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Abstract. The Discrete Pulse Transform (DPT) of images is defined by
using a new class of LULU operators on multidimensional arrays. This
transform generalizes the DPT of sequences and replicates its essential
properties, e.g. total variation preservation. Furthermore, the discrete
pulses in the transform capture the contrast in the original image on the
boundary of their supports. Since images are perceived via the contrast
between neighbour pixels, the DPT may be a convenient new tool for
image analysis.

Keywords: LULU, discrete pulse transform, total variation preservation.

1 Introduction

One of the powerful ideas resulting from the theory of the LULU operators for
sequences, developed by Carl Rohwer during the last two decades or so, is the
Nonlinear Multiresolution Analysis based on a Discrete Pulse Transform (DPT),
[8]. A DPT maps a bi-infinite sequence ξ = (..., ξ−1, ξ0, ξ1, ξ2, ...) onto an infinite
vector

DPT (ξ) = (D1(ξ), D2(ξ), ...) (1)

where Dn(ξ) is a sequence consisting of well separated discrete block pulses with
support n. In a recent work by the authors the definition of the LULU operators
was extended from sequences to multidimensional arrays, namely, functions on
Z

d, d > 1. This development opened the opportunity of developing the DPT for
functions on Z

d by using iterative application of the generalized LULU operators,
similar to the one-dimensional case. In this paper we consider the DPT of images.
Let us denote by A(Z2) the set of all functions defined on Z

2 which have finite
support. A grey scale image is a function f ∈ A(Z2) such that the support of
f is a finite rectangular subset Ω of Z

2. The DPT of a function f ∈ A(Z2) is a
vector of the form

DPT (f) = (D1(f), D2(f), ..., DN (f)) (2)

which is finite due to the finite support of f . Here N is the number of pixels in

the image and Dn(f) =
γ(n)∑

s=1
φns, the functions φns, s = 1, ..., γ(n), being discrete
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pulses with support of size n, n = 1, ..., N . In this context a discrete pulse is
a function φ ∈ A(Z2) which is zero everywhere except on a connected set V ,
where it is constant. The set V is called the support of the pulse φ and we write
V = supp(φ). The value of φ on V is shortly called the value of the pulse. If the
value of φ is positive then φ is an up-pulse, if it is negative, φ is a down-pulse.
Via the DPT we represent a function f ∈ A(Z2) as a sum of pulses

f =
N∑

n=1

Dn(f) =
N∑

n=1

γ(n)∑

s=1

φns , (3)

where the supports of the pulses are either disjoint or nested. Furthermore, we
show that, similar to the DPT of sequences, the decomposition (3) preserves the
total variation of f , that is, we have

TV (f) =
N∑

n=1

TV (Dn(f)) =
N∑

n=1

γ(n)∑

s=1

TV (φns) . (4)

The total variation is an important characteristic of an image and has been
successfully used in noise removal procedures, e.g. [3], [13]. The equalities in (4)
show that the decomposition (3) does not create artificial variation, i.e. noise.
We should further remark that the pulses in (3) have also a more direct meaning,
namely, the contrast in the original image at the boundary of the support of any
pulse is at least as much as the value of that pulse.

2 LULU Theory

The LULU operators on multidimensional arrays are defined in [1] by using the
morphological concept of connection, [15,16], which characterizes the connected
subsets of the domain. The set of connected sets appropriate for images is usu-
ally defined via a neighbor relation on the domain. More precisely, a set C ⊆ Z

2

is called connected if for any two pixels p, q ∈ C there exists a set of pixels
{p1, p2, ..., pk} ⊆ C such that each pixel is neighbour to the next one, p is neigh-
bour to p1 and pk is neighbour to q. It was shown in [1] that if the neighbor
relation is reflexive, symmetric, shift invariant and includes the pairs of consecu-
tive points both vertically and horizontally, then the collection C of all connected
sets on Z

2 is a morphological connection suitable for the LULU operators. The
neighbour relations typically considered for images, e.g. as in Figure 1, satisfy
these basic requirements.

Given a point x ∈ Z
2 and n ∈ N we denote by Nn(x) the set of all connected

sets of size n + 1 which contain a point x, that is,

Nn(x) = {V ∈ C : x ∈ V, card(V ) = n + 1} . (5)

Then the basic LULU operators are defined as follows.
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Fig. 1. Neighbours of the pixel (i, j)

Definition 1. Let f ∈ A(Z2) and n ∈ N. Then

Ln(f)(x) = max
V ∈Nn(x)

min
y∈V

f(y), x ∈ Z
2 , (6)

Un(f)(x) = min
V ∈Nn(x)

max
y∈V

f(y), x ∈ Z
2 . (7)

The operators in Definition 1 were given in [1] as a generalization of the operators
Ln and Un for sequences. However, it should be noted that these are actually the
well known morphological operators of area opening and area closing (section
4.4.2, [17]) considered in a new setting, namely, the LULU theory [8,12]. It was
shown in [1] that these operators are smoothers and separators (Chapter 1, [8]).
Furthermore, they form, under composition, a four element totally ordered semi-
group - the so called LULU semi-group [12,11] - and we have

Ln ≤ Un ◦ Ln ≤ Ln ◦ Un ≤ Un . (8)

The smoothing effect of the operators, Ln, Un, on a function f ∈ A(Z2) is
described in terms of the concepts of local minimum and local maximum sets.

Definition 2. Let V ∈ C. A point x /∈ V is called adjacent to V if V ∪{x} ∈ C.
The set of all points adjacent to V is denoted by adj(V ).

Definition 3. A connected subset V of Z
2 is called a local maximum set of

f ∈ A(Zd) if
max

y∈adj(V )
f(y) < min

x∈V
f(x) .

Similarly V is a local minimum set if

min
y∈adj(V )

f(y) > max
x∈V

f(x) .

Then the action of Ln and Un on f ∈ A(Z2) can be described in terms of the
following properties, [1]:

A1 The application of Ln (Un) removes local maximum (minimum) sets of size
smaller or equal to n.
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A2 The operator Ln (Un) does not affect the local minimum (maximum) sets
directly in the sense that such sets may be affected only as a result of the
removal of local maximum (minimum) sets. However, no new local minimum
sets are created where there were none. This does not exclude the possibility
that the action of Ln (Un) may enlarge existing local maximum (minimum)
sets or join two or more local maximum (minimum) sets of f into one local
maximum (minimum) set of Ln(f) (Un(f)).

A3 Ln(f) = f (Un(f) = f) if and only if f does not have local maximum
(minimum) sets of size n or less.

In analogy with the respective concept for sequences we introduce the concept
of n-monotonicity for functions in A(Z2).

Definition 4. Function f ∈ A(Z2) is called (locally) n-monotone if the size of
all local minimum or local maximum sets of f is larger then n.

It follows from A1–A3 that for every f ∈ A(Z2)

(Ln ◦ Un)(f) is n-monotone (9)
(Un ◦ Ln)(f) is n-monotone (10)
(Ln ◦ Un)(f) = (Un ◦ Ln)(f) = f ⇐⇒ f is n-monotone (11)

3 Discrete Pulse Transform

The Discrete Pulse Transform (2) for a function f ∈ A(Z2) is obtained via
iterative application of the operators Ln, Un with n increasing from 1 to N .
For a given n, the sequencing of Ln and Un does not affect the properties of
(2) stated in the Introduction. However, it introduces bias towards up-pulses
or down-pulses. This issue will be given particular attention later. For now let
Pn denote either the composition Ln ◦ Un or the composition Un ◦ Ln and let
Qn = Pn ◦Pn−1 ◦ ...◦P2◦P1. In the general theory of Mathematical Morphology,
Qn is known as an alternating sequential filter (see Section 8.3 [17]). However,
here are interested in the portions of the image which are filtered out by the
application of Pn, n = 1, 2, ..., N . Indeed, we ultimately obtain QN(f), which is
a constant function containing no information about the original image except
possibly the general level of illumination. The rest of the information carried by
f is in the layers peeled off. More precisely, we have

f = (id − P1)(f) + ((id − P2) ◦ Q1)(f) + ((id − P3) ◦ Q2)(f) + ...

+((id − PN−1) ◦ QN−2)(f) + ((id − PN ) ◦ QN−1)(f) + QN (f) , (12)

where id denotes the identity operator. Let us note that a similar iterative appli-
cation of area opening and area closing operators is used by Acton and Mukherjee
for image classification. In [2], filtering is for selected values of n and instead of
the layers of peeled off portions the authors keep record of filtered images at every
scale (this would be Qn(f) in the notation adopted here). While the approach
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in [2] is adequate for the classification methods derived there, the decomposition
(12) contains much more information. It is also easy to apply, not least, due to
the fact that it gives a representation of f in terms of discrete pulses. Indeed,
we show next that (12) is a DPT decomposition of the form (3) by proving that
each term is a sum of pulses of certain size. This result is obtained in the next
two theorems.

Theorem 1. Let f ∈ A(Z2) be (n − 1)-monotone. Then

a) (id − Ln)(f) is a sum of disjoint up-pulses of size n;
b) (id − Un)(f) is a sum of disjoint down-pulses of size n;
c) (id − Un ◦ Ln)(f) is a sum of disjoint pulses of size n;
d) (id − Ln ◦ Un)(f) is a sum of disjoint pulses of size n.

Proof. a) Consider x ∈ Z
2 such that (id − Ln)(f)(x) > 0. By property A1 there

exists a local maximum set V of f such that x ∈ V and card(V ) ≤ n. Since f
is (n − 1)-monotone it does not have local maximum sets of size smaller then
n. Therefore card(V ) = n and f is constant on V . Moreover, we have (id −
Ln)(f)(y) = 0, y ∈ adj(V ). Indeed, if (id − Ln)(f)(y) > 0 for some y ∈ adj(V )
then y belongs to a local maximum set W of f and card(W ) ≤ n. However, any
local maximum set containing y must contain V as well. Thus, card(W ) ≥ n+1.
This is a contradiction. So we have that the support of (id − Ln)(f) is a union
of disjoint connected sets of size n, i.e.

supp
(
(id − Ln)(f)

)
= V1 ∪ V2 ∪ ... ∪ Vρ(n) ,

where Vs ∈ C and card(Vs) = n for s = 1, 2, ..., ρ(n) and Vs1 ∩Vs2 = ∅ for s1 �= s2.
Let (id − Ln)(f)(x) = αs for x ∈ Vs. Then

(id − Ln)(f) =
ρ(n)∑

s=1

φns ,

where φns is pulse with support Vs and value αs.
The proof of b) is similar. The proof of c) follows from a) and b) by using

that id − Ln ◦ Un = id − Ln + (id − Un) ◦ Ln. Similar argument holds for d).

Theorem 2. Let the operators Pn and Qn be as in (12). Then for every n =
1, ..., N we have that Dn(f) = ((id − Pn) ◦ Qn−1)(f) is a sum of pulses of the
form

Dn(f) =
γ(n)∑

s=1

φns ,

where card(supp(φns)) = n and supp(φns1) ∩ supp(φns2 ) = ∅ for s1 �= s2. More-
over, the supports of all pulses φns, s = 1, ..., γ(n), n = 1, ..., N are either disjoint
or nested, that is,

(supp(φn1s1) ∩ supp(φn2s2) �= ∅, n1 ≤ n2) =⇒ supp(φn1s1) ⊆ supp(φn2s2) .
(13)
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Proof. Let n ∈ {2, ..., N}. The function Qn−1(f) = Pn−1(Qn−2(f)) is (n − 1)-
monotone due to (9)–(10). Then it follows from Theorem 1 that (id−Pn)(Qn−1(f)
is a sum of pulses of size n. For n = 1 the function f is trivially 1-monotone
and hence (id − P1)(f) is a sum of pulses of size 1. Note that here we may have
Pn = Un ◦ Ln and obtain the result by item c) in Theorem 1, or use item d) if
Pn = Ln ◦ Un. Due to (9)–(10) the sequencing of Lk and Uk in the operator Pk

for k < n also does not matter. Hence it remains to prove (13).
Let supp(φn1s1) ∩ supp(φn2s2) �= ∅. It follows from the construction of the

pulses in the proof of Theorem 1 that the functions Qn(f) and Pn+1(Qn(f)), n ≥
n1, are constants on the set supp(φn1s1). Furthermore, the set supp(φn2s2) is a
local maximum set or a local minimum set of either Qn2−1(f) or Pn2(Qn2−1(f)).
Then by the definition of local maximum and local minimum sets it follows that
supp(φn1s1) ⊂ supp(φn2s2).

As mentioned earlier the sequencing of the operators Ln and Un in Pn results in
bias towards up-pulses or down-pulses. The operator Fn, called a floor operator
given by Fn = Pn ◦Pn−1 ◦ ... ◦P2 ◦P1 where Pn = Un ◦Ln, is biased towards up-
pulse. This means that for any particular size the up-pulses are extracted before
the down pulses. Similarly the operator Cn, called a ceiling operator given by
Cn = Pn ◦Pn−1 ◦ ...◦P2 ◦P1 where Pn = Ln ◦Un, is biased towards down-pulses.
A DPT using Fn will generally have more up-pulses and fewer down-pulses
compared to DPT using Cn. It is important to realize that the bias extremes will
differ for different original images due to their size and contrast so interpretation
should be relative to the current image.

The alternating bias separators Z+
n and Z−

n (see [4] and references therein)
are given by:

Z−
n+1 =

{
Ln+1Un+1Z

−
n if n is even

Un+1Ln+1Z
−
n if n is odd

Z+
n+1 =

{
Ln+1Un+1Z

+
n if n is odd

Un+1Ln+1Z
+
n if n is even

Using the order in the LULU semi-group (8) it is easy to see that

Fn ≤ Z±
n ≤ Cn .

We should note that if f ∈ A(Z2) is such that Fn = Cn, n = 1, ..., N , then f has
a unique DPT decomposition of the form (12).

Finally we discuss the total variation preservation property (4). There are sev-
eral different concepts used for total variation of a function of multidimensional
argument in literature. For a function f ∈ A(Z2) we define the total variation as

TV (f) =
∞∑

i=−∞

∞∑

j=−∞
(|f(i + 1, j) − f(i, j)| + |f(i, j + 1) − f(i, j)|) . (14)

It was proved in [1] that the operators Ln and Un are total variation preserving.
Furthermore, the composition of total variation preserving operators is also total
variation preserving. Therefore the decomposition (3) obtained via (12) preserves
the total variation, i.e. (4) holds.
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Table 1. Bias Percentages (×10−3) between Fn, Cn, Z+
n and Z−

n

Cn Fn Z+
n Z−

n

Cn 0 0.2609 0.2269 0.0340
Fn 0.2609 0 0.0340 0.2269
Z+

n 0.2269 0.0340 0 0.2610
Z−

n 0.0340 0.2269 0.2610 0

The decomposition of the original image can be done using Fn, Cn, Z+
n or Z−

n .
While it is possible that these lead to different results it is seldom significantly
observable in practice. For example, the percentage bias between the operators,
when applied to the image (a) in Figure 2, is given in Table 1.

4 Illustrative Examples

4.1 A Partial Reconstruction

Consider image (a) in Figure 2. We wish to extract the boat as a feature and
remove the background water. We consider any feature not part of the boat as

(a) (b)

(c) (d)

Fig. 2. (a) Original image; (b) Pulses of size up to 80; (c) Pulses of size from 81 to
4000; (d) Pulses of size larger than 4000
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noise. The images (b) - (d) in Figure 2 are partial reconstructions, see [1], of the
original. We can consider (b) as the microfeatures e.g. noise, (c) as the medium-
sized features and (d) as the large features. We see that pulses of size up to 80
represent the water, pulses from 81 to 4000 the boat and pulses larger than 4000
represent larger noise patterns.

4.2 Identifying Pulses of Interest

In Figure 3 the pulses of size 100 to 300 with relative luminosity greater than
1 represent the solar glint on the waves (see image (b) in Figure 3) and they
are emphasized in image (c) by giving them all black borders. So we are able
to extract the small solar glint patches from the image and can subsequently
reconstruct the image without them. The pulses of size 1501 to 2500 are the
pulses corresponding to the boat (as seen in image (d) of Figure 3).

(a) (b)

(c) (d)

Fig. 3. (a) Original image; (b) Pulses of size 100 to 300 with relative luminosity greater
than 1; (c) Borders of the pulses of size 100 to 300 with relative luminosity greater than
1 superimposed on the original image; (d) Pulses of size larger than 1501 to 2500
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