
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 138, Number 4, April 2010, Pages 1317–1331
S 0002-9939(09)10152-1
Article electronically published on December 8, 2009

DISCRETE PAINLEVÉ EQUATIONS

FOR RECURRENCE COEFFICIENTS

OF SEMICLASSICAL LAGUERRE POLYNOMIALS

LIES BOELEN AND WALTER VAN ASSCHE

(Communicated by Peter A. Clarkson)

Abstract. We consider two semiclassical extensions of the Laguerre weight
and their associated sets of orthogonal polynomials. These polynomials satisfy
a three-term recurrence relation. We show that the coefficients appearing in
this relation satisfy discrete Painlevé equations.

1. Introduction

Discrete Painlevé equations (dP) are second-order, nonlinear difference equations
which have a continuous Painlevé equation as a continuous limit. They pass an
integrability test called singularity confinement [9]. This integrability detector is the
discrete analogue of the Painlevé property for differential equations. The discrete
Painlevé equations share many features of their continuous counterparts: some can
be fitted into degeneration cascades; for others Lax pairs have been established,
hierarchies have been computed, and special solutions can be found, as well as
Miura and Bäcklund transformations. At least one interesting difference between
discrete and continuous Painlevé is the following: there are a lot more dP’s than the
six continuous ones (and as we name the dP’s after their continuous limit, there are
various nonequivalent dPI’s, etc.). There is a ‘standard list’ ([7]) consisting of the
earliest derived discrete Painlevé equations. A more elaborate list was compiled by
Peter Clarkson and can be found in [14]. For a comprehensive overview of discrete
Painlevé equations, see [8].

Orthonormal polynomials on the real line obey a three-term recurrence relation
of the form

xpn(x) = an+1pn+1(x) + bnpn(x) + anpn−1(x)

(with p−1 = 0). The recurrence coefficients of classical orthogonal polynomials
can be obtained explicitly. For semiclassical weights, i.e., weights w satisfying a
Pearson equation D(σw) = τw, where σ and τ are polynomials with deg σ > 2 or
deg τ �= 1, the recurrence coefficients obey nonlinear recurrence relations, which in
many cases can be identified as discrete Painlevé equations ([4], [5], [11], [12], [14]).
Our aim is to find the nonlinear recurrence relations explicitly for other semiclassical
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1318 LIES BOELEN AND WALTER VAN ASSCHE

weights and to identify them as discrete Painlevé equations. In this way we hope to
establish a connection between semiclassical orthogonal polynomials and discrete
Painlevé equations. The fact that one deals with discrete Painlevé equations for
the recurrence coefficients indicates that no simple formula will be available for the
recurrence coefficients (except for some special cases that can be identified). On the
other hand, the integrability of the Painlevé equations implies that the complexity
of the recurrence coefficients does not grow exponentially [1]. Painlevé equations
are on the borderline between linearisability and nonintegrability [8].

In this paper we make the connection between orthogonal polynomials which are
semiclassical extensions of the Laguerre polynomials and some discrete Painlevé
equations. We prove the following results:

Theorem 1.1. Consider the orthonormal polynomials with respect to the weight

w(x) = xαe−x2+tx, x > 0,

with α > −1 and t ∈ R. The recurrence coefficients in the three-term recurrence
relation

xpn(x) = an+1pn+1(x) + bnpn(x) + anpn−1(x)

satisfy

(1.1)

⎧⎪⎪⎨
⎪⎪⎩

xnxn−1 =
yn + zn

y2n − α2

4

,

yn + yn+1 =
1

xn

(
t√
2
− 1

xn

)
,

where zn = n+ α/2, yn = 2a2n − n− α/2 and xn =
√
2/(t− 2bn).

The equations in (1.1) bear similarities with an asymmetric Painlevé equation
dPIV in the list of Clarkson [14],

(1.2)

⎧⎪⎪⎨
⎪⎪⎩

unun−1 =
a(vn + zn − b)

v2n − γ2
,

vn + vn+1 =
c

un
+

zn+1/2 + d

un − 1

with zn = α1n+ β1. In fact, we can obtain (1.1) from (1.2) by putting un = xn/ε,

vn = εyn, zn = εαn+ εβ, a = 1/ε, γ = εα/2, c = 1/ε+ t/
√
2, d = −1/ε and letting

ε → 0. It was identified as a Miura transform of an asymmetric dPI in [13], a result
we will reestablish from the point of view of orthogonal polynomials in Section 2.3.

The case t = 0 gives a somewhat simpler equation:

Corollary 1.2. If we consider the orthonormal polynomials with weight

w(x) = xαe−x2

, x > 0,

then the recurrence coefficients satisfy

(1.3) (yn + yn+1)(yn + yn−1) =
(y2n − α2/4)2

(yn + zn)2
,

where zn = n+α/2 and yn = 2a2n − n−α/2. The recurrence coefficients bn can be
obtained from

2b2n = −yn − yn+1.
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DISCRETE PAINLEVÉ EQUATIONS 1319

Equation (1.3) is an instance of dPIV which was found in [6]. Theorem 1.1 and
Corollary 1.2 will both be proven in Section 2. In Section 3 we prove

Theorem 1.3. Consider the monic orthogonal polynomials with respect to the
weight

w(x) =
xα

(−x2; q2)∞
, x > 0,

with α > 0 and 0 < q < 1. The recurrence coefficients in the three-term recurrence
relation

xPn(x) = Pn+1(x) + αnPn(x) + βnPn−1(x)

satisfy

(1.4) (xnxn+1 − 1)(xnxn−1 − 1) =
q−2n−α

(
xn − q−α/2

)2 (
xn − qα/2

)2
(
xn − q−n−α/2

)2 ,

where xn = q−n−α/2(1 − q2n+α−1βn). We have α2
0 = x0x1 + 1. The remaining

recurrence coefficients αn for n ≥ 1 can be obtained from

α2
nx

2
nq

2n+α = 1+xnxn+1+(xnxn−1− 1)(1− qn+α/2xn)
2+2xn(xn− qα/2− q−α/2).

Equation (1.4) is an instance of the q-Painlevé V equation in the list of Clarkson
[14]; see also [8, p. 269].

2. dPIV for a semiclassical Laguerre weight

We consider w(x) = xαe−x2+tx on R
+ with α > −1 and t ∈ R. Denote the

orthonormal polynomials with respect to this weight by {pn}. The orthonormality
condition is ∫ ∞

0

pn(x)pm(x)w(x) dx = δmn.

We will use the following notation for the coefficients of pn:

pn(x) = γnx
n + δnx

n−1 + · · · ,
where γn > 0. The three-term recurrence relation then takes the form

xpn(x) = an+1pn+1(x) + bnpn(x) + anpn−1(x)

with

an =

∫ ∞

0

xpn(x)pn−1(x)w(x) dx,

bn =

∫ ∞

0

xp2n(x)w(x) dx.

It follows that all bn are positive. Comparing leading coefficients on both sides of
this identity expresses an as the ratio of the leading coefficients of the polynomials:

an =
γn−1

γn

for n > 0 and a0 = 0. Hence all an are positive for n ≥ 1.
In Sections 2.1 and 2.2 we prove Theorem 1.1 and Corollary 1.2. We look at

the relation between the recurrence coefficients of the orthogonal polynomials with
respect to w and those of the Freud weight in Section 2.3, recovering a result of
[13]. We conclude this section by looking at extensions of w to the real line.
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1320 LIES BOELEN AND WALTER VAN ASSCHE

2.1. Deriving the Lax pair. We rewrite the three-term recurrence relation in
matrix form

xP = JP

with

P =

⎛
⎜⎜⎜⎝

p0
p1
p2
...

⎞
⎟⎟⎟⎠ , J =

⎛
⎜⎜⎜⎝

b0 a1 0 0 · · ·
a1 b1 a2 0 · · ·
0 a2 b2 a3
...

. . .
. . .

. . .

⎞
⎟⎟⎟⎠ ,

where J is the three-diagonal Jacobi matrix. The Pearson equation for w is

[xw(x)]′ =
(
−2x2 + tx+ α+ 1

)
w(x).

We consider the Fourier expansion of the polynomial xp′n(x) =
∑n

k=0 αkpn−k with

αk =

∫ ∞

0

xp′n(x)pn−k(x)w(x) dx.

Integration by parts and the Pearson equation give

αk = −
∫ ∞

0

pn(x)xp
′
n−k(x)w(x) dx+

∫ ∞

0

pn(x)pn−k(x)(2x
2 − tx− α− 1)w(x) dx.

These integrals are zero for k > 2 due to orthonormality. For k = 2 we have

α2 = 2

∫ ∞

0

pn(x)x
2pn−2(x)w(x) dx,

which is equal to 2anan−1 by applying the recurrence relation twice on pn−2. Fur-
thermore, by comparing the coefficients of xn, we see that α0 = n. In matricial
form, we have

xP ′ = LP with L =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 · · ·
A1 1 0 0 · · ·

2a2a1 A2 2 0 · · ·
0 2a3a2 A3 3
...

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎠

with

An =

∫ ∞

0

xp′n(x)pn−1(x)w(x) dx.

Together with the recurrence relation, this leads to the following Lax pair:{
xP = JP,
xP ′ = LP.

In the next section, we derive the compatibility condition for this Lax pair. From
this condition we will be able to recover the recurrence coefficients as solutions of
dPIV.
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DISCRETE PAINLEVÉ EQUATIONS 1321

2.2. Computations. The compatibility condition of the Lax pair can be found by
calculating x(xP )′ in two ways and is

JL− LJ = J.

This gives rise to three nontrivial equations:

bn = an+1An+1 − anAn,(2.1)

An(bn−1 − bn) + 2an = 2an(a
2
n+1 − a2n−1),(2.2)

an−1An − anAn−1 = 2anan−1(bn − bn−2).(2.3)

Dividing (2.3) by anan−1 and taking a telescopic sum we get

An

an
=

A1

a1
+ 2(bn + bn−1 − b1 − b0).

Observe that

A1 = −γ0

∫ ∞

0

p1(x)[−2x2 + tx+ α+ 1]w(x) dx.

As the polynomial occurring in this integral has the Fourier expansion

−2x2 + tx+ α+ 1 =
−2

γ2
p2(x) +

1

γ1

(
2
δ2
γ2

+ t

)
p1(x) + constant,

we find A1 = a1 (2b0 + 2b1 − t). Hence

(2.4) An = an (2bn + 2bn−1 − t) .

Using this expression in (2.2) we obtain, after dividing by an and taking a telescopic
sum,

2(a2n + b2n + a2n+1)− tbn = 2n+ 2(a20 + b20 + a21)− tb0.

One computes

2(a20 + b20 + a21)− tb0 =

∫ ∞

0

(2x2 − tx)p20(x)w(x) dx

= −γ2
0

∫ ∞

0

[xw(x)]′ dx+ α+ 1 = α+ 1;

hence

(2.5) 2(a2n + b2n + a2n+1) = tbn + 2n+ α+ 1.

Taking a telescopic sum of (2.1), we get

(2.6) anAn =
n−1∑
j=0

bj .

Multiplying (2.2) by an and taking a telescopic sum yields

2a2na
2
n+1 − 2

n∑
j=0

a2j =
n∑

j=1

ajAj(bj−1 − bj)

=

n−1∑
j=0

(aj+1Aj+1 − ajAj)bj − anAnbn

=
n−1∑
j=0

b2j − anAnbn,
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1322 LIES BOELEN AND WALTER VAN ASSCHE

where we have used (2.1) in the last line. We get, using (2.5) and (2.6),

2a2na
2
n+1 + anAnbn =

n−1∑
j=0

(a2j + b2j + a2j+1) + a2n =
1

2

n−1∑
j=0

(tbj + 2j + α+ 1) + a2n

=
t

2
anAn +

n(n+ α)

2
+ a2n,

or by using (2.4),

(2.7) 4a2na
2
n+1 = n(n+ α) + 2a2n − a2n(2bn − t)(2bn + 2bn−1 − t).

Now consider the case t = 0. We use (2.5) to substitute b2n in (2.7) and get

(2.8) 4a2nbnbn−1 = (2a2n − n)(2a2n − n− α).

Squaring this equation and substituting b2n and b2n−1, using (2.5) we obtain

(2a2n)
2(2a2n+2a2n+1−2n−α−1)(2a2n+2a2n−1−2n+α+1) = (2a2n−n)2(2a2n−(n+α))2.

Using the substitution yn = 2a2n − n− α/2 gives

(2.9) (yn + yn+1)(yn + yn−1) =
(y2n − α2

4 )2

(yn + zn)2
,

where zn = n+α/2, thus proving Corollary 1.2. This is an instance of dPIV, which
was found in [6]. The first initial value, y0 = −α/2, follows from the fact that
a0 = 0. As

a21 =
µ2µ0 − µ2

1

µ2
0

,

where µk is the kth moment of the weight w, we find for the second initial condition,

y1 = 2
µ2µ0−µ2

1

µ2
o

− 1− α
2 . Using integration by parts one finds

µk =
2

α+ k + 1
µk+2,

so we have

y1 =
α

2
− 2µ2

1

µ2
0

.

The case t �= 0 doesn’t allow a reduction of the system⎧⎨
⎩

2a2n + 2b2n + 2a2n+1 = tbn + 2n+ α+ 1,

4a2na
2
n+1 = n(n+ α) + 2a2n − a2n(2bn − t)(2bn + 2bn−1 − t)

to a single equation. Using the substitutions yn = 2a2n−n−α/2 and xn =
√
2 1
t−2bn

gives a system of equations,

(2.10)

⎧⎪⎪⎨
⎪⎪⎩

xnxn−1 =
yn + zn

y2n − α2

4

,

yn + yn+1 =
1

xn

(
t√
2
− 1

xn

)
with zn = n+ α/2. The initial conditions are given by a0 = 0, b0 = µ1/µ0 or

y0 = −α

2
, x0 =

√
2µ0

tµ0 − 2µ1
.

This proves Theorem 1.1.
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DISCRETE PAINLEVÉ EQUATIONS 1323

2.3. Relation with dPI. The recurrence coefficients of orthogonal polynomials
for the Freud weight

wα(x) = |x|2α+1 exp(−x4 + tx2), x ∈ R, α > −1,

were studied by Freud [5] (see also [11], [14]). The set {qn} of orthonormal polyno-
mials with respect to wα satisfies the recurrence relation

xqn(x) = An+1qn+1(x) +Anqn−1(x),

and the recurrence coefficients satisfy

(2.11) 4A2
n(A

2
n−1 +A2

n +A2
n+1 − t/2) = n+ (2α+ 1)∆n,

where ∆n = 0 when n is even and ∆n = 1 when n is odd. This equation is an
instance of the discrete Painlevé equation dPI.

Now consider the semiclassical Laguerre weight from Theorem 1.1,

vα(x) = xα exp(−x2 + tx), x ∈ R
+, α > −1,

and the set {pαn} of orthonormal polynomials for this weight. We will denote the
recurrence relation for this weight by

xpαn(x) = aαn+1p
α
n+1(x) + bαnp

α
n(x) + aαnp

α
n−1(x).

As was shown in [3], the polynomials

q2n(x) = pαn(x
2), q2n+1(x) = xpα+1

n (x2)

are orthonormal with respect to the weight wα and the following relations hold
between the recurrence coefficients of both weights:

(2.12)

{
aαn = A2nA2n−1,

bαn = A2
2n +A2

2n+1,

{
aα+1
n = A2nA2n+1,

bα+1
n = A2

2n+2 +A2
2n+1.

Adding the equations{
4A2

2n

(
A2

2n−1 +A2
2n +A2

2n+1

)
= 2n+ 2tA2

2n,

4A2
2n+1

(
A2

2n +A2
2n+1 +A2

2n+2

)
= 2n+ 2α+ 2 + 2tA2

2n+1

gives

4(aαn)
2 + 4(aαn+1)

2 + 4(bαn)
2 = 4n+ 2α+ 2 + 2tbαn,

which is exactly the second equation of (2.10). To obtain the first equation of (2.10)
one multiplies the equations{

4A2
2n

(
A2

2n +A2
2n+1 − t/2

)
= 2n− 4A2

2nA
2
2n−1,

4A2
2n−1

(
A2

2n−1 +A2
2n−2 − t/2

)
= 2n+ 2α− 4A2

2nA
2
2n−1.

In this way the transformations in (2.12) can be considered as a Miura transforma-
tion relating dPI (2.11) and the asymmetric dPIV (1.1) or (2.10), as described in
[13].
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1324 LIES BOELEN AND WALTER VAN ASSCHE

2.4. Orthogonality on the real line. So far we have considered the weight

w(x) = xαe−x2+tx on the positive real axis R
+. On the full real axis we may

consider the weight

w̃(x) = |x|αe−x2+tx, x ∈ R.

Observe that it satisfies the same Pearson equation

[xw̃(x)]′ = (−2x2 + tx+ α+ 1)w̃(x).

All the computations remain valid, and the conclusion is that the recurrence coef-
ficients for the orthogonal polynomials satisfy the same discrete Painlevé equation
(1.1) but with a different initial value for b0:

a0 = 0, b0 =

∫∞
−∞ x|x|αe−x2+tx dx∫∞
−∞ |x|αe−x2+tx dx

.

The bn need no longer all be positive. The special case t = 0 gives a symmetric
weight on the real line, and hence bn = 0 for all n ≥ 0. If we use this information
in (1.1), then 1/xn = 0 for all n ≥ 0 and (1.1) reduces to{

y2n = α2/4,

yn + yn+1 = 0.

With the initial value y0 = −α/2, we then find that yn = (−1)n+1α/2, so that
2a2n = n + α∆n, where ∆n = 0 when n is even and ∆n = 1 when n is odd. These
are indeed the recurrence coefficients for the generalized Hermite polynomials, given
in Chihara [3, Ch. V, Eq. (2.46)].

Even more is true. We may consider the weights

ŵ(x) =

{
c1x

αe−x2+tx, x > 0,

c2(−x)αe−x2+tx, x < 0,

with c1, c2 > 0. They still satisfy the same Pearson equation, and all the calculus
done before remains valid. Hence the recurrence coefficients for the orthogonal
polynomials with weight ŵ also satisfy (1.1) but with initial conditions

a0 = 0, b0 =
c1

∫∞
0

xα+1e−x2+tx dx+ c2
∫ 0

−∞ x|x|αe−x2+tx dx

c1
∫∞
0

xαe−x2+tx dx+ c2
∫ 0

−∞ |x|αe−x2+tx dx
.

The case c2 = 0 gives the weight w on the positive real line; the case c1 = c2
gives the weight w̃ on the full real line. If we define β = c1/c2, then this gives a
one-parameter family of solutions of (1.1) with a0 = 0 and

b0 = b0(β) =
β
∫∞
0

xα+1e−x2+tx dx+
∫ 0

−∞ x|x|αe−x2+tx dx

β
∫∞
0

xαe−x2+tx dx+
∫ 0

−∞ |x|αe−x2+tx dx
,

where β ∈ (0,∞). Observe that b0(β) is an increasing function of β. The limiting
cases β = 0 and β = ∞ correspond to orthogonal polynomials on R

− and R
+

respectively. Hence for b0(0) ≤ b0 ≤ b0(∞) the solution of (1.1) corresponds to
recurrence coefficients of orthogonal polynomials, and hence this solution has no
singularities.

This concludes our findings in the field of orthogonal polynomials on the real
line. In the next section we will look at q-orthogonal polynomials.
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3. qPV for a q-semiclassical Laguerre weight

In this section we investigate the weight function

(3.1) w(x) =
xα

(−x2; q2)∞

on R
+ and the recurrence coefficients associated to the set of the monic polynomials

orthogonal with respect to this weight. Here, 0 < q < 1, α > 0 and (z; q)∞ is the
q-Pochhammer symbol

(z; q)∞ =
∞∏
k=0

(1− zqk).

The weight w is a semiclassical variation of a q-analogue of the Laguerre weight

w(x) =
xα

(−x; q)∞
, x ∈ R

+,

studied by Chen and Ismail in [2]. They use the theory of q-ladder operators to
retrieve explicit expressions for the recurrence coefficients αn, βn of the recurrence
relation

xPn(x) = Pn+1(x) + αnPn(x) + βnPn−1(x)

for the monic orthogonal polynomials Pn associated with this weight (P−1 = 0). In
the next subsection we will take a closer look at the q-ladder operators before ap-
plying this to the weight (3.1) to find qPV as the equation describing the recurrence
coefficients of a q-modification of the Laguerre weight in Section 3.2.

3.1. q-Ladder operators. The theory of ladder operators as introduced in [2]
considers monic polynomials orthogonal with respect to the weight w on the positive
real axis. Denoting the polynomials by {Pn}, the orthogonality condition is∫ ∞

0

Pn(x)Pm(x)w(x) dx = ζnδm,n.

The potential u is defined as

u(x) = −
Dq−1w(x)

w(x)
,

where Dq is the q-difference operator

(Dqf)(x) =

⎧⎪⎨
⎪⎩

f(x)− f(qx)

x(1− q)
if x �= 0,

f ′(0) if x = 0.

The main result involves two entities,

An(x) =
1

ζn

∫ ∞

0

u(qx)− u(y)

qx− y
Pn(y)Pn(y/q)w(y) dy,

Bn(x) =
1

ζn−1

∫ ∞

0

u(qx)− u(y)

qx− y
Pn(y)Pn−1(y/q)w(y) dy,

which appear in the lowering relation [2, Theorem 1.1]

DqPn(x) = βnAnPn−1(x)−BnPn(x).
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1326 LIES BOELEN AND WALTER VAN ASSCHE

Furthermore, these quantities An and Bn satisfy two difference relations,

Bn+1(x) +Bn(x) = (x− αn)An(x) + x(q − 1)
n∑

j=0

Aj(x)− u(qx),(3.2)

1 + (x− αn)Bn+1(x)− (qx− αn)Bn(x) = βn+1An+1(x)− βnAn−1(x).(3.3)

These equations will enable us to find expressions for the recurrence coefficients
αn, βn as solutions of qPV.

3.2. Computations. Given the weight

w(x) =
xα

(−x2; q2)∞
, x ∈ R

+,

we have the Pearson equation

w

(
x

q

)
= q−α+2 w(x)

q2 + x2
.

This leads to the following expression for the potential:

u(x) =
q

1− q

(
1− q−α

x
+

q−αx

x2 + q2

)
,

so that
u(qx)− u(y)

qx− y
=

1

1− q

(
q−α − 1

xy
+

q−α(q − xy)

(x2 + 1)(y2 + q2)

)
.

Before being able to give expressions for An, Bn we introduce the following notation
for the coefficients of Pn :

Pn(x) = xn + p1(n)x
n−1 + p2(n)x

n−2 + · · · ,
where the boundary conditions p1(0), p2(1), p2(0), . . . are all zero. This enables us
to write the first terms of the Fourier series of both Pn(qx) and xPn(qx):

Pn(qx) = qnPn(x) + (1− q)qn−1p1(n)Pn−1(x)

+ qn−2(1− q)[p2(n)(1 + q)− qp1(n)p1(n− 1)]Pn−2(x) + · · · ,
xPn(qx) = qnPn+1(x) + qn−1[p1(n)− qp1(n+ 1)]Pn(x)

+ qn−2[p2(n)− q2p2(n+ 1)− qp1(n)
2

+ q2p1(n)p1(n+ 1)]Pn−1(x) + · · · .
Note that we can express the recurrence coefficients in terms of the coefficients of
the polynomials as

αn = p1(n)− p1(n+ 1),

βn = p2(n)− p2(n+ 1)− p1(n)
2 + p1(n)p1(n+ 1).

We then get

An(x) =
1

ζn

q−α − 1

1− q

1

x

∫ ∞

0

Pn(y)Pn(y/q)
w(y)

y
dy

+
1

ζn

q−α

1− q

1

1 + x2

∫ ∞

0

(q − xy)Pn(y)Pn(y/q)
w(y)

y2 + q2
dy.

Denoting

Rn =
1

ζn

q−1 − 1

1− q

∫ ∞

0

Pn(y)Pn(y/q)
w(y)

y
dy
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we get

An(x) =
Rn

x
+

1

ζn

q−2

1− q

1

1 + x2

∫ ∞

0

(q − xy)Pn(y)Pn(y/q)w(y/q) dy.

Using the substitution v = y/q this gives

An(x) =
Rn

x
+

1

ζn

1

1− q

1

1 + x2

∫ ∞

0

(1− xv)Pn(qv)Pn(v)w(v) dv

=
Rn

x
+

qn

1− q

1

1 + x2
− qn−1

1− q

x

1 + x2
[p1(n)− qp1(n+ 1)].

Introducing Dn = p1(n)− qp1(n+ 1) we finally arrive at

An(x) =
Rn

x

qn

1− q

1

1 + x2
− qn−1Dn

1− q

x

1 + x2
.

Note that
n∑

j=0

qj−1Dj = −qnp1(n+ 1).

For Bn we get

Bn(x) =
1

ζn−1

q−α − 1

1− q

1

x

∫ ∞

0

Pn(y)Pn−1(y/q)
w(y)

y
dy

+
1

ζn−1

q−α

1− q

1

1 + x2

∫ ∞

0

(q − xy)Pn(y)Pn−1(y/q)
w(y)

q2 + y2
dy.

Denoting

rn =
1

ζn−1

q−α − 1

1− q

∫ ∞

0

Pn(y)Pn−1(y/q)
w(y)

y
dy

and using manipulations similar to those in the calculation of An, we get

Bn(x) =
rn
x

+
qn−1p1(n)

1 + x2

− qn−2

1− q

x

1 + x2
[p2(n)− q2p2(n+ 1)− qp1(n)

2 + q2p1(n)p1(n+ 1)].

Introducing

Cn = qn−2
(
p2(n)− q2p2(n+ 1)− qp1(n)

2 + q2p1(n)p1(n+ 1)
)

we arrive at

Bn(x) =
rn
x

+
qn−1p1(n)

1 + x2
− 1

1− q

x

1 + x2
Cn.

Inserting these expressions for An and Bn in (3.2) and (3.3) and multiplying by
x(1 + x2) gives two polynomial identities. Comparing coefficients of powers of x
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gives, for (3.2), the following identities:

rn+1 + rn = −αnRn − 1− q−α

1− q,
(3.4)

qnp1(n+ 1) + qn−1p1(n) = Rn − αn
qn

1− q
− (1− q)

n∑
j=0

Rj ,(3.5)

rn+1 + rn − Cn+1

1− q
− Cn

1− q
= −αnRn +

qn

1− q
+ αnDn

qn−1

1− q
− 1− qn+1

1− q
− 1

1− q
,

(3.6)

0 = Rn − qn−1

1− q
Dn − (1− q)

n∑
j=0

Rj − qnp1(n+ 1).(3.7)

We can simplify (3.6) by subtracting (3.4), which gives

(3.8) −Cn+1 − Cn = qn + αnq
n−1Dn − 1 + qn+1 − q−α.

From (3.3) we get the identities

−αnrn+1 + αnrn = βn+1Rn+1 − βnRn−1,(3.9)

1 + rn+1 − αnq
np1(n+ 1)− qrn + αnq

n−1p1(n) = βn+1
qn+1

1− q
− βn

qn−1

1− q
,(3.10)

qnp1(n+ 1) + αn
Cn+1

1− q
− qnp1(n)− αn

Cn

1− q
= −βn+1

qn

1− q
Dn+1 + βn

qn−2

1− q
Dn−1,

(3.11)

1 + rn+1 −
1

1− q
Cn+1 − qrn +

q

1− q
Cn = 0,(3.12)

where we have already simplified (3.11) by using (3.9). We will now express Dn in
terms of Rn. First we rewrite (3.7) as

0 = qRn − qn−1

1− q
Dn − (1− q)

n−1∑
j=0

Rj − qnp1(n+ 1).

We can now substitute
∑

Rj by using (3.7) for n− 1. This results in the equation

0 = qRn −Rn−1 −
qn−1

1− q
Dn +

qn−2

1− q
Dn−1 − qnp1(n+ 1) + qn−1p1(n),

which has integrating factor qn−1. After taking a telescopic sum we have

0 = (1− q)qnRn − (1− q)R0 + q2np1(n+ 1)− q2n−1p1(n) + q−1p1(0).

However, all terms with R0, p1(0) and p1(1) cancel each other when we consider
(3.7) for n = 0. After dividing by qn we are left with the identity

(3.13) (1− q)Rn = qn−1(p1(n)− qp1(n+ 1)) = qn−1Dn.

Next, we write Cn in terms of rn. We use (3.11) to obtain

αnq
n +

αn

1− q
Cn+1 −

αn

1− q
Cn = βn+1Rn+1 − βnRn−1

together with (3.9) to obtain, after dividing by αn,

rn+1 − rn = −qn +
1

1− q
Cn+1 −

1

1− q
Cn.
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Taking a telescopic sum and using r0 = C0 = 0, we find that

(1− q)rn = Cn − 1 + qn.

We now use (3.4) to substitute αnRn in (3.10):

qrn+1 − rn + q−α = βn+1
qn+1

1− q
− βn

qn−1

1− q
.

This expression has integrating factor qn. Taking a telescopic sum, we get

(3.14) βn
qn−1

1− q
= rn + q−α−n 1− qn

1− q
.

We have now been able to write βn, Cn and Dn in terms of rn and Rn. The same
can be done for αn. Combining (3.5) and (3.7) results in

(3.15) qn−1p1(n) = Rn − αn
qn

1− q
.

We would like to get rid of the p1(n) in this equation. For that purpose, we rewrite
(3.9) using (3.14) and (3.13) to find that

αn(1− q)q−α−n−1 = βn+1q
n(p1(n)− qp1(n+2))− βnq

n−2(p1(n− 1)− qp1(n+1)).

This equation has an integrating factor qn+1, and after taking a telescopic sum we
get

q−α(1− q)p1(n) = βnq
n−1(qp1(n+ 1)− p1(n− 1))

= βnq
n−1(−qαn − q−n+2(1− q)Rn−1).(3.16)

Combining (3.15) and (3.16) we get

αn(q
n − q3n+α−1βn) = (1− q)Rn + (1− q)Rn−1q

2n+αβn,

which expresses αn as a function of Rn and rn.
If we look at (3.9), we see that the right hand side has an integrating factor Rn.

When multiplying (3.9) with this integrating factor, the expression αnRn appears
on its left hand side, and we use (3.4) to substitute it in terms of rn, which gives

βn+1Rn+1Rn − βnRnRn−1 = r2n+1 − r2n +
1− q−α

1− q
(rn+1 − rn).

Taking a telescopic sum gives

(3.17) βnRnRn−1 = rn

(
rn +

1− q−α

1− q

)
.

It is this equation we will use, together with (3.4), to recover qPV. First, we rewrite
(3.4) using the expression found for αn:

qn
(
rn+1 + rn +

1− q−α

1− q

)
(q2n+α−1βn− 1) = (1− q)R2

n+(1− q)q2n+αβnRnRn−1.

Using (3.17) in this equation gives an expression for R2
n:

(1− q)R2
n = qn

(
rn+1 + rn +

1− q−α

1− q

)
(q2n+α−1βn − 1)

− (1− q)q2n+αrn

(
rn +

1− q−α

1− q

)
.
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We insert this in the squared (3.17),

β2
nR

2
nR

2
n−1 = r2n

(
rn +

1− q−α

1− q

)2

,

and replace all βn using (3.14). This gives a difference equation for rn:

(1− q)2r2n(rn +
1− q−α

1− q
)2 = q

(
(1− q)rn + (1− qnq−n−α)

)2
×
{(

rn+1 + rn +
1− q−α

1− q

)(
(1− q)qn+αrn − qn

)
− (1− q)qn+αrn

(
rn +

1− q−α

1− q

)}

×
{(

rn−1 + rn +
1− q−α

1− q

)(
(1− q)qn+α−1rn−1 − qn−1

)
− (1− q)qn+α−1rn−1

(
rn−1 +

1− q−α

1− q

)}
.

We now use the substitution xn = q−α/2 − qα/2(1− q)rn = q−n−α/2 − qn+α/2−1βn

and obtain

(3.18) (xnxn+1 − 1)(xnxn−1 − 1) =
q−2n−α

(
xn − q−α/2

)2 (
xn − qα/2

)2
(
xn − q−n−α/2

)2 ,

which is qPV. Expressed in terms of the kth moments µk of the weight w, the
initial values are

x0 = q−α/2, x1 = q−1−α/2 − qα/2
µ2µ0 − µ2

1

µ2
0

.

This concludes the proof of Theorem 1.3.

4. Conclusions and outlook

In this paper we have established the connection between various semiclassical
variations on the Laguerre weight and discrete Painlevé equations for the recurrence
coefficients of the corresponding orthogonal polynomials.

In the case of semiclassical Laguerre orthogonal polynomials (on the positive
half-line) we found a connection to the system (1.2) which reduces to dPIV in a
special case. We recovered an earlier result about the quadratic relation between
dPIV and dPI from the orthogonal polynomial point of view.

The case of the semiclassical q-Laguerre orthogonal polynomials gives a con-
nection with qPV. As we know from the coalescence cascades for discrete Painlevé
equations, dPIV is a limiting case of qPV, just like the semiclassical Laguerre weight
on the positive half-line can be found from the semiclassical q-Laguerre weight in
an appropriate limit. The symmetrized weight

w(x) =
|x|2α+1

(−x4; q4)∞
,

on the full real line was studied by Ismail and Mansour [10]. For α = −1/2 they
found a q-discrete form of P34 (see [7, Eq. (6.3)]). One would expect qPIII because
there is a known quadratic Miura transformation between qPV and qPIII. We
believe that this could be studied in more detail.
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Springer, 2004, pp. 245–321. MR2087743 (2005g:39032)
[9] B. Grammaticos, A. Ramani, V. Papageorgiou, Do integrable mappings have the Painlevé
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in Symmetries and Integrability of Difference Equations (Canterbury, 1996), London Math.
Soc. Lecture Note Ser., 255, Cambridge University Press, 1999, pp. 228–243. MR1705232
(2000k:42036)

[12] F. Nijhoff, On a q-deformation of the discrete Painlevé I equation and q-orthogonal polyno-
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