
ORIGINAL RESEARCH ARTICLE
published: 18 September 2014
doi: 10.3389/fphy.2014.00056

Discrete optimization using quantum annealing on sparse

Ising models

Zhengbing Bian 1, Fabian Chudak 1, Robert Israel1, Brad Lackey2, William G. Macready1* and
Aidan Roy1

1
D-Wave Systems, Burnaby, BC, Canada

2 Department of Computer Science, Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, MD, USA

Edited by:

Jacob Biamonte, ISI Foundation,

Italy

Reviewed by:

Mauro Faccin, ISI Foundation, Italy

Maria Kieferova, Slovak Academy of

Sciences, Slovakia

Andrew Lucas, Harvard University,

USA

Travis S. Humble, Oak Ridge

National Laboratory, USA

*Correspondence:

William G. Macready, D-Wave

Systems, 3033 Beta Ave, Burnaby,

BC V5G 4M9, Canada

e-mail: wgm@dwavesys.com

This paper discusses techniques for solving discrete optimization problems using quantum

annealing. Practical issues likely to affect the computation include precision limitations,

finite temperature, bounded energy range, sparse connectivity, and small numbers of

qubits. To address these concerns we propose a way of finding energy representations

with large classical gaps between ground and first excited states, efficient algorithms for

mapping non-compatible Ising models into the hardware, and the use of decomposition

methods for problems that are too large to fit in hardware. We validate the approach

by describing experiments with D-Wave quantum hardware for low density parity check

decoding with up to 1000 variables.

Keywords: sparse Ising model, quantum annealing, discrete optimization, penalty functions

1. INTRODUCTION

D-Wave Systems manufactures a device [1–4] that uses quantum

annealing (QA) to minimize the dimensionless energy of an Ising

model

E(sss|hhh, JJJ) =
∑

i ∈ V(G)

hisi +
∑

(i,j) ∈ E(G)

Ji,j sisj. (1)

Here we have spin variables si ∈ {−1, 1} indexed by the vertices

V(G) of a graph G fixed by the device with allowed pairwise inter-

actions given by the edges E(G) of this graph, and where the hi and

Ji,j dimensionless coefficients are real-valued.

QA was proposed in Finilla et al. [5] and Kadowaki and

Nishimori [6] as a method to optimize discrete energy functions.

More recently, similar ideas were generalized to full quantum

computation [7, 8]. Here we explore practical implementation of

QA. The quantum annealing process minimizes the Ising energy

by evolving the ground state of an initial Hamiltonian HHH0 =
∑

i ∈ V(G) σσσ
x
i to the ground state of a problem Hamiltonian HHHP =

∑

i ∈ V(G) hiσσσ
z
i +

∑

(i,j) ∈ E(G) Ji,j σσσ
z
i ⊗ σσσ z

j . The ground state of HHH0

is a superposition state in which all spin configurations are equally

likely, while at the end of the process the spin configurations with

smallest energy with respect to HHHP are most likely to be measured.

The efficiency of QA is determined in part by the energy gap

separating ground and excited states during evolution. However,

different representations of the same optimization problem may

give different quantum gaps, and it is very difficult to know this

gap in advance.

In this report, we focus not on problem representations giving

rise to larger quantum gaps, but on representations ameliorat-

ing the limitations imposed by current experimental hardware.

In particular, we observe that the following issues are detrimental

for solving real world problems [9]:

1. Limited precision/control error. Physical devices impose limita-

tions on the precision to which the programmable parameters

hhh, JJJ can be specified. Moreover, since the Ising model is only

an approximation to the underlying physics there may be sys-

tematic errors causing a discrepancy between programmed hhh, JJJ

and the effective Ising approximation. To maximize the per-

formance of QA in hardware we seek problem representations

that are insensitive to these control errors.

2. Limited energy range/finite temperature. Technological limita-

tions restrict the range of energy scales of hhh, JJJ relative to the

thermal energy kBT. For problems having few ground states

and exponentially many excited states within kBT a limited

range makes the optimization challenging.

3. Sparse connectivity. It is difficult in hardware to realize all pair-

wise couplings as the number of couplings grows as n2, for

an n-qubit system. Thus, QA hardware offering large num-

bers of variables is likely to offer only sparse connectivity.

Figure 1 shows an example of the connectivity graph G for

recent hardware supplied by D-Wave Systems. Optimization

problems of practical interest require coupling significantly

different from G.

4. Small numbers of qubits. While Ising problems may be dif-

ficult to minimize even at scales of several hundred vari-

ables, real-world problems are often significantly larger.

Moreover, the translation of any optimization problem

into sparse Ising form will almost always require addi-

tional ancillary variables thereby increasing the size of the

problem.

www.frontiersin.org September 2014 | Volume 2 | Article 56 | 1

PHYSICS

http://www.frontiersin.org/Physics/editorialboard
http://www.frontiersin.org/Physics/editorialboard
http://www.frontiersin.org/Physics/editorialboard
http://www.frontiersin.org/Physics/about
http://www.frontiersin.org/Physics
http://www.frontiersin.org/journal/10.3389/fphy.2014.00056/abstract
http://community.frontiersin.org/people/u/177397
http://community.frontiersin.org/people/u/177103
http://community.frontiersin.org/people/u/177104
http://community.frontiersin.org/people/u/176923
http://community.frontiersin.org/people/u/156462
http://community.frontiersin.org/people/u/176730
mailto:wgm@dwavesys.com
http://www.frontiersin.org
http://www.frontiersin.org/Interdisciplinary_Physics/archive

Bian et al. Optimization with sparse Ising models

FIGURE 1 | D-Wave’s recent generation Chimera connectivity graph G. Vertices indicate spin-valued variables represented by programmable qubits (hi ’s),

and edges indicate programmable couplers (Ji,j ’s). G is a lattice of K4,4 unit cells where missing qubits are the result of fabrication defects.

The detrimental impact of hardware limitations (1) and (2) may

be mitigated by finding problem representations in which there

is a large (classical) gap between Ising ground and excited states.

Notice that this does not guarantee that quantum gaps get any

larger, though it seems unlikely they get worse. To deal with issue

(3) we introduce additional variables to mediate arbitrary con-

nectivity. For instance, ferromagnetically coupled spins can act as

“wires” transporting long-range interactions; in general, the extra

variables can take a more subtle role as ancillary variables. Finally,

for issue (4), we demonstrate methods by which large problems

may be solved through decomposition into smaller subproblems.

In addressing these practical limitations we focus on solv-

ing Constraint Satisfaction Problems (CSPs) involving a finite

set of binary variables. That is, we have a set of variables si ∈

{−1, 1}, i = 1 . . . n, and a set of constraints, each corresponding

to a non-empty subset FFFj of {−1, 1}n (constituting the configura-

tions allowed by the constraint), and we wish to find sss ∈
⋂

j FFFj.

To represent such a problem using an Ising model, we con-

struct an Ising-model penalty function for each constraint FFFj.

We write a penalty function as PenFj
(zzz) = PenFj

(sss,aaa) where sss are

the “decision” variables upon which FFFj depends and aaa are ancil-

lary variables. This function should be represented in the Ising

form (1) (with an additional constant offset for convenience) and

must satisfy:

min
aaa

PenFj
(sss,aaa)

{

= 0 if sss ∈ FFFj

≥ g if sss /∈ FFFj

(2)

where g > 0. We call g the gap of the penalty function. While a

decision variable may be involved in many different constraints,

the sets of ancillary variables for different constraints are disjoint.

In general, larger gaps make it more likely that the hardware will

find a solution satisfying the constraints and offers protection

against noise and precision limitations.

We add the penalty functions for each constraint to obtain an

Ising model for our system of decision and ancillary variables. For

any configuration of the decision variables that satisfies all the

constraints, there will be some setting of the ancillary variables

that makes all the penalty functions 0. On the other hand, any

configuration of decision variables violating some constraint will

have energy ≥ g. Thus, a ground state of the system solves the CSP

if a solution exists.

We also address Constrained Optimization Problems (COPs),

where in addition to the constraints FFFj there is an objective to be

minimized over the feasible configurations. This can be accom-

plished by adding more terms to the Hamiltonian expressing the

objective in Ising form. The objective should be scaled so that it

does not overcome the penalty functions, causing the appearance

of ground states that do not satisfy the constraints. In this case

also, a larger gap g allows for better scaling of the objective.

This report shows how CSPs and COPs can be represented to

ameliorate the hardware limitations listed above. The techniques

we present are applicable to any hardware device offering only

sparse pairwise variable interaction. In Section 2.1, we consider

how to construct a penalty function for a given constraint with the

largest possible gap, subject to bounds on the h’s and J’s imposed

by the hardware. We supply a novel algorithm which exploits the

sparsity of the hardware graph G. In Section 2.2, we consider how

to fit a collection of penalty functions (and the corresponding

graphs) onto a hardware graph of sparse connectivity. Generally,

Frontiers in Physics | Interdisciplinary Physics September 2014 | Volume 2 | Article 56 | 2

http://www.frontiersin.org/Interdisciplinary_Physics
http://www.frontiersin.org/Interdisciplinary_Physics
http://www.frontiersin.org/Interdisciplinary_Physics/archive

Bian et al. Optimization with sparse Ising models

each variable participates in several constraints, necessitating the

use of embedded chains of vertices of the hardware graph repre-

senting a single variable. We present a new heuristic embedding

algorithm which scales well to large problems sizes. In Section 2.3,

we consider how to deal with problems that are too large to be

embedded in the hardware graph. We split the problem into sub-

problems small enough to embed, and coordinate solutions of

the subproblems. We explore two coordination approaches: Belief

Propagation (BP) and Dual Decomposition. Section 3 presents

experimental results on using the D-Wave hardware to decode

LDPC (low-density parity-check) codes [10, see Ch. 47]. Here,

each constraint is a parity check on a small set of bits, and the

objective is to minimize the Hamming distance to a received vec-

tor subject to satisfying all parity checks. Using the techniques

presented in this paper on hardware very similar to Figure 1, we

were able to decode problems with up to 1000 variables that were

not correctly decoded by the standard BP decoding algorithm.

2. METHODS

2.1. MAPPING PROBLEMS TO ISING MODELS

This section provides an algorithm to find Ising representations

of constraints with large classical gaps. To emphasize the lin-

ear dependence of the Ising energy on its parameters we write

Equation (1) as1

Pen(zzz|θθθ) = 〈θθθ,φφφ(zzz)〉

where θθθ =
(

θ0, (θi)i ∈ V(G), (θi,j)(i,j) ∈ E(G)

)

and φφφ(zzz) =
(

1, (zi)i ∈ V(G), (zizj)(i,j) ∈ E(G)

)

. Here θi are the local fields

hi, θi,j are the couplings Ji,j, and θ0 represents a constant energy

offset. When zzz = (sss,aaa), we implicitly identify certain nodes

in V(G) as decision variables sss, and other nodes as ancillary

variables aaa. We assume there are n decision variables and na

ancillary variables, and that the assignment of these variables to

nodes (qubits) is given. The hardware’s lower and upper bounds

on the parameters are denoted by θθθ and θθθ respectively (e.g., for

D-Wave hardware hi ∈ [−2, 2] and Ji,j ∈ [−1, 1]).

For the purpose of this section we will assume that the number

of variables, n + na, is not too large, say less than 40. We will also

require that the subgraph induced by the ancillary variables, Gaaa,

has low treewidth. This assumption allows us to efficiently enu-

merate the smallest k energy states of any Ising model in Gaaa for,

say, k ≤ 10000. The treewidth of the Chimera graph in Figure 1

that consists of N × N tiles of complete bipartite graphs K4,4 is

4N. In our experiments, we used up to 4 × 4 Chimera tiles, so the

tree width of Gaaa was at most 16.

We maximize the penalty gap g separating sss ∈ FFF from sss �∈ FFF

subject to the bounds on θθθ . This criterion gives rise to the

following constrained optimization problem

max
g,θθθ

g (3)

subject to 〈θθθ,φφφ(sss,aaa)〉 ≥ 0 ∀sss ∈ FFF,∀aaa (4)

1We indicate the energy as Pen, instead of E, to remind the reader this energy

function represents a penalty function.

〈θθθ,φφφ(sss,aaa)〉 ≥ g ∀sss �∈ FFF,∀aaa (5)

∃ aaa : 〈θθθ,φφφ(sss,aaa)〉 = 0 ∀sss ∈ FFF (6)

θθθ ≤ θθθ ≤ θθθ.

Constraint (5) separates all sss �∈ FFF, while constraints (4) and (6)

make sure that the minimum penalty for sss ∈ FFF is 0 [note that

constraints (4)–(6) ensure (2)]. Here, constraint (6), involving

the disjunction over aaa, makes this problem difficult since we do

not know which of the ancillae settings gives zero energy for a

particular feasible sss, i.e., what is aaa⋆(sss) at which
〈

θθθ,φφφ
(

sss,aaa⋆(sss)
)〉

=

0? However, we note that solving for θθθ given aaa⋆(sss), for sss ∈ FFF,

is a linear programme, and can be made relatively scalable in

spite of the exponential number of constraints (the low treewidth

assumption makes cut generation tractable [11]). Using binary

variables and linear constraints, it is straightforward to transform

this optimization problem into a mixed integer linear programme

(MILP). Commercial MILP solvers can typically solve this prob-

lem if |V(G)| is no larger than about 10. For larger problems these

solvers may be ineffective, partly because the linear programme

relaxations are typically weak. We propose a method which scales

better than a MILP.

To address the disjunctive constraint it is easiest to encode aaa⋆(sss)

by introducing na|FFF| Boolean-valued (0/1) optimization variables

β(sss, i) for sss ∈ FFF defined so that 2β(sss, i) − 1 = a⋆
i (sss). The short-

hand βββ(sss) is used to indicate the vector of length na whose i-th

component is β(sss, i). Rather than directly maximizing g we have

found empirically that it is faster to fix a g value and solve the

following feasibility problem, FEAS(θθθ,βββ), to identify θθθ and βββ ≡

{βββ(sss) | sss ∈ FFF}:

FEAS(θθθ,βββ): find θθθ,βββ such that
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

〈θθθ,φφφ(sss,aaa)〉 ≥ 0 ∀sss ∈ FFF, ∀aaa

〈θθθ,φφφ(sss,aaa)〉 ≥ g ∀sss �∈ FFF,∀aaa

2βββ(sss) − 111 = aaa �⇒
〈

θθθ,φφφ
(

sss,aaa
)〉

= 0 ∀sss ∈ FFF, ∀aaa

θθθ ≤ θθθ ≤ θθθ.

Separately, we find the largest g for which FEAS(θθθ,βββ) is satisfi-

able. Notice that in this formulation we ground constraint (6) by

considering all possible ancilla settings aaa. We solve FEAS(θθθ,βββ)

with Satisfiability Modulo Theory (SMT) solvers. SMT [12] gen-

eralizes Boolean satisfiability by allowing some Boolean variables

to represent equality/inequality predicates over additional con-

tinuous variables. As mentioned earlier, for any given setting of

Boolean variables, finding the continuous variables θθθ is a linear

programme. This linear programme can be solved using a vari-

ant of the simplex method [13] that can efficiently propagate new

constraints and infer “nogoods” on the βββ variables. A number of

solvers for SMT are available, and experiments here rely on the

MathSat solver [14].

A naive representation of FEAS(θθθ,βββ) requires 2n + na inequal-

ity constraints, 2na |FFF| implication constraints and |V(G)| +

|E(G)| bound constraints. However, we can significantly reduce

the number of constraints by exploiting the fact that Gaaa has

low treewidth. This allows us to solve any Ising model in

Gaaa using dynamic programming, or more specifically, variable

www.frontiersin.org September 2014 | Volume 2 | Article 56 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Interdisciplinary_Physics/archive

Bian et al. Optimization with sparse Ising models

elimination (VE). VE exploits the observation that summa-

tion distributes over minimization, i.e., min (a + b, a + c) = a +

min (b, c). Thus, to minimize a sum of local interactions we pick

an ordering in which to minimize (eliminate) one ai variable at

a time, and push minimizations as far to the right in the sum-

mation as possible. If we record these minimizations in tables

then they can be reused in different contexts to save recomputa-

tion. Bucket elimination [15] is a convenient way to structure this

memoization, and can be encoded nicely within our constraint

model.

More concretely, we solve an Ising model in Gaaa by storing par-

tial computations and spin states in tables as follows. Suppose that

ancilla variables are eliminated in the order ana , ana − 1, . . . , a1.

Let Vna be the set of ancilla variables adjacent to ana in Gaaa. Clearly,

for each setting of all variables in Vna we can deduce the opti-

mal value of ana . This information is collected in Tna , a table

of size 2|Vna |. This table is assigned to the variable of largest

index in Vna (alternatively, one can think that the variables in

Vna become induced neighbors of each other). In general, Vi con-

sists of the neighbors of variable ai together with the variables

on the tables assigned to ai but excluding ai itself (alternatively

all its neighbors and induced neighbors). We then create Ti, a

table of size 2|Vi|, for all possible values of variables in Vi. Notice

that for each setting of the variables in Vi we can calculate the

smallest contribution to the objective of variable ai by adding

linear and quadratic local terms to values from previously gen-

erated tables. This information is stored in Ti and assigned to

the variable of largest index in Vi (alternatively, the variables

in Vi become induced neighbors of each other). In this way,

after all variables have been eliminated we end up with one or

more tables with a single entry (i.e., the corresponding Vi is

empty). The sum over the values stored in these singleton tables

is the value of the optimal solution of the Ising model. Notice

that the storage necessary for the tables is O(
∑na

i = 1 2|Vi|). For

our work here, the important observation is that one can eas-

ily find a variable elimination order for which max i |Vi| is the

treewidth of Gaaa using Gogate and Dechter [16]. In what fol-

lows, we assume that ancilla variables are ordered using this

ordering.

In our case, the constraints are not as simple as just solving

an Ising model in Gaaa, since some of the coefficients are them-

selves variables (entries of θθθ). Nevertheless, in this parametric

Ising model, each table entry can be replaced by a continuous

variable mi(vvvi|sss) (a message conveying all required information

from previously eliminated variables), indexed by the decision

variable setting sss and a setting vvvi of variables in Vi. Thus, the

constraints on sss Equations (4)–(6) become

∑

i |Vi = ∅

mi(∅ | sss) ≥ g ∀sss �∈ FFF and

∑

i |Vi = ∅

mi(∅ | sss) = 0 ∀sss ∈ FFF . (7)

The purpose of message mi(vvvi|sss) is to eliminate the ancilla setting

of ai. Since in this case the Ising model is defined by variables θθθ ,

we do not know which setting of ai makes the contribution to

the Ising model smallest. However, we can upper bound mi(vvvi|sss)

using the two possible values of ai, imposing two inequalities on

mi(vvvi|sss). This suffices for the case when sss �∈ FFF because the mes-

sages will be themselves a lower bound on the value of the Ising

model and we only require this value to be at least g in (7). When

sss ∈ FFF, we must make sure that the message takes the exact min-

imum value for the parametric Ising model. We impose these

constraints by making sure that when ai corresponds to β(sss, i),

we lower bound the message so it takes the correct value.

2.1.1. Implementation concerns

For some problems many of the constraints arising from variable

elimination are redundant, and many message variables can be

shown to be equal. Eliminating such redundancies can dramati-

cally shrink the size of FEAS(θθθ,βββ). Further consolidation can be

obtained by exploiting automorphisms of G, and gauge symme-

tries of the Ising energy 〈θθθ,φφφ(zzz)〉. Lastly, we note that the order

in which constraints are presented to the SMT solver can signifi-

cantly impact solving time. We have found that running multiple

SMT solver instances each with a random shuffling of constraints

often yields at least one solution quickly.

2.1.2. Scalability

FEAS(θθθ,βββ) can be very difficult to solve (particularly at larger g).

Currently, we are limited to problems defined on graphs G with at

most 30–50 nodes, and up to |FFF| = 1000 feasible configurations.

To scale to larger sizes requires heuristics which give suboptimal

gaps. One approach to better scaling is through graph embedding.

With embedding a problem is reduced to pairwise interactions

without regard for the connectivity this reduction may generate.

The connectivity is then mimicked in hardware with strong fer-

romagnetic interactions that slave qubits together: techniques for

doing so are discussed in Section 2.2.

2.1.3. Examples

Consider the 3-bit parity check equation, that is, FFF is the

set of four feasible solutions consisting of spin triplets with

an even number of positive spins. Realizing this parity con-

straint as an Ising model requires at least one ancillary bit. The

bound constraints are hi ∈ [−2, 2] for each i and Jij ∈ [−1, 1]

for each edge (i, j). We assume first that G is the complete

graph on 4 nodes, K4. Then it is straightforward to verify that

(s1 + s2 + s3 − 2a + 1)2/4 defines an optimal penalty function

with gap 1. The same gap can be achieved if the hardware graph

is the complete bipartite graph K3,3 and we identify two qubits on

the right side of the partition with two on the left side using ferro-

magnetic couplings. The first two decision variables are mapped

to these two pairs of coupled qubits, so that, s1 = a1 and s2 = a2,

while the two remaining qubits are s3 and an additional ancilla a3.

In this case, the Ising model is

0.5(s1 + s2 + s3) − a3 + s1(− a1 + 0.5a2 − a3)

+s2(− a2 − a3) + s3(0.5a1 + 0.5a2 − a3).

However, using the MILP or SMT model we can obtain a gap of 2

by placing the decision qubits s1, s2, s3 on one side of K3,3, and all

ancillary qubits a1, a2, a3 on the other:

Frontiers in Physics | Interdisciplinary Physics September 2014 | Volume 2 | Article 56 | 4

http://www.frontiersin.org/Interdisciplinary_Physics
http://www.frontiersin.org/Interdisciplinary_Physics
http://www.frontiersin.org/Interdisciplinary_Physics/archive

Bian et al. Optimization with sparse Ising models

−a1 + a2 − a3 + s1(a1 + a2 + a3)

+s2(− a1 + a2 + a3) + s3(a1 + a2 − a3).

As a more complex example consider the constraint
∑8

i = 1

si = −6 (perhaps indicating one of 8 objects). This can be

represented with the penalty
(
∑

1 ≤ i ≤ 8 si + 6
)2

which couples

all 8 variables. Embedding this penalty using the methods of

Section 2.2.3 in the hardware graph of Figure 1 requires 24 qubits

and gives a gap of 2/3.

However, using the SMT model we can accommodate the same

constraint with only 16 qubits, and a gap of 4. The Ising models

for these two penalties are shown in Figure 2.

2.2. MAPPING ISING MODELS TO HARDWARE

Using the techniques in Section 2.1, we realize the constraints

{FFFj | 1 ≤ j ≤ m} of a CSP as penalty Ising models {PenFj
(sss,aaa) |

1 ≤ j ≤ m}, where each PenFj
is defined on a small subgraph Gj

of the hardware graph G. By choosing the subgraphs to be disjoint

(or possibly intersecting at decision variables), we can solve all

constraints simultaneously on the hardware. However, most vari-

ables si will appear in multiple constraints, and we require that all

instances of a variable take the same value. To do this, we iden-

tify several connected qubits with the same variable, and apply

a strong ferromagnetic connection between those qubits during

the annealing process, ensuring that they obtain the same spin.

A connected set of qubits representing the same variable is known

as a chain. Notice that the variables in a chain connecting two

variables which must assume the same value are ancillary vari-

ables enforcing the equality constraint. Chains are simply penalty

functions enforcing equality constraints.

The problem of embedding the Ising model of a CSP into G

then consists of two parts: (1) choosing a placement of constraints

onto disjoint subgraphs of G, and (2) routing chains to repre-

sent variables that appear in multiple constraints. This “place and

route” model of embedding has been used with great success and

scalability in VLSI physical design [17, 18], where circuits with

millions of variables may be mapped onto a single chip. Some of

the techniques presented here have analogies in the VLSI litera-

ture. In this section, we describe techniques for placement and

routing, as well as more general methods to map Ising models of

arbitrary structure to G.

2.2.1. Placement

We consider graphs G consisting of a repeating pattern of unit

cells, and assume that constraints (like parity check on 3 vari-

ables) can be represented within a single unit cell. In mapping

constraints to unit cells within G, we try to place constraints that

share variables close to one another: a good choice of placement

will make the routing process more tractable. The techniques pre-

sented here can be generalized, but for simplicity we assume that

the hardware graph G consists of an N × N grid of K4,4 unit cells.

Approaches to placement include:

• Quadratic assignment: Define a flow Aj,j′ between two con-

straints FFFj and FFFj′ to be the number of variables they have in

common. Define a distance Bu,u′ between two unit cells u and

u′ in G to be the length of the shortest path between them.

Assuming two instances of a variable must be joined together

by a path to create a chain, the quadratic assignment problem

QAP(A, B) identifies a mapping from constraints to cells that

roughly minimizes the sum of the chain lengths. (See [19] for

background on QAP). Note that we do not require an opti-

mal solution to the QAP problem in order to find a valid

embedding; an approximate solution suffices.

• Simulated annealing: Simulated annealing updates an assign-

ment of constraints to cells by swapping pairs of constraints.

Swaps are chosen randomly and accepted or rejected as a func-

tion of the change in some cost function (the cost function

FIGURE 2 | Penalty functions for the constraint
∑8

i = 1 si = −6. The

left graph represents the penalty function that arises from embedding

a K8, The right graph shows the penalty found by the SMT solver. θi

values are indicated by node colors, and θi,j values by edge colors.

The node labeled i corresponds to variable si , and unlabeled nodes

are ancillae.

www.frontiersin.org September 2014 | Volume 2 | Article 56 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Interdisciplinary_Physics/archive

Bian et al. Optimization with sparse Ising models

used in QAP is one example). Provided that each constraint

only shares variables with a small number of other constraints,

changes in cost function can be evaluated quickly.

• Recursive placement: As the hardware graph gets larger, both

simulated annealing and quadratic assignment become com-

putationally prohibitive. The cost can be reduced by recursively

splitting the problem into pieces and then combining the solu-

tions. First we partition the constraints into two regions such

that the number of variables shared between regions is min-

imized, Then we partition the unit cells of G in two regions

such that the number of edges between them is minimized.

We continue to partition until the regions are small enough to

be computationally tractable. Techniques for partitioning are

discussed in Section 2.3.

2.2.2. Routing

Once constraints, and therefore variables, have been assigned to

disjoint subgraphs of G, different instances of a variable must be

joined together. The routing problem is formulated as follows:

given G and a collection of disjoint terminal sets {Ti ⊆ V(G) | i =

1 . . . m} representing the qubits on which variable si has already

been placed, find a collection of disjoint chains {Si}
m
i = 1 such

that Si contains Ti. The performance of the D-Wave hardware is

dependent on the choice of chains, so we would also like to mini-

mize either the maximum size of any chain or the total number of

qubits used. This routing problem differs from traditional VLSI

routing only in the choice of objective function and the hardware

graph G, so several VLSI methods apply with some modification:

• Multicommodity flow: The problem of finding a tree S1 in G of

minimal size containing a given terminal set T1 is known as

the Steiner Tree problem on graphs and is NP-hard. For a given

T1 = {z1, z2, . . . , zk1}, we can model a Steiner Tree for T1 as a

network flow. Root vertex z1 is a source with k1 − 1 units of

commodity, while each of {z2, . . . , zk1} is a sink requiring one

unit of commodity. All other vertices of G have a net-flow of

zero. Then, a Steiner Tree S1 for T1 exists if and only if there

is a feasible flow in this network. By adding binary variables

that indicate whether or not a vertex of G is in S1, we can easily

formulate this problem as a mixed integer linear programme

(MILP).

The general case, when m > 1, can be formulated as a MILP

using m commodities, one for each terminal set (see [20, Ch.

3.6] or [21] for background on multicommodity flows). We

add the constraint that each vertex of G can be in at most one

Steiner tree, and require that the flow of commodity i can only

be routed through vertices in Steiner tree Si.

• Greedy Steiner Trees: We heuristically select a variable order

and then greedily choose a Steiner Tree for each si from the

subgraph F of unused qubits in G. Several approximation

algorithms for the Steiner tree problem are known, but per-

haps the simplest is Kou et al. [22]: define a weighted complete

graph K on V(F), where the weight of an edge z1z2 is the

shortest-path distance between z1 and z2 in F . Choose a min-

imum spanning tree in K, and then assign si to every vertex in

F on the paths representing edges in the minimum spanning

tree. This creates a chain for si.

• Rip-up routing: Rip-up routing [18, 23, 24] is a variation of the

greedy Steiner Tree algorithm that temporarily allows chains of

variables to overlap. For each variable si, we maintain a chain Si

such that Ti ⊆ Si. Initially Si is set to Ti, but after the first itera-

tion of the algorithm each Si is connected, and by the end of the

algorithm the chains are (hopefully) disjoint. The algorithm

iteratively updates each chain Si as follows:

1. For each vertex z in G, define a vertex weight wt(z) =

α|{j �= i:z ∈ Sj}|, for some fixed α > 1.

2. Using a Steiner Tree approximation algorithm, choose an

approximately minimal vertex-weighted Steiner Tree Si for

the terminal set Ti.

The algorithm terminates when all Si are disjoint or no

improvements are found. By setting the weight of a vertex

proportional to the number of variables it represents, the algo-

rithm encourages chains to form on unused vertices whenever

possible.

Multicommodity flow is an exact algorithm and therefore most

successful when it is tractable (up to roughly 500 qubits). On the

other hand Steiner tree approximation algorithms which are poly-

nomial time can be used at much larger scales, and rip-up routing

is usually more effective than greedy routing as it is less likely to

get trapped in suboptimal local minima.

2.2.3. Global embedding techniques

For certain optimization problems it may be difficult or sub-

optimal to map individual constraints FFFj to Ising models with

the connectivity structure of G. In these cases, we may instead

map each FFFj to an Ising model PenFj
(zzz) of arbitrary structure

(possibly using ancillary variables), and then attempt to map

Pen(zzz) =
∑

j PenFj
(zzz) to G directly. Because of the limited qubit

connectivity, we will again require chains to represent variables.

The techniques described here attempt to map a problem graph

P (in which zi and zj are adjacent if they have a non-zero interac-

tion in Pen(zzz)) to G without assuming P or G have any particular

structure.

Constructing chains such that if two variables are adjacent

in P then there is at least one edge between their chains in

G is known as the minor-embedding problem [25]. Minor-

embedding is NP-hard; the best known algorithm has run-

ning time O(2(2k + 1) log k|V(P)|2k22|V(P)|2 |V(P)|), where k is

the branchwidth of G [26]. While there are deep theoretical

results about minors in the theory developed by Robertson and

Seymour [27], none of the known exact algorithms are even

remotely practical for the scale of problems we are interested in.

Nevertheless, heuristics can be effective provided that P is not too

large compared to G. When G is the Chimera graph in Figure 1,

one strategy is to treat P as a subgraph of a fixed complete graph.

The ideal Chimera graph with 8N2 qubits was designed to have a

minor-embedding of a complete graph on 4N + 1 variables [9,

25], and [28] provides algorithms for embedding complete graphs

when qubits are missing. The heuristics described below, while

slower, can embed much larger problems and also have more

flexibility than constraint-based techniques. These heuristics may

Frontiers in Physics | Interdisciplinary Physics September 2014 | Volume 2 | Article 56 | 6

http://www.frontiersin.org/Interdisciplinary_Physics
http://www.frontiersin.org/Interdisciplinary_Physics
http://www.frontiersin.org/Interdisciplinary_Physics/archive

Bian et al. Optimization with sparse Ising models

also be used to improve chain lengths of an embedding, regardless

of how that embedding was found.

2.2.4. Shortest-path-based chains

This algorithm uses efficient shortest-path computations to con-

struct a chain for each variable, based on the locations of its

neighbors’ chains. Chains are temporarily allowed to overlap, and

each qubit is assigned a weight based on how many variables are

currently assigned to it. Suppose we want to find a chain S0 for

variable s0, and s0 is adjacent to s1, . . . , sk which already have

chains S1, . . . , Sk respectively. By computing the weighted short-

est path from each Si to every other qubit in G, we can select a

“root” qubit z∗ for S0 which minimizes the weight of the qubits

needed to create a connection between s0 and each of s1, . . . , sk.

We then take the union of the shortest paths from z∗ to each Sj as

the chain for S0. The details of this algorithm can be found in Cai

et al. [in preparation].

2.2.5. Simulated annealing

An alternative approach uses simulated annealing to attempt to

improve partial embeddings. A partial embedding is an assign-

ment of a chain Si to each variable si ∈ V(P) such that all Si

are disjoint. An edge sisj of P is unfulfilled if there is no edge in

G joining Si and Sj. The partial embedding is assigned a score,

consisting of the sum of the distances between Si and Sj for unful-

filled edges sisj plus a small positive constant times the sum of the

squares of the cardinalities of all chains. We try to minimize the

score by considering moves of the following types:

1. Given qubit z that is not in any chain, but is adjacent to a chain

Si, adjoin z to Si.

2. Given qubit z in chain Si, remove z from Si (if Si\{z} is still

a valid chain) and either leave it unassigned or adjoin it to a

neighboring chain Sj.

3. Given two qubits in different chains, z1 ∈ Si and z2 ∈ Sj

respectively, if z1 is adjacent to Sj and z2 is adjacent to Si, and

Si\{z1} and Sj\{z2} are still valid chains, switch z1 from Si to Sj

and z2 from Sj to Si.

Simulated annealing often produces better results than shortest-

path-based chains but takes much longer.

2.3. SOLVING LARGER PROBLEMS

The tools in Sections 2.1 and 2.2 allow for mapping of arbitrary

CSPs to Ising models with connectivity constraints. However, it

may be difficult to fit a given problem in the current D-Wave

hardware due to its limited number of qubits. In this section we

outline approaches to solving large problems by repeatedly calling

QA hardware to optimize smaller subproblems.

One way of dealing with a large problem is to decompose

it into regions. Smaller regional subproblems are then solved,

and each region sends some form of feedback to its neighboring

regions, which in turn modifies each regional subproblem. The

process is repeated until all regions agree on shared variables or

some stopping criteria is triggered.

Each region of a CSP is, essentially, a smaller CSP. When

we partition a CSP into regions, each region should be as large

as possible subject to being embeddable in the hardware graph.

Partitions should be chosen so that regions have as few variables

in common as possible to minimize the communication between

regions.

To decompose the CSP in this way we may use graph and

hypergraph partitioning techniques. One mechanism is the fol-

lowing: define a node for each constraint of the CSP and a

weighted edge between two nodes counting the variables their

constraints share. Then a min-cut balanced partition of the graph

will produce similar regions with a minimal number of pairs of

shared variables. The min-cut balanced partitioning problem is

NP-hard in general, but the Kernighan-Lin algorithm [29] per-

forms well in practice. It starts with a random partition and

iteratively swaps sequences of vertices between regions based

on improvements to the edge-weights. The software package

Metis [30] has implemented a “multi-level” version of Kernighan-

Lin that is scalable to tens of thousands of nodes. Since embedding

in the hardware graph puts bounds on the number of variables,

for regional decomposition to be effective the problem must

exhibit some sparsity.

Decomposing the Ising model for the original CSP into R

regions produces similar regional subproblems; a region R will

have couplings ĥ(R) and Ĵ(R) derived from (and often equal to)

those of (1), yielding a problem

min
zzz ∈ {−1,1}nR

⎛

⎝

∑

i ∈ V (R)

ĥ
(R)
i zi +

∑

(i,j) ∈ E(R)

Ĵ
(R)
i,j zizj

⎞

⎠ , (8)

on a graph G(R) = (V (R), E(R)) (where nR = |V (R)|). We assume

the size and sparsity structure of this problem, defined by G(R), is

compatible with the hardware. Next, we consider two approaches

to coordinate the solutions of these regional subproblems pro-

duced by the decomposition. In our implementations, we chose

the regions so that h
(R)
i splits hi evenly across regions R containing

qubit i, but each edge ij ∈ E(G) belongs to exactly one region so

that J
(R)
i,j = Ji,j. During the run of the algorithms, for each region

R, only the linear terms were updated.

2.3.1. Belief propagation

Belief propagation (BP) [31] is an algorithm in which messages

are passed between regions and variables. Messages represent

beliefs about the minimal energy conditional on each possible

value of a variable. In min-sum BP, messages from variables

(i, j, . . .) to regions (R, S, . . .) are updated using the formula

µi→R(zi) :=
∑

S ∈ N(i)\R

µS→i(zi),

where N(i) is the set of regions containing i. In the reverse
direction, messages are updated as

µR→i(zi) :=

min
zzzN(R)\zi

⎧

⎨

⎩

∑

j ∈ V (R)

h
(R)
j zj +

∑

(j,k) ∈ E(R)

J
(R)
j,k zjzk +

∑

j ∈ N(R)\i

µj→R(sj)

⎫

⎬

⎭

, (9)

where similarly N(R) is the set of variables in R.

www.frontiersin.org September 2014 | Volume 2 | Article 56 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Interdisciplinary_Physics/archive

Bian et al. Optimization with sparse Ising models

Specifically, µi→R(zi) represents the aggregate of beliefs about

zi from all regions excluding R, while µR→i(zi) is the minimum

energy for R aggregating beliefs about all variables in R excluding

i. These messages are iteratively passed between regions and vari-

ables until messages converge or another criterion is met when

messages do not converge. BP is known to perform well for certain

CSPs, and is a standard decoding algorithm for LDPC [32].

Two advantages of using hardware-sized regions, over per-

forming BP in which each region is a single constraint, are (1)

we can internalize within regions many of the short cycles of vari-

able interactions, which are known to cause failure of BP, and (2)

we need only pass messages for variables that appear in multiple

regions, as variables appearing in a single region may be resolved

after the BP algorithm terminates. Using min-cut heuristics to

construct regions augments these benefits.

2.3.2. Dual decomposition

Dual decomposition (DD) uses Lagrangian relaxation methods,

a standard approach for dealing with large scale optimization

problems [11, 33, 34]. The Lagrangian relaxation of an Ising

model (1) consists of a concave optimization problem of the form

maxλλλ∈ 	 L(λλλ) where

L(λλλ) =

R
∑

R = 1

min
zzz(R)

[〈

hhh(R) + λλλ(R), zzz(R)
〉

+
〈

zzz(R), JJJ(R)zzz(R)
〉]

,

where for region R, hhh(R) = (h
(R)
i)i ∈ V(G(R)), JJJ(R) =

(J
(R)
i,j)(i,j) ∈ E(G(R)). Valid multipliers λλλ must lie within

	 = {λλλ |
∑R

R = 1 λλλ(R) = 000}. As before the Ising models defined

by hhh(R) and JJJ(R) have sparsity structure G(R) determined once

after the partitioning, and the multipliers λλλ do not change the

sparsity structure of JJJ(R). Notice that evaluating L(λλλ) (and thus

computing a supergradient) decomposes into R independent

regional subproblems of the form (8). The concave optimiza-

tion problem that defines the relaxation can be solved using

subgradient optimization methods (e.g., [33]).

The Lagrangian relaxation is a lower bound on the optimal

value of the original Ising model. In particular, if after solving

the Lagrangian function L(λλλ) all the solutions zzz(R) agree at the

regional boundaries, we have indeed solved the original problem.

If the solutions zzz(R) differ at regional boundaries, a simple heuris-

tic to try to derive a solution to the CSP is to use regional majority

vote or randomized rounding to determine the values of the spins

at the boundaries followed by a straightforward greedy descent

procedure.

The Lagrangian relaxation can also be used to compute lower

bounds in a branch-and-bound approach.

2.3.3. Large-neighborhood local search

Greedy descent or local search is an iterative optimization method

that moves from one spin configuration zzz to another by flipping

the spin that reduces the objective value of the Ising model the

most. A straightforward variation of local search [35] is large-

neighborhood local search (LNLS) (see [36]), in which many

spins may be flipped simultaneously. In each iteration of LNLS,

we select a subset of the spins z̃zz that are allowed to change (the

rest are fixed), and we optimize the subproblem over z̃zz in hard-

ware so as to minimize the overall objective value of the Ising

model.

In contrast with the decomposition methods in Sections 2.3.1

and 2.3.2, LNLS does not rely on a single partitioning of the origi-

nal problem: a new subproblem may be selected at each iteration.

However, we must ensure that subproblems are embeddable in

hardware. For instance, if we have an embedding of a complete

graph Km, any subset of m variables can be optimized while keep-

ing all the other spins fixed. An important consideration is the

selection of the variables that are fixed at each iteration. One

heuristic is to pick a variable at random and grow a breadth-first

search tree to a fixed number of variables.

3. RESULTS

In this section, we report results of our experiments using D-Wave

hardware for solving LDPC problems. In our tests, an instance

of LDPC consists of a parity check matrix GGG ∈ {0, 1}r×n, and a

bit string (message) yyy ∈ {0, 1}n. A codeword xxx is any bit string

whose parity check vector, GGGxxx, is 000 modulo 2. The goal is to decode

message yyy by finding the codeword xxx whose Hamming distance

to yyy is as small as possible. The parity check matrix GGG is sparse.

We chose GGG so that n was between 100 and 1000, r ≈ 0.70n, the

number of non-zeros on each row was between 3 and 5, and the

number of non-zeros in each column was between 2 and 4. The

message yyy was chosen by first picking a random codeword xxx, and

then flipping pn random bits, where p is the error rate. We tested

instances for which p ∈ {8%, 10%, 12%, 14%}.

The standard decoding algorithm for LDPC uses belief prop-

agation as described in Section 2.3.1, with each region defined

to be a single parity check. We generated our instances at ran-

dom, and, to get an indication of the potential usefulness of the

hardware, considered only instances that had a unique optimal

solution and for which standard belief propagation did not con-

verge within 1000 iterations. Optimal solutions used to baseline

hardware performance were obtained by dynamic programming

applied to regional subproblems [16]. While dynamic program-

ming is faster than hardware solution at these size subproblems,

dynamic programming will not scale to much larger subproblems

due to prohibitive memory requirements.

We solved the instances using D-Wave hardware (such as the

one in Figure 1, for which hi ∈ [−2, 2] and Ji,j ∈ [−1, 1]) and

the decomposition strategies of Section 2.3. Each region con-

sisted of up to 20 parity checks from GGG and was mapped to the

hardware in the following way. First we added ancillary vari-

ables so that each parity check involved exactly 3 variables2 .

Each of these checks was then placed in a cell using the tech-

niques of Section 2.2.1. Inside a cell we used the two embed-

dings described in the example of Section 2.1.3, one with gap

2 (K3,3) and one with gap 1 (K4). We observed that the prob-

lems submitted to the hardware using K3,3-based embeddings

had a significantly improved success probability as compared

to the problems that used K4-based embeddings (see Figure 3).

This in turn allowed for higher precision for the subproblems

2Embedding 3-bit checks which fit within a unit cell and offer free qubits for

routing is more efficient than embedding the penalties of 4- or 5-bit checks.

Frontiers in Physics | Interdisciplinary Physics September 2014 | Volume 2 | Article 56 | 8

http://www.frontiersin.org/Interdisciplinary_Physics
http://www.frontiersin.org/Interdisciplinary_Physics
http://www.frontiersin.org/Interdisciplinary_Physics/archive

Bian et al. Optimization with sparse Ising models

FIGURE 3 | Hardware performance aggregated over all regional

subproblems.
 is the relative error of a solution returned by

the hardware compared to the true optimal value of the Ising

model. Left: comparing K3,3-based embedding with K4-based

embedding. Right: comparing Belief Propagation and Dual

Decomposition.

submitted to the hardware as required by the decomposition algo-

rithms. Thus, in the following experiments we used K3,3-based

embeddings.

We implemented both region-based Belief Propagation (BP)

and Dual Decomposition (DD). We optimized each regional sub-

problem using up to 10 D-Wave hardware calls, in order to

adjust the strength of the ferromagnetic couplings used to identify

chains. Each hardware call took 10,000 samples with an anneal-

ing time of 20 µs (see [37] for more details on the hardware’s

operating specifications). In the case of DD, we used a stan-

dard subgradient algorithm once, and used a simple randomized

rounding procedure and local search to try to produce codewords

from the subproblems generated throughout the subgradient

optimization.

We generated 18 random instances as described above. BP

managed to solve all the instances, while DD solved 14 of 18,

encountering difficulties for error rates p = 12% for instances

with more than 600 bits. We attribute the higher reliability of

BP to the fact that the problems sent to the hardware had lower

precision than DD. On the other hand, typically DD required

fewer hardware calls to converge. Among all the hardware sam-

ples we collected, 95% of them were within 4% of optimum (see

Figure 3).

4. CONCLUSION

We have outlined a general approach for coping with intrin-

sic issues related to the practical use of quantum annealing. To

address these issues we proposed methods for finding Ising prob-

lem representations that have a large classical gap between ground

states and first excited states, practical methods for embedding

Ising models that are not compatible with the hardware graph,

and decomposition methods to solve problems that are larger

than the hardware. As an application of our techniques, we

described how we implemented LDPC decoding problems in

D-Wave hardware. Our approach has enabled us to solve LDPC

decoding problems of up to 1000 variables. The current hardware

implementation of QA tested here is roughly as fast as an efficient

implementation of simulated annealing, but these results offer

the promise of hybrid quantum/classical algorithms that surpass

purely classical solution as QA hardware matures.

As future work, we would like to improve upon the scala-

bility of the current method for constructing penalty functions

with large gaps. This would allow larger component subproblems

and reduce the need for minor embedding between subproblems.

Further, the methods we have described here for finding penalty

functions assume an assignment of decision variables to qubits.

Different assignment choices lead to different results and differ-

ent hardware performance. We do not currently have an effective

method for this assignment.

REFERENCES
1. Berkley AJ, Johnson MW, Bunyk P, Harris R, Johansson J, Lanting T, et al. A

scalable readout system for a superconducting adiabatic quantum optimiza-

tion system. Superconduct Sci Technol. (2010) 23:105014. doi: 10.1088/0953-

2048/23/10/105014

2. Dickson NG, Johnson MW, Amin MH, Harris R, Altomare F, Berkley AJ, et al.

Thermally assisted quantum annealing of a 16-qubit problem. Nat Commun.

(2013) 4:1903. doi: 10.1038/ncomms2920

3. Harris R, Johansson J, Berkley AJ, Johnson MW, Lanting T, Han S, et al.

Experimental demonstration of a robust and scalable flux qubit. Phys Rev B

(2010) 81:134510. doi: 10.1103/PhysRevB.81.134510

4. Johnson MW, Amin MHS, Gildert S, Lanting T, Hamze F, Dickson N, et al.

Quantum annealing with manufactured spins. Nature (2011) 473:194–8. doi:

10.1038/nature10012

5. Finilla AB, Gomez MA, Sebenik C, Doll DJ. Quantum annealing: a

new method for minimizing multidimensional functions. Chem Phys Lett.

(1994) 219:343–348.

6. Kadowaki T, Nishimori H. Quantum annealing in the transverse Ising model.

Phys Rev E (1998) 58:5355. doi: 10.1103/PhysRevE.58.5355

7. Childs A, Farhi E, Preskill J. Robustness of adiabatic quantum com-

putation. Phys Rev A (2001) 65:012322. doi: 10.1103/PhysRevA.65.

012322

www.frontiersin.org September 2014 | Volume 2 | Article 56 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Interdisciplinary_Physics/archive

Bian et al. Optimization with sparse Ising models

8. Farhi E, Goldstone J, Gutmann S, Sipser M. Quantum Computation by

Adiabatic Evolution (2000). Available online at: http://arxiv.org/abs/quant-ph/

0001106

9. Bunyk PI, Hoskinson E, Johnson MW, Tolkacheva E, Altomare F, Berkley AJ,

et al. Architectural Considerations in the Design of a Superconducting Quantum

Annealing Processor (2014). Available online at: http://arxiv.org/abs/1401.5504

10. MacKay DJC. Information Theory, Inference and Learning Algorithms. New

York, NY: Cambridge University Press (2002).

11. Nemhauser GL, Wolsey LA. Integer and Combinatorial Optimization. New

York, NY: Wiley-Interscience (1988). doi: 10.1002/9781118627372

12. de Moura L, Bjørner N. Satisfiability modulo theories: introduction

and applications. Commun ACM (2011) 54:69–77. doi: 10.1145/1995376.

1995394

13. Dutertre B, de Moura L. A fast linear-arithmetic solver for DPLL(T). In:

Ball T, Jones RB, editors. Computer Aided Verification. Vol. 4144 of Lecture

Notes in Computer Science. Berlin; Heidelberg: Springer (2006). p. 81–94. doi:

10.1007/11817963-11

14. Cimatti A, Griggio A, Schaafsma B, Sebastiani R. The MathSAT5 SMT solver.

In: Piterman N, Smolka S, editors. Proceedings of TACAS. Vol. 7795 of LNCS.

(Springer) 2013. Available online at: http://mathsat.fbk.eu/download.html

15. Dechter R. Bucket elimination: a unifying framework for reasoning. Artif Intell.

(1999) 1–2:41–85. doi: 10.1016/S0004-3702(99)00059-4

16. Gogate V, Dechter R. A complete anytime algorithm for Treewidth. In:

Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence.

Arlington, VA: AUAI Press (2004). p. 201–8.

17. Gerez SH. Algorithms for VLSI Design Automation, 1st Edn. New York, NY: John

Wiley and Sons, Inc. (1999).

18. Kahng AB, Lienig J, Markov IL, Hu J. VLSI Physical Design - From

Graph Partitioning to Timing Closure. New York, NY: Springer (2011). doi:

10.1007/978-90-481-9591-6

19. Burkard R, Dell’Amico M, Martello S. Assignment Problems. Philadelphia,

PA: Society for Industrial and Applied Mathematics (2009). doi:

10.1137/1.9780898717754

20. Cook WJ, Cunningham WH, Pulleyblank WR, Schrijver A. Combinatorial

Optimization. New York, NY: John Wiley and Sons, Inc. (1998).

21. Shragowitz E, Keel S. A global router based on a multicommodity flow model.

Integr VLSI J. (1987) 5:3–16. doi: 10.1016/S0167-9260(87)80003-2

22. Kou LT, Markowsky G, Berman L. A fast algorithm for steiner trees. Acta Inf.

(1981) 15:141–5. doi: 10.1007/BF00288961

23. Nair R. A simple yet effective technique for global wiring. Trans Comp-Aided

Des Integ Cir Sys. (2006) 6:165–72. doi: 10.1109/TCAD.1987.1270260

24. Ting BS, Bou NT. Routing techniques for gate array. Computer-Aided Design

Integr Circ Syst IEEE Trans. (1983) 2:301–12. doi: 10.1109/TCAD.1983.1270048

25. Choi V. Minor-embedding in adiabatic quantum computation: I. The

parameter setting problem. Quantum Inf Process. (2008) 7:193–209. doi:

10.1007/s11128-008-0082-9

26. Adler I, Dorn F, Fomin FV, Sau I, Thilikos DM. Faster parameterized algo-

rithms for minor containment. Theor Comput Sci. (2011) 412:7018–28. doi:

10.1016/j.tcs.2011.09.015

27. Robertson N, Seymour PD. Graph minors XIII: the disjoint paths problem. J

Comb Theory Ser B (1995) 63:65–110. doi: 10.1006/jctb.1995.1006

28. Klymko C, Sullivan BD, Humble TS. Adiabatic quantum programming: minor

embedding with hard faults. Quantum Inf Process. (2014) 13:709–29. doi:

10.1007/s11128-013-0683-9

29. Kernighan BW, Lin S. An efficient heuristic procedure for partitioning graphs.

Bell Syst Tec J. (1970) 49:291–307. doi: 10.1002/j.1538-7305.1970.tb01770.x

30. Karypis G, Kumar V. A fast and high quality multilevel scheme for par-

titioning irregular graphs. SIAM J Sci Comput. (1998) 20:359–92. doi:

10.1137/S1064827595287997

31. Kschischang FR, Frey BJ, Loeliger HA. Factor graphs and the sum-product

algorithm. IEEE Trans Inf Theor. (2006) 47:498–519. doi: 10.1109/18.910572

32. Mceliece RJ, Mackay DJC, Cheng J. Turbo decoding as an instance of Pearls

belief propagation algorithm. IEEE J Select Areas Commun. (1998) 16:140–52.

doi: 10.1109/49.661103

33. Bertsekas DP. Nonlinear Programming. Nashua, NH: Athena Scientific (1995).

34. Wolsey LA. Integer Programming. A Wiley-Interscience publication (1998).

35. Aarts E, Lenstra JK, editors. Local Search in Combinatorial Optimization. New

York, NY: John Wiley and Sons, Inc. (1997).

36. Ahuja RK, Ergun O, Orlin JB, Punnen AP. A survey of very large-scale

neighborhood search techniques. Dis Appl Math. (2002) 123:75–102. doi:

10.1016/S0166-218X(01)00338-9

37. Lanting T, Przybysz AJ, Smirnov AY, Spedalieri FM, Amin MH, Berkley AJ,

et al. Entanglement in a quantum annealing processor. Phys Rev X (2014)

4:021041. doi: 10.1103/PhysRevX.4.021041

Conflict of Interest Statement: The authors declare that the research was con-

ducted in the absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Received: 26 June 2014; accepted: 01 September 2014; published online: 18 September

2014.

Citation: Bian Z, Chudak F, Israel R, Lackey B, Macready WG and Roy A (2014)

Discrete optimization using quantum annealing on sparse Ising models. Front. Phys.

2:56. doi: 10.3389/fphy.2014.00056

This article was submitted to Interdisciplinary Physics, a section of the journal

Frontiers in Physics.

Copyright © 2014 Bian, Chudak, Israel, Lackey, Macready and Roy. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) or licensor are credited and that the original publica-

tion in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Physics | Interdisciplinary Physics September 2014 | Volume 2 | Article 56 | 10

http://arxiv.org/abs/quant-ph/0001106
http://arxiv.org/abs/quant-ph/0001106
http://arxiv.org/abs/1401.5504
http://mathsat.fbk.eu/download.html
http://dx.doi.org/10.3389/fphy.2014.00056
http://dx.doi.org/10.3389/fphy.2014.00056
http://dx.doi.org/10.3389/fphy.2014.00056
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Interdisciplinary_Physics
http://www.frontiersin.org/Interdisciplinary_Physics
http://www.frontiersin.org/Interdisciplinary_Physics/archive

	Discrete optimization using quantum annealing on sparse Ising models
	Introduction
	Methods
	Mapping Problems to Ising Models
	Implementation concerns
	Scalability
	Examples

	Mapping Ising Models to Hardware
	Placement
	Routing
	Global embedding techniques
	Shortest-path-based chains
	Simulated annealing

	Solving Larger Problems
	Belief propagation
	Dual decomposition
	Large-neighborhood local search

	Results
	Conclusion
	References

