, a set of minimal cost routes are generated on a network composed of customers and
two depots, where each route starts at one depot and ends at the other. From the solutions to the subprob-
lems just described, the underlying single-depot and inter-depot routes will be extracted and inserted in a
solution pool T. Next, an MDVRPI solution will be created by the execution of a set partitioning algorithm
based on the above formulation. Routes of T will therefore be selected so as to generate a set of feasible
rotations in which every customer is visited. Finally, a post-optimization phase will be performed in an
attempt to improve the solution.

This section successively describes the five components of our methodology: (1) the tabu search heuristic;
(2) the procedure applied for the generation of a solution pool; (3) the route generation algorithm; (4) the
set partitioning algorithm, and (5) the post-optimization phase. This description is followed by a pseudo-
code of the algorithm.

3.1. Tabu search heuristic

Our tabu search heuristic is based on the TS heuristic proposed by Cordeau et al. [7] which has proved
highly effective for the solution of a wide range of classical vehicle routing problems, namely the PVRP, the
MDVRP as well as extensions of these problems containing time windows [9]. We now recall the main fea-
tures of this heuristic.

Neighbor solutions are obtained by removing a customer from its current route and reinserting it in
another route by means of the GENI procedure [13]. In the MDVRP, insertions can be made in a vehicle
associated with the same depot or with another depot. To implement tabu tenures for the VRP a set of attri-
butes (i, k) indicating that customer i is on the route of vehicle k is first defined. Whenever a customer i is
removed from route k, attribute (i, k) is declared tabu, and reinserting customer i in route k is forbidden for
a fixed number of iterations h. The MDVRP works with attributes (i, k, l), meaning that customer i is on the
route of vehicle k from depot l. The tabu status of an attribute is revoked if the new solution is feasible and
of lesser cost than the best known solution having this attribute.

To broaden the search, infeasible intermediate solutions are allowed by associating a penalized objec-
tive f(s) to each solution s. This function is a weighted sum of three terms: the actual solution cost c(s),
the violation q(s) of the capacity constraints, and the violation d(s) of the duration constraints. The glo-
bal cost function is then f(s) = c(s) + aq(s) + bd(s), where a and b are positive parameters dynamically
updated throughout the search, as will be explained in Section 3.3. If the solution is feasible the two func-
tions c(s) and f(s) coincide. This mechanism was first proposed by Gendreau et al. [14] in the context of
the VRP. It allows the search to oscillate between feasible and infeasible solutions and enables the use of
simple neighborhoods which do not have to preserve feasibility. The parameter adjustment procedure
described in Section 3.3 leads to the examination of several good feasible solutions throughout the
search.

A continuous diversification mechanism is applied to penalize frequent vertex moves. When a
neighbor solution s 0 is obtained from the current solution s by adding attribute (i, k, l) and f(s 0) > f(s),
a penalty gðs0Þ ¼ c

ffiffiffiffiffiffiffiffi
nmr
p

cðsÞqikl=k is then added to f(s 0). In g(s 0), the factor c is used to calibrate the
intensity of the diversification,

ffiffiffiffiffiffiffiffi
nmr
p

is a factor associated with problem size, k is the current number
of iterations, and qikl is a counter increased by one each time attribute (i, k, l) is added to the
solution.
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3.2. Generation of the solution pool

To create the solution pool T one must solve three types of subproblem: an MDVRP, a VRP, and an
inter-depot subproblem. The VRP is solved for each of the r depots, and the inter-depot subproblem is
solved for every pair of depots. In these two cases we only consider customers that could lead to the gen-
eration of routes likely to belong to the solution of the original problem. The VRP associated with depot B

contains the following customers: (1) the nn/r customers closest to B, where 0 < n 6 1 (in a planar problem
this defines a circle centered at B), and (2) the customers having B as their closest depot. There are two main
reasons for selecting customers defined by (2): first, there is a high probability that in an optimal solution a
customer will be served by its nearest depot; also this procedure includes some remote customers that might
not be frequently considered by (1) otherwise. The control parameter nn/r limits the number of customers in
each subproblem. Fig. 1 shows the circular domain of a given subproblem. Customers lying outside the
domain but for which the considered depot is their closest one are represented by �, while depots are iden-
tified by j.

For the inter-depot subproblems, we propose a similar approach where, for a subproblem associated
with depots B and C, only customers sufficiently close to both B and C are considered for inclusion in
the inter-depot routes. In planar problems, a customer with coordinates (x, y) is selected if it satisfies the
following inequality:
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ððx� aÞ cosð/Þ þ ðy � bÞ sinð/ÞÞ2

u2
1

þ ðða� xÞ sinð/Þ þ ðy � bÞ cosð/ÞÞ2

u2
2

6 1.
This inequality defines the interior of an ellipse centered at (a, b), the midpoint of segment BC. The two
depots B and C will define the foci of the ellipse, while parameters u1 and u2 represent half the length
of the major and minor axis, respectively. The parameter / defines the angle of rotation of the ellipse.
We only consider the customers lying in the elliptical domain and those, represented by � in Fig. 2, for
which the two depots located at the foci of the ellipse are their two nearest ones.

Each VRP and inter-depot subproblem is solved r times, each time with a new domain in order to diver-
sify the solution pool, i.e., the set of solutions generated should cover a broad spectrum of characteristics
likely to arise in an MDVRPI solution. We apply to the inter-depot subproblems the same TS procedure as
for the VRP, with the exception that the distance between a customer and depot B is replaced by the dis-
tance between that customer and depot C.

3.3. Route generation algorithm

To generate an initial solution s0 for each subproblem we apply the sweep algorithm of Cordeau et al. [7].
In the VRP, at most m routes are generated in such a way that all routes, except possibly the last one, are
feasible. For the MDVRP, customers are first assigned to their closest depot and the VRP procedure is then
-100

-80

-60

-40

-20

0

20

40

60

80

100

-80 -60 -40 -20 0 20 40 60 80 100

Fig. 2. Example of an elliptical domain.
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executed on each depot. In this case, up to r infeasible routes can possibly be created. For the inter-depot
subproblems, a similar procedure is proposed where we take into account the particular structure of the
domain. In a planar problem, customers are first ordered according to the angle they make with the major
axis of the ellipse. The insertion of customers in the routes is performed as for the VRP.

Because infeasible solutions are considered during the search, a mechanism is put in place in order to
recover feasibility. Consider the function f(s) = c(s) + aq(s) + bd(s) and define T(s) as the set of routes
in solution s. The value of f(s) is obtained by computing
cðsÞ ¼
X

h2T ðsÞ
ph;

qðsÞ ¼
X

h2T ðsÞ

Xn

i¼1

eihqi

 !
� Q

" #þ
;

dðsÞ ¼
X

h2T ðsÞ
lh � D½ �þ;
where [x]+ = max{0, x}. Initially set equal to 1, parameters a and b are dynamically updated throughout
the search. When a solution is feasible with respect to capacity constraints, a is divided by 1 + d (where
d > 0); otherwise it is multiplied by 1 + d. The same applies to b with respect to duration constraints.

In order to control the cardinality of T, after solving a particular subproblem we only keep the routes
associated with a feasible solution whose cost does not exceed (1 + �)c(s*), where c(s*) is the value of the
best solution identified, and � is a positive parameter controlling the proportion of solutions that should be
kept.

3.4. Set partitioning algorithm

We now need to create a feasible solution to the MDVRPI from the pool of routes generated. We pro-
pose a set partitioning algorithm based on the mathematical formulation described in Section 2. Because T

does not include all feasible routes it would be overly restrictive to impose that each customer should be
visited only once. We will therefore transform the set partitioning problem presented earlier into a set cov-
ering problem. Also, to eliminate symmetric solutions, we impose that whenever i 6 m, customer i be served
by vehicle k, where k 6 i. Constraints (4) can now be transformed into
Xminfi;mg

k¼1

XjT j
h¼1

eihxk
h P 1; i ¼ 1; . . . ; n.
We ensure that each customer is covered only once in the final solution. The criterion applied to remove a
customer is the largest saving obtained with the GENI heuristic.

Finally, we tighten the subtour elimination constraints by making use of the information on the duration
of the routes in D(S) and on the maximal duration of a rotation. We first define the set D 0(S) as follows:

1. set D 0(S) :¼ ;;
2. while

P
h2D0ðSÞlh < D; set D0ðSÞ :¼ D0ðSÞ [ argminh2DðSÞnD0ðSÞflhg,

and we rewrite constraints (8) as
X
h2DðSÞ

xk
h 6 jD

0ðSÞj
X

h2WðSÞ
xk

h þ
X
l2S

yk
l

 !
; 8S � V d; k ¼ 1; . . . ;m.
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The idea is to use as a bound the maximal number of routes in D(S) that can be assigned to a vehicle with-
out violating the duration constraint of a rotation. The effect of this is to increase the value of the lower
bound by the linear programming relaxation of the set partitioning problem.

3.5. Post-optimization

In the post-optimization phase, we attempt to improve the solution composed of the routes of the set T 0

defined as the routes from the original pool T selected by the set partitioning algorithm. We use the tabu
search heuristic previously described with three slight modifications. First, we now consider the attributes
(i, h, k) indicating that customer i is on route h in the rotation of vehicle k. Next, the component d(s) of f(s)
is modified to take into account the assignment of more than one route to a vehicle. The new definition is
Table
Notati

n

m

r

di

qi

si

D

Q

s
x

dðsÞ ¼
Xm

k¼1

X
h2T 0

lhxk
h

 !
� D

" #þ
.

Finally, the factor used in the diversification procedure to compensate for problem size when evaluating
g(s 0) is now

ffiffiffiffiffiffiffiffiffiffi
njT 0j

p
, the square root of the number of possible attributes.

The tabu search procedure is first applied to the solution corresponding to the set T 0 of routes. Rotations
containing empty routes in the best solution are identified and empty routes are eliminated. Note that
removing inter-depot routes from a rotation may lead to an infeasible solution due, for example, to the cre-
ation of subtours, or to violations of the constraints stating that a rotation has to start and end at the same
depot. We have therefore devised an enumerative procedure to restore feasibility. The first step consists of
modifying the remaining routes of the rotation by eliminating the edges incident to the depots. All feasible
sequences of routes and depots are enumerated and the least cost rotation is identified. Obviously, the first
and last depot of the sequence must be identical. Tabu search is then reapplied to the feasible solution and
the post-optimization process is repeated until no empty route is generated by the tabu search.

3.6. Pseudo-codes of the algorithm

Our notation is summarized in Tables 1–4 and the main steps of the algorithm are described in the fol-
lowing pseudo-codes. The MDVRPI heuristic performs, in sequence, Algorithm 1, the set partitioning algo-
rithm (Cplex based) and Algorithm 2.

Algorithm 1. Route generation

T :¼ ; and � :¼ ;.
1
on used in the description of the instances

Number of customers
Number of vehicles
Number of depots
Service duration of customer i

Demand of customer i

Service time of customer i

Maximum duration of a rotation
Capacity of a vehicle
Fixed duration for a vehicle to dock at a depot
Time required for one unit of goods to be loaded in a vehicle



Table 2
Notation used in the description of the model

Sets

Vc Customer set
Vd Depot set
A Arc set
T, T 0 Route sets
I Set of inter-depot routes
D(S), D 0(S) Sets of routes starting and ending in S, where S � Vd

W(S) Set of routes with one depot in S and the other depot outside S, where S � Vd

Indices

h Route index
i Customer index
k Vehicle index
l Depot index

Coefficients

eih Indicates if customer i is on route h

fhl Indicates if route h starts and/or ends at depot l

Parameters

ph Travel duration of route h

lh Total duration of route h

Variables

xk
h Indicates if route h is assigned to vehicle k

yk
l Indicates if the rotation of vehicle k starts at depot l

zk
l Indicates the number of times vehicle k arrives and leaves depot l on an inter-depot route

Table 3
Notation used in the description of the TS algorithm

c(s) Routing cost of solution s

d(s) Excess duration of solution s

f(s) Cost of solution s

g(s) Penalty cost of solution s

q(s) Excess quantity of solution s

p Neighborhood size in GENI
s0 Initial solution
s, s0 Solutions
s* Best solution identified
T(s) Set of routes in solution s

[x]+ max{0, x}
a Penalty factor for overcapacity
b Penalty factor for overduration
c Factor used to adjust the intensity of the diversification
d Parameter used to update a and b
g Total number of iterations to be performed
h Tabu duration
k Iteration counter
qik‘ Number of times attribute (i, k, ‘) has been added to the solution
r Number of times each VRP and inter-depot subproblem is solved
� Proportion of solutions kept when solving a VRP or an inter-depot subproblem
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Table 4
Notation used in the description of the domains for VRP and inter-depot subproblems

VRP domain associated with depot B

n Percentage of customers selected in a domain
n Maximal percentage of customers not having B as closest depot that can be selected

Inter-depot domain associated with depots B and C

u1 Half the length of the major axis
u2 Half the length of the minor axis

/ Angle of rotation
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Solve the MDVRP and insert the sequence of best solutions in �. Let s* be the best found solution.
u1 Maximal percentage of the distance between B and C added in the evaluation of u1

½u2;u
0
2� Percentage interval of the length of u1 used to determine u2
for all s 2 � such that c(s) 6 (1 + �)c(s*) do
Extract the single-depot routes from s and insert them in T.
end for
for l :¼ 1, . . ., r do

VRP subproblems
for h :¼ 1, . . . ,r do
� :¼ ; and C :¼ ;.
Create a domain around depot l.
Insert in C the customers in the domain and those, lying outside, for which l is their closest depot.
Solve the VRP at depot l over customer set C and insert the sequence of best solutions in �. Let s*
be the best found solution.
for all s 2 � such that c(s) 6 (1 + �)c(s*) do

Extract the single-depot routes from s and insert them in T.
end for

end for

if l < r then
for l 0 :¼ l + 1, . . . , r do

Inter-depot subproblems
for h :¼ 1, . . . ,r do
� :¼ ; and C :¼ ;.
Create a domain around depots l and l 0.
Insert in C the customers in the domain and those, lying outside, for which l and l 0 are their
two closest depots.
Solve the inter-depot problem for depots l and l 0 over customer set C and insert the sequence
of best solutions in �. Let s* be the best found solution.
for all s 2 � such that c(s) 6 (1 + �)c(s*) do

Extract the inter-depot routes from s and insert them in T.
end for

end for

end for

end if

end for
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Algorithm 2. Post-optimization

Apply tabu search on the solution defined by T 0.
Let R be the set composed of the indexes of the vehicles having at least one empty route in their rotation.
for all k 2 R do

while R 5 ; do
for all non-empty routes in the rotation of k do

Eliminate the edges incident to the depots.
end for

Identify the least-cost rotation.
end for

Apply tabu search on the new feasible solution.
Update R.

end while
4. Computational results

This section presents a sensitivity analysis of the parameters as well as computational results. We first
describe how the benchmark instances were generated. The sensitivity analyses follow. Finally, numerical
results are presented on the randomly generated instances as well as MDVRP instances proposed by Cor-
deau et al. [7], adapted to the context of the MDVRPI.
4.1. MDVRPI: general case

The aim of the MDVRPI is the creation of at most m least cost feasible rotations such that each cus-
tomer is visited once by a route belonging to the rotation of one of the m vehicles. Preliminary tests con-
ducted on randomly generated instances with vehicles based at each depot have shown that inter-depot
routes do not occur very often in solutions since it is rarely economical to use such routes in this type of
instance. In order to create instances in which inter-depot routes will be more likely, we base all vehicles
at a central depot and we use the remaining depots as intermediate replenishment facilities.
4.2. MDVRPI with a single location of the vehicle fleet

Instances were created as for the MDVRP studied in Cordeau et al. [7]. These instances will be used as
benchmark for the calibration of the parameters.

1. Randomly generate r � 1 depots in the [�50; 50] · [�50; 50] domain.
2. Set i :¼ 1.
3. While i 6 n, do

(a) Randomly generate the coordinates of customer i in the [�100; 100] · [�100; 100] domain.
(b) Let u be a random number selected in the [0; 1] interval and U the distance between customer i and its

closest depot. If u < e�bU, set i :¼ i + 1.
All preceding random selections are made according to a continuous uniform distribution. In this
procedure, b controls the compactness of the customer clusters. This parameter was fixed at 0.05. The



Table 5
Characteristics of MDVRPI instances

Instance r n m D Q

a1 3 48 6 550 60
b1 3 96 4 1200 210
c1 3 192 5 1850 360

d1 4 48 5 600 80
e1 4 96 5 1300 230
f1 4 192 4 2000 380

g1 5 72 5 750 80
h1 5 144 4 1550 230
i1 5 216 4 2350 380

j1 6 72 4 800 100
k1 6 144 4 1650 250
l1 6 216 4 2500 400
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coordinates of the central depot were set equal to the average coordinates of the other depots. Furthermore,
let x be the time required for one unit of goods to be loaded in the vehicle and define the total service dura-
tion of customer i as di = si + xqi where the service time si and the demand qi are selected in the [1; 25] inter-
val according to a discrete uniform distribution. We set s = 15 and x = 0.25. Finally, D and Q were
determined experimentally in order to guarantee the feasibility of the instance. Table 5 summarizes the
characteristics of the instances on which the algorithm was tested.
4.3. Sensitivity analyses

Several parameters must be calibrated in order to obtain a good balance between solution quality and
computational time.
4.3.1. Parameters d, c, h, p and g
The tabu search heuristic requires the tuning of the five following parameters: (1) a parameter d control-

ling the dynamic update of a and b; (2) a parameter c controlling the diversification intensity; (3) h, the
number of iterations during which an attribute is considered tabu; (4) p, the neighborhood size in GENI;
(5) g, the total number of iterations to be performed by the algorithm.

The best values of these parameters were extensively studied by Cordeau et al. [7,9]. A conclusion of
these authors is that the best parameter values are remarkably stable over a wide range of problems such
as the VRP, the MDVRP, the PVRP and variants of these problems with time windows. Setting d = 0.5,
c = 0.015, h = [7.5 log10 n] (where [x] represents the integer closest to x), and p = 3 is recommended.
Because our problem has a structure similar to that of the VRP and the MDVRP we have used the same
settings for d, c, h and p. The number g of iterations is left to the user.
4.3.2. Parameters n, n, u1, u1, u2, ðu2;u
0
2Þ, r and �

Having fixed most of the tabu search parameters, we now discuss those defining the VRP and inter-depot
domains. The parameter n shaping the boundary of the VRPs is selected, as mentioned earlier, in the ]0;1]
interval according to a continuous uniform distribution. However, for a VRP associated with depot B, since
customers for which the depot is their closest one are considered, the value of n is chosen so that up to n
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percent of the customers closest to B, but not having B as their closest depot, can be selected. The param-
eters u1 and u2 defining the region in the inter-depot subproblems are determined as follows. Consider the
problem associated with depots B and C and let cBC be the distance between these two depots. Since in a
planar instance u1 corresponds to half the length of the major axis going through the depots, at least half
the distance between the two depots will be assigned to it. Also, we add a random value selected in the
½0; u1cBC� interval, where 0 6 u1 6 1, so that u1cBC represent a certain percentage of cBC. Consequently
u1 :¼ cBC=2þ uu1cBC, where u 2 [0; 1] is a randomly chosen number according to a continuous uniform dis-
tribution. Finally, once u1 is set, the length of the half-axis u2 will be randomly selected in the ½u2u1; u

0
2u1�

interval with 0 6 u2 < u02 6 1 which defines u2 as a certain percentage of u1. Therefore, u2 :¼ uu1, where
u 2 ½u2; u

0
2�. The values of u1, u2 and u02 will be discussed next. The parameters were analyzed jointly since

tight relations can be expected among them.
To determine the value assignment to the parameters just described, a preliminary version of the algo-

rithm was tested on the instances described in Section 4.2. The parameters r and �, defining respectively the
number of times each VRP or inter-depot subproblem is solved, and the proportion of solutions to keep
when solving a subproblem, were set equal to 10 and 0.01. These values were selected so as to create a diver-
sity of solutions possessing characteristics that might arise in good MDVRPI solutions. The value of g was
set equal to 7500 for the VRP and inter-depot subproblems, and to 15,000 for the MDVRP. In the post-
optimization phase, preliminary tests have shown that recursive calls to the tabu search heuristic require a
decreasing number of iterations to adequately explore the solution space. That is why g was fixed at 45,000
in the first call and at 30,000 in the subsequent calls.

Tests have shown that allowing the selection of large inter-depot domains leads, on average, to better
solutions. Larger domains generate larger clusters of customers, resulting in the creation of superior route
structures. However, because more customers are considered each time a subproblem is solved, more routes
are generated and the size of T increases. Two combinations of parameters stand out: n ¼ 0:2, u1 ¼ 1,
ðu2, u02Þ ¼ ð0:5; 1Þ and n ¼ 0:6, u1 ¼ 1, ðu2, u02Þ ¼ ð0:25; 0:5Þ. The first parameter combination generates
better results on average but requires more computational time on large size instances. The second one
produces slightly worse results on average but yields more stable computational times. Further tests
have shown that the second parameter combination, combined with � = 0.01 and r = 12 yields the best
results.

4.4. Results on benchmark instances

We now present the results of tests conducted on the 12 MDVRPI instances of Table 5 and on a set of
instances derived from the MDVRP instances of Cordeau et al. [7]. These instances and the best known
solutions are available at http://www.hec.ca/chairedistributique/data/. They vary in size from n = 48 to
n = 288, which is consistent with the size of the benchmark instances commonly used for the MDVRP
(see [7]). The algorithm was coded in C and the set covering problem was solved with CPLEX 7.1. Tests
were run on a Prosys, 2 GHz computer. All computations were performed in double precision arithmetic
and the final results are reported with two significant digits after the decimal point.

4.4.1. Results on randomly generated instances

The algorithm was executed with the following parameter values: n ¼ 0:6, u1 ¼ 1, ðu2;u
0
2Þ ¼ ð0:25; 0:5Þ,

r = 12, � = 0.01. The number of iterations g is set equal to 15,000 in the solution of the MDVRP, and to
5000 in the VRP and inter-depot subproblems since tests have shown that a sufficient exploration of the
solution space is performed with these values. Furthermore, the first two executions of the tabu search heu-
ristic in the post-optimization phase seemed to be the most crucial since it is during those calls that the
structure of the solution is mostly modified. We have therefore set g = 35,000 in the first call, 25,000 in

http://www.hec.ca/chairedistributique/data/


Table 6
Solutions obtained on MDVRPI instances

Instance cðs�Þ c(sb) % %b %w jT j tgen tspa tpo ttot

a1 1211.28 1179.79 2.67 2.00 3.10 317.90 2.44 1.40 0.74 4.58
b1 1232.67 1217.07 1.28 0.00 2.43 555.30 6.36 0.23 2.58 9.17
c1 1893.01 1886.15 0.36 0.11 0.66 1340.50 23.08 3.04 10.10 36.22
d1 1076.31 1059.43 1.59 0.00 3.48 350.90 2.57 4.93 1.05 8.55
e1 1311.60 1309.12 0.19 0.00 1.89 469.10 7.46 0.49 5.57 13.52
f1 1601.54 1576.33 1.60 1.01 2.18 1107.50 21.18 4.27 15.95 41.41
g1 1202.00 1181.13 1.77 0.83 2.79 641.40 5.01 48.33 1.88 55.22
h1 1598.51 1547.25 3.31 1.26 5.83 866.30 13.97 8.60 9.49 32.07
i1 1976.11 1927.99 2.50 0.92 3.27 1334.100 25.81 6.09 19.11 51.01
j1 1161.77 1120.65 3.67 2.12 6.56 916.10 7.39 48.99 2.53 58.90
k1 1618.45 1586.92 1.99 0.00 3.79 1568.50 17.37 39.55 7.70 64.61
l1 1917.08 1884.92 1.71 0.68 3.22 2002.80 34.20 48.38 21.69 104.27

Average 1483.36 1456.40 1.89 0.74 3.27 955.87 13.90 17.86 8.20 39.96
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the second one and 15,000 in the following calls. The heuristic was executed ten times on each of the ran-
domly generated instances. Table 6 provides results. The column headings are defined as follows:

• cðs�Þ, the average value of the solutions over the ten runs;
• c(sb), the value of the best solution identified throughout the sensitivity analyses;
• %, the gap in percentage between the average value of the solutions and the best known solution;
• %b, the percentage gap between c(sb) and the best solution found among the ten solutions generated;
• %w, the percentage gap between c(sb) and the worst solution identified among the ten solutions obtained;
• jT j, the average cardinality of the set T;
• tgen, the average time, in minutes, spent on route generation;
• tspa, the average time required by the set partitioning algorithm;
• tpo, the average time of the post-optimization phase;
• ttot, the average total computational time.

The average is computed and presented in bold at the end of the corresponding column.
We observe that the average percentage gap between the average and best solution values for each

instance is 1.89% and the average percentage gap between the overall best and worst values over the ten
runs on each instance is 3.27%, which is reasonable given the many random components of the algorithm.
More stability can be reached through the use of higher values for r or � and at the expense of longer com-
putational times. Computational times are closely related to instance size and to the tightness of constraints
(1) and (7). For a given instance, the variability in computational time is mostly explained by the time spent
in the solution of the set covering problem.

Fig. 3 depicts the best solution obtained for instance c1. The central depot is identified by d and the
other depots by j. Every vehicle route is represented by a different line type. We can distinguish four rota-
tions, each composed of two inter-depot routes.

4.4.2. Results on the Cordeau, Gendreau and Laporte instances

Ten new instances were generated from those proposed by Cordeau et al. [7] for the MDVRP. These
instances contain between 48 and 288 customers as well as four or six depots. In order to adapt the
instances to the MDVRPI, a central depot was added at the centroı̈d of the other depots. The resulting
instances contain either five or seven depots. The values of D and Q were determined experimentally to
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Fig. 3. Best solution for instance c1.

Table 7
New MDVRPI instances

Instance r n m D Q

a2 5 48 4 600 150
b2 5 96 4 1150 200
c2 5 144 4 1700 250
d2 5 192 3 2250 300
e2 5 240 3 2800 350
f2 5 288 3 3350 400

g2 7 72 4 950 175
h2 7 144 4 1800 250
i2 7 216 3 2650 325
j2 7 288 3 3500 400
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guarantee feasibility. Table 7 summarizes the main characteristics of the modified instances and Table 8
presents the results. Again, the algorithm was executed ten times on each instance. The behaviour of the
heuristic is similar to that observed on the randomly generated instances. We can, however, note that a sub-
stantial computational time is required for the last two instances.



Table 8
Solutions obtained on new MDVRPI instances

Instance cðs�Þ c(sb) % %b %w jT j tgen tspa tpo ttot

a2 1005.16 997.94 0.72 0.23 1.30 259.90 3.26 1.71 1.41 6.39
b2 1333.20 1307.28 1.98 0.00 2.95 683.10 7.89 2.64 4.19 14.72
c2 1792.46 1747.61 2.57 0.22 4.41 1100.70 16.98 35.60 9.10 61.68
d2 1898.21 1871.42 1.43 0.30 2.41 1494.90 22.62 6.12 11.80 40.54
e2 1995.75 1942.85 2.72 1.61 3.35 1539.20 27.45 26.38 19.95 73.78
f2 2312.15 2284.35 1.22 0.62 1.67 2637.20 44.81 92.22 25.19 162.22
g2 1185.93 1162.58 2.01 0.00 5.36 714.10 8.10 18.53 2.89 29.51
h2 1611.75 1587.37 1.54 0.38 3.11 1787.20 21.08 130.01 9.70 160.79
i2 1998.20 1972.00 1.33 0.34 2.51 3950.90 58.39 247.13 16.89 322.41
j2 2325.18 2294.06 1.36 0.39 1.92 3277.40 61.99 162.17 32.70 256.85

Average 1745.80 1716.75 1.69 0.41 2.90 1744.46 27.26 72.25 13.38 112.89
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5. Conclusion

We have considered the MDVRPI, an extension of the MDVRP in which vehicles can be replenished at
intermediate depots along their route. This problem has applications notably in distribution and collection
management. The presence of intermediate depots adds considerable difficulties to the standard MDVRP.
The MDVRPI has received relatively little attention in the past. We have proposed a three-phase method-
ology based on adaptative memory and tabu search for the generation of a set of routes, and on integer
programming in the execution of a set partitioning algorithm for the determination of least cost feasible
rotations. Finally, a post-optimization phase was applied to the routes. The algorithm was tested on ran-
domly generated instances and on benchmark instances derived from those proposed for the MDVRP by
Cordeau et al. [7]. The heuristic exhibits a robust behaviour and reasonably fast running times. Because the
MDVRPI is a new problem, no previous statistics are available but we hope our results will enable other
researchers to produce comparative results.
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