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Abstract—We propose distributed algorithms to automatically e '_| Chemistry [ ® :

deploy a team of mobile robots to partition and provide coverage | o
of a non-convex environment. To handle arbitrary non-convex o H @ @ Engineering I
environments, we represent them as graphs. Our partitioning and ‘ #
coverage algorithm requires only short-range, unreliable pairwise ° - | = B EDE -
“gossip” communication. The algorithm has two components: (1) Tl v
a motion protocol to ensure that neighboring robots communicate Physical Sciences ==
at least sporadically, and (2) a pairwise partitioning rule to update
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territory ownership when two robots communicate. By studying @%“f e o
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an appropriate dynamical system on the space of partitions of the

graph vertices, we prove that territory ownership converges to Brolda Hall
a pairwise-optimal partition in finite time. This new equilibrium
set represents improved performance over common Lloyd-type
algorithms. Additionally, we detail how our algorithm scales well
for large teams in large environments and how the computation
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can run in anytime with limited resources. Finally, we report on
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large-scale simulations in complex environments and hardware

experiments using the Player/Stage robot control system. Fig. 1. Example of a team of robots providing gfficient t_:overasg a non-
convex environment, as measured by an appropriate multicepséfunction.
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I. INTRODUCTION

Coordinated networks of mobile robots are already in ué
for environmental monitoring and warehouse logistics. | . L , .
the near future, autonomous robotic teams will revolutieni convex e“nwro_nment.”Opt|ma||ty_ IS defme_d with refe_renceato
transportation of passengers and goods, search and rqscuée evant “multicenter” cost function. As with all multirobco-

erations, and other applications. These tasks share a cnmr%?r']r;]?t'gin atpi)prl]lcratlo?rs,éhenfha}[lrl]engre comtzs fTon:itrﬁr?’me i
feature: the robots are asked to provide service over a spaccoq unicatio e“qu er ? s- the proposed aigo requ
nly short-range “gossip” communication, i.e., asynclows

One question which arises is: when a group of robots is vgaitiﬁ) ) S
for a task request to come in, how can they best positigwd unreliable communication between nearby robots.
themselves to be ready to respond? . )
The distributecenvironment partitioning problerior robotic ~ Literature Review
networks consists of designing individual control and com- Territory partitioning and coverage control have applica-
munication laws such that the team divides a large space ifitns in many fields. In cyber-physical systems, applicatio
regions. Typically, partitioning is done so as to optimizeoat include automated environmental monitoring [1], fetchagl
function which measures the quality of service providedroveelivery [2], construction [3], and other vehicle routingesar-
all of the regionsCoverage controhdditionally optimizes the ios [4]. More generally, coverage of discrete sets is alesat
positioning of robots inside a region as shown in Fig. 1.  related to the literature on data clustering dndheans [5],
This paper describes a distributed partitioning and cgeeraas well as the facility location ork-center problem [6].
control algorithm for a network of robots to minimize thePartitioning of graphs is its own field of research, see [T]ao

) . survey. Territory partitioning through local interact®ris also
This work was supported in part by ARO MURI Award W911NF-05-1- died f . | f le [8
0219, NSF grants 11S-0904501 and CPS-1035917, and MIURtgran-  Studied for animal groups, see for example [8].

20087W5P2. Preliminary and incomplete versions of this wogeaped inthe A broad discussion of algorithms for partitioning and
Proceedings of the 2009 ASME Dynamic Systems and Control Gamde, coverage control in robotic networks is presented in [9]

Hollywood, California, USA, and in the Proceedings of thelQOIEEE . . . .
Conference on Decision and Control, Atlanta, Georgia, USA. which builds on the classic work of Lloyd [10] on optimal
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istributed events which will appear at discrete points nmoa-



auctions, see [17] for a survey. can handle large robot teams, and a hardware-in-the-loop
While Lloyd iterative optimization algorithms are populaexperiment conducted in our lab which incorporates sensor
and work well in simulation, they require synchronous angboise and uncertainty in robot position. Through numerical
reliable communication among neighboring robots. As reboanalysis we also show how our new approach to partitioning
with adjacent regions may be arbitrarily far apart, thegepresents a significant performance improvement over both
communication requirements are burdensome and unrealistmmon Lloyd-type methods and the recent results in [18].
for deployed robotic networks. In response to this issufl 8h The present work differs from the gossip Lloyd method [18]
the authors have shown how a group of robotic agents canthree respects. First, while [18] focuses on territory- pa
optimize the partition of a convex bounded set using a Lloytdioning in a convex continuous domain, here we operate
algorithm with gossip communication. A Lloyd algorithm tvit on a graph which allows our approach to consider geodesic
gossip communication has also been applied to optimizidgstances, work in non-convex environments, and maintain
partitions of non-convex environments in [19], the key ideaonnected territories. Second, instead of a pairwise LIyl
being to transform the coverage problem in Euclidean spaggdate, we use an iterative optimal two-partitioning appho
into a coverage problem on a graph with geodesic distanceghich yields better final solutions. Third, we also present a
Distributed Lloyd methods are built around separate partiotion protocol to produce the sporadic pairwise commu-
tioning and centering steps, and they are attractive becangcations required for our gossip algorithm and charaogeri
there are known ways to characterize their equilibrium setse computational complexity of our proposal. Preliminary
(the so-called centroidal Voronoi partitions) and proven-co versions of this paper appeared in [19] and [20]. Compared to
vergence. Unfortunately, even for very simple environrmenthese, the new content here includes: (1) a motion protocol;
(both continuous and discrete) the set of centroidal Varon@®) a simplified and improved pairwise partitioning rule) (3
partitions may contain several sub-optimal configuratidle proofs of the convergence results; and (4) a descriptioruof o
are thus interested in studying (discrete) gossip coveraggplementation and a hardware-in-the-loop experiment.
algorithms for two reasons: (1) they apply to more realistic
robot network models.featuring very limited communicalinn_ Paper Structure and Notation
large non-convex environments, and (2) they are more flexibl , , ,
than typical Lloyd algorithms meaning they can avoid poor In Section Il we review and adapt coverage and geometric

suboptimal configurations and improve performance. concepts (e.g., centroids, Voronoi partitions) to a digcesvi-
ronment like a graph. We formally describe our robot network

model and the discrete partitioning problem in Sectiondhg

Statement of Contributions then state our coverage algorithm and its properties. @ebi

There are three main contributions in this paper. Firggontains proofs of the main convergence results. In Sedtion
we present a discrete partitioning and coverage optingzatiwe detail our implementation of the algorithm and present
algorithm for mobile robots with unreliable, asynchroncarsd  €Xperiments and comparative analysis. Some conclusiens ar
short-range communication. Our algorithm has two comp@iven in Section VI.
nents: amotion protocolwhich drives the robots to meet their [N our notation,R>, denotes the set of non-negative real
neighbors, and pairwise partitioning ruleto update territories Numbers andZ, the set of non-negative integers. Given a
when two robots meet. The partitioning rule optimizes cove$€t 4, |4| denotes the number of elements.n Given sets
age of a set of points connected by edges to form a graph. FheB, their difference isA \ B = {a € A| a ¢ B}. A set-
flexibility of graphs allows the algorithm to operate in nonvalued map, denoted b : A = B, associates to an element
convex, non-polygonal environments with holes. Our gragi A a subset of3.
partition optimization approach can also be applied to non-
planar problems, existing transportation or logisticsnueks, [I. PRELIMINARIES

or more general dat_a sets. ) We are given a team olV robots tasked with providing
Second, we provide an analysis of both the convergenggerage of a finite set of points in a non-convex and non-
properties and computational requirements of the algoith ,oygonal environment. In this Section we translate cotsep

By studying a dynamical system of partitions of the graphgseq in coverage of continuous environments to graphs.
vertices, we prove that almost surely the algorithm coregrg

to a pairwise-optimal partition in finite time. The set of )

pairwise-optimal partitions is shown to be a proper subs@t Non-convex Environment as a Graph

of the well-studied set of centroidal Voronoi partitionseW Let @ be a finite set of points in a continuous environment.

further describe how our pairwise partitioning rule can b&hese points represent locations of interest, and are a&sbsum

implemented to run in anytime and how the computationtd be connected by weighted edges. K&tQ) = (Q, E, w)

requirements of the algorithm can scale up for large domaibe an (undirected) weighted graph with edge Bet Q x Q

and large teams. and weight mape : £ — Rs(; we letw, > 0 be the weight
Third, we detail experimental results from our implementaf edgee. We assume thaf(Q)) is connected and think of

tion of the algorithm in the Player/Stage robot control eyst the edge weights as distances between locations.

We present a simulation of 30 robots providing coverage of aRemark 2.1 (Discretization of an EnvironmenBor  the

portion of a college campus to demonstrate that our algaritrexamples in this paper we will use a coamsupancy grid



map as a representation of a continuous environment. € Adjacency of Partitions

an occupancy grid [21], each grid cell is either free spacepq; oyr gossip algorithms we need to introduce the notion
or an obstacle (occupied). To form a weighted graph, eaghagjacent subgraphs. Two distinct connected subgrdphs
free cell becomes a vertex and free cells are connected With 5.0 said to beadjacentif there are two vertices;, g;

edges if they border each other in the grid. Edge Weighﬁélonging, respectively, t& and P; such that(g;, ;) € E.
are the distances between the centers of the cells, i.e., 8)serve that ifP, and P, are adjacent then?, U P; is
grid resolution. There are many other methods to discretize,,nnected. Similarly, we sjay that robatsind j are adj;cent
space, in_cluding triangularization_ and other approaches f . .o neighbors if their subgraptg and P; are adjacent.
computational geometry [22], which could also be used.  accordingly, we introduce the following useful notion.

.In any weighted gra_piG(Q) Fhere is a standard _not|o_n of  Definition 2.3 (Adjacency Graph)Eor P € Party(Q), we
distance between vertices d.eflned as followspath in G IS define theadjacency graptbetween regions of partitio® as
an ordered sequence of vertices such that any consecutive BRP) = ({1,...,N},E(P)), where(i,j) € £(P) if P; and
of vertices is an edge af’. The weight of a pathis the sum P; are adjacent.
of the weights of the edges in the path. Given vertiteand pj5ie thatG(P) is always connected singg(Q) is.
k in G, the distancebetweenh and k, denoteddq (h, k), is
the weight of the lowest weight path between themsteb if
there is no path. If7 is connected, then the distance betwedd. Cost Functions
any two vertices in is finite. By conventiondc(h,k) =0  We define three coverage cost functions for graptisie,
if h = k. Note thatdg (h, k) = dg(k, ), foranyh,k € Q. Hmuyticentes aN0Hexpected LEL theweight functionp : Q — R+
assign a relative weight to each elementfThe one-center
function Hone gives the cost for a robot to cover a connected
subsetd C @) from a vertexh € A with relative prioritization

We will be partitioning Q into N connected subsets orset byg:
regions which will each be covered by an individual robot. Hone(h; A) = Z da(h, K)o (k).
To do so we need to define distances on induced subgraphs of keA
G(Q). GivenI C @Q, the subgraph induced by the restriction
of G to I, denoted byG N1, is the graph with vertex set

equal tol and edge set containing all weighted edges Aderrelation, <, is defined o, i.e., thatQ — {1, ..., |Q|}.

G where both vertices belong t. In other words, we set With this assumption we can deterministically pick a vertex
(@, B,w)n I =(QNL,EN(IxI), wrxr). The induced sub- ;)" iy minimizesHone as follows.

\g/;?ggelss, ai\v/veer:gh]tﬂei gIraS\/ZV\\//\I/tr?tea dn?l?olg) o'f_dl(;tanc(eh b]j)tweenDefinition 2.4 (Centroid):Let ) be a totally ordered set,
-9 : ’ B = 2en VB and letA ¢ Q. We define the set of generalized centroids of

Note thatd;(h, k) > dg(h, k). . X . 2 )
We define aconnected subset 6f as a subsetl c O such A as the set of vertices id which minimize Hone, i.€.,

that A # () and G N A is connected. We can then partitih C(A) := argmin Hone(h; A).
into connected subsets as follows. heA

Definition 2.2 (Connected Partitions)Given  the  graph Fyrther, we define the map Cd as(@d := min{c € C(A)}.
G(Q) = (Q, E,w), we define aconnectedV —partition of @  we call Cd 4) the generalized centroidf A.

B. Partitions of Graphs

A technical assumption is needed to solve the problem of
gginimizing Hone(+, A): we assume from now on thattatal

as a collection? = {P,;}}¥, of N subsets ofp such that In subsequent use we drop the word “generalized” for
(i) va:l P, =Q; brevity. Note that with this definition the centroid is well-
@iy NP =0if i#j; defined, and also that the centroid of a region always belongs
(iy P,#0forallic{1,...,N}; and to the region. With a slight notational abuse, we define
(iv) P; is connected for alf € {1,..., N}. Cd : Party(Q) — QN as the map which associates to a

partition the vector of the centroids of its elements.

We define themulticenter functiorHmuiticentert0 measure the
ost for NV robots to cover a connecte-partition P from
e vertex set: € QV:

Let Party(Q) to be the set of connecteld —partitions of Q.
Property (ii) implies that each element @fbelongs to just c
one P;, i.e., each location in the environment is covered b
just one robot. Notice that eadh € P induces a connected
subgraph inG(Q). In subsequent references ¢ we will 1 N
often meanGNPF;, and in fact we refer toP;(t) as the Hmuiticented ¢, P) = WZHone(ci§Pi)-
dominance subgrapbr region of the i-th robot at timet. keQ i=1
Among the ways of partitioning, there are some which We aim to minimize the performance functiétyuicenter With
are worth special attention. Given a vector of distinct poinrespect to both the verticesand the partitionP.
c € QN, the partitionP € Party(Q) is said to be a/oronoi ~ We can now state the coverage cost function we will be
partition of Q generated by &, for each P; and allk € P;, concerned with for the rest of this paper. LBfexpected :
we havec; € P; anddg(k,c;) < dg(k,c;), Vj # i. Note that  Party(Q) — R be defined by
the Voronoi partition generated hyis not unique since how
to apportion tied vertices is unspecified. Hexpected ) = Hmuticente{ Cd(P), P).



will periodically be asked to perform a task somewhere in it

region with tasks appearing according to distributipnVhen

idle, the robots would position themselves at the centrdid o @) (b) (©)

their region. By partlt'lqnlrjg’} so as to mlnlmlzg_[exPECYEG the Fig. 2. All possible centroidal Voronoi partitions of a umifm 2 x 5 grid.
robot team would minimize the expected distance betweern&uming all edge weights are and all vertices have priority, then (a)

task and the robot which will service it. has a cost ofl..2w, (b) has a cost of.1w, and (c) has a cost df.0w. Only
(c) is pairwise-optimal by definition.

In the motivational scenario we are considering, each rob(..&.. .. ..
T 1

E. Optimal Partitions

We introduce two notions of optimal partitions: centroidarleduced by changing eithé? or c independently. A pairwise-

Voronoi and pairwise-optimal. Our discussion starts with t opFimaI pqrtition .achieves this_ property and adds that‘iene
following simple result about the multicenter cost funatio pa|r'(')f nelghborlng.robot@,]), there does not exist a two-
Proposition 2.5 (Properties of Multicenter Function)et partition of ;U P; with a lower coverage cost. In other words,
P e Partn(Q) ande € QN. If P’ is a Voronoi partition positioning the robots at the centroids of a centroidal Yoio
N .

) o , _ ) partition (locally) minimizes the expected distance betwa
generated by and¢’ € Q" is such that; € C(F3) V4, then task appearing randomly i@ according to relative weights

Hmutticentel ¢, P’) < Hmuticentelc, P), and and the robot who owns the vertex where the task appears.
Homuticente €'y P) < Hmuticente¢; P).- _Posmonmg at the centroids of_ a pairwise-optimal pa'mt_l
improves performance by reducing the number of sub-optimal
The second inequality is strict if any ¢ C(P;). solutions which the team might converge to.
Proposition 2.5 implies the following necessary condition
if (¢, P) minimizes Hmuticentes thenc; € C(P;) Vi and P |1l. M ODELS, PROBLEM FORMULATION, AND PROPOSED
must be a Voronoi partition generated by Thus, Hexpected SOLUTION

has the following property as an immediate consequence Of\Ne aim to partition) among N robotic agents using

Propgsition 2.5 givenP’ € Party(Q), if P* is a Voronoi only asynchronous, unreliable, short-range communicatio
partition generated by ) then Section IlI-A we describe the computation, motion, and com-

H P*) < H P). munication capabilities required of the team of robots, #nd

expected ) < Herpeced ) Section 11I-B we formally state the problem we are addregsin
This fact motivates the following definition. In Section IlI-C we propose our solution, tidscrete Gossip
Definition 2.6 (Centroidal Voronoi Partition): Coverage Algorithmand in 11I-D we provide an illustration. In

P € Party(Q) is a centroidal Voronoi partitionof ¢  Sections llI-E and IlI-F we state the algorithm’s converggn
if there exists ac € @™ such thatP is a Voronoi partition and complexity properties.
generated by: andc¢; € C(P;) V i.
The set ofpairwise-optimal partitiongprovides an alterna- A. Robot Network Model with Gossip Communication
tive definition for the optimality of a partition: a partitiois Our Discrete Gossip Coverage Algorithm requires a team

pairwise-optimal if, for every pair of adjacent regionseaan ¢ n robotic agents where each agént {1,..., N} has the

not find a better two-partition of the union of the two regio”%‘ollowing basic computation and motion capabilities:
This condition is formally stated as follows.

Definition 2.7 (Pairwise-optimal Partition):
P € Party(Q) is a pairwise-optimal partition if for
every (i, j) € £(P),

(C1) agent; knows its unique identifiet;

(C2) agenti has a processor with the ability to stof& Q)
and perform operations on subgraphstii@); and

(C3) agenti can determine which vertex i it occupies and

Hone(CA(P,); P;) + Hone(CA(P)); P;) = can move at speed along the edges ofi(Q) to any
other vertex inQ.
. bénpi,%zv-{ > min{dpup,(a,k),dpup, (b, k) } ¢(k’)}- Remark 3.1 (Localization)The localization requirement in

keP;UP; (C3) is actually quite loose. Localization is only used fawn

The following Proposition states that the set pairwisdd@tion and not for updating partitions, thus limited dioat

optimal partitions is in fact a subset of the set of centrbigipcalization errors are not a problem. _
Voronoi partitions. The proof is involved and is deferred to 1he robotic agents are assumed to be able to communicate

Appendix C. See Fig. 2 for an example which demonstratiéth each other according to thienge-limited gossip commu-

that the inclusion is strict. nication modelwhich is described as follows:
Proposition 2.8 (Pairwise-optimal Implies Voronoilet ~ (C4) given a communication ranggomm > maxce g w., when
P € Party(Q) be apairwise-optimal partition Then P is any two agents reside for some positive duration at a
also acentroidal Voronoi partition distancer < rcomm they communicate at the sample
For a given environmeng), a pair made of a centroidal times of a Poisson process with intenskymm > 0.

\Voronoi partition P and the corresponding vector of centroidRecall that an homogeneous Poisson process is a widely-
c is locally optimal in the following senséexpectedCannot be used stochastic model for events which occur randomly and



independently in time, where the expected number of evemiairs of robots. In general, any motion protocol can be used
in a periodA is Alcomm which meets this requirement, gocould selectg; from the
Remark 3.2 (Communication Modelfl) This commu- boundary ofP; or use some heuristic non-uniform distribution
nication capability is the minimum necessary for our algmver P;.
rithm, any additional capability can only reduce the time If any two agentg and; reside in two vertices at a graphical
required for convergence. For example, it would be accégptallistance smaller that,,mm for some positive duration, then at
to have intensity\(r) depend upon the pairwise robot distancéhe sample times of the corresponding communication Poisso
in such a way that(r) > Acomm for 7 < 7comm process the two agents exchange sufficient information to
(2) We use distances in the graph to model limited ranggdate their respective dominance subgraphsnd P; via
communication. These graph distances are assumed to the- Pairwise Partitioning Rule.
proximate geodesic distances in the underlying continuous

. . . ) Pairwise Partitioning Rule
environment and thus path distances for a diffracting wavAe hat al timeé € & % and : -
or moving robot. ssume that at ime € R>o, agent: and agentj communi-

cate. Without loss of generality assume that j. Let P;(t)
and P;(t) denote the current dominance subgraphs ahd
j, respectively. Moreover, let™ denote the time instant just

Assume that, for alt € R, each agent € {1,..., N} after. Then, agents andj perform the following tasks:
maintains in memory a conpec_ted sub@g(tt)_ of enV|ro.nmer.1t 1 agenti transmitsP; () to agentj and vice-versa
Q- Our goal is to design a distributed algorithm that iteliiv . ; v oy . Py(t), Wy- := P;(t), a* := Cd(P;(t))
updates the partitiorP(t) = {F;(t)}/X, while solving the = ...~ Cd(P(-L(t).) e R s

; i At . = J

following optimization problem: 3: computeU := P;(t) U P;(t) and an ordered lis of all

B. Problem Statement

PeParty (Q 4: for each(a,b) € S do
subject to the constraints imposed by the robot network inodes:  compute the sets
with range-limited gossip communication from SectionAll- Wy :={x €U :dy(z,a) <dy(xz,b)}
Wy:={zeU:dy(z,a) > dy(z,b)}
C. The Discrete Gossip Coverage Algorithm 6: if Hone(a; Wa) + Hone(b; Ws) <

In the design of an algorithm for the minimization prob-
lem (1) there are two main questions which must be addressed. War 1= Wo, We- := Wy, 0" :=a,b" :=b
First, given the limited communication capabilities in jc4 & Bi(tT) = Wae,  Bi(7) i= W
how should the robots move insidg to guarantee frequent Some remarks are now in order.
enough meetings between pairs of robots? Second, when Remark 3.4 (Partitioning Rule)(1) The Pairwise Parti-
two robots are communicating, what information should thejoning Rule is designed to find a minimum cost two-partition
exchange and how should they update their regions? of U. More formally, if list S and setsWW,- and W, for

In this section we introduce thBiscrete Gossip Coverage (a*,b*) € S are defined as in the Pairwise Partitioning Rule,
Algorithm which, following these two questions, consists othen,- and W, are an optimal two-partition of’.

Hone(a*é Wa") + Hone(b*§ Wb*) then

two components: (2) While the loop in steps 4-7 must run to completion to
(1) theRandom Destination & Wait Motion Protogaind guarantee thatV,- and W, are an optimal two-partition of
(2) the Pairwise Partitioning Rule U, the loop is designed to return an intermediate sub-optimal

The concurrent implementation of the Random DestinatidgSult if need be. IfF; and P; change, therHexpectea Will

& Wait Motion Protocol and the Pairwise Partitioning Rulglécrease and this is enough to ensure eventual convergence.
determines the evolution of the positions and dominanéd) We make a simplifying assumption in the Pairwise
subgraphs of the agents as we now formally describe. We sfa@titioning Rule that, once two agents communicate, the

with the Random Destination & Wait Motion Protocol. application of the partitioning rule is instantaneous. edss
the actual computation time required in Section IlI-F anehso

implementation details in Section V.
(4) Notice that simply assignind/,- to i and W, to j can
Y ) cause the robots to “switch sides” ih. While convergence is
1: agenti samples adestination vertexy; from a uniform 4 aranteed regardless, switching may be undesirable ir som
distribution over its dominance subgrapty _ applications. In that case, any smart matchingiaf andW,-
2: agenti moves to vertex; through the shortest path iy, ¢ ; andj may be inserted.
connecting the vertex it currently occupies apdand  (5y  agents who are not adjacent may communicate but the
3: agent; walits atg; for a durationr > 0. partitioning rule will not change their regions. Indeed tliis
If agent: is moving from one vertex to another we say thataseW,- and W, will not change fromP;(¢) and P;(t).
agent: is in the moving state while if agent is waiting at Some possible modifications and extensions to the algorithm
some vertex we say that it is in tiveaiting state. are worth mentioning.
Remark 3.3 (Motion Protocol)The motion protocol is de- Remark 3.5 (Heterogeneous Robotic Networks): case
signed to ensure frequent enough communication betwabe robots have heterogeneous dynamics, line 5 can be

Random Destination & Wait Motion Protocol
Each agent € {1,..., N} determines its motion by repeat-
edly performing the following actions:
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Fig. 3. Simulation of four robots dividing a square environinesth obstacles. The boundary of each robots territory @sadr in a different color, the
centroid of a territory is drawn with an X, and pairwise comneation is drawn with a solid red line. On the left is the idiartition assigned to the robots.
The middle frames show two pairwise territory exchanges, wjibated territories highlighted with solid colors. The fipartition is shown at right.

modified to consider per-robot travel times between vesticeAlgorithm consisting of the concurrent implementation of the
For example,dy(x,a) could be replaced by the expectedkandom Destination & Wait Motion Protocahd thePairwise
time for roboti to travel froma to = while dy (x,b) would Partitioning Rule Then,

consider roboyj. (i) the partitionP(¢) remains connected and is described by
Remark 3.6 (Coverage and Task Servicinglere we fo- P :R>q — Party(Q), and

cus on partitioning territory, but this algorithm can epdie (i) P(¢) converges almost surely in finite time to a pairwise-

combined with methods to provide a service@has in [4]. optimal partition.

The agents could split their time between moving to meetthei ramark 3.8 (Optimality of SolutionsBy ~ definition
neighbors and update territory, and performing requestsist i
in their region.

a

pairwise-optimal partition is optimal in th@teypecteaCan not

be improved by changing only two regions in the partition.
Remark 3.9 (Generalizationsfor simplicity we assume

D. lllustrative Simulation uniform robot speeds, communication processes, and wait-

The simulation in Fig. 3 shows four robots partitioning 49 imes. An extension to non-uniform processes would be
square environment with obstacles where the free spaceSt@ightforward.
represented by a2 x 12 grid. In the initial partition shown
in the left panel, the robot in the top right controls most df. Complexity Properties and Discussion
the environment while the robot in the bottom left controls |, this subsection we explore the computational require-

very little. The robots then move according to the Randofents of the Discrete Gossip Coverage Algorithm, and make

Destination & Wait Motion Protocol, and communicate acsome comments on implementation. Cost functitie(h; P;)

cording to range-limited gossip communication model Wity the sum of the distances betwekrand all other vertices

Teomm = 2.5m (four edges in the graph). _ in P;. This computation of one-to-all distances is the core
The first pairwise territory exchange is shown in the secopgmputation of the algorithm. For most graphs of interest th

panel, where the bottom left robot claims some territoryrfro (o151 number of edge&E| is proportional to|Q)|, so we will

the robot on the top left. A Igter exchange between the t_Vé‘?ate bounds on this computation in terms Bf]. Computing

robots on the top is shown in _the next two panels. NotiGshe-to-all distances requires one of the following:

that the cyan robot in the top right gives away the vertex it . if all edge weights in(Q) are the same (e.g., for a graph

currently occupies. In such a scenario, we direct the robot t . :
) ) ’ ) from an occupancy grid), a breadth-first search approach
follow the shortest path it7(Q) to its updated territory before can be used which requiré3(|P;|) in time and memory:

coz’:cltr;l;ugg (;r']r tqsz rtzrr]gt%r:] ?Tr':;?mens' the robots reach the® otherwise, Dijkstra’s algorithm must be used which re-
painwi oty ex ges, quiresO(|P;|log (| F;])) in time andO(|F;|) in memory.

pairwise-optimal partition shown at right in Fig. 3. The ex- be the fi I i
pected distance between a random vertex and the closest r D(F;) e_t e time to Compme one-to-a : |s_tancesﬂ;r,1
then computingHone(h; P;) requiresO(D(F;)) in time.

decreases fror2.34m down to1.74m. e ; y .
Proposition 3.10 (Complexity PropertiesThe motion
protocol requiresO(|P;|) in memory, and O(D(F;)) in
E. Convergence Property computation time. The partitioning rule requir@g| P;|+| P;|)
The strength of the Discrete Gossip Coverage Algorithm is communication bandwidth between robois and j,
the possibility of enforcing that a partition will convergea O(|P;| + |P;|) in memory, and can run in any time.

pairwise-optimal partition through pairwise territoryatange. Proof: We first prove the claims for the motion protocol.
In Theorem 3.7 we summarize this convergence property, wittep 2 is the only non-trivial step and requires finding a
proofs given in Section IV. shortest path in?;, which is equivalent to computing one-to-

Theorem 3.7 (Convergence Propertyjonsider a network all distances from the robot’s current vertex. Hence, itiezs
of N robotic agents endowed with computation and motion c&(ID(P;)) in time andO(F;) in memory.
pacities (C1), (C2), (C3), and communication capacitie$)(C We now prove the claims for the partitioning rule. In step
Assume the agents implement tbéscrete Gossip Coveragel, robotsi and j transmit their subgraphs to each other,



which requiresO(|P;| + |P;|) in communication bandwidth. This is a contradiction for: € W,.. Similar considerations
For step 3, the robots determibe:= P; U P;, which requires hold for Wj-. [ ]
O(|P;|+|P;]) in memory to store. Step 4 is the start of a loop The rest of this section is dedicated to proving convergence
which executes(|U|?) times, affecting the time complexity Our first step is to show that the evolution determined by
of steps 5, 6 and 7. Step 5 requires two computations thle Discrete Gossip Coverage Algorithm can be seen as a
one-to-all distances i/ which each takeD(D(U)). Step 6 set-valued map. To this end, for any pair of robéis;j) <
involves four computations dfone Over different subsets @f, {1,...,N}?, i # j, we define the maf;; : Party(Q) —
however those foi¥,- and W, can be stored from previousPart (Q) by
computation. SincéV, and W, are strict subsets df/, step ~ ~
5 takes longer than step 6. Step 7 is trivial, as is step 8. The L;(P)=(Pr,.... Bi,.... By, Pr),
total time complexity of the loop is thu®(|U|> D(U)). where P, = W,. and ﬁj = Wp-.

However, the loop in steps 4-7 can be truncated after anyif at time ¢ € R~ the pair(i, j) and no other pair of robots
number of iterations. While it must run to completion tyerform an iteration of the Pairwise Partitioning Rule rthiee

guarantee thatV,. and W,- are an optimal two-partition of gynamical system on the space of partitions is described by
U, the loop is designed to return an intermediate sub-optimal

result if need be. IfP; and P; change, therHexpected Will P(t*) =T (P(1)). 2
decrease. Our convergence result will hold provided that §e define the set-valued mdp: Party (Q) = Party (Q) as
elements ofS are eventually checked iP; and P; do not

change. Thus, the partitioning rule can run in any time with T(P) =A{Ty;(P)| (i,j) € {1,....,N}*,i #j}. (3
each iteration requiring)(D(U)). ®  Observe that (2) can then be rewritten&™) € T(P(t)).

All of the computation and communication requirements in The next two Propositions state facts whose validity is

Proposition 3.10 are independent of the number of robots and . .
scale with the size of a robot’s partition, meaning the Gater ensured by Lemma B.1 of Appendix B which states a key

. . . roperty of the Random Destination & Wait Motion Protocol.
Gossip Coverage Algorithm can easily scale up for large $eal - . .
. . Proposition 4.1 (Persistence of Exchange€pnsider N
of robots in large environments.

robots implementing the Discrete Gossip Coverage Algorith
IV. CONVERGENCEPROOFS Then, there almost surely exists an increasing sequence of

This section is devoted to proving the two statements ffne |n.st’ants{tk}kez>0 such thatP(t;7) = T;;(P(t)) for
Theorem 3.7. The proof that the Pairwise Partitioning RuRPMe (i, 5) € E(P(tx)). _
maps a connected¥-partition into a connected-partition is _ Proof: The proof follows directly from Lemma B.1
straightforward. The proof of convergence is more involvefhich implies that the time between two consecutive paiwis
and is based on the application of Lemma A.1 in Appendix A&2mmunications is almost surely finite. u
to the Discrete Gossip Coverage Algorithm. Lemma A.1 The existence of time sequen¢g. },, = allows us to to
establishes strong convergence properties for a particldas express the evolution generate by the Discrete Gossip Cover
of set valued maps (set-valued maps are briefly revieweddge Algorithm as a discrete time process. Bék) := P(t,)
Appendix A). and P(k + 1) :== P(t)), then

We start by proving that the Pairwise Partitioning Rule is
well-posed in the sense that it maintains a connected ipartit P(k+1) € T(P(k)

Proof of Theorem 3.7 statement (i)lo prove the state- whereT : Party(Q) = Party(Q) is defined as in (3).

ment we need to show thd(¢™) satisfies points (i) through  Given k € Z>g, let Z), denote the information which
(iv) of Definition 2.2. From the definition of the Pairwisecompletely characterizes the state of Discrete Gossip 1@gee
Partitioning Rule, we have tha& (¢t 7)UP;(tT) = Pi(t)UP;(t)  Algorithm just after thek-th iteration of the partitioning rule,
and P;(t*) N P;(t*) = (. Moreover, since.* € P;(t7) and i.e., at timet; ,. Specifically,Z, contains the information
b* € P;(tT), it follows that P;(t7) # 0 and P;(tT) # 0. related to the partitionP(k), the positions of the robots at
These observations imply the validity of points (i), (ilnda ¢, |, and whether each robot is in theiting or movingstate
(iii) for P(¢*). Finally, we must show thal;(t*) and P;(t™) att, _,. The following result characterizes the probability that,
are connected, i.e.P(t") also satisfies point (iv). To do given Z;, the (k + 1)-th iteration of the partitioning rule is
so we show that, givenz € W,., any shortest path in governed by any of the mags;, (i,7) € £(P(k)).
Pi(t) U P;(t) connectingr to a* completely belongs tdV-. Proposition 4.2 (Probability of CommunicationfConsider
We proceed by contradiction. Let .- denote a shortest patha team of N robots with capacities (C1), (C2), (C3), and
in P;(t) U P;(t) connectingz to a* and let us assume that(C4) implementing the Discrete Gossip Coverage Algorithm.
there existsm € s, such thatm € Wy.. For m to be Then, there exists a real number (0, 1), such that, for any
in Wy- means thatlp, ), p; (1) (M, b*) < dp,yup; 1) (M, a*). k€ Zso and (i, 5) € E(P(k))

This implies that
) ) PP(k+1) = Ty (P(k)) | Ti] > 7.
dp,up;(z,b%) < dp,up; (M, b*) +dp,up, (2, m)

N Proof: Assume that at timé one pair of robots commu-
< dPiUPj (m7a/ ) + dPiUPj (x7m) p

. nicates. Given a paifi, j) € £(P(t)), we must find a lower
= dpup;(2,a"). bound for the probability thati, j) is the communicating pair.



Since all the Poisson communication processes have the same V. EXPERIMENTAL METHODS& RESULTS

!nten_sny, the d|str|but|(_)n of _the cha}‘nce of communl_canor,} To demonstrate the utility and study practical issues of
is uniform over the pairs which are “able to communicate

. | th i h other. Th ¢ Ithe Discrete Gossip Coverage Algorithm, we implemented
I-€., ClOSer thaMreomm 0 €ach other. 1hus, we must only; using the open-source Player/Stage robot control system
show that(i,j) has a positive probability of being able to

icate at tima. which i ivalent to showing th t[23] and the Boost Graph Library (BGL) [24]. All results
communicate at time, which 1s equivalent 1o showing thal, o sented here were generated using Player 2.1.1, Stade 2.1
(i,4) is able to communicate for a positive fraction of tim

. o o o nd BGL 1.34.1. To compute distances in uniform edge weight
W!th posmve_ probab|llty. The p“ﬂ‘;‘c of Lemma Bl impliesath graphs we extended the BGL breadth-first search routine with
with probability at leastv/(1 — e~ *em) any pair in€(P(t))

X . . . a distance recorder event visitor.
is able to communicate for a fraction of time not smaller than

~» Wherea and A are defined in the proof of Lemma B.1.
Hence the result follows. m A. Large-scale Simulation

The property in Proposition 4.2 can also be formulated asTo evaluate the performance of our gossip coverage al-
follows. Leto : Z>¢ — {(i,j) e{l,...,N}* i ;Aj} be the gorithm with larger teams, we tested 30 simulated robots
stochastic process such thet) is the communicating pair at partitioning a map representing 30m x 225m portion of
time k. Then, the sequence of pairs of robots performing tleampus at the University of California at Santa Barbara. As
partitioning rule at time instant§t; },_, . can be seen as ashown in Fig. 4, the robots are tasked with providing coverag

realization of the process, which satisfies of the open space around some of the buildings on campus,
o B a space which includes a couple open quads, some narrower
Plo(k+1) = (i,j) | o(k)] > 7 (4)  passages between buildings, and a few dead-end spurs. For

for all (i, ) € E(P(k)) this large environment the simulated robots 2ne on a side
b ’ . and can move at.0”*. Each territory cell is3m x 3m.
Next we show that the cost function decreases whenever then this simulation we handle communication and partition-

application ofT" from (3) changes the territory partition. Thising as follows. The communication range is set3ton (10

fact is a key ingredient to apply Lemma A.1. edges in the graph) withcomm = 0.3%™. The robots wait
Lemma 4.3 (Decreasing Cost Functior)et at their destination vertices for = 3.5s. This value forr
P € Party(Q) and let P* € T(P). If PT # P, then was chosen so that on average one quarter of the robots are
Hexpected P1) < Hexpected P)- waiting at any moment. Lower values of mean the robots
Proof: Without loss of generality assume thét ;) is the are moving more of the time and as a result more frequently
pair executing the Pairwise Partitioning Rule. Then miss connections, while for higher the robots spend more
time stationary which also reduces the rate of convergence.
Hexpected PT) — Hexpected P) With the goal of improving communication, we implemented a

= Hone(CA(P;"); ;") + Hone(Cd(P;"); ;") minor modification to the motion protocol: each robot pidies i
— Hone(CA(P;); P;) — Hone(Cd(P;); ;).  random destination from the cells forming the open boundary
of its territory. In our implementation, the full partitiorg
According to the definition of the Pairwise Partitioning Bulloop may take5 seconds for the largest initial territories in

we have that ifP;" # P;, Pjr # Pj, then Fig. 4. We chose to stop the loop after a quarter second for
this simulation to verify the anytime computation claim.
Hone(CA(P;"); P;7) + Hone( Cd(P;}"); P;F) The 30 robots start clustered in the center of the map
< Hone(a*; P;7) + Hone(b*; Pf) between Engineering Il and Broida Hall, and an initial Vasbn

partition is generated from these starting positions. Triit&l
partition is shown on the left in Fig. 4 with the robots
from which the statement follows. m DPositioned at the centroids of their starting regions. Thgai
artition has a cost o87.1m. The team spends about 27
inutes moving and communicating according to the Dis-

I?roof of The.orem. 3'7 statement (i_i)_:Note that the crete Gossip Coverage Algorithm before settling on the final
algorithm evolves in a finite space of partitions, and by -Fhe?ﬁartition on the right of Fig. 4. The coverage cost of the

rem 3.7 statement (i), the sBtuty (Q) is strongly positively fina; equilibrium improved by54% to 17.1m. Visually, the
invariant. This fact implies that assumption (i) of LemmalA. 5a1 partition is also dramatically more uniform than the
is satisfied. From Lemma 4.3 it follows that assumption (ithitial condition. This result demonstrates that the alipon

is also satisfied, witfHexpecteaplaying the role of the function s eftective for large teams in large non-convex environtsen

U. Finqlly, the property i_n (4) is eql_JivaIent to t_he pf.operty Fig. 5 shows the evolution Gfexpectecduring the simulation.

of persistent random switchestated in Assumption (iii) of The largest cost improvements happen early when the robots

Lemma A.1, for the special cage= 1. Hence, we are in the that own the large territories on the left and right of the map

p_o_smo_n to apply Lemma A.1 af‘d concl_ude CONVErgence Uhmmunicate with neighbors with much smaller territories.
finite-time to an element of the intersection of the equidibr

of the maps.TZ-.j, which by definition is the set of the pairwise-—trpg open boundary aP; is the set of vertices itP; which are adjacent
optimal partitions. B to at least one vertex owned by another agent.

We now complete the proof of the main result, Theorem 3.
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Fig. 4. Images of starting and final partitions for a simulatiith 30 robots providing coverage of a portion of campus at BCS
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Fig. 5. Graph of the costexpecteqOver time for the simulation in Fig. 4. Fig. 6. Erratic mobile robot with URG-04LX laser rangefinder.

These big territory changes then propagate through the netExperiment setup:Our mixed physical and virtual robot
work as the robots meet and are pushed and pulled towardgxgeriments are run from a central computer which is atthche
lower cost partition. to a wireless router so it can communicate with the physical
robots. The central computer creates a simulated worldgusin
Stage which mirrors and extends the real space in which the
physical robots operate. The central computer also siemsilat
We conducted an experiment to test the algorithm usirige virtual members of the robot team. These virtual robids a
three physical robots in our lab, augmented by six simulateabdeled off of our hardware: they are differential drivetwit
robots in a synthetic environment extending beyond the lgdbhe same geometry as the Erratic platform and use simulated
Our lab space id1.3m on a side and is represented by thélokuyo URG-04LX rangefinders.
upper left portion of the territory maps in Fig. 7. The terit Localization: We use theantl driver in Player which
graph loops around a center island of desks. We extendetplements Adaptive Monte-Carlo Localization [25]. The
the lab space through three connections into a simulatgllysical robots are provided with a map of our lab with a
environment around the lab, producing18.9m x 15.9m 15c¢m resolution and told their starting pose within the map.
environment. The map of the environment was specified withle set an initial pose standard deviationOdim in position
a 0.15m bitmap which we overlayed with &.6m resolution and12° in orientation, and request localization updates using
occupancy grid representing the free territory for the telto 50 of the sensor’s range measurements for each change of
cover. The result is a lattice-like graph with all edge wésgh2cm in position or2° in orientation reported by the robot’s
equal t00.6m. The 0.6m resolution was chosen so that oundometry system. We then use the most likely pose estimate
physical robots would fit easily inside a cell. output byanctl as the location of the robot. For simplicity and
Additional details of our implementation are as follows. reduced computational demand, we allow the virtual robots
Robot hardware:We use Erratic mobile robots from Videreaccess to perfect localization information.
Design, as shown in Fig. 6. The vehicle platform has a roughlyMotion Protocol: Each robot continuously executes the
square footprint40cm x 37cm), with two differential drive  Random Destination & Wait Motion Protocol, with navigation
wheels and a single rear caster. Each robot carries an ahbdaandled by theand driver in Player which implements Smooth
computer with a 1.8Ghz Core 2 Duo processor, 1 GB dfearness Diagram navigation [26]. Fend we set the robot
memory, and 802.11g wireless communication. For navigatioadius parameter t@2cm, obstacle avoidance distance to
and localization, each robot is equipped with a Hokuyo URG:7m, and maximum speeds o4 and40%. Thesnd driver
04LX laser rangefinder. The rangefinder scé®$ points over is a local obstacle avoidance planner, so we feed it a series
240° at 10H z with a range of5.6 meters. of waypoints every couple meters along paths found@).

B. Implementation Details
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Fig. 7. Each column contains a territory map and the correspgralerhead camera image for a step of the hardware-in-tigdonulation. The position
of the camera in the environment is shown with a camera icon itethigory map. The physical robots are numbered 1, 2, and 3 awe the orange, blue,
and lime green partitions. Their positions in each territorgp are indicated with numbered circles.

We consider a robot to have achieved its target location wh
it is within 20cm and it will then wait forr = 3.5s. For the
physical robots the motion protocol and navigation proegss
run on board, while there are separate threads for eaclabirti
robot on the central computer.

Communication and Partitioning/As the robots move, a
central process monitors their positions and simulates t 25 > 4 6 8 10
range-limited gossip communication model between both re __
and virtual robots. We Set.omm = 2.5m and Ao, = £ 400
0.3%®™. These parameters were chosen so that the robr» [}
would be likely to communicate when separated by at mo & 200 1
four edges, but would also sometimes not connect desp = ‘_r[\j.zx
being close. When this process determines two robots shoi 9 }P—\
communicate, it informs the robots who then perform thx ¢
Pairwise Partitioning Rule. Our pairwise communicatior im
plementation is blocking: if robot is exchanging territory

with j, then it informs the match making process that it igig. 8. Evolution of cost functions during the experiment ig.F. The total

unavailable until the exchange is complete. COSt HexpectediS Shown above in black, whil{one for each robot is shown
below in the robot’s color.

7‘{expected (m)
N
o

o

0 2 4 6 8 10
Time (minutes)

C. Hardware-in-the-Loop Simulation

The results of our experiment with three physical robots In the middle column, robots 1 and 2 have met along their
and six simulated robots are shown in Figs. 7 and 8. The Ishared border and are exchanging territory. In the teyritor
column in Fig. 7 shows the starting positions of the team ofap, the solid red line indicates 1 and 2 are communicating
robots, with the physical robots, labeled 1, 2, and 3, linpd @nd their updated territories are drawn with solid orange an
in a corner of the lab and the simulated robots arrayed arouplde, respectively. The camera view confirms that the two
them. The starting positions are used to generate thelinitigbots have met on the near side of the center island of desks.
Voronoi partition of the environment. The physical robotgno  The final partition at right in Fig. 7 is reached aﬂ@%
the orange, blue, and lime green territories in the uppér lefinutes. All of the robots are positioned at the centroids of
guadrant. We chose this initial configuration to have a higheir final territories. The three physical robots have goom
coverage cost, while ensuring that the physical robots waélcluster in one corner of the lab to a more even spread around
remain in the lab as the partition evolves. the space. Fig. 8 shows the evolution of the cost function
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Hexpectea@S the experiment progresses, including the costs for . 1.
each robot. As expected, the total cost never increaseshand t []
disparity of costs for the individual robots shrinks ovenei eni EHaled B E

until settling at a pairwise-optimal partition.
In this experiment the hardware challenges of sensor noise, ] .
navigation, and uncertainty in position were efficientlynha
dled by theant!l andsnd drivers. The coverage algorithm P e
assumed the role of a higher-level planner, taking in posi- M [T
tion data fromantl and directingsnd. By far the most
computationally demanding component wasctl , but the
position hypotheses frorant| are actually unnecessary: our
coverage algorithm only requires knowledge of the vertex
a robot occupies. If a less intensive localization method is
available, the algorithm could run on robots with signifiyan
lower compute power. €]

O

=
=

D. Comparative analysis

In this subsection we present a numerical comparison of t
performance of the Discrete Gossip Coverage Algorithm ar
the following two Lloyd-type algorithms.

Decentralized Lloyd Algorithm:This method is from [11]
and [9], we describe it here for convenience. At each discre |
time instantt € Z>, each roboti performs the following 2 2.2 2.4 2.6 2.8 3
tasks: (1) transmits its position and receives the positions of Final cost (m)
all adjacent robots; (2) computes its Voronoi regiof; based

; ; ; . ] Fig. 9. Initial partition and histogram of final costs for a Me Carlo
on the information received; and (3)moves o CﬂPZ)' test comparing the Discrete Gossip Coverage Algorithm kolsrs), Gossip

Gossip Lloyd Algorithm:This method is from [19]. It iS Ljoyd Algorithm (gray bars), and Decentralized Lloyd Algbm (red dashed
a gossip algorithm, and so we have used the same comnmg). For the gossip algorithms, 116 simulations were peréat with different

icaion model an he Random Destinaton & Wait MotofP 472 f pae cominator. T Secert oot
Protocol to create meetings between robots. Say roteotslj
meet at time;, then the pairwise Lloyd partitioning rule works
as follows: (1) robot transmitsP;(¢) to j and vice versa; (2) o ) o )
both robots determiné/ = P;(t) U P;(t); (3) roboti sets and (2) the range-limited gosslgm(zqommunlcanon model with
P,(t") to be its Voronoi region of/ based on C@P(t)) and  comm = 2-5m and Acomm = 0.3,
Cd(P;(t)), andj does the equivalent. The cost of the initial partition in Fig. 9 i5.48m, while
For both Lloyd algorithms we use the same tie breaking rulee best known partition for this environment has a cost of
when creating Voronoi regions as is present in the Pairwigést under2.18m. The histogram in Fig. 9 shows the final
Partitioning Rule: ties go to the robot with the lowest indexequilibrium costs for 116 simulations of the Discrete Gpssi
Our first numerical result uses a Monte Carlo probabilitzoverage Algorithm (black) and the Gossip Lloyd Algorithm
estimation method from [27] to place probabilistic bounds d@ray). It also shows the final cost using the Decentralized
the performance of the two gossip algorithms. Recall that thloyd Algorithm (red dashed line), which is deterministic
Chernoff bound describes the minimum number of randoffPm a given initial condition. The histogram bins have a
samplesK required to reach a certain level of accuracy in width of 0.10m and start from2.17m. For the Discrete
probability estimate from independent Bernoulli testst & Gossip Coverage Algorithm]05 out of 116 trials reach

accuracye € (0,1) and confidencé — 7 € (0,1), the number the bin containing the best known partition and the mean
of samples is given byx > L 10g%. Forn = 0.01 and final cost is2.23m. The Gossip Lloyd Algorithm reaches

22

e =0.1, at least 116 samples are required. the lowest bin in only5 of 116 trials and has a mean final
Figure 9 shows both the initial territory partition of thecost of 2.51m. The Decentralized Lloyd Algorithm settles
extended laboratory environment used and also a histograh®.48m. Our new gossip algorithm requires an average of
of the final results for the following Monte Carlo test. Thé/6 pairwise communications to reach an equilibrium, whereas

environment and robot motion models used are describedg@ssip Lloyd required26.

Section V-B. Starting from the indicated initial conditiome Based on these results, we can conclude Wit confi-

ran 116 simulations of both gossip algorithms. The randordence that there is at least 86% probability that 9 robots
ness in the test comes from the sequence of pairwise coemecuting the Discrete Gossip Coverage Algorithm starting
munications. These sequences were generated using: (1)ftbe the initial partition shown in Fig. 9 will reach a pairvé-
Random Destination & Wait Motion Protocol wit sampled optimal partition which has a cost withit¥ of the best known
uniformly from the open boundary of; and = = 3.5s; cost. We can further conclude wi#i9% confidence that the

lation count

Simu




12

100} 1 1 half the trials in 7 of 10 tests.
o L '
0 L = VI. CONCLUSION
100+ ! ! We have presented a novel distributed partitioning and cov-
50t | I! ! erage control algorithm which requires only unreliablersho
0" ! : range communication between pairs of robots and works in
100} 1 ' non-convex environments. The classic Lloyd approach te cov
SOJ I! 1 erage optimization involves iteration of separate cengeand
0 ! ! . . . \Voronoi partitioning steps. For gossip algorithms, howgeve
100b 1 , this separation is unnecessary computationally and we have
i ' shown that improved performance can be achieved without
SOJq . . 1 . . it. Our new Discrete Gossip Coverage Algorithm provably
= 0 converges to a subset of the set of centroidal Voronoi par-
3 100} : : titions which we labeled pairwise-optimal partitions. ®hgh
g U F . numerical comparisons we demonstrated that this new subset
s 0 ' ' ' ' ' of solutions avoids many of the local minima in which Lloyd-
% 100} ! I type algorithms can get stuck.
= soJ I! ! Our vision is that this partitioning and coverage algorithm
n 90 2! : : : - will form the foundation of a distributed task servicing get
100} 1 1 for teams of mobile robots. The robots would split their time
50 J 1 1 between servicing tasks in their territory and moving totaoh
0 b L . . . their neighbors and improve the coverage of the space. Our
100k . , convergence results only require sporadic improvements to
i B the cost function, affording flexibility in robot behavioasd
50 . | || L . . . capacities, and offering the ability to handle heterogeseo
0 robotic networks. In the bigger picture, this paper demaiss
1007 ! . the potential of gossip communication in distributed cdoord
50! 1 1 . .
JI . nation algorithms. There appear to be many other problems
0 ' ' ' ' ' where this realistic and minimal communication model could
100} ! I be fruitfully applied.
soJ! !
1 1
0 S : : ' : APPENDIXA
2 25 3 35 4 45

For completeness we present a convergence result for set-
Final cost (m) valued algorithms on finite state spaces, which can be recov-
Fig. 10.  Histograms of final costs from 10 Monte Carlo testsngisi ered_ as a direct consequence of [18, Theorem 45]
random initial conditions in the environment shown in Fig. ®@mparing Given a setX, a set-valued maf’ : X = X is a map
Discrete Gossip Coverage Algorithm (black bars), GossigydllAlgorithm  which associates to an elemente X a subsetZ ¢ X. A
Gocalp algorthms, 116 Smulations were performed with Gibsequences of SC-Valued map is non-emptyi(x) 0 for all « € X.. Given
pairwise communications. The Decentralized Lloyd Algoritisrdeterministc @ NON-empty set-valued mé&p an evolution of the dynamical
given an initial condition so only one final cost is shown. Thiéial cost for  system associated B is a Sequencél’n}nezm c X where
each test is drawn with the green dashed line. Tng1 € T(xn) for all n € Zzo- AsetW C X is strongly
positively invariantfor T if T'(w) Cc W for all w € W.
Lemma A.1 (Persistent random switches imply convergence):
Gossip Lloyd Algorithm will settle more than% above the Let (X, d) be a finite metric space. Given a collection of maps
best known cost at leas6% of the time starting from this 71,..., T, : X — X, define the set-valued map: X = X
initial condition. by T(x) = {Ti(x),...,Tm(x)}. Given a stochastic process
Figure 10 compares final cost histograms for different  * Z>0 — {1,...,m}, consider an evolutiofz, },ez., of
initial conditions for the same environment and parametefsSalisyiNgz,+1 = To(,)(zn). Assume that:
as described above. Each initial condition was created bfi) there exists a setV’ C X that is strongly positively

selecting unique starting locations for the robots unifgrm  invariant for 7" _
at random and using these locations to generate an initid there exists a functio/ : W — R such thatU (w’) <
Voronoi partition. The initial cost for each test is showrtiwi U(w), for allw € W andw’ € T(w) \ {w}; and

the green dashed line. In 9 out of 10 tests the Discrete Gos#ip there existp € (0,1) and k € N such that, for alli €
Coverage Algorithm reaches the histogram bin with the best {1,...,m} andn € Z>o, there existsh € {1,...,k}
known partition in at least12 of 116 trials. The two Lloyd such thatP[o(n + h) =i|o(n),...,0(1)] > p.

methods get stuck in sub-optimal centroidal Voronoi parié Fori € {1,...,m}, let F; be the set of fixed points df; in
more thart% away from the best known partition in more thaiVv/, i.e., F; = {w € W | T;(w) = w}. If xy € W, then the
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evolution{x,, },cz., converges almost surely in finite time toThe same lower bound holds f®{E;], meaning that

an element of the sétF; N---NF,,), i.e., there exists almost ora7

surelyr € N such thit, for some e)(Fl N---NFy), &, =% P[E;] =P[E] P[E)] > (ﬁ) P leDamm(A4mIN,

forn > 7. If event £;; occurs, then robots and j will be at adjacent

vertices for an amount of time during the intervalt + A)

equal tomin {A —t(a) —t; — 7, A —t(b) — 75} . Sincet(a)

and ¢(b) are no more thanS(TQ, we can conclude that
This Appendix proves a property of the Random Destinand ; will be within 7comm for at leastr. Conditioned on

tion & Wait Motion Protocol which is needed to show theEij Occurring’ the probabi"ty that and ; communicate in

persistence of pairwise exchanges. (t,t+A) is lower bounded byt —e~*«m™ A suijtable choice
Lemma B.1:Consider N robots implementing the Dis- for o from the statement of the Lemma is thus

crete Gossip Coverage Algorithm starting from an arbitrary (1 2M2T Coacmm(A4T)N Neommit

P € Party(Q). Considert € R>( and let P(t) denote the - (@) ¢ (1-e )

partition at timet. Assume that at timeé no two robots are It can be shown that this also constitutes a lower bound ®r th

communicating. Then, there exi& > 0 and o € (0,1), other possible combinations of initial states: robé waiting

independent ofP(¢) and the positions and states of thend robot; is moving robots: and j are bothmoving and

robots at timet, such that, for every(i,j) € E(P(t)), robotsi and;j are bothwaiting. [ |

P[(,7) communicate withint,t + A)] > a.

Proof: To begin, we define two useful quantities. Let APPENDIXC
S(Q) = max max max dp,(h,k) be a pseudo- In this appendix we provide the proof of Proposition 2.8
PeParty (Q) Pi€P h,keP: which states that any pairwise-optimal partition is also a

diameter for@, and then choosé := 2@ +27. We fix a centroidal Voronoi partition.

pair (i,7) € £(P), and pick adjacent verticese P;, b € P;. Proof of Proposition 2.8: To create a contradiction,
Our goal is to lower bound the probability thatand j assume that”? € Party(Q) is a pairwise-optimal partition

will communicate within the intervalt,¢ + A). To do so but not a centroidal Voronoi partition. In other words, #er

we constructone sequence of events of positive probabilityexist components?; and P; in P and an element of one

which enables such communication. Consider the followingpmponent, say: € P;, such that

situation:s is in the movingstate and needs timg to reach

its destinationg;, whereas roboy is in the waiting state at de (z,Cd(P)) > dg (=, Cd(F;)) ®)

vertex ¢; and must wait there for time; < 7. We denote ChooseP; such that for allk # j

by t(a) (resp.t(b)) the time needed fof (resp.j) to travel ‘

from ¢; (resp.g¢;) to a (resp.b). Let E; be the event such da (z,Cd(Py)) 2 da (@, CAP;)) ©

that i performs the following actions irft,t + A) without ~ Let s7, be a shortest path i connectinga to b and let

communicating with any robat # j: m € sg,Cd(Pj) be the first element of the path starting from

Cd(P;) which is not inP;. Let ¢ be such thain € P,.

If m =z, then from (5) and the definition aif’Cd(Pj) we

APPENDIXB

(i) 7 reachesy; and waits aty; for the durationr; and
(i) < chooses vertex as its next destination and then stays

at a for at leastA — t(a) — t; — 7. have that
Let E; be the event such thatperforms the following actions dp, (z,Cd(FP;)) > de (z, Cd(F;))
in (t,t + A) without communicating with any # i: > dg (z,Cd(P;)) = dp,up, (x,Cd(F;))
(i) 7 waits atg, for the durationr;; and which, sincer € P;, creates a contradiction of the fact that
(ii) j chooses vertex as its next destination and then staygs pairwise-optimal.
atb for at leastA —¢(b) — 7. If m # z, then, given (6), one of these two conditions holds:
Let EU =FE; N Ej. (l) dG (m, Cd(P/)) > dG (m, Cd(PJ)), or

Next, we lower bound the probability that evelif occurs. (i) dg (m, Cd(Pr)) = da (m, Cd(P})).
Recall the definition of\comm from Sec. Ill-A. Since a robot In the first case, we again have a contradiction using the same
can have at mosfV — 1 neighbors, the probability that (i) logic above withm in place ofz. In the second case, we
of E; happens is lower bounded ty *~m7~_ For (i), the must further consider whether there exists@cy p,) Such
probability thati chooses: is 1/ ||, which is lower bounded that every vertex ins$ oy p,, is also in Py. If there is not
by 1/]Q|. Then, in order toAspt?r;d tat leggh —t(a) —t;—7) such a path, then ,Cd(P
at a, i must choose: for [=—“—="] consecutive times.
Finally, the probability th[at during thls interval will not @7 (M, CA(P2)) > de (m, Cd(Fy)) = dp,up, (m, Cd(P}))
communicate with any robot other thans lower bounded by and we again have a contradiction as above. If there is such a
e~ eommA(N=2) The probability that (i) occurs is thus lowerpath, then we can instead repeat this analysis using dsimg
bounded by(1/[Q|) = | e=?n N Combining the bounds for place of j and considering the path formed by thiS corpy)
() and (ii), it follows that and the vertices in;fpd P, after m. Since the next vertex
R playing the role ofm must be closer ta;, we will eventually
PE] > (157) 7l Aeom(A4 TN find a vertex which creates a contradiction. n
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