
Discrete Radon transform has an exact, fast inverse

and generalizes to operations other than sums along lines

William H. Press∗

Los Alamos National Laboratory, Los Alamos, NM 87545

∗ To whom correspondence should be addressed; E-mail: wpress@lanl.gov.

Contributed by William H. Press, October , 2006.

Götz, Druckmüller, and independently Brady have defined a discrete
Radon transform (DRT) that sums an image’s pixel values along a
set of aptly chosen discrete lines, complete in slope and intercept.
The transform is fast, O(N2 log N) for an N × N image; it uses only
addition, not multiplication or interpolation; and it admits a fast,
exact algorithm for the adjoint operation, namely backprojection.
This paper shows that the transform additionally has a fast, exact
(though iterative) inverse. The inverse reproduces to machine ac-
curacy the pixel-by-pixel values of the original image from its DRT,
without artifacts or a finite point-spread function. Fourier or FFT
methods are not used. The inverse can also be calculated from sam-
pled sinograms and is well-conditioned in the presence of noise. Also
introduced are generalizations of the DRT that combine pixel values
along lines by operations other than addition. For example, there
is a fast transform that calculates median values along all discrete
lines and is able to detect linear features at low signal-to-noise in the
presence of pointlike clutter features of arbitrarily large amplitude.

Radon transform | computerized tomography | backprojection | inverse meth-
ods

1

The Radon transform (RT) of a two dimensional function f(x, y) with
compact support that includes the origin is familiar as the set of projections
along angles θ, 0 ≤ θ < π,

Rf ≡ p(ρ, θ) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)δ(x cos θ + y sin θ − ρ)dxdy

=

∫ ∞

−∞
f(ρ cos θ − � sin θ, ρ sin θ + � cos θ)d�

[1]

where the δ-function converts the two-dimensional integral to a line integral
d� along the line x cos θ + y sin θ = ρ. The transformed function p(ρ, θ) is
often referred to as the sinogram of f(x, y), because a point δ-function in f
transforms to a sinusoidal line δ-function in p.

Although occasionally useful and certainly interesting in its own right, the
Radon transform pales in practical importance by comparison with its inverse,
R−1p, which recovers f(x, y) from its projections. The inverse Radon trans-
form and its approximations enable computer tomography (CT) and related
medical and other imaging technologies. That the inverse exists (for suitably
well-behaved functions f) follows immediately from the Fourier Slice Theorem,
which says that the 1-D Fourier transform of a projection at angle θ has values
identical to a radial slice through the origin of the 2-D Fourier transform of
the original image. (The proof is straightforward, e.g. (1)). In the continuous
case, then, the 2-D Fourier transform of f is recovered in polar coordinates
from the slices, and an inverse 2-D Fourier transform recovers f .

Practical applications inevitably deal with images f(x, y) and sinograms
p(ρ, θ) that are represented discretely, usually as 2-D arrays of values. There
is a large, if scattered, literature concerning approximations of the continuous
Radon transform, and its inverse, in such cases. Standard treatments include
refs. (1, 2, 3). Some algorithms have the character of being not only ap-
proximations of the continuous case, but also interesting discrete transforms
in their own right, for example refs. (4, 5, 6, 7, 8, 9). Collectively these are
known as discrete Radon transforms (DRTs). However, no single algorithm
has successfully laid claim to being “the” DRT.

A key issue in DRT algorithmics is whether an algorithm, and/or its in-
verse, is fast, in the sense of achievable for an N × N image in O[N2(log N)q]
operations, for some small integer q (ideally 1). Fast DRT algorithms are al-
most always based on a discretization of the Fourier slice properties of the
continuous case, since the fast Fourier transform (FFT) approximates the 1-
D continuous transform in O(N log N), operations and the 2-D transform in
O(N2 log N). Or, as in ref. (4), fast algorithms may derive from using the
FFT for the fast solution of special sets of linear equations such as block-

2

circulant forms. There are also “slow” DRTs and inverses, with O(N3) and
larger operations count. These are of little practical interest.

Another key issue concerning DRTs is their accuracy. This issue can be
framed in various ways. A somewhat argumentative framing is: Given your
choice for a discrete representation of f(x, y) as O(N2) values and your choice
of a DRT algorithm approximating a continuous Radon transform, is there
a fast inverse DRT that exactly reproduces your discrete representation of f
from the values of its DRT? This formulation does not even begin to address
the issue of how accurately f is captured by its discrete representation in
the first place, or how accurately the DRT approximates a continuous Radon
transform. Nevertheless, there seems to be no published DRT that can answer
unequivocally “yes” to the question. Those that come closest make special
assumptions about f(x, y), for example periodicity along one axis, or severely
bandwidth limited. Fast inverse algorithms that are sometimes termed “accu-
rate”, are generally so in the sense that a round-trip (sampled image to DRT to
reconstructed image) has a point-spread function that is highly concentrated
in a few pixels, and with tolerably small tails outside of those few.

The situation is not materially different even if we allow iterative inverse
algorithms, where “fast” now can mean O[N2(log N)q log ε], for small integer
q, where ε is the desired r.m.s. accuracy, which can be made arbitrarily small.
(This is called linear convergence by numerical analysts, and exponential con-
vergence colloquially.)

The principal result of this paper is to show that a particular DRT, pro-
posed independently by Götz and Druckmüller (6) and by Brady (7) (and also
related to ref. (10)) has an exact inverse achievable by an (iteratively) fast
algorithm. By exact, we mean capable of recovering with arbitrary precision
the pixel-by-pixel values of the input image, with no spreading or other arti-
facts. We give a specific algorithm exhibiting q = 3, and suggest that q = 2, is
likely achievable. Our inverse does not use Fourier methods or FFTs. Other
interesting properties of the Götz-Druckmüller-Brady DRT, which may lead
to new applications, are also described.

Having a pixel-exact, fast transform pair, DRT and its inverse, does not
necessarily advance the practical art of CT. However, it does allow for a clearer
distinction between the accuracy of the DRT inversion itself and the various
approximations that may be made in mapping physical data to or from the
DRT.

3

0 -1 N

h

h, s

h+s,
 s

h+s+1, s

h, 2s+1

h, 2s

N
2

N
2

-1

Figure 1: D-lines of width N are defined recursively in terms of d-lines of width
N/2. The integers h and s parameterize the intercept and rise of each d-line.

The Götz-Druckmüller-Brady DRT

Discrete Approximations of Lines

For definiteness, consider an image represented as an N × N array of inten-
sity values fji, with 0 ≤ i, j < N , and N an integer power of 2. Following
(6) we define a set of digital lines, here called d-lines, that transsect the im-
age, passing exactly through one array point in each column of the array and
parameterized by integers h and s. The d-line DN(h, s) connects the array
point (0, h) (meaning, by convention, i = 0 and j = h) and the array point
(N − 1, h + s). We refer to h as the intercept and s as the rise of the d-line.
We consider for now only the case 0 ≤ s ≤ N − 1, corresponding to slopes
from 0◦ to 45◦, inclusive. D-lines are defined recursively in terms of d-lines on
images half as wide,

DN (h, 2s) = DN/2(h, s) ∪ DN/2(h + s, s)

DN (h, 2s + 1) = DN/2(h, s) ∪ DN/2(h + s + 1, s)
[2]

where ∪ indicates joining left and right halves. Figure 1 illustrates the recur-
sion, and Figure 2 shows some d-lines for the case N = 4.

The d-line DN (h, s) approximates a continuous line with intercept h and
slope s/(N −1). As suggested in ref. (7), its maximum vertical deviation from
the continuous line is ≤ 1

6
log2 N .

4

h=0, s=0

h=0, s=1

h=
0,

 s
=2

h=
0,

 s
=3

h=
1,

 s
=3

0 1 2 3

0

1

2

3

4
h=3, s=1

Figure 2: Examples of d-lines for the case N = 4. The small vertical offsets
are for clarity only; all d-lines pass exactly through integer lattice points, one
in each column.

DRT in One Quadrant

We define the DRT as simply the sum of image intensities over array points
on a d-line,

Ra(h, s) =
∑

(i,j)∈DN (h,s)

fji [3]

with the convention that fji = 0 if i or j is outside of the range [0, N − 1].
The superscript a is used to indicate the “quadrant” 0 to 45◦. (We define b,
c, and d quadrant transforms below.) One sees immediately that the recursive
definition of the d-lines induces a recursive calculation of the DRT components,
simply by associating each partial d-line with its corresponding partial sum of
function values. This is illustrated in Figure 3, which shows how two half-
images of partial sums are converted to one full image in a single upward
sweep. As shown, one row of scratch space is used. Actually, if it mattered, the
sweep could be done completely in place by the use of a bit-reversal technique
similar to that of the FFT (6). The transform Ra(h, s) of an image is calculated
by performing log2 N sweeps, first combining adjacent pairs of columns, then
pairs of pairs, and so forth. An exact representation of the algorithm is in the
Supplemental Text.

Notice that h, the intercept, takes on some negative values so as to include
all d-lines that intersect the partial images, or the final full image. When
sweeping to produce a partial image of width n, the most negative value of h

5

0
-1

N

N0

s
w
e
e
p

ss

s

h

h,s

h+s,s

h+s+1,s

h,2s h,2s+1

N
2

N
2

-1

-1

+

+

+

+

Figure 3: Partial sums on two half-images (top) are replaced by partial sums
on a full image (bottom) in a single upward sweep. The DRT is computed by
performing this process first for pairs of columns in an image, then pairs of
pairs, and so forth in log2 N sweeps.

is −n + 1, since a 45◦ d-line with that intercept will intersect just the single
pixel in the lower right of the partial image. Specifically, sums are performed
for i and j on each partial image satisfying all of

0 ≤ i ≤ n − 1

−n + 1 ≤ j ≤ N − 1

0 ≤ i + j

[4]

for a total of nN+ 1
2
n(n−1) in each partial image. Summing the partial images

in each sweep, and the log2 N sweeps gives a total of (N2− 1
2
N) log2 N+N(N−

1) = O(N2 log2 N) addition operations. Note that there are no multiplications,
or other floating operations, a point to which we return below.

Remaining Quadrants and Global Topology

Again following refs. (6, 7), we define the DRT for other angle ranges by appro-
priately flipping the original image, then repeating exactly the same algorithm

6

0
o

45
o

90
o

-45
o

-90
o

(a)

(b)

(d)

(c)

Figure 4: DRTs calcuated in four quadrants by equation [5] stitch together as
shown to give the global DRT. In each quadrant, the parameter h varies along
the vertical direction, s along the horizontal. Red lines indicate schematically
the sums through the original image (blue) corresponding to locations in the
DRT. Left and right edges are identified with a twist: a Möbius strip.

as for quadrant a:

Rb{fji} = Ra{fij} (45◦ to 90◦)

Rc{fji} = Ra{fi,N−1−j} (−90◦ to − 45◦)

Rd{fji} = Ra{fN−1−j,i} (−45◦ to 0◦)

[5]

Figure 4 shows how the four quadrants stitch together to form the global
DRT. In each quadrant, the intercept h varies in the vertical direction, while
the rise s varies horizontally. In quadrants a and c, both parameters increase
from the lower-left; in b and d, from the upper right. Each quadrant contains
N2 + 1

2
N(N − 1) values, a triangle below (or above) a square. The whole

DRT thus contains 6N2 − 2N values. Each point in the DRT corresponds to
a line through the original image, shown schematically as red lines through
a fixed blue image. The top and bottom boundaries of the DRT correspond
to bounding cases where the line only just intersects the image. The left and
right edges are identified with a twist, as indicated in the Figure.

7

Supplemental Figure S1 shows two sample images, while Supplemental Fig-
ures S2 and S3 show their global (i.e., four quadrant) DRTs, plotted graph-
ically. The images are 256 × 256 × 8 bits and are respectively a standard
photographic test image and a section of Zubal’s standard head phantom (14).

Relation between DRT and Sinogram

While the DRT is defined from a discrete image, as above, one may also identify
it with values sampled from the continuous sinogram of a continuous image.
Details are given in the Supplemental Text. Supplemental Figure S4 shows
a 256 × 256 × 8 bit sinogram of the standard Shepp-Logan head phantom,
captured from the web as a compressed GIF image, and its nearly perfect
reconstruction by the methods of this paper.

Inverse DRT

Backprojection is Fast and Exact

For the continuous Radon transform, backprojection is the adjoint operator to
the transform,

R∗p ≡ b(x, y) =

∫ ∞

−∞

∫ π

0

p(ρ, θ)δ(x cos θ + y sin θ − ρ)dρdθ

=

∫ π

0

p(x cos θ + y sin θ, θ)dθ

[6]

One sees that it is the integral over all directions of all the projections that
pass through the point (x, y). While the adjoint operator is not the same as
the inverse, we will see that its discrete analog is a useful building block.

Just as it induced a fast DRT, the recursive definition of d-lines (Eq. [2]
and Figure 1) induces a fast backprojection algorithm (7, 11). The process
essentially reverses the sweep shown in Figure 3: Every element of left- and
right-half partial images is assigned the sum of two full-image elements, in
correspondence with the d-line recurrence. If Bn(h, s) denotes a partial back-
transformation on an image of width n, then we have,

BL
n/2(h, s) = Bn(h, 2s) + Bn(h, 2s + 1)

BR
n/2(h + s, s) = Bn(h, 2s) + Bn(h − 1, 2s + 1)

[7]

where superscript L and R refer to the left and right half-width images. The
backprojection for each quadrant is obtained in log2 N sweeps terminating with

8

n = 1. Each sweep can be done in place, or with a small amount of scratch
memory. The full backprojection is an appropriate sum over quadrants,

Bji =
1

4(N − 1)

(
Ba

ji + Bb
ij + Bc

i,N−1−j + Bd
N−1−j,i

)
[8]

where the normalization constant shown will be convenient later. As should
be clear, this calculation is exact. That is, the result is exactly the sum of
the discrete projections along d-lines that pass through an image pixel. The
Supplemental Text has an exact statement of the algorithm represented by
Eqs. [7] and [8].

“Natural” Approximate Fourier Inversion

There is a “natural” approximate inverse of the DRT as we have defined it,
obtainable by Fourier methods. By natural, we mean that no interpolation is
required in getting into and out of Fourier space, nor necessarily any explicit
application of a ramp or other (e.g., Shepp-Logan) filter.

Because the main point of this paper is to give an exact inverse that does not
use Fourier methods, we relegate discussion of the approximate Fourier inverse
to the Supplemental Text. Supplemental Figure S5 shows the approximate
Fourier inverses, without any additional filtering, of the sample images shown
in Supplemental Figure S1. With additional filtering, the visual quality of these
images could be substantially improved. However, this would lose information
and merely be moving us towards existing, approximate, techniques (1, 2, 3).

Also discussed in the Supplemental Text is an exact, but ill-conditioned,
formal inverse. Supplemental Figure S6 shows how the growth of instabilities
render such an inverse useless. Needed is not just an inverse, but a well-
conditioned inverse.

Key Ideas for a Fast, Exact Inverse

We get a fast, exact inverse by combining three ideas, each one well-known in
other contexts. The first idea is to use the fast (forward) DRT for the iterative
improvement of an approximate inverse. Suppose, in general, we want to solve
the linear system Ax = b, and that B0 is an approximate inverse to A in that
the matrix

R ≡ 1 − B0A [9]

is small (in a sense we discuss below). Then one easily shows (ref. (12), §2.5)
that

Bn ≡ (1 + R + R2 + · · ·+ Rn)B0 [10]

9

becomes A−1 as n → ∞, if the series converges. It follows from this that the
recurrence

xn+1 = xn + B0(b −Axn) [11]

converges to the solution x from all starting values. Note that Eq. [11] requires
only the application of the (exact) forward operator A and the approximate
inverse operator B0. At each step we calculate a correction by approximately
inverting the residual of the previous step. Equation [10] already shows the
sense in which R must be small: All of its eigenvalues must have magnitudes
≤ 1, or else the series will diverge. This is by no means easy to achieve for
complicated operators in large-dimensional spaces. For example, the natu-
ral, approximate Fourier DRT inverse mentioned above does not satisfy this
condition and cannot be iterated.

The second idea is to high-pass filter the (exact, fast) backprojection by
a local convolution, with the goal of reproducing only the highest frequency
information in the image to tolerable accuracy. By highest frequency, we mean
frequencies between 1/2 and 1 times the Nyquist frequency. We will see below
what tolerable accuracy means.

For example, the centered 9-point filter with coefficients

H =

⎛
⎝− 1

16
−1

8
− 1

16−1
8

3
4

−1
8− 1

16
−1

8
− 1

16

⎞
⎠ [12]

(and the obvious reflections at edges and corners) has the property that it
has unity response both to a binary checkerboard (Nyquist frequency in both
directions) and binary stripes (Nyquist frequency in one direction); and zero
response to a constant. The intent is to use backprojection, filtered in this
way, not on the actual image, but only on a residual (cf. Eq. [11]) that has
missing or inaccurate high-frequency information. The filtering requires O(N2)
operations, as compared to O(N2 log2 N) for the backprojection.

The third idea is the full multigrid method (FMG) (13, 12) and the related
concepts of restriction and prolongation operators. A restriction operator is,
here, a linear map from a DRT of size N , denoted Ra...d

N (h, s) to one of size
N/2, with the idea that the smaller DRT should approximate the larger one.
A prolongation operator is a map on images (not DRTs) from size N/2 to size
N . There are many such operators. With foresight, we use these specific ones:

Ra...d
N/2(h, s) = 1

4

[
Ra...d

N (2h, 2s) + Ra...d
N (2h + 1, 2s)

]
(restriction S)

fN
ji = fN

j+1,i = fN
j,i+1 = fN

j+1,i+1 = f
N/2
�j/2�,�i/2�, (prolongation P)

[13]

where a . . . d denotes any of the values a, b, c, or d. Notice that S averages
adjacent values of h, but samples only even values of s. This choice works,

10

while other seemingly equally valid choices don’t work, as we shall discuss.
Also to be noted is that the output of S is not necessarily the exact DRT of
any image; it will prove useful nevertheless.

Details of the Fast, Exact Inverse

Define an algorithm B that constructs an approximate inverse fN
ji of a DRT

Ra...d
N as follows:

1. Apply S to Ra...d
N , giving Ra...d

N/2 .

2. Recursively call B(Ra...d
N/2) (this algorithm), giving fN/2.

3. Apply P to fN/2, giving fN ′, a low-frequency approximation to fN .

4. Calculate the forward DRT of fN ′ and subtract it from the original Ra...d
N ,

giving a residual DRT.

5. Backproject and locally high-pass filter the residual DRT, giving an im-
age correction.

6. Add the image correction to fN ′, producing fN .

Supplemental Figure S7 shows the result of applying the approximate in-
verse operator B to the DRTs shown in Supplemental Figures S2 and S3.

Note that, recursion and all, B(Ra...d
N) is a strictly linear operator on Ra...d

N .
In fact, it can be used as B0 in Eq. [11], but only if the series Eq. [10]
converges. To prove convergence, we must show that the residual matrix R has
eigenvalues that are < 1 in magnitude. Because of B’s complicated, recursive
algorithmic description, it seems hopeless to do this analytically, so we must
resort to numerical experiment.

Convergence Tests

We now show that the specific choices given for the high-pass filter (Eq. [12])
and prolongation and restriction operators (Eq. [13]) do produce a convergent
series. There is art in those specific choices. As remarked above, other choices
that might seem equally valid a priori yield divergent results. On the other
hand, the specific choices shown are known to be not optimal (see Discussion)
and can be improved.

Statistically, an image whose pixels are i.i.d. normal deviates will have a
significant projection into all eigenmodes. We take the DRT of such images,
then iterate Eq. [11] and verify convergence (in L2 norm) to the original image.
Initial convergence is faster than a single exponential, because it is dominated

11

0 5 10

0.001

0.01

0.1

iteration number

r.
m

.s
. i

nt
en

si
ty

 e
rr

or

woman■

head phantom●

■

●

■

●
■

●
■

● ■

●
■

●
■

●
■

●

■

●

■

●

■

●

■

●

■

●

Figure 5: Error versus iteration number for the two sample images in Sup-
plemental Figure S1. Iteration 0 is the error of the approximate inverse B;
subsequent iterations are improved by reapplying B to the residual DFTs.
Errors are normalized to a grayscale range of [0, 1].

by large numbers of modes with a wide range of small eigenvalues. As it-
eration number n increases, the residual error is found to approach a single
exponential, characteristic of the largest eigenvalue of R. Multiple trials over
a range of image sizes from N = 16 to N = 1024 are accurately summarized,
asymptotically, by the empirical relation,

Δ ln error (per iteration) ≈ − 13.8

(log2 N)2
[14]

The workload to converge to accuracy ε thus scales as O[N2(log N)3 log ε].
In practical work, asymptotic convergence rates may not matter that much.

For all sizes up to N = 2048, realistic images are found to converge to useful
accuracies (e.g., indistinguishable by eye from the exact answer) in a modest
number of iterations. Figure 5 shows how the r.m.s. errors decrease with
iteration number for the two sample images shown in Supplemental Figure
S1. The leftmost values (plotted as iteration 0) are the errors, relative to a
grayscale range [0, 1], after the initial application of the approximate inverse
operator B. Iterations 1, 2, . . . show the result of iterative improvement. The
asymptotic approach to a single dominant exponential is clearly seen.

Supplemental Figure S8 shows the inverses obtained from the DRTs in
Supplemental Figures S2 and S3 after only four iterations. After a few more
iterations than this, the inverses become perceptually indistinguishable from

12

the original images in Supplemental Figure S1. Futher iterations converge to
arbitrarily small r.m.s. errors.

The DRT Need Not Use Ordinary Addition

We already noted that the DRT defined above uses only addition, and no
other arithmetic operations, in combining data values along a d-line. A con-
sequence is that any associative and commutative operation can serve instead
of addition, yielding a number of interesting generalizations of the DRT. The
DRT algorithm “presents” data elements (and their partial “sums”) to us in
an arbitrary order; we can combine these using any rule with the semantics of
addition that we want.

One example is a discrete median Radon transform (DMRT), where the
transform output is the median of all image values along a d-line. Here the
combination rule is to update an approximate representation of the cumulative
distribution function (see, e.g., (15)) and finally output the median quantile.
The combination rule can be viewed as an associative and commutative oper-
ator on the data values. In fact, we can use exactly the same code as for the
standard DRT, simply overloading the addition operator with machinery that
combines distribution functions.

Since the median along a line is a robust estimator of that line’s central
value, but is insensitive to large fluctuations in the tails, the DMRT is good at
finding low signal-to-noise straight lines in the presence of much larger pointlike
clutter. Such lines appear as clusters of unusually large values in the transform
space. Detection can be accomplished by identifying transform values above
some threshold, or above some threshold of statistical significance (adjusting
for the variable number of image pixels intersected by a d-line). Alternatively,
one can invert the thresholded DMRT as if it were an ordinary DRT. The goal
is not to reconstruct an accurate image, but rather to reconstruct in the image
space a mask that shows the detected lines.

Figure 6 shows an example. A synthetic image consists of Gaussian noise
pixels, small positive and negative squares of arbitrarily large amplitude, and
an almost invisible line that is 4 pixels wide and has values 0.5 standard de-
viations larger than the background. A portion of the DMRT is shown, after
it has been thresholded at the 99.9% quantile level. The DRT inverse of this
DMRT strongly highlights the line. The small squares appear only as faint
background linear features when there are chance alignments among them.

Since the ordinary DRT itself increases the significance of line features
(which project to a point) over point features (which smear to a sinusoid), the
power of the DMRT may not be intuitive. For the image in Figure 6, however,
ordinary projection is not nearly good enough. Supplemental Figure S9 shows

13

(a) (b) (c)

Figure 6: (a) Image with an almost invisible line, 4 pixels wide and 0.5 σ above
the noise background. (b) Portion of its discrete median Radon transform
(DMRT), whose values are medians, not sums, along lines. Only the largest
0.1% of transform values are plotted. The line produces a significant feature.
(c) Inverse of (b), computed as if it were a DRT, not a DMRT. The location
of line feature is now apparent.

the same region of transform space as Figure 6 (b), but for the ordinary DRT.
One sees that the weak feature of interest is completely lost in a confusion of
much stronger, overlapping sinusoids.

Supplemental Figure S10 shows the result of taking the DRT inverse of the
DMRT of a conventional test image of a face, without thresholding. Surpris-
ingly, a good deal of detail from the original image is reconstructed from the
median values along lines, alone.

Not only the median, but also any other property of the distribution func-
tion along lines can be computed in like manner. For example, one could
compute several moments of the distribution and thus recognize linear fea-
tures that have means identical to the background, but different variances or
skews.

Discussion

Inverse or Pseudoinverse?

The alert reader will already have caught our consistent, but slightly inaccu-
rate, use of the term “inverse”. The DRT, as we have defined it, is a linear
map from a space of dimension N2 into one of dimension 6N2−2N . Since our
inverse is also a linear map, it must map (at most) an N2 dimensional linear
subspace of the DRT back into the image space. There must therefore be a

14

another subspace of (at least) dimension 5N2 − 2N that is mapped to zero by
the inverse. The fact that numerical experiments on random matrices yield ex-
ponential convergence to known original images provides strong evidence that
the respective subspace dimensions are as indicated, and moreover that the
maps are well-conditioned. We can shed some additional light on the condi-
tion number by a different experiment: We put random i.i.d. normal deviates
N(0, 1) into all 6N2 − 2N components of the DRT, then take the inverse and
ask what is the resulting r.m.s. value of an image pixel? Summarizing results
for a range of N , an empirical relation is

r.m.s. image pixel ≈ 0.50 N−0.44 (15)

which is never large, and decreases as N increases. Finally, we can ask what
fraction of the initial variance of the DRT is removed if we subtract the DRT of
the inverse image. The result is very close to 5/6, as we expect from counting
dimensions, and again suggesting well-conditioned maps.

These checks are relevant to our use of a restriction operator like S in [13].
The smaller DRT obtained by applying S to a DRT does not exactly corre-
spond to any image. However, we can view it as being the sum of a the DRT
of a nearby image, plus noise. If the approximate inverse were ill-conditioned,
we might not be able to get away with this, and iterative improvement might
fail, behavior that is not seen.

Conjectured Improvements

The appearance of two powers of the logarithm in Eq. [14] is not surprising. It
is indicative of errors diffusing in logarithmic scale by a gradient-driven relax-
ation process. In other such situations (e.g., (12), §19.5) the use of techniques
such as over-relaxation can change the diffusion rate by one power of the prob-
lem size. We therefore conjecture that variants of the methods described here
can achieve O[N2(log N)2 log ε] workload.

If one examines the residual images at a late stage, one sees that residual
errors are dominated by frequencies ∼ 2/3 of the Nyquist frequency, just where
the 9-point filter might be expected to be starting to fail. Even for 9-point
filters, numerical search easily turns up filters different from Eq. [12] that
have slightly better convergence rates than Eq. [14] (though none seem to be
universal for all N). It is therefore a reasonable conjecture that there should
exist 25-point filters (that is, 5× 5) that considerably improve the constant in
Eq. [14]. (We would skip 4 × 4 filters since these can’t be centered.)

15

References

1. Kak, A. & Slaney, M. (1988) Principles of Computerized Tomographic
Imaging. (IEEE Press, New York).

2. Natterer, F. & O’Malley, R. (2001) The Mathematics of Computerized
Tomography. (Cambridge University Press, Cambridge, UK).

3. Natterer, F. & Wübbeling, F. (2001) Mathematical Methods in Image
Reconstruction. (SIAM, Philadelphia).

4. Beylkin, G. (1987) “Discrete Radon Transform,” IEEE Trans. ASSP, 35,
162–172.

5. Kelley, B.T. & Madisetti, V.K. (1993) “The Fast Discrete Radon Trans-
form – I: Theory,” IEEE Trans. Image Proc., 2, 382–400.

6. Götz, W.A. & Druckmüller, H.J. (1996) “A Fast Digital Radon Trans-
form – An Efficient Means for Evaluating the Hough Transform,” Pattern
Recognition, 29, 711-718.

7. Brady, M.L (1998) “A Fast Discrete Approximation Algorithm for the
Radon Transform,” SIAM J. Comput., 27, 107—119.

8. Boag, A., Bresler, Y., & Michielssen, E. (2000) “A Multilevel Domain De-
composition Algorithm for Fast O(N2 log N) Reprojection of Tomographic
Images,” IEEE Trans. Image Proc., 9, 1573–1582.

9. Brandt, A., Mann, J., Brodski, M., & Galun, M. (1999) “A Fast and
Accurate Multilevel Inversion of the Radon Transform,” SIAM J. Appl.
Math., 60, 437–462.

10. Donoho, D.L. & Huo, X. (2000) “Beamlet Pyramids: A New Form of
Multiresolution Analysis, Suited for Extracting Lines, Curves, and Objects
from Very Noisy Image Data,” Proc. SPIE, 4119, 434–444.

11. Nilsson, S. (1997) Application of Fast Backprojection Techniques for Some
Inverse Problems in Integral Geometry, Ph.D. thesis, Department of Math-
ematics, Linköping University, No. 499.

12. Press, W.H., Teukolsky, S.A., Vetterling, W.T., & Flannery, B.P. (2002)
Numerical Recipes in C++ (Cambridge University Press, New York).

13. Hackbusch, W. (1985) Multi-Grid Methods and Applications, (Springer,
New York).

16

14. Zubal I.G., Harrell C.R., Smith E.O., Rattner Z., Gindi G., & Hoffer P.B.
(1994) “Computerized three-dimensional segmented human anatomy”,
Med. Phys., 21, 299-302.

15. Chambers, J.M., James, D.A., Lambert,D. & Vander Wiel, S. (2006)
“Monitoring Networked Applications with Incremental Quantiles,” Statis-
tical Sciences (in press).

17

Discrete Radon transform has an exact, fast inverse

and generalizes to operations other than sums along lines

William H. Press

Los Alamos National Laboratory, Los Alamos, NM 87545

Supporting Information

Supplemental Text

Relation between DRT and Sinogram

If the sinogram p(ρ, θ) is scaled to be nonzero in the range −1
2
≤ ρ ≤ 1

2
, and

defined for 0 ≤ θ ≤ π, then the sampled positions are

θs = atan
s

N − 1
, ρhs = cos θs

(
h

N
− 1

2
+

1

2

s

N − 1

)
[1]

in terms of which we have

Ra(h, s) = cos θs p(ρhs, θs)

Rb(h, s) = cos θs p(ρhs, π − θs)

Rc(h, s) = cos θs p(1 − ρhs,
π
2
− θs)

Rd(h, s) = cos θs p(1 − ρhs,
π
2

+ θs)

[2]

with the convention that p(ρ, θ) = 0 for arguments outside of the mentioned
ranges. The factors cos θs scale transform values to account for the fact that
the DRT always sums one value in each of N columns, independent of angle,
while the sinogram, main text Eq. 1, is a true line integral of length ∝ sec θs.

Supplemental Figure S4 shows a 256×256×8 bit sinogram of the standard
Shepp-Logan head phantom, captured from the web as a compressed GIF
image, and its reconstruction using equation [2] and the exact DRT inverse
method that we described in this paper. All of the smallest resolution elements
are fully reconstructed, showing that a significant amount of data processing
(here interpolation, projection, compression, decompression, sampling) can be
tolerated by the methods described here.

1

Natural Approximate Inverse by Fourier Methods

Defining a ≡ s/(N − 1) = tan θ, we first note that the number of nonzero
values R(h, s) in a column of constant s varies as N(1 + a) (cf. Figure 4).
We therefore zero-pad each column, symmetrically at the two ends, into a
vector of length 2N , and take each column’s fast Fourier transform (FFT).
Since the data are real, negative frequencies are the complex conjugates of
positive ones, so we consider just the N nonnegative frequency components
(excluding the component at the Nyquist frequency). It would be natural to
think of these components as mapping directly onto the N values along the
d-line in two-dimensional frequency space with the same value of s, the rise
(see Supplemental Figure S11). But does this work? We need to check that
the scaling in frequency space comes out correctly.

The distance represented by the N(1 + a) components in a column is not
N(1+a) but rather N(sin θ+cos θ) = N(1+a)(1+a2)−1/2, as shown in Supple-
mental Figure S12. The sampling interval is therefore Δ = (1 +a2)−1/2. Com-
ponent j ≥ 0 therefore represents a frequency fj = j/(2NΔ) = (j/2N)(1 +
a2)1/2. However, the slant distance along the d-line also varies as sec θ =
(1 + a2)1/2. So the scaling works out perfectly, without rescaling or interpola-
tion, as shown in Supplemental Figure S5.

Since multiple d-lines can hit the same frequency cell, especially near the
origin, we assign to each cell the mean of all components that hit it, a discrete
approximation to the Fourier slice theorem. The d-line construction guarantees
that every cell gets at least one hit. The two-dimensional inverse FFT of Figure
5 gives, approximately, the original image fji.

Exact, But Ill-Conditioned, Formal Inverse

It is not hard to exactly reverse the sweep procedure shown in Figure 3, lead-
ing to a formal algebraic inverse from the data in a single quadrant. From
the Fourier slice theorem we might already expect this single-quadrant formal
inverse to be extremely ill-conditioned, since it lacks information on 3/4 of the
Fourier plane. In fact, it works at all only because, in the discrete case, there
is inevitable (if exponentially small) leakage from one Fourier quadrant to the
others.

For N = 256, we estimate the condition number of the formal inverse as
∼ 1018. Supplemental Figure S6 shows the result of trying to invert the DRT
of a sample image in floating double precision, after adding noise of magni-
tude 10−14 to the DRT. The result shows exponentially growing stripes whose
Fourier transform lies, almost exactly, in another quadrant. (Interestingly, the
pattern is a Walsh function.)

2

This excursion highlights the fact that we desire not merely an inverse, but
a well-conditioned inverse.

Principal Algorithms Stated More Precisely

Although the algorithms discussed in the main text are described there, there
are some details that are left implicit, for example the handling of boundaries
and out-of-range array indices. We here give precise statements. Although
derived from executable code, the following fragments, absent many supporting
class library definitions, are to be considered only as pseudocode.

The algorithms assume this basic structure for the DRT data and methods:

template<class T>

struct Radon {

Int nn,n2;

Matrix<T> a,b,c,d;

Radon(Matrix<Doub> &data); // forward DRT

void xformpiece(Matrix<T> &a); // forward transform, one quadrant

Radon(Radon &rad, Bool dummy); // restriction operator

Radon& operator-=(const Radon &rad); // subtract two Radons

void backproject(Matrix<T> &ans); // backprojection

void backpiece(Matrix<T> &ans, Matrix<T> &a); // backprojection, one quadrant

};

Here nn is N in the main text, n2 is 2N , and the matrices a,b,c,d that contain
the transform have row indices, corresponding to values of h, varying from 0
to n2−1 rather than the main text’s −N to N − 1.

The forward DRT is accomplished by the following functions, which can be
invoked for any object type T that has an addition operator. Different object
types, with different overloaded addition operators, automatically implement
generalizations of the DRT like the DMRT discussed in the main text.

template<class T>

Radon<T>::Radon(Matrix<Doub> &data) : dat(data), nn(data.ncols()), n2(2*nn),

a(n2,nn), b(n2,nn), c(n2,nn), d(n2,nn), slope(nn) {

Int i,j;

if (nn<2 || nn&(nn-1)) throw("nn must be power of 2 in Radon");

for (j=0;j<nn;j++) for (i=0;i<nn;i++) a[j+nn][i] = data[j][i];

xformpiece(a);

for (j=0;j<nn;j++) for (i=0;i<nn;i++) b[j+nn][i] = data[i][j];

xformpiece(b);

for (j=0;j<nn;j++) for (i=0;i<nn;i++) c[j+nn][i] = data[nn-1-i][j];

xformpiece(c);

for (j=0;j<nn;j++) for (i=0;i<nn;i++) d[j+nn][i] = data[nn-1-j][i];

xformpiece(d);

}

template<class T>

void Radon<T>::xformpiece(Matrix<T> &a) {

Int mm,n,ng,i,j,k,ii,nr=a.nrows(),nn=a.ncols(),noff=nr-nn;

Vector<T> b(nn);

for (j=0;j<noff;j++) for (i=0;i<nn;i++) a[j][i] = 0.;

3

mm = 1;

ng = nn>>1;

while (ng) {

for (j=0;j<nr;j++) { // loop over rows

ii = k = 0; // ii will be 2*n*mm+i

for (n=0;n<ng;n++) {

for (i=0;i<mm;i++) {

b[k+1] = a[j][ii];

b[k] = b[k+1];

if ((j+i)+1 < nr) b[k+1] = b[k+1] + a[(j+i)+1][ii+mm];

if (j+i < nr) b[k] = b[k] + a[j+i][ii+mm];

ii++;

k += 2;

}

ii += mm;

}

for (k=0;k<nn;k++) a[j][k] = b[k];

}

mm += mm;

ng >>= 1;

}

}

Backprojection is accomplished by these functions:

template<class T>

void Radon<T>::backproject(Matrix<T> &ans) {

Int i,j;

Matrix<T> tmp(nn,nn);

if (ans.ncols() != nn) ans.resize(nn,nn);

Doub val = 0.25/(nn-1.);

backpiece(ans,a);

backpiece(tmp,b);

for (j=0;j<nn;j++) for (i=0;i<nn;i++) ans[j][i] += tmp[i][j];

backpiece(tmp,c);

for (j=0;j<nn;j++) for (i=0;i<nn;i++) ans[j][i] += tmp[i][nn-1-j];

backpiece(tmp,d);

for (j=0;j<nn;j++) for (i=0;i<nn;i++) ans[j][i] += tmp[nn-1-j][i];

for (j=0;j<nn;j++) for (i=0;i<nn;i++) ans[j][i] *= val;

}

template<class T>

void Radon<T>::backpiece(Matrix<T> &ans, Matrix<T> &a) {

Int mm,ng,n,i,ii,j,k;

Matrix<T> b(n2,nn);

Vector<T> bb(nn);

mm = nn>>1;

ng = 1;

b = a; // copy a only to avoid overwriting it

while (mm) {

for (j=n2-1;j>nn-(mm+mm);j--) { // loop over rows

for (i=0;i<nn;i++) bb[i] = b[j][i];

ii = 0; // ii will be 2*n*mm+i

for (n=0;n<ng;n++) {

k = ii; // k will be 2*n*mm

for (i=0;i<mm;i++) {

b[j][ii] = bb[k+i+i] + bb[k+i+i+1];

if (j+i < n2) b[j+i][mm+ii] = bb[k+i+i] + b[j-1][k+i+i+1];

ii++;

}

ii += mm;

4

}

}

ng += ng;

mm >>= 1;

}

for (j=0;j<nn;j++) for (i=0;i<nn;i++) ans[j][i] = b[j+nn][i];

}

The approximate inverse algorithm B is:

void inverse_recursive(Matrix<Doub> &img, Radon<Doub> &rad) {

Int i,j,ii,jj,k,nn=rad.nn, n2=rad.n2, nh=nn/2;

if (rad.nn==1) {

img[0][0] = rad.a[1][0];

} else {

{ //scope

Radon<Doub> radh(rad,true);

Matrix<Doub> imgh(nh,nh);

inverse_recursive(imgh,radh); // recursive call!

for (jj=0,j=0;j<nh;j++,jj+=2) {

for (ii=0,i=0;i<nh;i++,ii+=2) {

img[jj][ii] = img[jj+1][ii] = img[jj][ii+1] = img[jj+1][ii+1] = imgh[j][i];

}

}

} // endscope

mprove(img,rad,2);

}

}

The routine for iterative improvement is called both by the approximate
inverse (setting third argument = 2), and, subsequently, on its own (setting
third argument = 1) to iterate to the exact inverse.

void mprove(Matrix<Doub> &img, Radon<Doub> &rad, Int method) {

Int i,j,nn=img.nrows(),n2=2*nn;

Matrix<Doub> img1(nn,nn);

Radon<Doub> rad1(img);

rad1 -= rad;

if (method==1) {

inverse_recursive(img1,rad1);

} else if (method==2) {

rad1.backproject(img1);

hipass(img1);

} else throw ("no such method in mprove");

for (j=0;j<nn;j++) for (i=0;i<nn;i++) img[j][i] -= img1[j][i];

}

The method hipass, not listed here, merely implements the filter in the
main text’s Eq. 12.

References

1. Zubal I.G., Harrell C.R., Smith E.O., Rattner Z., Gindi G., & Hoffer P.B.
(1994) “Computerized three-dimensional segmented human anatomy”,
Med. Phys., 21, 299-302.

5

Supplemental Figures

Figure 1: Test images used below. Both images are 256×256 pixels with 8 bit
values. The right image is a standard head phantom MRI due to Zubal et al.
(1) The horizontal bands of noise are a part of this image.

6

(c)

(d)

(a)

(b)

0 B

0 T

+45 BR

+45 TL

+90 L

+90 R

-45 TR

-45 BL

-90 R

-90 L

Figure 2: Radon transform of the test image shown at the lower left. The
quadrants a, b, c, and d are labeled, with the labels positioned near their re-
spective origins (smallest h and s). The notations T, B, R, and L refer to the
top, bottom, right and left edges of the test image (cf. Figure 4 in main text).

7

(c)

(d)

(a)

(b)

0 B

0 T

+45 BR

+45 TL

+90 L

+90 R

-45 TR

-45 BL

-90 R

-90 L

Figure 3: Same as Figure S2, but for the other test image.

8

Figure 4: Sinogram of the standard Shepp-Logan phantom, captured as a
256 × 256 compressed GIF image; and image reconstructed by the methods
of this paper. While the DRT inversion is exact, the sinogram is not exactly
a DRT, so that artifacts are introduced. However, these are seen to be quite
modest.

Figure 5: Approximate inverse of the DRTs in Supplemental Figures 2 and 3 by
the “natural” Fourier method, with no filtering. The perceived image quality
could be significantly improved by judicious filtering, but with a resulting loss
of high-frequency information. This paper’s exact inverse method does not
have this deficiency, and does not use Fourier transforms.

9

Figure 6: Result of formally inverting an image from the data in a single
quadrant (here a), after perturbing it with noise at a level 10−14. The formal
one-quadrant inverse is extremely ill-conditioned, and not useful in any prac-
tical way. The stripes are a Walsh function whose Fourier transform lies in a
different quadrant.

Figure 7: Approximate inverse of the DRTs in Supplemental Figures 2 and 3
by the recursive algorithm B. While this inverse is perceptually inferior to the
approximate Fourier inverse (Supplemental Figure S5), it has the important
property that all of the eigenvalues of its residual matrix have magnitude < 1;
this allows it to be iterated to an exact inverse.

10

Figure 8: Images shown in Supplemental Figure S7 after four steps of itera-
tive improvement. The r.m.s. errors at this stage are about 1%, still barely
perceptable. Futher iterations reduce the errors to arbitrarily small.

Figure 9: Ordinary DRT of the image shown in Figure 6(a). The region of
transform space shown here is the same as in Figure 6(b). For the DRT,
the weak line feature is lost in the confusion of sinusoids due to the pointlike
clutter, in contrast to Figure 6(b) where the DMRT is seen to be insensitive
to the clutter.

11

Figure 10: Result of taking the DMRT median transform of the test image S1
and then inverting it as if it were a DRT, not a DMRT. All of the detail shown
is thus present in the median values of the original image along lines.

12

0

N-1

2N-1

N

0 N-1

Nyquist (set to zero)

a
v
e
ra
g
e
 w
it
h
 c
o
m
p
le
x
 c
o
n
ju
g
a
te
 o
f
b
e
lo
w

a
v
e
ra
g
e
 w
it
h
 c
o
m
p
le
x
 c
o
n
ju
g
a
te
 o
f
a
b
o
v
e

fill with 1-D FFTs of (a)

at N pos. frequencies

fill with 1-D FFTs of (d)

at N pos. frequencies

fill with 1-D FFTs of (b)

at N pos. frequencies

fill with 1-D FFTs of (c)

at N pos. frequencies

Figure 11: Positive-frequency half of two-dimensional Fourier space. Each
quadrant in the DRT contributes values in a 45◦ wedge, as shown. Grey
regions get contributions from two neighboring DRT quadrants. The transform
of columns of the DRT are directly averaged into the d-lines of Fourier space,
without interpolation.

13

1

s
in

 +

 c
o
s

1

1
 +

 t
a

n

sec

Figure 12: Trigonometric relationships between a square image and its projec-
tion at an angle θ.

14

