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Abstract: The discrete Fourier transform is considered as one of the most powerful tools in digital
signal processing, which enable us to find the spectrum of finite-duration signals. In this article,
we introduce the notion of discrete quadratic-phase Fourier transform, which encompasses a wider
class of discrete Fourier transforms, including classical discrete Fourier transform, discrete fractional
Fourier transform, discrete linear canonical transform, discrete Fresnal transform, and so on. To
begin with, we examine the fundamental aspects of the discrete quadratic-phase Fourier transform,
including the formulation of Parseval’s and reconstruction formulae. To extend the scope of the
present study, we establish weighted and non-weighted convolution and correlation structures
associated with the discrete quadratic-phase Fourier transform.
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1. Introduction

While working on the solution of the heat equation, Saitoh [1] developed an extreme
generalization of the classical Fourier transform by invoking the theory of reproducing
kernels in the form of quadratic-phase Fourier transform (QPFT). Inspired by the work
of Saitoh, Castro et al. [2] studied further possibilities for the quadratic-phase Fourier
transform by employing a general quadratic function in the exponent of the novel integral
transform. It is worthwhile to mention that QPFT circumscribes several integral transforms,
including the classical Fourier, fractional Fourier, Fresnel, linear canonical, and special
affine Fourier transforms [3]. As a generalization of the celebrated Fourier transform,
the quadratic-phase Fourier transform gained its ground intermittently and profoundly
influenced several disciplines of science and engineering, including harmonic analysis,
quantum mechanics, differential equations, optics, pattern recognition, and so on [4–7].

Since most of the practical data are processed at discrete samples, the notion of discrete
Fourier transforms (DFTs) has emerged as one of the remarkable concepts in digital signal
processing [8]. For instance, in the case of audio video processing, continuous signals are
first sampled at discrete time intervals and subsequently the Fourier analysis decomposes
the sampled signal into its fundamental periodic constituents of complex exponentials.
In recent years, significant progress has been made in the development of discrete Fourier
transforms, including the formulation of discrete versions of both the fractional Fourier
and linear canonical transforms [9,10]. The aforesaid developments together with the fact
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that the theory of quadratic-phase Fourier transforms is in its infancy provide an impetus
towards the formulation of a discrete analogue of the QPFT. Taking this opportunity, our
main goal is to introduce the notion of discrete QPFT and study its fundamental properties
including Parseval’s and the inversion formulae.

The notion of convolution is one of the most widely acknoweledged and applied
concepts in mathematical and physical sciences [11,12]. The product theorem corresponding
to a given convolution operation can be viewed as a manifestation of the behavior of the
convolution in the transformed domain. The convolution and correlation theorems in the
QPFT domain have been paid considerable attention since its birth [13,14]. However, no
discrete version of the convolution or correlation theorems eists in the literture. Taking
this opportunity, we formulate convolution and correlation structures associated with the
discrete quadratic-phase Fourier transform.

The highlights of the article are pointed out below:

• To introduce a discrete version of the quadratic-phase Fourier transform.
• To study all the mathematical properties of the discrete QPFT.
• To establish a weighted convolution and the corresponding product theorems for the

discrete QPFT.
• To formulate a chirp-free convolution and correlation structures associated with the

discrete QPFT.

The main content of the paper is organised as follows: In Section 2, we formally
recall the fundamentals of quadratic-phase Fourier transform. In Section 3, we introduce
the notion of discrete quadratic-phase Fourier transform. Section 4 is devoted to the
formulation of the discrete convolution and correlation structures in the context of the
quadratic-phase Fourier domains. The article ends with an epilogue in Section 5.

2. Quadratic-Phase Fourier Transform

The quadratic-phase Fourier transform (QPFT) is a five-parameter class of integral
transform, which encompasses several well-known unitary transformations as well as
signal processing and optics-related mathematical operations [3]. Due to the extra degrees
of freedom, the QPFT is more flexible than other transforms and is, as such, suitable as
well as a powerful tool for investigating deep problems in science and engineering. Here,
we present the formal definition of the quadratic-phase Fourier transform followed by
the corresponding Parseval and inversion formulae. We have the following definition of
theinition quadratic-phase Fourier transform:

Definition 1. The quadratic-phase Fourier transform of any function f ∈ L2(R) with respect to a
parametric set Λ =

(
A, B, C, D, E

)
, B 6= 0, is denoted as LΛ

[
f
]
(ω) and is defined by

LΛ
[

f
]
(ω) =

1√
2π

∫
R

f (t)QΛ(t, ω)dt, (1)

where Q(t, ω) denotes the kernel of the quadratic-phase Fourier transform and is given by

QΛ(t, ω) = exp
{
− i
(

At2 + Btω + Cω2 + Dt + Eω
)}

, ω ∈ R. (2)

Definition 1 allows us to make the following comments regarding the notion of
quadratic-phase Fourier transform:

(i). Choosing the parametric set Λ = (0, 1, 0, 0, 0), the QPFT (1) boils down to the classical
Fourier transform.

(ii). For Λ =
(
− cot θ/2, csc θ,− cot θ/2, 0, 0

)
, θ 6= nπ, n ∈ Z. Then, multiplying (1) with√

1− i cot θ yields the fractional Fourier transform.
(iii). For the case Λ =

(
− A/2B, 1/B,−C/2B, 0, 0

)
and then multiplying (1) with 1/

√
iB,

Definition 1 turns out to be the linear canonical transform.
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(iv). For the collection of parameters Λ =
(
− A/2B, 1/B,−D/2B,−p/B, (Dp− Bq)/B

)
and multiplying (1) with eiDp2/2B/

√
iB yields the special affine Fourier transform.

For any f , g ∈ L2(R), α, β ∈ C k, ω0 ∈ R and λ ∈ R \ {0}, the quadratic-phase Fourier
transform defined in (1) satisfies the following properties:

(i). Linearity: LΛ
[
α f + βg

]
(ω) = αLΛ

[
f
]
(ω) + βLΛ

[
g
]
(ω),

(ii). Translation:

LΛ
[

f (t− k)
]
(ω) = exp

{
i
(
(4A2B−2C− A)k2 + (4AB−1C− B)ωk + (2AB−1E− D)k

)}
×LΛ

[
f
](

ω + 2AB−1k
)

,

(iii). Modulation:

LΛ
[
eiω0t f (t)

]
(ω) = exp

{
i
(

C
(

B−2ω2
0 − 2B−1ωω0

))
− EB−1ω0

}
LΛ
[

f
](

ω− B−1ω0

)
,

(iv). Scaling: LΛ

[
f
(

t
λ

)]
(ω) = |λ| FΛ′

[
f
]
(ω), Λ′ =

(
λ2 A, B, λ−2C, λD, λ−1E

)
,

(v). Parity: LΛ
[

f (−t)
]
(ω) = FΛ′′

[
f
]
(ω), Λ′′ = (A, B, C,−D,−E),

(vi). Conjugation: LΛ
[

f
]
(ω) = F−Λ

[
f
]
(ω), −Λ = (−A,−B,−C,−D,−E).

The QPFT as defined by (1) is reversible in the sense that the function can be retracted
from the transformed space via the inversion formula given by

f (t) = F−1
Λ

(
LΛ
[

f
]
(ω)

)
(t) =

|B|√
2π

∫
R
LΛ
[

f
]
(ω)QΛ(t, ω)dω. (3)

Moreover, the Plancheral theorem corresponding to QPFT reads:〈
f1, f2

〉
= |B|

〈
FΛ
[

f1
]
,FΛ

[
f2
]〉

, ∀ f1, f2 ∈ L2(R). (4)

3. Discrete Quadratic-Phase Fourier Transform

In this section, we formally introduce the notion of discrete QPFT and then study the
fundamental properties of the proposed transform, including the orthogonality relation,
an inversion formula, and the characterization of range. In the sequel, we derive a direct
relationship between the discrete Fourier transform and the discrete QPFT.

To numerically approximate a signal f in the QPFT domain, a signal is evaluated at N
periodic points 0, 1, . . . , N− 1, in the time domain t and the QPFT domain LΛ[ f ](ω). There-
fore, we replace t = n∆t and ω = m∆ω in the Definition 1, where n and m are integers and,
∆t and ∆ω are the periodic sampling intervals in the time and QPFT domains, respectively,
satisfying ∆ω∆t = 2π/BN. We obtain a discrete QPFT LΛ

(
xN
)
(m) of x(n) = f (n∆t)

analogous to the discrete Fourier transform by replacing the integral with a finite sum:

LΛ
(
xN
)
(m) =

1√
N

N−1

∑
n=0

x(n)QΛ(n, m),

where the kernal QΛ(n, m) of transformation is given by

QΛ(n, m) = exp
{
− i
(

An2∆t2 + 2πnm/N + Cm2∆ω2 + Dn∆t + Em∆ω
)}

.
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If we replace Zn by the cyclic group of Nth root of unity, then the above discussion can be
summarized in the matrix notation as:

LΛ
(

xN
)
(0)

LΛ
(

xN
)
(1)

LΛ
(

xN
)
(2)

...
LΛ
(
xN
)
(N − 1)


=

1√
N

WN



x(0)

x(1)

x(2)
...

x(N − 1)


,

where

WN =



QΛ(0, 0) QΛ(1, 0) QΛ(2, 0) . . . QΛ(N − 1, 0)

QΛ(0, 1) QΛ(1, 1) QΛ(2, 1) . . . QΛ(N − 1, 1)

QΛ(0, 2) QΛ(1, 2) QΛ(2, 2) . . . QΛ(N − 1, 2)

...
...

...
. . .

...
QΛ(0, N − 1) QΛ(1, N − 1) QΛ(2, N − 1) . . . QΛ(N − 1, N − 1)


.

The formal definition of the discrete QPFT is given below:

Definition 2. Given a parametric set Λ = (A, B, C, D, E), B 6= 0, the discrete quadratic-phase
Fourier transform LΛ

(
xN
)
(m) of a signal xN ∈ `2(ZN) is defined by

LΛ
(

xN
)
(m) =

1√
N

N−1

∑
n=0

x(n) exp
{
−i
(

An2∆t2 +
2πnm

N
+ Cm2∆ω2 + Dn∆t + Em∆ω

)}
. (5)

Observations:

(i) For Λ = (−A/2B, 1/B,−D/2B, 0, 0), Definition 2 yields the discrete linear canonical
transform [8]:

LΛ
(

xN
)
(m) =

1√
N

N−1

∑
n=0

x(n) exp
{

i
(

An2∆t2

2B
− 2πnm

N
+

Dm2∆ω2

2B

)}
. (6)

(ii) For Λ = (− cot θ/2, csc θ,− cot θ/2, 0, 0), θ 6= nπ, Definition 2 boils down to the discrete
fractional Fourier transform [9]:

LΛ
(

xN
)
(m) =

1√
N

N−1

∑
n=0

x(n) exp
{

i
(

n2∆t2 + m2∆ω2
)cot θ

2
− i2πnm

N

}
. (7)

(iii) For Λ =
(
0, 1, 0, 0, 0

)
, Definition 2 reduces to the classical discrete Fourier transform

as [3]:

LΛ
(

xN
)
(m) =

1√
N

N−1

∑
n=0

x(n) exp
{
−i2πnm

N

}
. (8)

Next, we show that the proposed discrete QPFT shares an elegant bond with the dicrete
Fourier transform. To meet our intension, we proceed as:
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LΛ
(

xN
)
(m) =

1√
N

N−1

∑
n=0

x(n) exp
{
−i
(

An2∆t2 +
2πnm

N
+ Cm2∆ω2 + Dn∆t + Em∆ω

)}
=

1√
N

exp
{
− i
(
Cm2∆ω2 + Em∆ω

)}
×

N−1

∑
n=0

exp
{
− i
(

An2∆t2 + Dn∆t
)}

x(n) exp
{
−i2πnm

N

}

=
1√
N

exp
{
− i
(
Cm2∆ω2 + Em∆ω

)} N−1

∑
n=0

y(n) exp
{
−i2πnm

N

}
= exp

{
− i
(
Cm2∆ω2 + Em∆ω

)}
F
(

xN
)
(m), (9)

where F
(

xN
)
(m) denotes the classical discrete Fourier transform of a signal

X(n) = exp
{
− i
(

An2∆t2 + Dn∆t
)}

x(n).

From (9), we observe that the computation of the discrete QPFT corresponds to the
following steps:

(i). A product by a chirp signal, that is, x(n)→ X(n) = e−i(An2∆t2+Dn∆t) x(n).
(ii). A classical discrete Fourier transform, that is, X(n)→ F

(
xN
)
(m).

(iii). Another product by a chirp signal, i.e., F
(
xN
)
(m)→ LΛ

(
xN
)
(m).

The aforementioned scheme is depicted in Figure 1.

Discrete Fourier transform of 
X(n) 

Figure 1. Structure of computing the proposed discrete QPFT.

We now present an example for the lucid illustration of the proposed discrete QPFT
given by (5).

Example 1. Consider a signal x(n) = (1, 2, 1, 3). Then, the discrete QPFT LΛ
(
xN
)
(m) of xn

with respect to a parametric set Λ = (A, B, C, D, E) can be computed as:

(i) For the parametric set Λ = (0, 1,−1, 2, 1/2), we proceed as:
LΛ
(

xN
)
(0)

LΛ
(

xN
)
(1)

LΛ
(

xN
)
(2)

LΛ
(

xN
)
(3)

 =
1
2


QΛ(0, 0) QΛ(1, 0) QΛ(2, 0) QΛ(3, 0)

QΛ(0, 1) QΛ(1, 1) QΛ(2, 1) QΛ(3, 1)

QΛ(0, 2) QΛ(1, 2) QΛ(2, 2) QΛ(3, 2)

QΛ(0, 3) QΛ(1, 3) QΛ(2, 3) QΛ(3, 3)




x(0)

x(1)

x(2)

x(3)

.

Or, equivalently

LΛ
(

xN
)
(0) =

1
2

(
1 + 2 e−2i + e−4i + 3 e−6i

)
= 1.1973− i 0.1117.

LΛ
(

xN
)
(1) =

1
2
(0.1109 + i 0.9938)

(
1− 2 e−2i − e−4i + 3 e−6i

)
= −1.2417 + i 2.5612.

LΛ
(

xN
)
(2) =

1
2
(0.9026 + i 0.4303)

(
1− 2 e−2i + e−4i − 3 e−6i

)
= −1.1417 + i 0.4178.

LΛ
(

xN
)
(3) =

1
2
(0.8419− i 0.5395)

(
1 + 2 e−2i − e−4i + 3 e−6i

)
= 1.0896− i 1.7297.
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That is, the discrete QPFT of x = (1, 2, 1, 3) with respect to a collection Λ = (0, 1,−1, 2, 1/2)
is given by LΛ

(
xN
)
= (1.1973− i 0.1117,−1.2417 + i 2.5612,−1.1417 + i 0.4178, 1.0896−

i 1.7297).

(ii) For the case Λ = (0, 1, 0, 2, 0), we have
LΛ
(

xN
)
(0)

LΛ
(

xN
)
(1)

LΛ
(

xN
)
(2)

LΛ
(

xN
)
(3)

 =
1
2


QΛ(0, 0) QΛ(1, 0) QΛ(2, 0) QΛ(3, 0)

QΛ(0, 1) QΛ(1, 1) QΛ(2, 1) QΛ(3, 1)

QΛ(0, 2) QΛ(1, 2) QΛ(2, 2) QΛ(3, 2)

QΛ(0, 3) QΛ(1, 3) QΛ(2, 3) QΛ(3, 3)




x(0)

x(1)

x(2)

x(3)



=
1
2


1 e−2i e−4i e−6i

1 −e−2i −e−4i −e−6i

1 −e−2i e−4i −e−6i

1 e−2i −e−4i e−6i




1

2

1

3

.

Or, equivalently

LΛ
(

xN
)
(0) =

1
2

(
1 + 2 e−2i + e−4i + 3 e−6i

)
= 1.1972− i0.1117.

LΛ
(

xN
)
(1) =

1
2

(
1− 2 e−2i − e−4i − 3 e−6i

)
= −0.1972 + i0.1117.

LΛ
(

xN
)
(2) =

1
2

(
1− 2 e−2i + e−4i − 3 e−6i

)
= −0.8509 + i0.8685.

LΛ
(

xN
)
(3) =

1
2

(
1 + 2 e−2i − e−4i + 3 e−6i

)
= 1.8509− i0.8685.

That is, the discrete QPFT of x = (1, 2, 1, 3) with respect to a collection Λ = (0, 1,−1, 2, 1/2)
is given by LΛ

(
xN
)
= (1.1972 − i0.1117,−0.1972 + i0.1117,−0.8509 + i0.8685, 1.8509 −

i0.8685).

(iii) For the collection Λ = (0, 1, 0, 0, 0), we obtain
LΛ
(
xN
)
(0)

LΛ
(
xN
)
(1)

LΛ
(
xN
)
(2)

LΛ
(
xN
)
(3)

 =
1
2


1 1 1 1

1 −1 −1 1

1 −1 1 −1

1 1 −1 1




1

2

1

3

.

Or, equivalently

LΛ
(
xN
)
(0) =

1
2
(1 + 2 + 1 + 3) = 3.5.

LΛ
(
xN
)
(1) =

1
2
(1− 2− 1 + 3) = 0.5.

LΛ
(
xN
)
(2) =

1
2
(1− 2 + 1− 3) = −1.5.

LΛ
(
xN
)
(3) =

1
2
(1 + 2− 1 + 3) = 2.5.

That is, the discrete QPFT of x = (1, 2, 1, 3) with respect to a collection Λ = (0, 1,−1, 2, 1/2) is
given by LΛ

(
xN
)
= (3.5, 0.5,−1.5, 2.5).
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In the following theorem, we assemble some basic properties of the discrete QPFT (5).

Theorem 1. For any xN , yN ∈ `2(ZN), α, β, k ∈ R and λ, µ ∈ N, the discrete QPFT (5) satisfies
the following properties:

(i). Linearity: LΛ
(
α xN + β yN

)
(m) = αLΛ

(
xN
)
(m) + βLΛ

(
yN
)
(m),

(ii). Translation:

LΛ
(

xN−k
)
(m) = exp

{
−i
(

Ak2∆t2 +
2πkm

N
+ Dk∆t

)}
LΛ

(
e−2iAnk∆t2

xN

)
(m),

(iii). Modulation:

LΛ

(
ei2πµn/N xN

)
(m) = exp

{
i
(

C
(
µ2 − 2mµ

)
∆ω2 − Eµ∆ω

)}
LΛ
(
xN
)
(m− µ),

(iv). Scaling:

FΛ
(

xλN
)
(m) = exp

{
i
(

C
(

m2

λ2 −m2
)

∆ω2 + E
(m

λ
−m

)
∆ω

)}
LΛ′

(
xN
)(m

λ

)
,

where Λ′ =
(

A
λ2 , B, C,

D
λ

, E
)

,

(v). Conjugation: LΛ
(

xN
)
(m) = exp

{
− 2iEm∆ω

}
L−Λ

(
xN
)
(m).

Proof. (i) The proof of linearity property directly follows from the Definition 2.

(ii) To study the effect of discrete QPFT under translation, we proceed as:

LΛ
(

xN−k
)
(m)

=
1√
N

N−1

∑
n=0

x(n− k) exp
{
−i
(

An2∆t2 +
2πnm

N
+ Cm2∆ω2 + Dn∆t + Em∆ω

)}

=
1√
N

N−1

∑
u=0

x(u) exp
{
−i
(

A(u + k)2∆t2 +
2πnm

N
+ Cm2∆ω2 + D(u + k)∆t + Em∆ω

)}
=

1√
N

exp
{
−i
(

Ak2∆t2 +
2πkm

N
+ Dk∆t

)}
×

N−1

∑
u=0

e−2iAuk∆t2
x(u) exp

{
−i
(

Au2∆t2 +
2πum

N
+ Cm2∆ω2 + Du∆t + Em∆ω

)}
= exp

{
−i
(

Ak2∆t2 +
2πkm

N
+ Dk∆t

)}
LΛ

(
e−2iAnk∆t2

xN

)
(m).

(iii) Invoking Definition 2, we have
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LΛ

(
ei2πµn/N xN

)
(m)

=
1√
N

N−1

∑
n=0

ei2πµn/N x(n) exp
{
−i
(

An2∆t2 +
2πnm

N
+ Cm2∆ω2 + Dn∆t + Em∆ω

)}

=
1√
N

N−1

∑
n=0

x(n) exp
{
−i
(

An2∆t2 +
2πn(m− µ)

N
+ Cm2∆ω2 + Dn∆t + Em∆ω

)}
=

1√
N

exp
{

i
(

C
(
µ2 − 2mµ

)
∆ω2 − Eµ∆ω

)}
×

N−1

∑
n=0

x(n) exp
{
−i
(

An2∆t2 +
2πn(m− µ)

N
+ C(m− µ)2∆ω2 + Dn∆t + E(m− µ)∆ω

)}
= exp

{
i
(

C
(
µ2 − 2mµ

)
∆ω2 − Eµ∆ω

)}
LΛ
(
xN
)
(m− µ).

(iv) Implementing the definition of discrete QPFT (5), we have

FΛ
(

xλN
)
(m)

=
1√
N

N−1

∑
n=0

x(λ n) exp
{
−i
(

An2∆t2 +
2πnm

N
+ Cm2∆ω2 + Dn∆t + Em∆ω

)}

=
1√
N

N−1

∑
u=0

x(u) exp
{
−i
((

A/λ2)u2∆t2 +
2πn(m/λ)

N
+ Cm2∆ω2 + (D/λ)u∆t + Em∆ω

)}
=

1√
N

exp
{
− i
(

Cm2∆ω2 + Em∆ω
)}

exp
{

i
(

C(m/λ)2∆ω2 + E(m/λ)∆ω
)}

×
N−1

∑
u=0

x(u) exp
{
−i
((

A/λ2)u2∆t2 +
2πn(m/λ)

N
+ C(m/λ)2∆ω2 + (D/λ)u∆t + E(m/λ)∆ω

)}
= exp

{
i
(

C
(

m2

λ2 −m2
)

∆ω2 + E
(m

λ
−m

)
∆ω

)}
LΛ′

(
xN
)(m

λ

)
,

where Λ′ =
(

A
λ2 , B, C,

D
λ

, E
)

.

(v) The conjugation property directly follows from the definition (5).

This completes the proof of Theorem 1.

In our next theorem, we demonstrate that the discrete QPFT LΛ
(
xN
)
(m) of any signal

x(n) ∈ `2(Zn) is reversible.

Theorem 2. If LΛ
(

xN
)
(m) is the discrete QPFT of any arbitrary sequence xN , then xN can be

reconstructed via:

xN =
1√
N

N−1

∑
n=0
LΛ
(

xN
)
(m) exp

{
i
(

An2∆t2 +
2πnm

N
+ Cm2∆ω2 + Dn∆t + Em∆ω

)}
. (10)
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Proof. By virtue of Definition 2, we have

N−1

∑
v=0
LΛ
(

xN
)
(m) exp

{
i
(

Av2∆t2 +
2πvm

N
+ Cm2∆ω2 + Dv∆t + Em∆ω

)}

=
1√
N

N−1

∑
v=0

(
N−1

∑
n=0

x(n) exp
{
−i
(

An2∆t2 +
2πnm

N
+ Cm2∆ω2 + Dn∆t + Em∆ω

)})

× exp
{

i
(

Av2∆t2 +
2πvm

N
+ Cm2∆ω2 + Dv∆t + Em∆ω

)}
=

1√
N

N−1

∑
v=0

N−1

∑
n=0

x(n) exp
{
−i
(

A
(
n2 − v2)∆t2 +

2π(n− v)m
N

+ D(n− v)∆t
)}

.

Using the sum

N−1

∑
v=0

N−1

∑
n=0

exp
{
−i
(

A
(
n2 − v2)∆t2 +

2π(n− v)m
N

+ D(n− v)∆t
)}

=

{
N, n = v
0, n 6= v,

we obtain

N−1

∑
v=0
LΛ
(

xN
)
(m) exp

{
i
(

Av2∆t2 +
2πvm

N
+ Cm2∆ω2 + Dv∆t + Em∆ω

)}
=
√

N x(v).

Or, equivalently

xN =
1√
N

N−1

∑
n=0
LΛ
(
xN
)
(m) exp

{
i
(

An2∆t2 +
2πnm

N
+ Cm2∆ω2 + Dn∆t + Em∆ω

)}
.

This completes the proof of Theorem 2.

Towards the culmination of this section, we derive the Plancheral formula for the
proposed discrete QPFT given by (5).

Theorem 3. For any finite sequence xN ∈ `2(ZN), we have

M−1

∑
m=0

∣∣LΛ
(
xN
)
(m)

∣∣2 =
1
N

N−1

∑
n=0

∣∣x(n)∣∣2. (11)

Proof. Invoking the definition of discrete QPFT, we have

M−1

∑
m=0

∣∣LΛ
(

xN
)
(m)

∣∣2
=

M−1

∑
m=0
LΛ
(

xN
)
(m)LΛ

(
xN
)
(m)

=
1
N

M−1

∑
m=0

(
N−1

∑
n=0

x(n) exp
{
−i
(

An2∆t2 +
2πnm

N
+ Cm2∆ω2 + Dn∆t + Em∆ω

)})

×
(

N−1

∑
n=0

x(v) exp
{
−i
(

Av2∆t2 +
2πvm

N
+ Cm2∆ω2 + Dv∆t + Em∆ω

)})

=
1
N

N−1

∑
n=0

N−1

∑
v=0

x(n) x(v) exp
{
−i
(

A
(
n2 − v2)∆t2 +

2π(n− v)m
N

+ D(n− v)∆t
)}

.
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Taking v = n, we obtain

M−1

∑
m=0

∣∣LΛ
(
xN
)
(m)

∣∣2 =
1
N

N−1

∑
n=0

∣∣x(n)∣∣2.

This completes the proof of Theorem 3.

4. Convolution and Correlation Structures Associated with the Discrete
Quadratic-Phase Fourier Transform

The notion of convolution is one of the widely applied concepts in mathematics,
with application areas ranging from functional analysis to different fields of signal and
image processing, including quantum mechanics, operator theory, pattern recognition,
and signal detection [11,12]. Primarily, we formulate a duo of important convolution opera-
tions associated with the discrete QPFT (5) and also investigate the fundamental properties.

(i). Weighted Discrete Convolution in the Quadratic-phase Fourier Domain

In this subsection, we shall introduce the notion of convolution and correlation struc-
tures associated with discrete QPFT which upholds the classical convolution theorem in the
sense that, except for a chirp, the discrete QPFT of two convoluted signals corresponds to
the product of their respective discrete QPFTs. Nevertheless, we also demonstrate that such
a convolution structure satisfies the fundamental properties of commutativity, associativity,
and distributivity.

Next, we shall study the convolution operation of two sequences xN , yN ∈ `2(ZN) in
the quadratic-phase Fourier domains.

Definition 3. For a pair of sequences xN and yN belonging to `2(ZN), the discrete quadratic-phase
convolution is denoted by ~Λ and is defined by

(
xN ~Λ yN

)
(u) =

N−1

∑
n=0

x(n) y(u− n) exp
{
− i2An(n− u)∆t2

}
. (12)

In the following, we assemble some properties of the convolution operator ~Λ defined
by (12).

Theorem 4. For any sequences xN , yN , zN ∈ `2(ZN) and k, α ∈ N, the discrete quadratic-phase
convolution ~Λ has the following properties:

(i). Commutativity:
(

xN ~Λ yN
)
(u) =

(
yN ~Λ xN

)
(u),

(ii). Associativity: (xN ~Λ yN)~Λ zN = xN ~Λ (yN ~Λ zN),
(iii). Translation:

(
xN ~Λ yN

)
(u− k) = e−i4Ank(ei4AnuuN−k ~Λ yN

)
(u),

(iv). Reflection:
(

xN ~Λ yN
)
(−u) = (x−N ~Λ y−N)(u),

(v). Scaling:
(

xN ~Λ yN
)
(αu) = |α|(xαN ~Λ yαN)(u).

Proof. For the sake of brevity, we omit the proof.

In our next theorem, we obtain a convolution theorem associated with the discrete
QPFT (5).

Theorem 5. For any xN , yN ∈ `2(ZN), we have

LΛ
(

xN ~Λ yN
)
(m) =

√
N exp

{
i
(

Cm2∆ω2 + Em∆ω
)}
LΛ
(
xN
)
(m)LΛ

(
yN
)
(m). (13)

Proof. Invoking the definition of discrete QPFT (5), we have
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LΛ
(

xN ~Λ yN
)
(m)

=
1√
N

N−1

∑
n=0

(
xU ~Λ yU

)
(n) exp

{
−i
(

An2∆t2 +
2πnm

N
+ Cm2∆ω2 + Dn∆t + Em∆ω

)}

=
1√
N

N−1

∑
n=0

U−1

∑
u=0

x(u) y(n− u) exp
{
− i2Au(u− n)∆t2

}
× exp

{
−i
(

An2∆t2 +
2πnm

N
+ Cm2∆ω2 + Dn∆t + Em∆ω

)}
=

1√
N −U

N−1

∑
n=0

N−U−1

∑
v=0

x(z) y(v) exp
{

i2Auv ∆t2
}

× exp
{
−i
(

A(u + v)2∆t2 +
2π(u + v)m

N
+ Cm2∆ω2 + D(u + v)∆t + Em∆ω

)}
=

N−1

∑
n=0

x(u) exp
{
−i
(

Au2∆t2 +
2πum

N
+ Du∆t

)}

× 1√
N −U

N−U−1

∑
v=0

y(v) exp
{
−i
(

Av2∆t2 +
2πvm

N
+ Cm2∆ω2 + Dv∆t + Em∆ω

)}
=
√

N exp
{

i
(

Cm2∆ω2 + Em∆ω
)}
LΛ
(

xN
)
(m)LΛ

(
yN
)
(m).

This completes the proof of Theorem 5.

Next, we introduce the notion of discrete quadratic-phase correlation and then present
the corresponding correlation theorem.

Definition 4. Given a pair of sequneces x, y ∈ `2(ZN), the discrete quadratic-phase correlation is
denoted by ?Λ and is defined as

(
xN ?Λ yN

)
(u) =

N−1

∑
n=0

x(n) y(n− u) exp
{

i2Au(u− n)∆t2
}

. (14)

Theorem 6. For any x, y ∈ `2(Zn), we have

LΛ
(

xN ?Λ yN
)
(m) =

√
N exp

{
− i
(

Cm2∆ω2 + Em∆ω
)}
LΛ
(
xN
)
(m)LΛ

(
yN
)
(m). (15)

Proof. The proof can be obtained in a manner similar to Theorem 5 and is therefore
omitted.

(ii). Chirp-free Discrete Convolution in the Quadratic-phase Fourier Domain

In this subsection, we formulate a notion of chirp-free discrete quadratic-phase con-
volution operation, which states that the discrete QPFT of convolution of two sequences
belonging to `2(Zn) is equal to the product of discrete QPFT and the classical discrete
Fourier transform, respectively. The name chirp-free is coined due to the fact that the
associated product theorem does not contain any chirp multiplier. In continuation, we shall
demonstrate that such a convolution does not satisfy the commutativity and associative
properties, however, the distributive property holds good.

Definition 5. Given a collection of parameters Λ =
(

A, B, C, D, E
)

and a pair of sequneces
xN , yN ∈ `2(ZN), the chirp-free convolution associated with the discrete QPFT is denoted by �Λ
and is defined as
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(
xN �Λ yN

)
(u) =

N−1

∑
n=0

x(n) y(u− n) exp
{

iA
(

u2 − n2
)

∆t2
}

. (16)

Some important characteristics of the discrete quadratic-phase convolution operation
(16) are assembled in the following theorem.

Theorem 7. For any sequences xN , yN , zN ∈ `2(ZN) and the scalars α, k ∈ N, the discrete
quadratic-phase convolution operation �Λ defined in (16) satisfies the following properties:

(i). Non-commutativity:
(
xN �Λ yN

)
(u) 6=

(
yN �Λ xN

)
(u),

(ii). Non-Associativity:
((

xN �Λ yN
)
�Λ zN

)
(u) 6=

(
xN �Λ

(
yN �Λ zN

))
(u),

(iii). Distributivity:
(

xN �Λ
(
yN + zN

))
(u) =

(
xN �Λ yN

)
(u) +

(
xN �Λ zN

)
(u),

(iv). Translation:
(

xN �Λ yN
)
(u− k) =

(
xN−k �Λ y2,Λ

N

)
(u), y2,Λ

N (t) = e−2iAkn∆ty(n),

(v). Scaling:
(

xN �Λ yN
)
(αu) = α(xα N �Λ′ yα N)(u), Λ′ =

(
α2 A, B, C, αD, E

)
,

(vi). Parity:
(

xN �Λ yN
)
(−u) = (x−N �Λ y−N)(u).

Proof. For the sake of convenience, we omitt the proof.

In the following theorem, we demonstrate that indeed the convolution theorem
pertaining to the discrete quadratic-phase convolution operation �Λ defined in (16) is
chirp-free.

Theorem 8. For any sequences xN , yN ∈ `2(ZN), we have

LΛ
(

xN �Λ yN
)
(m) =

√
N LΛ

(
xN
)
(m)F

(
e−iDn∆t yN

)
(m), (17)

where F
(

x
)

represents the classical discrete Fourier transform.

Proof. Invoking Definition 2, we can compute the discrete QPFT corresponding to (16)
as follows:

LΛ
(

xN �Λ yN
)
(m)

=
1√
N

N−1

∑
n=0

(
xU �Λ yU

)
(n) exp

{
−i
(

An2∆t2 +
2πnm

N
+ Cm2∆ω2 + Dn∆t + Em∆ω

)}

=
1√
N

N−1

∑
n=0

U−1

∑
u=0

x(u) y(n− u) exp
{

iA
(

n2 − u2
)

∆t2
}

× exp
{
−i
(

An2∆t2 +
2πnm

N
+ Cm2∆ω2 + Dn∆t + Em∆ω

)}
=

1√
N −U

N−1

∑
n=0

N−U−1

∑
v=0

x(u) y(v) exp
{

iAv(v + 2u)∆t2
}

× exp
{
−i
(

A(u + v)2∆t2 +
2π(u + v)m

N
+ Cm2∆ω2 + D(u + v)∆t + Em∆ω

)}
=

N−1

∑
n=0

x(u) exp
{
−i
(

Au2∆t2 +
2πum

N
+ Cm2∆ω2 + Du∆t + Em∆ω

)}

× 1√
N −U

N−U−1

∑
u=0

e−iDv∆t y(v) exp
{
−i2πvm

N

}
=
√

N LΛ
(

xN
)
(m)F

(
e−iDn∆t yN

)
(m),

where F
(

xN
)
(m) denotes the classical discrete Fourier transform.
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This completes the proof of Theorem 8.

Remark 1. For Λ =
(
0, 1, 0, 0, 0

)
, Definition 5 yields the classical convolution operator and the

corresponding convolution theorem is obtained from (17).

Towards the culmination, we introduce the notion of chirp-free discrete quadratic-
phase correlation and then present the corresponding correlation theorem.

Definition 6. Given a pair of sequneces x, y ∈ `2(ZN), the chirp-free discrete quadratic-phase
correlation ∗Λ is defined as

(
xN ∗Λ yN

)
(u) =

N−1

∑
n=0

x(n) y(n− u) exp
{

iA
(

u2 − n2
)

∆t2
}

. (18)

Theorem 9. For any x, y ∈ `2(ZN), we have

LΛ
(

xN ∗Λ yN
)
(m) =

√
N LΛ

(
xN
)
(m)F

(
e−iDn∆t yN

)
(m). (19)

Proof. The proof can be obtained in a manner similar to Theorem 5 and is therefore
omitted.

5. Conclusions

In this article, we have introduced the notion of discrete quadratic-phase Fourier
transform and studied its fundamental properties. In continuation, we formulated a
weighted-type convolution and correlation structures associated with the discrete QPFT.
Next, we established a chirp-free discrete convolution and product theorems in the QPFT
domain. Finally, we showed that such convolution is non-commutative and non-associative
but inhibits a distributive property.
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