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Discrete rearranging disordered patterns:
Prediction of elastic and plastic behaviour, and application to two-dimensional foams.
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We study the elasto-plastic behaviour of materials made of individual (discrete) objects, such as
a liquid foam made of bubbles. The evolution of positions and mutual arrangements of individual
objects is taken into account through statistical quantities, such as the elastic strain of the structure,
the yield strain and the yield function. The past history of the sample plays no explicit role, except
through its effect on these statistical quantities. They suffice to relate the discrete scale with the
collective, global scale. At this global scale, the material behaves as a continuous medium; it is
described with tensors such as elastic strain, stress and velocity gradient. We write the differential
equations which predict their elastic and plastic behaviour in both the general case and the case
of simple shear. An overshoot in the shear strain or shear stress is interpreted as a rotation of the
deformed structure, which is a purely tensorial effect that exists only if the yield strain is at least of
order 0.3. We suggest practical applications, including: when to choose a scalar formalism rather
than a tensorial one; how to relax trapped stresses; and how to model materials with a low, or a
high, yield strain.

PACS numbers: 83.80.Iz Emulsions and foams; 46.35.+z Viscoelasticity, plasticity, viscoplasticity; 83.10.Ff

Continuum mechanics; 47.50.-d Non-Newtonian fluid flows

Keywords: elasticity, plasticity, overshoot, mechanics, foam, simulations

I. INTRODUCTION

Discrete rearranging patterns include cellular patterns,
for instance liquid foams, biological tissues and grains in
polycrystals; assemblies of particles such as beads, gran-
ular materials, colloids, molecules and atoms; and inter-
connected networks [1]. Many of these disordered ma-
terials display elastic and plastic properties, so that the
stress tensor can rotate and is not necessarily aligned
with the strain rate tensor; in models this effect is in-
cluded in objective derivatives [2].
Use of simplified geometries, e.g. in a rheometer, al-

lows a first characterization of the material through mea-
surements of shear stress. An overshoot in the shear
stress is seen during the first loading in materials such
as polymers [3], granular materials [4], and emulsions [5].
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For liquid foams this effect has been observed in a plate-
plate rheometer [6] and in simulations [7, 8]. It is unclear
whether this is due to a change in the material’s struc-
ture, or a tensorial effect of shear; but nevertheless the
overshoot is an essential ingredient in a recent model [9]
of the strain-rate discontinuity in the cylindrical Couette
foam flow experiments of ref. [10]. Such an overshoot
results in mechanical bistability: two different values of
strain correspond to the same value of stress between the
plateau and the maximum, and can thus coexist. Here,
we investigate the elastic regime and elasto-plastic tran-
sition in a fully tensorial model. To describe the me-
chanical behaviour we use a formalism adapted for dis-
crete rearranging disordered patterns which enables us
to quantify rotational effects and to test the relevant pa-
rameters [1].

We use as an example a sheared liquid foam [11–18].
Although a liquid foam consists only of gas bubbles sur-
rounded by liquid walls, it exhibits a complex mechani-
cal behaviour. It is elastic for small strains, plastic for
large strains and flows at large strain rates [19–21]. This
behavior is useful for numerous applications such as ore
separation, oil extraction, foods and cosmetics. The indi-
vidual objects, namely the bubbles, are easily identified,

http://arxiv.org/abs/1002.0732v1
mailto:christophe.raufaste@unice.fr


2

symbol Φeff δA/A geometry γmax

H or ▽ 9.7.10−5 0 fully periodic ± 2

× or + 3.9.10−4 0 fully periodic ± 2

� or ♦ 3.9.10−4 0.025 fully periodic ± 2

N or △ 3.9.10−4 0.66 fully periodic ± 2

• or ◦ 3.5.10−4 0 confined ± 2.5

� or � 3.5.10−4 0.66 confined ± 2.5

TABLE I. Characteristics of simulated foams. The different
columns correspond to the symbols used in Figs. 8 and 10,
effective liquid fraction [22], area dispersity, boundary condi-
tions and maximal amplitude of the cycles.

which makes a liquid foam (or alternatively an emulsion,
made of droplets) a model for the study of other complex
fluids.
This paper is organized as follows. In Section II, we

simulate the quasistatic 2D flow of a foam in a Couette
shear geometry; we explain how we perform and rep-
resent the measurements. In Sec. III, we present our
equations, and discuss the specific effects due to the use
of tensors, such as the overshoot. Sec. IV compares
the model and the simulation, and extracts the relevant
information. Sec. V presents applications to practical
situations, i.e. how and when to use the model. Sec.
VI summarizes our findings. An Appendix explains the
notation and provides the detailed equations.

II. SIMULATIONS

We simulate numerically a 2D foam flowing in a lin-
ear Couette shear geometry. Simulations of dry foams
offer several advantages: (i) the parameters are homoge-
neous (liquid fraction, bubble area) and controlled (no
diffusion-driven coarsening or film rupture); (ii) the yield
strain is of order of 0.3, which is large enough to observe
a full tensorial elastic regime while small enough that
plastic effects can be easily observed; (iii) all physical
quantities can be easily measured.

A. Methods

Several ideal, two-dimensional, dry foams [19] are sim-
ulated (Fig. 1 and Table I). We use the Surface Evolver
[23] in a mode in which each film is represented as a cir-
cular arc. The value of surface tension is taken equal to
1 throughout, without loss of generality. A realistic foam
structure is found by minimizing the total film length
subject to the constraint of fixed bubble areas, prescribed
at the beginning of the simulation. The simulations are
quasistatic, which means that the system has time to re-
lax between successive time steps (increments in applied
strain). Relaxation effects are thus neglected and vis-
cosity does not need to be included. The behaviour is

(1) (2)

(3) (4)

(5)

FIG. 1. Example of 2D foam simulation. Pictures are suc-
cessive snapshots of a quasi-statically sheared, fully periodic
foam. Numbers correspond to those of Figs. 2 and 5. Bubbles
with 6 neighbours are displayed in white, otherwise in gray.

expected to be elasto-plastic.
The simulation procedure is as follows. A Voronoi con-

struction of randomly distributed points [24] (not shown)
is first used to generate a fully periodic tessellation of
the plane. To create a confined foam, bubbles at the top
and bottom are sequentially deleted until the required
number of bubbles remains. In each case, the structure
is imported into the Surface Evolver and target bub-
ble areas prescribed, either all the same (monodisperse,
δA/A = 0), a small random variation of up to 20% about
monodisperse (δA/A = 0.025), or equal to the areas given
by the Voronoi construction (δA/A = 0.66).
The initial foam configuration for each simulation (e.g.

label (1) in Fig. 1) is found by reducing the total film
length to a local minimum. During this minimization,
neighbour swappings (so-called “T1s” [19]) are triggered
by deleting each film that shrinks below a certain critical
length lc and allowing a new film to form to complete the
process. The critical length lc defines and measures an
effective liquid fraction, Φeff [22], here chosen to be very
dry (Table I).
One geometry consists of a unit cell of 400 bubbles
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with fully periodic boundary conditions to eliminate any
artefacts due to small sample sizes. The second geome-
try mimics more closely a real experiment, and consists
of 296 bubbles with two parallel bars (about 15 bubble
diameters apart) confining the foam and with periodicity
in one direction only.

To shear the foams, two different procedures are re-
quired. For the periodic foams, one off-diagonal compo-
nent of the matrix describing the periodicity of the unit
cell is adjusted by a small amount [23]. For the confined
foams, a small step in strain is applied by moving one of
the confining walls a small distance and then moving all
vertices affinely. In each case this is followed by reduction
of the film length to a minimum correct to 16 d.p. using
conjugate gradient (without biasing the search by intro-
ducing any large-scale perturbations of the structure).

FIG. 2. Time evolution of the reference simulation (× in Tab.
I). Horizontal axis: time is in arbitrary units, equivalent to
the “cumulated strain”

∫
|γ̇|dt, where t is the time and γ̇

is defined up to an arbitrary prefactor; here 2.25 cycles are
represented. Vertical axis: all curves represent Uxy (left scale)
except for the saw-tooth which is the applied γ (right scale).
Numbers correspond to the pictures in Fig. 1. The first step,
plotted with a thick solid line, starts at the � (indicated also
by a number 1) and its end is labelled by number 2: γ =
0 → 2. The second step, plotted with a thin solid line, is
from number 2 to 3. The third step, plotted with a middle
solid line, starts at the ♦ (indicated also by a number 3), and
extends to number 5: γ = −2 → 2. Four predictions of the
model are plotted as dashed lines (see Fig. 6 for explanation
of the legend); for clarity they are plotted only from 1 to 2
and from 3 to 5: note that from 3 to 4 all predictions are
indiscernable from the simulation.

Each foam is subjected to at least two “saw-tooth”
shear cycles of amplitude γmax. Positive and negative
steps correspond respectively to shear toward increasing
or decreasing imposed strain γ (Fig. 2)

0 0.1 0.2 0.3 0.4

−0.4

−0.3

−0.2

−0.1

0

U
2

U1

a)

b)

FIG. 3. Validation of hypotheses. Both approximations of
section II B are tested during the shear of the reference sim-
ulation (× in Tab. I). a) Strain eigenvalues U1 vs U2; black
solid line: initial shear (1−2)which anneals the disorder; blue
dots: shear cycles (2 − 5); dashed blue line: straight line of
slope -1 passing through the origin. b) Deviatoric stress-strain
relation: red, σxy vs Uxy ; blue, (σxx−σyy)/2 vs (Uxx−Uyy)/2;
red and blue data almost perfectly overlap (see zoom in inset);
the slope determines 2µ, where µ is the shear modulus.

B. Measurements

At each step, the positions of the bubble centres and
films are recorded. Tensorial quantities are measured by
averaging over all bubbles, as follows [1].

The texture tensor M = 〈~ℓ ⊗ ~ℓ〉 is computed statisti-

cally as an average over vector links ~ℓ between centres
of neighbouring bubbles. We assume here that the refer-
ence texture at rest,M0, is isotropic. We thus define it by
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measuring the average of the determinant of M over the
duration of the whole simulation, det(M0) = 〈det(M)〉.
The elastic strain of bubbles expresses the deviation from
the reference state, U = (logM− logM0) /2 (Eq. A1c).
This tensor is symmetric by construction (Uyx = Uxy);

it can be diagonalized and has two eigenvalues (U1, U2)
in two orthogonal eigendirections. The simulations (Fig.
3a) verify that we can reasonably assume its trace to
be always close to zero, U1 + U2 = Uxx + Uyy ≈ 0, as
is roughly expected for an incompressible material [1].
Thus, due to its symmetry and vanishing trace, U has
only two independent components:

U =

(

Uxx Uxy

Uyx Uyy

)

≈
(

Uxx−Uyy

2
Uxy

Uxy −Uxx−Uyy

2

)

. (1)

Fig. 3a shows that our measurement of the elastic strain
makes evident the effect of shear-induced shuffling [25]:
the annealed foam (blue dots) differs significantly from
the initial one (black solid line).
The contribution to the stress of the network of bub-

ble walls is obtained by integrating over all films [26, 27];
it yields the deviatoric (i.e. traceless) part of the elas-
tic stress tensor σ. The trace of the stress, namely the
pressure, is unimportant here. The simulations are qua-
sistatic and the viscous part of the stress is not relevant.
We check (Fig. 3b) that the stress and strain are

strongly correlated; that their correlation is linear; and
that it is isotropic (the same for xy and xx− yy compo-
nents) [28, 29]. Half the slope thus defines and measures
the elastic shear modulus µ.

a) b)

FIG. 4. Representation of the evolution of
=

U . a) Physi-

cal space: evolution of the point (U cos θ, U sin θ); for com-
pleteness we also plot the opposite (and strictly equivalent)
point (−U cos θ,−U sin θ). b) Component space: trajectory
of ((Uxx − Uyy)/2, Uxy), that is, (U cos 2θ, U sin 2θ).

C. Representations

To summarize, M, U and σ characterize the current
state of the foam. These three tensors carry here the
same information, since µ appears constant. In what fol-
lows, texture, elastic strain and stress tensors are always
aligned.

We choose to display U only, because it is dimension-
less, and thus more general: it makes the comparison of
different materials easy. One possibility [1] is to repre-
sent the traceless tensor U as a circle of radius U , with
a straight line to indicate the direction θ of its positive
eigenvalue: see thick lines (circle and straight line) in Fig.
4a. We do not use it here, except in the inset of Fig. 8.
In fact, it is easier to represent U at a given time by a
point, enabling us to plot trajectories. Its two indepen-
dent components can be represented in two different but
equally useful ways, as follows. Both representations are
equally appropriate in the problem considered here be-
cause of the circular symmetry of the yield criterion (see
Eq. 5).
First, in the case of a traceless tensor, the absolute

value of the two eigenvalues is the same and equal to the
amplitude U of the tensor U defined as

U =
√

(Uxx − Uyy/2)
2
+ U2

xy, (2)

or equivalently U = |(U1 − U2)/2| = ||U|| /
√
2, where

||U|| =
(

Σij (Uij)
2
)1/2

is the euclidian norm of U. We

call θ the direction of the greatest eigenvalue. We call
physical space the representation of the parameters (U ,θ).
It is useful because it shows the evolution of the struc-
ture (elongation, orientation), In particular, we plot the
trajectory of the point (U cos θ(γ), U sin θ(γ)) (Fig. 4a).
The other representation, which has already been used

for foams [8], is called component space. It plots the tra-
jectory of the point ((Uxx(γ) − Uyy(γ))/2, Uxy(γ)) (Fig.
4b). It is more suitable for comparison with experimental
data, since rheometers measure the tangential stress (xy),
and sometimes the normal stress difference (xx − yy).
These two possible choices are related by

Uxy = U sin 2θ (3a)

Uxx − Uyy

2
= U cos 2θ. (3b)

Complete data for one simulation are plotted in Fig. 5
and are discussed in the next section.
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FIG. 5. Different representations of Fig. 2 (same symbols) according to Fig. 4. a) Uxy versus γ. b) Physical space. c) U versus
γ. d) component space. The dashed circle in b) and d) has radius UY = 0.34.

III. MODEL

A. Implementation

1. Elasticity equations

As already mentioned, we consider a quasistatic limit
in which flow is slow enough that we may neglect viscous
stresses. The stress is then related to the elastic strain
(Fig 3b). We don’t consider here the effect of external
forces, such as gravity or friction on the boundary if the
system is confined between glass plates [16].

In the present 2D case, classical plasticity [30] sug-
gests that the material begins to yield when the differ-
ence between the stress eigenvalues becomes too large:
(σ1 − σ2)

2 = 4σ2

Y . The yield stress σY separates a do-
main of pure elasticity from a domain in which the mate-
rial flows plastically. A complete set of continuous equa-
tions (Reuss equations [30]) can then be derived; σY is
assumed to be constant (no strain hardening). The ef-
fect of pressure (trace of the stress) is neglected, which

is usually a good first approximation for metals for in-
stance [30]. It must be even more appropriate for soft
materials, like a foam, for which the shear modulus is
several orders of magnitude smaller than the bulk modu-
lus [19]. In what follows we prefer to use the component
yield criterion [30]:

(

σxx − σyy

2

)2

+ σ2

xy = σ2

Y . (4)

Equivalently, Eq. 4 can be written for U, since the
deviatoric parts of σ and U are proportional (Fig. 3b).
From Eqs. 2 and 4, we can write the yield criterion as

U = UY . (5)

This is represented by a circle in both physical and com-
ponent spaces (Fig. 5bd)
For the example of foams and highly-concentrated

emulsions, Marmottant and Graner [31] suggested that
the transition between elastic and plastic regimes is not
sharp, but can be described by a yield function h. This
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function is 0, respectively 1, in the pure elastic, respec-
tively plastic, domain. Between these two limits, both
effects are present and the proportion seems to depend
mostly on the elastic strain amplitude U (Fig. 6a). This
assumption was successfully tested on different flow ge-
ometries of a 2D foam [29].

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

h

U/UY

0 0.1 0.2
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

(Uxx − Uyy)/2

U
x
y

a) b)

FIG. 6. (color online) Model. (a) The different yield func-
tions h used as examples in the present paper are power laws
h(U) = (U/UY )n with n = 1 (green, dash-dots), n = 2 (red,
dashes), n = 4 (blue, dots) and n = +∞ (black, thick dashes,
equal to 0 everywhere except at U = UY where it is equal
to 1). b) Corresponding limit cycles predicted by the model,
plotted in component space (same legend).

By assuming that the deformation is affine [1] and ac-
cording to the prediction of plasticity (Eq. 22 in [29]),
we can then write a tensorial equation of evolution of
the texture (Eq. 9 in [1]). This dictates the evolution
of the texture due to imposed strain (deformation, rota-
tion) and due to relaxation (rearrangements), for details
see Eqs. A1d,A2:

d

dt
M = M.∇v +∇v

t.M

−
(

U

U
: ∇vsym

)

H h

(

U

UY

)

U

U
.M

(6)

Here d/dt is the Lagrangian derivative in time (includ-
ing advection); M.∇v + ∇v

t.M is the variation of M

due to convection by the velocity gradient ∇v; as ex-
plained in appendix A1 and A 3, the notation U :
∇vsym is the scalar product of the elastic strain tensor
with the symmetrized velocity gradient tensor ∇vsym =
(

∇v +∇v
t
)

/2 [1]; conversely, U.M is the usual prod-

uct of tensors; here H = H
(

U

U : ∇vsym

)

is the Heaviside
function, which is equal to 1 if U : ∇vsym is positive and
0 otherwise.
Eq. 6 links the evolution of the foam texture with the

elastic strain. It is quasistatic in the sense that the strain
is relevant, not the strain-rate. It can be generalized
to evolutions quicker than the relaxation times of the
structure [32]. Plasticity occurs only when the elastic
strain is oriented in the direction of shear, as expressed
by the Heaviside function H (Appendix A4).

The model is continuous and analytic, without fluctu-
ations. The information regarding disorder is recorded in
h. Trapped stresses [3] are recorded in the initial value
Mi (or equivalently Ui). The material’s yielding crite-
rion is encoded in UY . The history of the material only
plays a role in determining h, Mi (or Ui), and UY , which
together fully describe the material. According to the
expression of h, Eq. 6 can be integrated analytically or
numerically.

2. Simple shear

To study the structure-evolution equation, i.e. the
competition between elasticity and plasticity, and pre-
dict the rheological behaviour, we impose a strain rate γ̇
on the material. We take x as the direction of the shear,
which gives the following velocity field:

∇v =

(

∂xvx ∂xvy
∂yvx ∂yvy

)

= γ̇

(

0 0

1 0

)

(7)

and hence

∇vsym = γ̇

(

0 1/2

1/2 0

)

. (8)

This factor 1/2 appears when comparing the scalar and
tensorial descriptions (appendix A5). In this geometry,
the advection term is taken equal to zero and the result-
ing system of equations is given in Appendix A4. The
reference state M0 is considered isotropic and constant
throughout the evolution.
We recall that this evolution is quasistatic: γ̇ appears

as a prefactor in the time evolution, Eqs. A3. We thus
follow the evolution with the strain γ =

∫

γ̇ dt, instead
of the time. Tensor operations and the time evolution
of M are implemented by a finite difference procedure.
Between two time steps, U is recalculated with Eq. A1c.

B. Predictions

We now address the resolution of the full elasto-plastic
set of equations A3. Our representation underlines the
specifically tensorial effects.

1. Purely elastic regime

As a first example of our representation, we consider
here the pure elastic regime. This means that we allow
the structure to deform elastically (stretching, contrac-
tion), but not to relax plastically (no rearrangements).
Our formalism allows us to describe pure elasticity by
computing the elastic strain and its evolution when the
material is deformed. Our formalism extends to large
strains, even those of order one (for strains much larger
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FIG. 7. Elastic model, represented in physical (a) and com-

ponent (b) spaces. Different initial states are taken: Ui = 0
(center, red) and Ui = 0.3 (initial points scattered around the
circle, black). Here n → +∞: all the trajectories evolve elas-
tically. For γ̇ > 0, Uxy increases, that is, time evolve upwards
on (b). If γ̇ < 0, these graphs are unchanged, due to their
symmetry with respect to the horizontal axis, showing that
the purely elastic trajectories are reversible.

than one, without plasticity, the formalism of large am-
plitude strain [33] might be preferable). Fig. 7ab shows
trajectories for different initial elastic strains.

For an initially isotropic material, Ui = 0, we recover
the classical results in the small strain limit: U ≃ γ/2
and Uxy ≃ γ/2. The Poynting relation [33] thus takes
the form of a parabola; we even extend it to an initially
anisotropic material, Ui 6= 0 (see Fig. 13 and A16). For
higher strains, Uxy is less linear with respect to γ, due to
the rotation of the elastic strain.

In all cases, Uxy increases monotonically. Note that
this is not the case for (Uxx − Uyy)/2 nor for U . When
the structure is aligned perpendicularly to the shearing
direction (U : ∇vsym < 0), it contracts (U decreases)
under shear, until it aligns with the shear. When the
structure is aligned parallel to the shearing direction
(U : ∇vsym > 0), it stretches (U increases) under shear.
Since U is a tensor, it can continuously decrease, change
direction and increase again without ever vanishing (as
opposed to a scalar, which can change sign only when it
is equal to zero). For instance, a trajectory which starts
with a direction opposed to that of shear has first a de-
creasing U (contraction, with Uxy negative and increas-
ing), then an increasing U (stretching, with Uxy positive
and increasing), then a constant U (yielding, with a ro-
tation of U towards the plastic limit).

2. Plastic Limit

The yield strain is the amplitude of the strain when the
material yields, that is, a scalar number. The plastic limit

is defined as the elastic strain tensor U obtained after an
infinitely long shearing (γ → +∞). The amplitude of
this tensor is that of the yield strain. Its direction is
obtained by solving Eq. 6 when its left-hand side equals

FIG. 8. Plastic limit for γ̇ > 0. Model of θY versus UY (solid
line) and corresponding representations of U as circles with
straight lines, indicating the direction of positive eigenvalue
(inset), for several values of UY . Simulation points (same
symbols as in Table I) are plotted for comparison.

0, h equals 1, and H equals 1:

U = UY , (9a)

cos θ =
1√

1 + e−4UY

, (9b)

sin θ = sign(γ̇)
1√

e4UY + 1
. (9c)

This plastic limit is represented on Fig. 8. It shows
that the larger UY , the less aligned U is with respect
to ∇vsym. This tensorial effect is strong because θY de-
creases quickly with UY . The scalar limit corresponds to
θ ≃ 45◦, as discussed in Sec. VA.

3. Transient regime

We now consider the shearing of an initially anisotropic
elastic strain, Ui 6= 0. In physical or component space,
the state of the material is initially situated on an elastic
trajectory and must arrive at the plastic limit point (Fig.
9a-d). At this limit point, an increase of elastic strain is
immediately transformed into plastic strain. Plasticity
may occur only if U : ∇vsym > 0.
Graphically, both in physical space and in component

space (Fig. 9), the plastic limit is represented by the
point where a trajectory reaches perpendicularly the cir-
cle at U = UY (the elastic strain increases along the tan-
gent of the trajectory, the plastic strain relaxes towards
the centre of the circle: to balance each other, they must
be parallel).
The shape of the yield function h then determines how

the material reaches the plastic limit. For simplicity, we
take h as a power law function: h = (U/UY )

n (Fig. 6a).
Two examples of the resulting behaviour are plotted on
Fig. 9. The limit n → ∞ is intuitive: the material follows
the elastic trajectory up to U = UY ; then U is fixed and
the plastic limit is reached by describing an arc of a circle
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FIG. 9. Elasto-plastic model. Representation of the model
for γ̇ > 0 in physical (a,c,e) and component (b,d,f) spaces. If
γ̇ < 0, the vertical axis of all these graphs should be inverted.
(a-b) For n → +∞, all the trajectories evolve elastically (Uxy

increases, that is, time evolves in the direction of the arrows)
up to the yield strain, here taken as UY = 0.3, then evolve
plastically (U constant) towards the plastic limit (blue point)
which corresponds to a specific angle, see Eq. 9. If the tra-
jectory reaches the yield strain on the left of the plastic limit,
Uxy passes through a maximum (overshoot). (c-d) For n = 2,
plasticity appears more progressively, thus smoothening the
transition between elastic and plastic regimes, and decreasing
(or even suppressing) the overshoot. (e-f) Summary of the
mechanical behavior: “stretching” and “contraction” accord-
ing to the direction of U with respect to shear. Here “plas-
ticity on” or “plasticity off” refers to the Heaviside function
in the last term of Eq. 6, when the plasticity is progressive
(n finite); when n increases the “plasticity on” zone narrows,
and for n infinite it is reduced to the limit circle.

in physical and component spaces (Fig. 9ab). For other
cases (finite n) plasticity occurs earlier (Fig. 9ef) and
trajectories converge to the plastic limit (Fig. 9cd).

The behaviour changes qualitatively if the sign of γ̇ is
abruptly reversed. Unlike the elastic term, the plasticity
term is irreversible due to the Heaviside function H in
Eq. 6. This leads to an inversion of the plastic domain
in physical and component spaces (Fig. 9ef) and to a

new plastic limit position (θY → −θY , Eq. 9). This
hysteretic effect is shown on Fig. 5 by reversing γ̇ once
the plastic limit is reached. For high n, the new plastic
limit is quickly reached, since the two plastic limits are
on the same elastic trajectory.
If we perform alternate sign changes of γ̇, we observe

that the material is stuck in a limit trajectory (Fig. 6b).
This trajectory is almost insensitive to h and therefore
close to the elastic trajectory joining the two plastic lim-
its. This has an important consequence: once in the
plastic regime, the elastic strain (and thus the stress)
can not be totally relaxed if we only reverse the shearing
direction. This is examined in more detail below (Fig.
11).

4. Overshoot

As observed for n → +∞ (Fig. 9b), the overshoot is
due to the transition from an elastic trajectory to the
plastic limit. The structure itself has no overshoot: U
increases monotonically. The overshoot appears in the
tangential strain Uxy: it is a purely tensorial effect due
to a rotation of the structure. In fact, Uxy increases in
all elastic trajectories. Upon reaching U = UY there is a
sudden transition to the plastic regime. For trajectories
to the left of the plastic limit (Fig. 9b), we see that Uxy

decreases towards the plastic limit. The overshoot cor-
responds to the difference between the maximum value
of Uxy (where the trajectory meets the circle) and the
plateau value (plastic limit).
¿From Fig. 9b, we observe a tiny overshoot for the nor-

mal stress difference if the trajectories reach the U = UY

circle to the right of the plastic limit. In that case, the
trajectories move towards the right in the elastic regime,
then towards the left in the plastic regime. Such tra-
jectories correspond to the right of Fig. 9b, that is, a
structure with a large trapped normal stress difference
Uxx − Uyy.
For smaller n, the elastic-plastic transition is smoother

and the overshoot is reduced. The overshoot amplitude
for different h and UY is plotted on Fig. 10, for the case
of an initially isotropic structure (Ui = 0). The overshoot
increases with UY because the plastic limit moves away
from the initial elastic trajectory.

IV. COMPARISON BETWEEN SIMULATIONS

AND THE MODEL

A. Plastic limit

The model (section III B 3) predicts that after a few cy-
cles a limit trajectory is reached. This trajectory is also
displayed in simulations by Kabla and Debregeas [8]. The
plastic limit can thus be evaluated in simulations: UY is
estimated by averaging U on the last plateau (using any
of Fig. 5a-d); similarly, θY is estimated by averaging θ
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FIG. 10. Overshoot, defined as the difference between the
maximum of the Uxy versus γ curve, and the value of the
plateau which follows this maximum. Calculations are per-
formed in the case of an initially isotropic structure (Ui = 0).
(a) Zoom over the maxima of the curves of Fig. 5a. (b) Max-
ima for different h functions (same legend as Fig. 6), and
plateau value (starred line, which is the same for all h func-
tions), plotted vs UY . Simulation points are plotted for com-
parison, with the same symbols as in Table I; closed symbols
and + correspond to the maximal value (averaged over a few
successive points) during the first shear step; open symbols
and × correspond to the averaged value along the plateau of
the last shear step; UY is measured as the plateau value of U .
(c) Zoom of (b).

on the last plateau of Fig. 5b or d. On Fig. 8, results

from simulations are compared with the model. Agree-
ment is good, and the model captures tensorial effects,
especially because the measured θY deviate much from
the 45◦ scalar limit.
Taking larger lc in the simulations favours neighbour

swappings (“T1s”), thus it corresponds to an increased
effective liquid fraction. As expected [20, 22], we see a de-
crease in UY . However, since the effective liquid fraction
we are simulating remains in a very dry range (< 4 10−4),
it does not influence much UY , which thus varies over a
narrow range (0.26− 0.37).
Reaching higher UY is possible with other materials,

but not with disordered 2D foams. Reaching lower UY

is possible (and usual) in experiments on disordered wet
foams, but not in the present simulations where the al-
gorithm would require adaptation at high lc.

B. Yield strain and yield function

Simulation results fluctuate, due to the limited number
of bubbles (discrete description), while model curves are
smooth, corresponding to the limit of a large number
of bubbles (continuous material description). There is a
qualitative agreement, which is good enough to deduce
UY and h approximately.
For instance, Fig. 5 compares a simulation with models

using various h functions. We observe that n ≈ 2 (red
dashes on Fig. 5) describes well the simulation during
the first positive shearing step, and n ≈ 4 (blue dotted
lines on Fig. 5) during the second one. Similarly, UY is
deduced from the plateau value of U (Figs. 8 and 10).
In practice, in a first approximation, it is enough to

consider UY and h as constant. Their variations are small
and thus have a small effect on the foam rheology. How-
ever, these variations do exist.
For instance, in this example of Fig. 5, n (and thus

h) evolves throughout the simulation, revealing that the
structure evolves too; h seems to be sensitive to the
(topological) disorder of the foam [25]. Here UY is con-
stant, but there are other cases (data not shown, see [34])
where, due to the decrease of the topological disorder
during the shearing, UY decreases.
More generally, a real foam is constantly evolving un-

der the effect of drainage, coarsening [21], or shuffling
[25]. These effects should probably have to be considered
in future models, which would try to predict UY and h,
based on the average and fluctuations of the structure,
respectively.

C. Overshoot

We can now identify two distinct physical mechanisms
which can cause a stress overshoot in shear experiments
of elasto-plastic materials.
The first one is an orientation effect, suggested in Sec.

III B 4. U increases monotonically, but if UY is large
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enough then the rotation of U under shear implies that
the tangential shear strain Uxy passes through a maxi-
mum. This purely tensorial effect is absent from scalar
models. Under certain additional conditions on the ini-
tial elastic strain Ui, which are also described correctly
only when taking into account the tensorial aspects, the
normal strain difference Uxx − Uyy too passes through a
maximum.
Fig. 10 shows a comparison between the model and

the simulations. Given that in the range of simulated
UY the overshoot is tiny and difficult to extract from the
fluctuations, the agreement is surprisingly good. In most
foam experiments, where UY is even lower, this effect
should be too small to be measurable.
The second one is outside of the scope of the present

paper. It is due to an evolution of the structure itself
during the first shear step (see section IVB). This might
be invoked to explain the larger overshoot of the data
corresponding to the confined simulations (red and pink),
as well as most experimental observations (such as that
of ref. [6]).

V. PRACTICAL APPLICATIONS

A. Comparison between scalar and tensorial

representations

As long as the applied shear keeps a constant direction,
and the elastic strain remains much smaller than 1, its
eigenvectors correspond to that of ∇vsym. That is, they
are at 45◦ to the direction of shear. This is called the
scalar approximation, and it considerably simplifies the
study of the mechanical behaviour. In that case, a single
(scalar) number is enough to fully describe the elastic
strain.
This scalar number can equally well be chosen as the

amplitude U , or the eigenvalue U1, or the tangential shear
strain Uxy, among others. To switch from one choice to
the other requires care regarding the prefactors [29]: this
is often a source of confusion in the literature, especially
regarding the definition and value of the yield strain. The
link between the simplified (scalar) and complete (tenso-
rial) equations is detailed in Appendix A5, using 2Uxy

as a scalar.
If UY ≪ 1, which is the case for wet foams and emul-

sions, then U remains always much smaller than 1, and
θY ≃ 45◦, so that the scalar approximation holds, see
Fig. 19 in ref. [29] (except if the direction of the shear
changes, in 2D or in 3D). In that limit tensorial effects
such as normal differences or stress overshoot are negli-
gible.
Quantitatively, Uxy is linked to sin(2θ) (Eq. 3a). This

implies that a difference of 10% between the scalar and
tensorial equations is reached when sin(2θY ) = 0.9, which
corresponds to UY = 0.23 (Eq. 9). Very dry foams, such
as those simulated here, are slightly above this limit: a
tensorial model is therefore useful.
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FIG. 11. Shearing cycles to remove trapped stresses. Here
Ui = 0 for the first step and UY = 0.3, n → +∞. Between two
steps: the direction of shearing is turned 90◦ clockwise (blue
dots); the amplitude is decreased from γ = 2 to 0 in 15 steps
(black dashes); simultaneously, the direction of shear is turned
and its amplitude is decreased (red solid line). a) Component
space. b) (Uxx − Uyy)/2 versus time (|γ̇| = 2.5× 10−3s−1).

B. Trapped strains and stresses

A dry foam is a material with sufficiently high UY that
normal stresses may exist even when the material is at
rest [3, 15, 35]. To relax such residual (or “trapped”)
stresses, we should first shear the foam enough to reach
the plastic stage, so that plastic rearrangements anneal
the disorder. We then must perform cycles of shear.

If the direction of shear is kept constant, and the shear
simply reversed, the foam asymptotically reaches a limit
trajectory, and the stress is not relaxed. Decreasing the
amplitude of the shear cycle does not enable to leave this
limit trajectory (black dashes in Fig. 11ab). Kraynik
et al. simulated dry 3D foam and applied shearing cy-
cles (actually uniaxial contractions) of amplitude ≈ 0.2
in different directions, rotated by 90◦; this procedure de-
creases the trapped stress by a factor of around 2, which
does not improve with more cycles (Fig. 7 of [35]).

Here we propose a reproducible procedure based on
section III B 3, which couples shearing cycles in different
directions and decreasing amplitudes, as follows:
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• The amplitude γi of the first step is large enough
to completely reach the plastic stage: γi ≫ 2UY .

• At each step, the shearing direction is rotated by
90◦ and the shearing amplitude is decreased.

• The decrease in amplitude between successive steps
is smaller than 2UY /5, ensuring there are at least
5 steps between 2UY and 0 (i.e. the total number
of steps is at least 5γi/2UY ).

The red solid line in Fig. 11ab shows that the nor-
mal stress difference decreases more at each cycle; for
instance, 6 cycles yield a decrease by a factor of 10, ap-
parently without saturating. In 3D the procedure is the
same, rotating the shearing direction successively along
the x, y and z axes [35]. This procedure is easy to ap-
ply to simulations, especially of fully periodic foams. In
experiments, a special set-up should be built: in 2D, it
can be a rubber frame in the spirit of refs. [11, 25], if the
four corners can be independently displaced.

0 4 8 12
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y

a) b)

FIG. 12. Representations of the model for UY = 1. a) Uxy

versus γ for the first step and different yield functions, as
in Fig. 6a. b) Representation of the model for γ̇ > 0 in
component spaces for n → +∞, as in Fig. 9b.
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FIG. 13. Representations of the model for small strains. Uxy

vs Un = (Uxx − Uyy)/2. Black: exact model. Blue: first
parabolic approximation Un = U i

n + U2
xy . Red: complete

parabolic approximation (Eq. A16).

C. Materials with low and high UY

For practical purposes we plot the reference curves for
two limiting types of materials: those with UY much
higher or much lower than 0.23.
Fig. 12 shows the example of UY = 1. The plastic limit

corresponds to a small angle θY , resulting in a strong
overshoot.
Fig. 13 shows that for small strains in the elastic

regime, all curves can be expressed using a single pa-
rameter; for instance, as here, U i

n, which is the normal
elastic strain Un = (Uxx−Uyy)/2 at zero tangential shear
(U i

xy = 0). A rough parabolic approximation, and a re-
fined one (Eq. A16) are plotted here for UY = 0.3. For
smaller UY , this approximation is good over its whole
range of validity (namely the elastic regime), but this
range is smaller.

VI. SUMMARY

We propose a continuous model of the elasticity and
plasticity of disordered, discrete materials such as cellu-
lar patterns (for instance liquid foams or emulsions) and
assemblies of particles (for instance colloids). It is based
on statistical quantities including (i) the elastic strain U,
a dimensionless quantity measurable on images, which
facilitates the comparison between different experiments
or models, and makes apparent the effect of shear on the
material’s structure; (ii) the yield strain U , a classical
criterion for the transition between reversible, elastic and
irreversible, plastic regimes; (iii) and the yield function
h(U/UY ), which describes how progressive this transi-
tion is, by measuring the relative proportion of elastic
and plastic deformation. They suffice to relate the dis-
crete scale with the collective, global scale. At this global
scale, the material behaves as a continuous medium; it is
described with tensors such as strain, stress and velocity
gradient. We give the differential equations which pre-
dict the elastic and plastic behaviour. The model is fully
tensorial and thus general, in 2D or in 3D.
We study in detail the case of simple shear. An original

representation, suitable for 2D incompressible materials,
is introduced to follow the evolution of the material dur-
ing shear.
Since U is a tensor, it has an orientation and an am-

plitude, which both evolve under shear. It can contin-
uously decrease its amplitude, change direction and in-
crease again its amplitude without ever vanishing (as op-
posed to a scalar, which can change sign only when it
is equal to zero). Predictions of the model regarding
orientation and stretching are plotted. They include a
rotation of the structure, which can induce an overshoot
of the shear strain or shear stress (and a smaller, rarer
overshoot in normal stress differences) even without over-
shoot in the elastic strain amplitude. This purely tenso-
rial effect exists if UY is at least of order of 0.3. Indepen-
dently, the shear can also induce a change in the mate-
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rial’s structure, sometimes resulting in a (purely scalar)
overshoot in the modulus of the elastic strain.
The model extends a classical plasticity criterion to dis-

ordered media. It can be solved numerically and yields
testable predictions. We successfully compare them with
carefully converged quasistatic simulations of shear cycles
in 2D foams: the elastic strain increases, saturates and
reverses. From this comparison between model and sim-
ulation we determine UY and estimate h. This method
is similar to that which we have used in experiments to
extract UY [18, 29], and a rough estimate of h. We still
lack a model to predict UY and h. Both quantities evolve
throughout the simulation, probably due to the evolution
of the foam’s internal structure, as well as the disorder
and fluctuations. In short, the material obeys a contin-
uous description determined by its average properties,
while UY and h account for the effect at large scale of its
fluctuations.
All quantities involved in the model are directly mea-

surable, as tensors, in the current state of the material;
this includes trapped stresses which we discuss (we also
explain how to relax them): the history of the sample
which led to this current state plays no other direct, ex-
plicit role. We explain how and when to use the model
in practice, and provide a set of curves and analytical
approximations, including a discussion and an extension
of the Poynting relation. At low strain, typically below
0.2, tensorial effects vanish and an approximate scalar
simplification holds.
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Appendix A: Detailed equations

1. Notation for tensors

We collect here a list of our notation, since the defini-
tions are scattered throughout the text. For a symmetric
tensor A, we denote by A1 and A2 its eigenvalues, by
A1 + A2 = Axx + Ayy its trace, by Axy = Ayx its off-
diagonal term, by An = (Axx − Ayy)/2 half its normal

difference, by A =
√

(Axx −Ayy/2)
2 + U2

xy its ampli-

tude, and by ||A|| = A
√
2 its euclidian norm defined as

||A||2 = A : A. The scalar product of two tensors A and
B is defined as A : B =

∑

ij AijBij .
For a traceless tensor, A1 = −A2 > 0. If θ is the

angle corresponding to A1, then the point with coordi-
nates (A cos θ, A sin θ) is a representation of the actual
direction of the tensor (physical space). Conversely, the
point with coordinates An = A cos 2θ and Axy = A sin 2θ
directly represents the components of the tensor (compo-

nent space). For a tensor, θ is defined modulo π (and not
2π as for vectors), so that 2θ has usually more relevance
than θ. Similarly, for traceless tensors with eigendirec-
tions making a relative angle φ, their scalar product is
proportional to cos 2φ. This scalar product is maximal
when the two eigenvectors of the positive eigenvalues co-
incide, and minimized when they are perpendicular.

2. Complete system of equations

We have obtained [34] a complete (closed) set of equa-
tions:

ρ
d

dt
~v = ∇ · (−pId+ 2µU) , (A1a)

div ~v = 0, (A1b)

U =
1

2
(logM− logM0) , (A1c)

d

dt
M = M.∇v +∇v

t.M− 2P.M.

(A1d)

Eq. A1a is the equation of dynamics, equivalent to
Navier-Stokes, except that here the viscous stress is as-
sumed to be negligible compared to the elastic stress.
Eq. A1b assumes that the flow is incompressible; this
assumption is often valid for foams at small deformation
but can be relaxed if needed. Eq. A1c defines the elastic
strain from the texture [1], that is, it assumes that each
bubble’s internal degrees of freedom depend on its shape.
Eq. A1d is the evolution of the texture, see Eq. 6 for the
definitions of its terms (transport and source). Here the
plasticity rate P is predicted according to Eq. 22 in ref.
[29]:

P =
1

2

(

U

U
: ∇vsym

)

H
(

U

U
: ∇vsym

)

h

(

U

UY

)

U

U
.

(A2)
The meaning of each term is the following. The direction
of P is set by that of U, indicating that the plasticity is
opposed to the increase of U. The amplitude of P, that
is the rate of plastic rearrangements, is the inverse of a
time. It is determined by the total strain rate ∇vsym;
more precisely, by one component of ∇vsym, determined
by the scalar product with U (and only if this scalar
product is positive, as expressed by the Heaviside func-
tion H). Finally, the amplitude of P depends on the
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yield criterion, as expressed by h (U/UY ): the plasticity
appears (progressively or abruptly) when U approaches
then exceeds the yield strain.
Eq. A2 is written here by assuming that M and U

commute (see Eq. 20 of ref. [1]), which is always the
case if M0 is isotropic. Like Eq. A1b, it assumes that
the flow is incompressible, but can be extended to more
general cases. It also assumes that the flow is slow: see
ref. [31] for a discussion of “quasistatic” flow, and [18, 32]
for the extension to higher velocity.
The next appendices examine more restrictive cases,

that is, additional approximations: simple shear (A 3),
small strain (A 5), and the purely elastic regime (A 6).

3. Simple shear

In our geometry, the notation becomes:

∇vsym =
γ̇

2

(

0 1

1 0

)

,

M =

(

Mxx Mxy

Mxy Myy

)

,

U =

(

Uxx Uxy

Uxy Uyy

)

,

U : ∇vsym = Uxyγ̇ = Uγ̇ sin 2θ.

Here, due to our conventions, the angle between both
tensors is φ = θ − 45◦, hence the term cos 2(θ − 45◦) =
sin 2θ. This scalar product is maximal when the two
eigenvectors of the positive eigenvalues coincide (which
happens for θ = 45◦), and minimized when they are per-
pendicular (θ = 90◦).

4. Elasto-plastic component equations

Under simple shear the advection term is supposed
equal to zero and Eq. A1d becomes

1

γ̇
∂tMxx = 2Mxy −

Uxy

U2
H (γ̇Uxy)h

(

U

UY

)

[

=

U .
=

M
]

xx

(A3a)

1

γ̇
∂tMyy = −Uxy

U2
H (γ̇Uxy)h

(

U

UY

)

[

=

U .
=

M
]

yy

(A3b)

1

γ̇
∂tMxy = Myy −

Uxy

U2
H (γ̇Uxy)h

(

U

UY

)

[

=

U .
=

M
]

xy
.

(A3c)

The elastic regime can be studied by taking the last term
of these equations equal to 0 (limit of high UY ). The
plastic limit is calculated by taking the left hand sides of
these equations equal to 0, h = 1, and H = 1.

5. Scalar limit

In the limit of small strain, U can be linearized:

U =
1

2λ0

(M−M0), (A4)

where λ0 is the isotropic eigenvalue of M0. In that limit
Eq. A3c becomes

1

γ̇
∂tUxy =

(

Uyy +
1

2

)

− 1

2

(

Uxy

U

)2

H (γ̇Uxy)h

(

U

UY

)

.

(A5)
Assuming that θ remains close to 45◦ leads to

Uxx = Uyy = 0, (A6a)

|Uxy| = U, (A6b)

∂t2Uxy = γ̇ − γ̇H (γ̇Uxy)h

( |Uxy|
UY

)

. (A6c)

The last equation is identified as the scalar elasto-plastic
equation [31], by taking 2Uxy as the scalar elastic strain.

6. Analytical approximation at small strain

In a purely elastic regime, the evolution equation for
the texture is

Myy = M i
yy

Mxy = M i
yyγ +M i

xy

Mxx = M i
yyγ

2 + 2M i
xyγ +M i

xx.

(A7)

To express all curves analytically, we choose a single pa-
rameter, for instance the elastic strain in a non-sheared
state (U i

xy = M i
xy = 0):

Mn = M i
n +

M i
yy

2
γ2, (A8)

Mxy = M i
yyγ, (A9)

which can be rewritten by eliminating γ:

Mn = M i
n +

M2
xy

2M i
yy

. (A10)

There are still two constants left, M i
n and M i

yy. To elim-
inate one of them, we use the fact that the trace of U
is almost zero, and thus the determinant of M is almost
constant:

M i
xxM

i
yy = λ2

0, (A11)

or equivalently, using Eq. A10:

(2M i
n +M i

yy)M
i
yy = λ2

0. (A12)



14

Solving Eq. A12 yields

M i
yy

λ0

= −M i
n

λ0

+

√

(

M i
n

λ0

)2

+ 1 (A13)

or equivalently, eliminating M i
yy using Eq. A12:

Mn = M i
n +





√

(

M i
n

λ0

)2

+ 1 +
M i

n

λ0





M2
xy

2λ0

. (A14)

Coming back to U using Eq. A4:

Uxy =
1

2λ0

Mxy, Un =
1

2λ0

Mn. (A15)

Eq. A14 yields a parabolic approximation:

Un = U i
n +





√

(

U i
n

λ0

)2

+ 1 +
U i
n

λ0



U2

xy. (A16)

The parameter which determines each elasticity curve is
the normal strain difference at zero shear (which is thus
equal to the amplitude of elastic strain at zero shear). Eq.
A16 is tested on Fig. 13 for U up to 0.3. The prefactor
of the parabola, i.e. the bracket in Eq. A16, is exactly 1
if U i

n = 0: this is the Poynting relation [33] (black curve
on Fig. 13, starting from the point Un = Uxy = 0). In
fact, even for U i

n 6= 0, the bracket in Eq. A16 remains
close to 1: as shown in Fig. 13, the Poynting relation
extends even to an initially anisotropic material.
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[21] R. Höhler, and S. Cohen-Addad, J. Phys. Condens. Mat-
ter 17, R1041 (2005).

[22] C. Raufaste, S. Cox, B. Dollet, F. Graner, and Y. Jiang,
Eur. Phys. J. E 23, 217 (2007).

[23] K. Brakke, Exp. Math. 1, 141 (1992).
[24] K. Brakke, 200,000,000 Random Voronoi Poly-

gons. www.susqu.edu/brakke/papers/voronoi.htm

(1986). Unpublished.
[25] C. Quilliet, S. Ataei Talebi, D. Rabaud, J. Käfer, S. J.
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