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The knowledge about discrete quantum breathers, accumulated during the last two

decades, is reviewed. ”Prehistory” of the problem is described and some important

properties differentiating localized and extended vibrational modes are outlined. The

state of art of our understanding of the principal features of the quantum discrete

breathers is presented.

PACS numbers:

The idea of a localization of vibrational energy due to anharmonic effects

was put forward independently several times, in different fields, under different

names, aiming at different applications. One of the most popular name for

such a localized state during the last decade is breather. Quantization of such

localized excitations has been also under study for quite a long time. This paper

reviews the field with a special emphasis on the results related to the quantum

breathers. Among the problems touched upon are quantization of breathers,

separation between the quantum breathers, corresponding to classically localized

states, and phonons — extended states, dynamical properties of breathers. The

amount of the results related to quantum breathers is not large and the best

has been done to make a possibly complete coverage of the field.

I. INTRODUCTION

The idea of a possible localization of vibrational energy in a single highly excited local

mode of an anharmonic discrete system was first discussed in chemical physics. The re-

search in solid state was mainly concentrated on studying extended low energy vibrational
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excitations — phonons, which played important part in shaping thermodynamic and kinetic

properties of crystals. Anharmonicity was considered mainly as an additional weak factor

in an otherwise harmonic crystals. It usually yielded small corrections to physical quan-

tities, which were mainly determined by the harmonic part of the vibration energy. Two

exclusions are well known — thermal expansion and phonon thermal resistivity — when a

nonzero result appears only due to the anharmonicity. However, even in these cases it was

possible to consider only the lowest order perturbation terms.

The situation in chemistry has been different from the very beginning, since the typical

processes such as chemical reactions, radiation and radiationless electronic transitions are

necessarily accompanied by a release or absorption of a rather high energy, when anharmonic

properties of molecular vibrations may fully reveal themselves. A tendency of the vibrational

energy to localize on a single bond rather than to be equally distributed among numerous

bonds available in molecules was discussed as early as in the 60s [1] (see also reviews [2, 3]).

The attention at that time was largely concentrated on studies of radiationless transitions

between electronically excited and ground states of the molecules. The fact that such a tran-

sition proceeds via a single highly excited anharmonic bond rather than over many weakly

excited, and hence nearly harmonic bonds, can make a principal difference. For example the

Franck-Condon factor, which is in fact the overlap of the vibrational wave function in two

different electronic states and which controls the transition rate of the radiationless transi-

tions, can, in principle, be calculated using a harmonic approximation. However, the neglect

of anharmonicity for highly excited vibrational states may underestimate the transition rate

by many orders of magnitude as demonstrated in reference [4], where the Franck - Condon

factor was calculated for Morse oscillators.

Even if we go back to the mid-60s and 70s when the principal attention was concentrated

on localization of vibrational energy on single molecular bonds, we realize that the story has

actually begun much earlier. The idea that infrared absorption is localized in certain parts of

molecules was clearly recognized at least as early as 1908 [5]. Quantum Morse oscillator was

used to analyze some peculiar features of the infrared absorption in molecules in 1929 [6].

It became clear by that time that, for instance, the vibration energy in aromatic molecules,

containing benzene rings is typically localized on one of the six stretching CH oscillators

rather than distributed over the ring. In the early thirties Mecke etal [7–9] (more references

to the works of this group can be found in review [10], see also [11]) started publishing his
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series of papers on the subject. These important early achievements escaped, however, the

attention of the people researching this field beginning from the 60s.

Returning to the 60s and 70s, we mention an extensive discussion of the properties of

the so called ”accepting” and ”promoting” modes (see, e g. [12]). This discussion is in

fact still ongoing. We may just pick up one of the most recent papers [13] considering the

role of the promoting modes in radiationless transitions. The main idea is that the transfer

of electronic energy of an excited molecule into vibrational excitations proceeds not via all

available vibrational modes, but rather only a limited number of the modes take part in the

process. There are only a few (possibly one) promoting modes, which are responsible for

the transition between the excited and the ground electronic states of the molecule. There

is also a limited number of accepting modes, which accept the rather high electronic energy

released in the course of the transition. This approach is sound if such high excitations are

stable enough and can exist during a sufficiently long time without decaying into low energy

extended normal vibrations.

The role of anharmonic effects in molecular crystals was studied by Kranendok [14, 15],

and later by Agranovich (see review [16] and references therein) whose attention was con-

centrated on coupled states of two phonons — biphonons. We shall see below that such

states are just the simplest possible quantum breathers. An analogy of such biphonon states

with two-magnon states [17–19] was also emphasized in [16].

A very interesting experimental indications favoring the existence of relatively stable

highly excited vibrational states was reviewed in [20]. Dissociations of various molecules were

induced by irradiation of powerful infrared lasers. Dissociation happens locally, only one or

just a few bonds should be broken. About thirty infrared quanta are necessary to excite a

bond high enough to break it. It is a direct indication that such highly excited vibrational

states of the bond live sufficiently long in order to have enough time to accumulate the

necessary number of photons.

The idea of a localization of anharmonic excitations was promoted by Ovchinnikov in

1969 [21] (see also review [22]). Two coupled anharmonic oscillators were considered and it

was shown that the energy of a highly excited oscillator would not flow to the other one,

so that the excitation energy remained localized on one of these two oscillators. It was

also assumed that this property would hold for more complex systems consisting of many

coupled oscillators. It was outlined (although not proven) in review [22] that these local
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anharmonic oscillations in complex systems may be linearly stable and even the possible

role of the Arnold diffusion was indicated.

More recently it was emphasized that localized anharmonic excitations in molecules could

play a role of doorway states (see review [23]). The standard theories based on the Fermi

golden rule assumed that the density of vibrational states in the molecule was the essential

parameter determining the relaxation times of various excited states. However, the exper-

iment clearly demonstrated that there was no direct correlation between the densities of

states in various molecules and the relaxation times measured in these molecules. For exam-

ple, an increase of the density of states by three orders of magnitude may be accompanied

by a decrease of the lifetime of some states by a factor of two. That is where the idea of

a doorway state enters. Actually the major part of the states contributing to the observed

density of states have only a minor relevance to the relaxation process [24]. In fact this

process proceeds via only one or maybe few highly excited localized states, which largely

determine the relaxation rate. The connection between the doorway states and discrete

quantum breathers was discussed in [25].

A possibility of a localization of vibrational excitation in an anharmonic chain was ana-

lyzed in [26]. This paper discussed the long wave limit where the originally discrete problem

could be reduced to a continuous problem, e.g. to a sine-Gordon equation. Localized ex-

citations for anharmonic crystals were introduced in references [27, 28]. Paper [29] reviews

numerous aspects of the problem of classical breathers and discusses various techniques of

their calculations.

Different authors call these types of excitation by different names: local modes, localized

solitons, doorway states, intrinsic local modes, and, finally, discrete breathers. The latter

name is most popular in the nonlinear dynamics community and it will be used below.

II. LOCAL AND EXTENDED MODES

A detailed analysis of the structure of the phase space allowing for a separation between

local and normal (extended) modes and transitions between behaviors typical of each type of

modes was carried out by Jaffe and Brumer [30]. They addressed the problem by restricting

themselves to two bound anharmonic oscillators. This problem was also discussed in [31]

where systems with a larger number of oscillators were discussed as well. The approaches
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to both the local and normal modes are approximate schemes representing the hamiltonian

of the system as

H = H0 + V, H0 =
∑

j

Hj
0(qj, pj)

where each term Hj
0(qj, pj) depends only on the j-th pair of generalized coordinates, and

the coupling between them is accounted for by the term V . If we choose the normal mode

approach, these generalized coordinates are normal coordinates, which can be most easily

obtained in the small amplitude limit. These are symmetry coordinates and they can be

classified by means of the irreducible representations of the whole system. The local mode

approach chooses displacement of an individual bond j from equilibrium as the coordinate

qj. Then the bond anharmonicity is directly included into the Hj
0 term.

The choice between the approaches depends on the type of the problem addressed and the

quality of the resulting zeroth order approximation (neglecting V ). We are always interested

in having possibly small corrections due to the coupling V . It is worth emphasizing that

the treatment of the local modes in [30] is very close to the anticontinuum limit used by

MacKay and Aubry [32] in order give a mathematical proof of the classical discrete breather

existence (see also [33]).

An insight to localized modes is provided by turning to the angle — action variables

{ϕj, Ij} with j enumerating the bonds. In the absence of V the phase space motion is

restricted by certain tori determined by the conserving hamiltonian H =
∑

j Hj(Ij). Then

according to [30] we define the amplitude dependent frequencies ωj =
∂Hj(Ij)

∂Ij

. The behavior

typical of a local mode shows up when the amplitudes of the different bonds differ strongly

from each other, and hence the corresponding frequencies differ as well.

If the amplitudes, and hence the frequencies of different bonds coincide (say, ω1 = ω2)

the 1:1 resonance takes place and a small perturbation yields a normal mode behavior.

A commensurate ratio n1ω1 = n2ω2, with integer nj may also lead to a resonance. This

resonance is similar to the well known Fermi resonance between quantum oscillators. The

discussion in [30] is limited largely to a dimer, i.e. two coupled anharmonic oscillators. In

this case one can easily imagine 1:1 resonances at various excitation levels of the bonds.

However, if we consider a system of many or even infinite number of bonds, then such a

1:1 resonance would require an equal and finite excitation of all the bonds. This would

correspond to a large or even infinite accumulated excitation energy. Such a situation does
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not seem to be generic and achievable in real physical systems. The exclusion is the case

of small (infinitesimally small) excitations of the bonds, i.e. excitation of various phonon

modes. This type of excitations will be usually implied below, when considering extended

normal excitations.

One of the important conclusions of [30] is that the tori related to the local and to

the normal mode types of motion cannot be deformed into each other by any continuous

variations of the hamiltonian. These two types of tori are situated in different parts of

the phase space. Varying the coupling or other parameters of the hamiltonian changes the

shape of the separatrix between these two parts but never mix them. The corresponding

bifurcation point was studied later by Scott et al [31].

III. QUANTUM BREATHER.

Let us try to understand what are the properties of the wave function of a quantum

breather, which would allow us to distinguish it from the normal states. (The discussion in

this section is based largely on the references [25, 33]). In classical mechanics we separate

between normal (phonon) modes, which reflect the symmetry of the system and are extended

over the whole system, and the local modes (breathers), when only a small number of

neighboring sites are involved in the motion. This crystal-clear distinction becomes blurred

when we turn to quantum mechanics.

Let us assume that we have a classical breather solution with the corresponding phase-

space trajectory lying on a torus. We can obtain such a solution by exciting a motion of

the j-th site of the lattice in the anticontinuum limit (without intersite interaction) and

then gradually switching the intersite interaction on. This motion can be now quantized,

resulting in a set of wave functions, Ψj,α({ri}) with α being quantum number. This step is

not necessarily easy, and not always can be done analytically even approximately. However,

there are cases when it is doable, at least numerically.

Now we have to recollect that an eigen function of a periodic hamiltonian must satisfy

the Bloch theorem, which states that

Ψ({rj + a}) = eikaΨ({rj}). (1)

Here a is the lattice period, and k is the wave vector. These functions are certainly ex-
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tended, reflect the symmetry of the system and their classification can be carried out using

the irreducible representations of the symmetry group of the system. But in the classical

mechanics all these were just features typical of the normal modes, meaning that quantized

breather states cannot be distinguished from the quantized normal (phonon) states, which

also satisfy Bloch theorem (1), or, at least, they cannot be distinguished along the guidelines,

used in classical mechanics (see discussion in Section 2).

Let us try to construct a quantum breather wave function in the form

Ψk,α({rj}) =
1√
N

∑

j ′
eikrj ′Ψj ′, α({rj}) (2)

where N is the number of sites in the lattice. Obviously this function satisfies the Bloch

theorem (1) although it is constructed using only the site functions with a fixed value of α.

This construction can be viewed as a tight binding approximation, often used when describ-

ing electron motion in a narrow band. The local functions Ψj ′, α({rj}), if orthogonalized,

may play the role of the Wannier functions. In the anticontinuum limit they are just wave

functions of the single bond excitations and remain rather close to them as long as the

coupling parameter remains small enough.

A single phonon excitation, which in the classical mechanics is associated with a normal

extended vibration, is obtained by quantizing the normal coordinates. Now an n phonon

function should be considered. A multiphonon state is a symmetrized product of n, single

phonon wave functions

Ψk,n({rj}) = P̂S

n∏

i=1

ϕki
({rj}) (3)

where P̂S denotes the symmetrization of the product of functions. The structure of the

multiphonon wave function (3) certainly differs from that of the quantum breather wave

function (2). In principle, the corresponding wave function can be also represented in the

form similar to (2). But the corresponding Wannier functions will strongly differ from the

single bond excitations.

We can invert the question. Let us assume that we are given a function Ψk({rj}), which

observes the Bloch condition (1), and we are asked to determine whether the given function

represents a quantized breather or just a symmetrized product (or combination of such

products) of single phonon excitations. In both cases the function is extended and may be

classified according to the irreducible representations of the crystal group. It means that

the approach used in [30] within the framework of the classical mechanics does not help.
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On the other hand, the difference between the two states, the quantum breather (2) and

the n phonon state (3), is physically quite clear. A quantum breather forms as a result of

a coherent tunneling of a high excitation of a bond, whereas a normal multiphonon states

correspond to independent motion of n low energy excitations extended over the whole

crystal. Rather loosely we may say that in the quantum breather case all the ”phonons”,

or better to say bosons, are always coupled together on a bond. As for the multiphonon

state the phonons are not coupled, move independently and actually never meet each other.

The probability that n independent phonons meet simultaneously on one of N bonds of the

lattice can be estimated as N−n.

We may now try to formalize this intuitive understanding. It is rather easy to do for such

models as discrete nonlinear Schrödinger equation (DNLS) with the hamiltonian

H = ω0

∑

i

Ψ̂†
i Ψ̂i +

γ

2

∑

i

Ψ̂†
i Ψ̂

†
i Ψ̂iΨ̂i + C

∑

i

[
Ψ̂†

i Ψ̂i+1 + Ψ̂†
i Ψ̂i−1

]
(4)

where the operator of the total number of boson excitation

B̂ =
∑

i

Ψ̂†
iΨi

commutes with the hamiltonian and the corresponding physical quantity conserves. Now

the procedure, to be carried out with the given wave function, is to measure the probability

of having n phonons in a site. The operator for such a probability can be defined as

B̂(n) =
∑

i

1

n!
Ψ̂†n

i Ψn
i (5)

Calculating the expectation value, 〈B̂(n)〉breather, of this operator for the quantum breather

function (2) one gets exactly 1 in the anticontinuum limit, and a finite quantity, smaller than

1, for a finite coupling. The expectation value of this operator for the multiphonon function

(3) is of the order of N1−n and tends to zero in the thermodynamic limit (N →∞) for any

n ≥ 2. This procedure can be also applied to other hamiltonians, for which the number of

boson excitations does not necessarily conserve. The most important property of a wave

function, indicating that it represents a quantum breather state, is that the corresponding

expectation value of the operator (5) remains finite in the thermodynamic limit.

The quantum breather states, Ψj ′, α({rj}), form a band, which may be called the breather

band, generated from the α-th quantum state of an individual bond. In the weak coupling
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limit the band spectrum in the one dimensional case is

Eα(k) = t0α + 2(t0αSα + t1α) cos ka (6)

where t0α = 〈Ψj,α|H|Ψj,α〉, Sα = 〈Ψj,α|Ψj±1,α〉, and t1α = 〈Ψj,α|H|Ψj±1,α〉.
The most important parameter here is t1, which gives the probability amplitude of a

tunneling translation of a quantized local vibrational excitation by one lattice spacing. The

problem of its calculation was addressed in several contexts. It seems that it is sufficient to

consider two adjacent anharmonic bonds (a dimer), where in the classical case trajectories

appear, which are not invariant under permutation of the bonds, meaning that one bond

may be strongly excited whereas the other bond remains at a much lower degree of excita-

tion. Quantum mechanics would allow a tunneling transition when the excitation energy is

transferred from one bond to another.

An estimate for such tunneling probability was given in [22] for a transition between

two Morse oscillators coupled by a bilinear interaction. An assumption was made that one

oscillator is excited at a high quantum state n while the second one was in its ground state

n = 0. Then the exchange of this excitation between the two oscillators was estimated by

perturbation theory. A better estimate for the breather tunneling transition was presented

in [34] for an integrable dimer was considered. The DNLS hamiltonian (4) with only two

sites was considered, for which the tunneling probability is

2nC

(n− 1)!

(
C

γ

)n−1

(7)

A more general equation when a tunneling exchange between two not equally excited bonds

of the dimer take place, can be found in reference [35]. This tunneling probability is small,

moreover, it decreases rapidly with the growth of the excitation number n.

Now a question may be asked: Is there any difference between the tunneling transfer of a

vibrational excitation between the two bonds of a dimer and a similar tunneling in a lattice

with macroscopically large number of sites? A difference may appear since the tunneling

object interacts with extended normal oscillations — phonons, and the tunneling probability

can be strongly renormalized by this interaction. The influence of interaction of a tunneling

particle with extended excitations on its tunneling has been studied in many details, see,

e.g., [36]. One of the most interesting phenomena predicted in these studies is a possibility

of a tunneling suppression [37], which may take place in the so called Ohmic case, when the

density of the extended excitations is linear.
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This suppression is due to the behavior of the interaction of the tunneling particle with the

continuum of extended states, which in the Ohmic case becomes divergent in the ”infrared”

limit. The question whether the same divergence may happen in the case of breather tunnel-

ing is addressed in [38]. The analysis carried out in this paper demonstrates that there is an

important difference between the phase-space tunneling of a localized vibrational excitation

and the real space tunneling of a particle. The local vibrational excitation is character-

ized by its own internal frequency, Ω, which interfere with the continuum of the extended

excitations and leaves no room for the above ”infrared” divergence.

Then an adiabatic approximation can be applied, assuming the internal motion to be

more rapid than the motion associated with the ”infrared part” of the spectrum of the

extended normal vibrations. The final conclusion of [38] is that the tunneling probability t1

can be obtained from (7) just by introducing a ”renormalized” excitation number

ñ = n

(
1 +

∑
ν

C2
ν

Ω− ων

)

instead of n, where Cν is the coupling of the local excitation with extended excitations,

characterized by the frequencies ων .

An illuminating discussion of quantum breathers on a periodic one dimensional lattice was

carried out in references [39, 40] (see also [11, 41]) using the example of the quantum DNLS.

This model conserves the total number of bosons, so that using number state representation

the quantum problem is reduced to diagonalization of finite size matrices, when considering

a system with a finite number of sites N , and a finite number of bosons n.

In particular, the band energy was calculated in two interesting cases. The band energy

of a two boson breather state in DNLS lattice for N → ∞ and an arbitrary value of the

anharmonicity versus coupling ratio, γ/C, is

E2(k) = −
√

γ2 + 16C2 cos2(ka/2),

which converges to the form (6) in the limit of small C. The spectrum is also found in the

limit of large anharmonicity γ and for an arbitrary n,

En(k) = −1

2
n(n− 1)γ − 2nCn−1

(n− 1)!γn−1
cos ka. (8)

The first term in (8) is the energy of an individual bond with n bosons, whereas the second

term can be, up to a numerical factor, obtained using equations (6) for the breather band

energy and (7) for the tunneling amplitude in the NLS dimer.
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A detailed discussion of two coupled phonons in molecular crystals, biphonons, was carried

out in [16]. It is quite clear that two coupled phonons make just the minimal condition for

a quantum breather. Several quantum breather bands were also obtained numerically in

reference [42]. References [43, 44] consider a model, where the nonlinearity appear due to a

strong coupling of Einstein modes with electrons, and analyze some properties of the n boson

bands. The results were successfully applied to the interpretation of the Raman scattering

data in mixed valence transition metal complexes [45].

Many of the above considerations reflect our expectations of the quantum breather be-

havior and are based on such general ideas as quantum levels and bands, Bloch theorem,

phase space tunneling and so on. They are also confirmed by findings in papers referred

to above. It is obvious that this approach works well in the anticontinuous limit (C = 0)

when the onsite oscillators can be considered as independent. Them an excited state of an

individual oscillator does not decay and the probability of tunneling of such an excitation

to another site is zero. The Bloch type construction (2) is formally an eigenfunction of the

whole hamiltonian. The question addressed by MacKay [46] was, does a small but finite

coupling C introduce also a finite perturbation to this pattern, so that this perturbation

does not depend on the number N of the lattice sites and, hence, does not diverge with N .

The answer is positive and a proof is presented in the paper [46] that there is a certain,

small but finite, range of the coupling parameter values where the above quantum breather

properties hold.

The question, what limits this range from above, remains open from the rigorous math-

ematical point of view. However some physical arguments can be presented here. When

gradually switching the coupling on, the breather band becomes broader and its ”center

of mass” shifts either upward or downward. This broadening, when comparable with the

energy gap between the different breather bands, will certainly destroy the breather char-

acter of these bands. However, the event, which most probably happens earlier, is crossing

of a pair of still narrow breather bands. This is illustrated in Figure III. Certainly the

crossing should be made avoided when the symmetry requires it. Such crossings are usually

associated with the so called chaos assisted tunneling [47, 48].

This picture reflects our optimistic expectations that a breather band survives quite a few

crossings without losing its specific features. A support for our belief that this picture really

holds, comes from studies [25, 49]. These papers consider a trimer as a system mimicking
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FIG. 1: This figure illustrates broadening and crossings of breather bands with increasing coupling

parameter. Pairs of lines show boundaries of the breather bands, which change their energy,

broaden and may cross each other with the increase of the coupling.

the behavior of a larger system. Tunneling pairs represent then the breather bands. The

analysis carried out in these papers demonstrates that varying the parameters of the system

leads to multiple crossings of these tunneling pairs. However, the pairs appear to be rather

robust creatures, capable of surviving many crossings without losing their quantum breather

identities. Certainly similar analysis for a really large system is necessary, but it requires a

rapidly increasing (with the growing number of the systems sites) computer time and is still

to be done.

IV. DYNAMICS OF A LOCALIZED QUANTUM EXCITATION

The picture of quantized breathers as described in the previous section is similar to that

of quasiparticles moving in a band. Due to very small tunneling probability, which decreases

exponentially for higher excitation levels, the width of this band is extremely small, or, in the

other words, the effective mass of the quasiparticle is very large. Thinking about dynamics
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of such an excitation, at least two aspects of it may be discussed.

First, a large tunneling time implies that the excitation stays predominantly at the same

site of the lattice. An interaction of such a quantum state with available extended excitations

may cause its decay. This issue is discussed in references [50, 51]. Highly excited local

anharmonic excitations are assumed to exist and to be linearly stable. Then a second

order coupling of the breather and phonon coordinates is, in principle, allowed (two phonon

processes). Various regimes of the breather relaxation are considered with the conclusion

that the relaxation may proceed not necessarily exponentially but rather with a possible

emission of phonon bursts.

Second, if the decay time of a quantum breather appears to be long enough, then the

breather can be thought about as a heavy particle moving or, better to say, diffusing in

a narrow band. Various aspects of quantum diffusion of ordinary heavy particles, say,

hydrogen interstitial atoms in crystals were studied (see review [52] and references therein,

a description of the principle features of the quantum diffusion is also presented in the book

[53]). The principal aim of these studies was to understand the low temperature behavior

of the diffusion coefficient. The most important factor determining the diffusion is the

interaction of the heavy particle with the phonons. At any reasonable temperature the

typical phonon energy may be larger than the band width. Therefore a single phonon may

easily destroy the resonance between two neighboring sites and hinder tunneling. Then the

diffusion coefficient will decrease with the temperature. On the other hand two (or many)

phonon processes may help the tunneling process and stimulate it, which results in a growth

of the diffusion coefficient with the temperature. These two competing mechanisms may lead

to a nonmonotonic low temperature dependence of the diffusion coefficient. Besides these

phonon mechanisms governing the quantum diffusion of heavy particles, one should also take

into account that defects, which inevitably appear in any real lattice, create stress fields

around themselves and can relatively easy block the tunneling by breaking the resonances

between the bonds.

All this being said about the quantum diffusion of a heavy particle and in spite of the

obvious analogy between the quantum breathers and heavy particles, one should be cautious

when transferring the knowledge available for heavy particles into the field of quantum

breathers. An example of possible differences was indicated in our paper [38] where the

absence of tunneling suppression for quantum breathers was demonstrated. It still remains



14

a topic for the future to study quantum diffusion of quantum breathers.

V. CONCLUSION

The reader can now sees that the progress made till now in our understanding of quantum

breathers is rather limited to say the least. It is worth mentioning here some more relevant

references, especially the experimental ones. The authors of [54–57] observe breather modes

in mixtures of 4-methyl-pyridine. They analyze their data by means of the quantum sine-

Gordon equation. Breather excitations are also observed in Cu benzoate [58] by the electron

spin resonance technique. The results for this quantum system are well interpreted by means

of the classical sine-Grodon equation [59, 60]. Measurements [45], mentioned above, are most

relevant to the current discussion since the discreteness appears to be important for their

interpretation. The most recent publication [61] describes the observed slow relaxation in

doped alkali-halides. The authors makes use of the Fermi-Pasta-Ulam (FPU) model and

introduce an entity, which they call ”FPU soliton”. In the context of their paper it is the

same breather. It is interesting also to mention that some ideas related to quantum breathers

find now application to such systems as coupled Bose-Einstein condensates [62], which are

well described by the DNLS or Bose-Hubbard model.

We may now compare the flourishing field of classical discrete breathers, where dozens of

papers are being published every year, studying many subtle details of breathers, their dy-

namics, their interactions with other breathers or with extended excitations, with the scarce

information and a small amount of papers on the quantum discrete breathers accumulated

during, say, last decade. One may ask a question: Why it is so? Why does the field of quan-

tum breathers not attract much more attention. I present here my opinion, which may be

at least part of the answer. In many cases a study of a certain breather related phenomenon

(classical) is carried out in the following fashion. One chooses a model system, containing

a certain amount of sites, large enough to be a good approximation for ”infinite”, runs a

computer simulation for a time, which is long enough to be considered ”infinite”, and gets

some results. This procedure plays a role similar to that of an experiment, which measures

properties of the breather. Then one can try to apply various analytical methods in order

to get an understanding of the observations, i.e. to make a theory.

This type of work became possible in the nineties of the last century when worksta-
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tions started being easily accessible. Try now to imagine the same approach to a quantum

breather. Classical breather requires a consideration of an isolated orbit in the phase space

of the system. Quantum breather requires a consideration of a wave function or, say, of

a Wigner distribution. It is quite clear that the amount of information to be crunched by

the computer may be many orders of magnitude larger in the quantum case. This makes a

real computer experiment on the scale similar to that regularly done for classical breathers,

hardly possible, if the limitations of the currently available computers are taken into ac-

count, and strongly cripples our efforts to study quantum breathers. Shall we wait for the

advent of new much more powerful computers, or may be some new bright ideas will clear

the way? We’ll see in the future.

†Email:fleurov@post.tau.ac.il
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