
320 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 5, NO. 2. MARCH 1994

Discrete Recurrent Neural Networks
for Grammatical Inference

Zheng Zeng, Student Member, IEEE, Rodney M. Goodman, Member, IEEE, and Padhraic Smyth, Member, IEEE

Abstract-We describe a novel neural architecture for learning
deterministic context-free grammars, or equivalently, determin-
istic pushdown automata. The unique feature of the proposed
network is that it forms stable state representations during
learning-previous work has shown that conventional analog
recurrent networks can be inherently unstable in that they can-
not retain their state memory for long input strings. We have
recently introduced the discrete recurrent network architecture
for learning finite-state automata. Here we extend this model
to include a discrete external stack with discrete symbols. A
composite error function is described to handle the different
situations encountered in learning. The pseudo-gradient learning
method (introduced in previous work) is in turn extended for the
minimization of these error functions. Empirical trials validating
the effectiveness of the pseudo-gradient learning method are
presented, for networks both with and without an external stack.
Experimental results show that the new networks are successful
in learning some simple pushdown automata, though overfitting
and non-convergent learning can also occur. Once learned, the
internal representation of the network is provably stable; i.e., it
classifies unseen strings of arbitrary length with 100% accuracy.

I. INTRODUCTION

ECURRENT neural networks have recently been demon- R strated to have the ability to learn simple grammars 121,
141,151,161,[81,[111, 1121, [13], [17] and to learn deterministic
context-free grammars by using an extemal “continuous stack”
[3]. In this paper we focus our attention on “second-order’’
recurrent network structure of the type proposed by Giles et
al. in 181-henceforth, this particular model is referred to as the
analog second-order network. A typical analog second-order
network is shown in Fig. 1. These higher-order networks are
particularly adept at learning grammars when compared to the
simple recurrent network structure (also known as the Elman
structures 141, [5]) that do not use product units 181.

In previous work 1181, we have found that in learning a
regular grammar the analog second-order network attempts
to form clusters of points in hidden unit activation space as
its representation of the states of the grammar. Once formed,
these clusters are stable for short strings (strings with lengths
not much longer than the maximum length of training strings)
in the sense that the hidden unit activations move from one

Manuscript revised September 23, 1993. The research described in this
paper was supported in part by ONR andARPA under grant number N00014-
92-J-1860. In addition this work was carried out in part by the Jet Propulsion
Laboratory, California Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

Z. Zeng and R. M. Goodman are with the Department of Electrical
Engineering, California Institute of Technology, Pasadena, CA 91 125.

P. Smyth is with the Jet Propulsion Laboratory, California Institute of
Technology, Pasadena, CA 91 109.

IEEE Log Number 9214805.

COPY

COPY t

Fig. 1. An analog second-order network. Each square unit takes the product
of its two inputs as its output. When the current input is 1. input unit “ 0 has
value 0, and input unit “1” has value 1, and vice versa. The thickly circled
unit is the indicator unit, whose desired value is close to 1 when the input is
legal and close to 0 when the input is illegal.

distinct cluster to an~ther as the network follows a trajectory in
hidden unit space. However, for most of the trained networks,
when sufficiently long strings are presented for testing, the
hidden unit activations start to converge to a single cluster
and the original clusters ultimately become indistinguishable
[181. Similar behavior for recurrent networks with different
structures has been reported elsewhere [121, [141. In order to
achieve stability for long strings, we proposed in [181 a discrete
recurrent network architecture that uses discretization in its
feedback links. A pseudo-gradient training method is used to
train the network. Note that an alternative approach is to use
a conventional analog network in training and to then apply
various clustering techniques in the hidden unit activation
space (after learning) to enforce stability [8]. While this is
a valid approach, here we are more interested in constructing
a network that stabilizes itself (or equivalently, automatically
performs the clustering) during the learning process.

In this paper, for context-free grammars, we introduce a
discrete network architecture that has an external discrete
stack. In the proposed network, instead of clusters, the states of
the network consist of isolated points in hidden-unit activation
space. Hence, once formed, the internal state representation is
stable in a manner independent of string length.

The remaining part of the paper is organized as follows:
Section I1 summarizes our previous work on discrete recurrent
networks for learning simple grammars. Section 111 introduces
discrete recurrent networks that use extemal stacks, and the
pseudo-gradient training algorithm necessary for such models.
Section IV presents experimental results in learning determin-
istic context-free grammars using the discrete stack model, and
Section V concludes the paper.

1045-9227/94$04.00 0 1994 IEEE

ZENG et al.: DISCRETE RECURRENT NEURAL NETWORKS FOR GRAMMATICAL INFERENCE 32 1

r-
I

I

I
I
I I

L-

I

I
I -A

Fig. 2.
indicator unit: hi > 0.5 for legal strings and SA < 0.5 for illegal strings.

A discretized second-order network. The thick circled unithi is the

11. SUMMARY OF PREVIOUS WORK ON DISCRETE RECURRENT
NETWORKS FOR LEARNING SIMPLE GRAMMARS

A. Basic Structure of Discrete Recurrent Networks

A discrete recurrent network can be constructed by simply
taking an analog recurrent network and adding threshold
units to all the feedback links. In the case of second-order
networks, one can represent the structure as two separate
networks controlled by a gating switch (Fig. 2) as follows [181:
The network consists of two first-order networks with shared
hidden units. The common hidden unit values are discretized
and copied back to both netO and netl after each time step,
and the input stream acts like a switching control to enable
or disable one of the two "subnetworks." For example, when
the current input is 0, netO is enabled while netl is disabled.
The hidden unit values are then decided by the hidden unit
values from the previous time step weighted by the weights
in net0. The hidden unit activation function is the standard
sigmoid function, f(x) = *. The discretization function
is defined to be:

(1)
0.8 if x 2 0.5
0.2 if x < 0.5. D (x) =

The values 0.2 and 0.8 are chosen instead of 0 and 1 here in
order to give some power of influence to each of the current
hidden unit values over the next time step. A unit with value 0
would eliminate any influence of that unit over the next time
step. This is the general network structure that was used in
our first set of experiments [18].

We use hl to denote the analog value of hidden unit z at
time step t , and S," to denote the discretized value of hidden
unit i at time step t. w: is the weight from layer 1, unit j to
layer 2, unit i in net n. n = 0 or 1 in the case of binary inputs.
Hidden unit hk is chosen to be a special indicator unit whose
activation should be greater than 0.5 at the end of a legal
string, or smaller than 0.5 otherwise. At time t = 0, initialize
So0 to be 0.8 and all other Sp's to be 0.2; i.e., assume that the
null string is a legal string. The network weights are initialized
randomly with a uniform distribution between -1 and 1.

OO Js 10

(b)

Fig. 3. Extracted-state machine from the discretized network after learning
the 10-state machine: (a) 15-state machine extracted directly from the discrete
activation space, (b) equivalent minimal 10-state machine of (a). Note that
the state structure in (a) and (b) are quite similar; for example, states 1 and
6 in (a) are equivalent to 10 in (b), and states 12, 13, and 14 in (a) play a
similar role to state 7 in (b).

In [181 we showed that discretization can be included during
both training and testing using the formulae below. Note that
from the formulae one can clearly see that in operational mode,
i.e., when testing, the network is equivalent to a network with
discretization only:

3
S," = D(hf),

0.8 if x 2 0.5
0.2 if x < 0.5, where D (x) =

j s," = D (f (C w , " j s ; - '))
3

322 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 5, NO. 2, MARCH 1994

TABLE I
EXPERIMENTAL RESULTS FROM TRAINING THE DISCRETE RECURRENT NETWORK ON REGULAR GRAMMARS.*

Training set

of hidden units Mean # of epochs U of epochs Mean # Of
characters Grammar

of strings L,,,,.

Tomita #1
Tomita #2
Tomita #3
Tomita #4
Tomita #5
Tomita #6
Tomita #7

Vending machine
10-state machine

50
100
150
100
100
100
100
365
317

5
8
12
8
8
8
10
6
12

36.4
38.8
82.8
76.6
64.4
20.8
138.5
231.8
5798

33.4
27.3
43.2
27.0
20.7
8.3

31.1
22.4

5205
18120
77040
31712
26662
861 1

70774
383165

143 15262

*L,,, is the maximum length of training strings. The numbers for epochs and total characters processed during learning are the average numbers over 5
runs with different random weight initializations, except for the 10-state machine, for which only one run was obtained. U is the standard deviation of the
epochs over the 5 runs. All runs, except one in learning Tomita #3 and one in learning Tomita #7 which failed to converge, have perfect generalization
performance; i.e., are 100% correct on strings of any length.

(Here zt is the input bit at time step t.)
Hence, the sigmoid units can be eliminated during testing

to simplify computation.
During training, however, the gradient of the soft sigmoid

function is made use of in a pseudo-gradient method for
updating the weights.

B. The Pseudo-Gradient Learning Method

In order to train the discrete network, in [181 we proposed
an approximation to gradient descent that we call the pseudo-
gradient leaming rule. During training, at the end of each
string {zo, zl, . . . , z L } the mean squared error is calculated
as follows (note that L is the string length and that h i is the
analog indicator value at the end of the string):

1
2

E = -(hk - T)’,

In carrying out the chain rule for the gradient we replace
the real gradient +, which is zero almost everywhere, by

the pseudo-gradient ah,. The justification of the use of the
pseudo-gradient is as follows: suppose we are standing on one
side of the hard threshold function S(z), at point z o > 0,
and we wish to go downhill. The real gradient of S(z) would
not give any information since it is zero at 50. If instead we
look at the gradient of the function f(z), which is positive
at z o and increases as zo + 0, it indicates that the downhill
direction is to decrease 20, which is also the case in S(z).
In addition, the magnitude of the gradient tells us how close
we are to a step down in S(z). Therefore, we can use that
gradient as a heuristic hint to indicate direction and how close
a step down would be. This heuristic hint is what we use as
the pseudo-gradient in our gradient update calculation in (2).

ast-’
‘e t - 1

awz3

where
1 if “legal” C . Experimental Results on Learning Regular Grammars
0 if “illegal.” Table I shows the experimental results obtained by training

method on various grammars, including the Tomita grammars
the discrete recurrent network by the pseudo-gradient learning

[161, a simple vending machine model [18], and a particular
10-state machine [9] - some of the Tomita grammar and
vending machine results are described in more detail in [18].
An epoch is one presentation of the whole training set to
the network. The total number of characters processed is the
cumulative count of all characters in all strings presented to

T = target =

UNate w;, the weight from unit j to unit i in net n, at the
end of each string presentation: -

dE

a w ;
WE = w z - a-, V n , i , j ,

ahL -
- = (hf - T)L, V n . i , j ,
d E
a q aw;

the network in all training epochs. The results in Table I
demonstrate that the discrete recurrent network model can be

-
where 4 is what we call the “pseudo-gradient’’ with respect aw% I

to W E . . successfully trained to recognize simple grammars. Further-
To get the pseudo-gradient %, pseudo-gradients ah, for more, because Of its discrete nature, the network is inherently

all t, k need to be calculated forward in time at each time step:
As an example of the ability of the network to learn

aht %;-I grammars ofmedium complexity, Fig. 3(a) shows the effective
+ 6kz6nztS~-1)~Vk~ t . wz”,. (2) automaton leamed by the network trained on strings from the

10-state machine. Application of Moore’s algorithm to this 15-

- - L - t

awc3 for strings Of length.

IC = f’. (Ew;;-
1 aw; aw;
- 0

(Initially, set: $ = 0, ~ i , j , n, k.1
3

state network automaton results in a reduction to the correct
10-state machine shown in Fig. 3(b).

ZENG et al.: DISCRETE RECURRENT NEURAL NETWORKS FOR GRAMMATICAL INFERENCE 323

2.5 I

,

Fraction of Good Moves

Accumulated Error Decrease

-Accumulated Error Increase

1
a

- B
0.8 =

1 8

~

0

0.6
C - -
8

~ 0.4

~ 0.2

r - T 1--7- 4 0
0 20 40 60 80 100 120
I

2

e
k 1.5
C

Iy

P
x

El >
0 1

- a
a 0.5

-
E’

Epoch number

(a)

Fraction of Good Moves

Accumulated Error Decrease

-Accumulated Error Increase

0 - -
I -

- - --

1.2

1
In

B

8

.E

0.8
0

0.6

c
U

0.4 I;

0.2

0
0 10 20 30 40 50 60

Epoch number

Fig. 4. Statistical record of the pseudo-gradient learning of regular grammars. In each plot, the solid curve corresponds to the fraction of successful moves
for each learning epoch, the bottom dotted curve corresponds to the summation of error reduction on a string by all successful moves in each epoch, and the
remaining curve is the summation of error increases on strings by all bad moves. The training set and the number of hidden units used for each grammar are
the same as in Table I. The grammars being learned are: (a) Tomita #3. (b) Tomita #5. (c) Tomita #7. (d) The vending machine.

D. Empirical Investigation of the Pseudo-Gradient Learning

Theoretical analyses of leaming in recurrent networks can
be quitenon-trivial. In particular, analytical investigation of our
proposed pseudo-gradient method for recurrent networks, ap-
pears intractable. Hence, we are limited to empirical evidence
to support our claim that the method indeed appears to work
well on non-trivial problems.

Figures 4(a)-(d) show the typical leaming processes of four
of the grammars described in Section 11-C (plots of other
grammars and of networks with different initial conditions
have similar features and are not shown.) During each epoch
of learning, the training strings are presented to the network
one by one. In processing each string, pseudo-gradients are
calculated and all weights are updated accordingly if the
network makes an erroneous decision on that string. After
each such weight update, we test the network with the new

set of weights on the same string, and thus a new error is
calculated. If the new error is smaller than the old one, we
can then conclude that the pseudo-gradient has successfully
decreased the error on this specific string as it was intended
to; otherwise, we count it as a failure, or “bad move.” Thus, the
total fraction of “successful moves” (out of the total number
of weight updates) induced by the pseudo-gradient algorithm
can be calculated for each epoch. In each of the plots, the
solid curve corresponds to this fraction of “good moves” as a
function of the epoch number.

To evaluate the severity of the effect of all the “bad moves,”
we also record the magnitude of each error increase or decrease
on a string after each weight update, and sum the error
increases and decreases for each epoch. The lower dotted
curve in each of the plots corresponds to the summation of
all the error increases (or the cumulative effect of all “bad
moves”) as a function of epoch number, while the remaining

324 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 5, NO. 2, MARCH 1994

3

W
c 2.5

Q a
a 2
0
m
& 1.5 -
j 1

0.5

0

Fraction of Good Moves

--Accumulated Error Decrease

-Accumulated Error Increase

0.8

1 8
0.6

c -
-
1

0.4

- 0.2

I o
40 60 80 100 120 140

Epoch number

(C)

Fraction of Good Moves

Accumulated Error Decrease

Y V

2 r

t o
50 100 150 200 250 300

Epoch number

(4
Fig. 4. (Confinued.)

oscillating curve is the summation of all error decreases (“good
moves”) per epoch.

It is clearly evident that the pseudo-gradient algorithm
induces successful moves over 80% of the time. In addition,
when bad moves occur, their cumulative effect per epoch is
always smaller (and often much smaller) than the cumulative
effect of the successful moves, except during one epoch
while leaming the Tomita #7 grammar. Hence, the empirical
evidence clearly indicates that the overwhelming tendency
of the pseudo-gradient algorithm is to reduce the error on a
per-string and per-epoch basis.

It is interesting to note that when one looks at the bad
moves individually, the magnitude of an error increase by
a single bad move is on average much larger than an error
decrease caused by a single successful move-however, it is
the cumulative effect that accounts for the convergence of the
learning. Also note that the bad moves do not necessarily occur
more frequently as the grammars become more complicated.

In conclusion, our empirical investigations have shown that
although following the pseudo-gradient descent direction does

not guarantee error reduction, it is certainly an effective way
to conduct the training of discrete recurrent networks.

111. DISCRETE RECURRENT
NETWORKS WITH EXTERNAL STACKS

Regular grammars are the simplest type of grammar in
the Chomsky language hierarchy [lo], and have a one-to-one
correspondence with finite-state machines. Thus, a network
that can represent any finite state machine is sufficient for
representing regular grammars. The next class of grammars in
the hierarchy are called context-free or type 2 grammars. They
represent a much wider class of languages than do regular
grammars-finite-state machines are not sufficient to represent
all such grammars.

The theory of finite automata and formal languages states
that there exists a one-to-one correspondence between context-
free languages and pushdown automata. That is, one needs
to have an extemal stack to operate on beside the finite-
state machine in order to represent context-free grammars. By
training the network to behave like a pushdown automaton

ZENG et al.: DISCRETE RECURRENT NEURAL NETWORKS FOR GRAMMATICAL INFERENCE 325

Fig. 5. A discretized second-order network with an extemal stack.The thick
circled unit hb is the indicator unit: h6 > 0.5 for legal strings and 11; < 0.5
for illegal strings.

we equivalently obtain a finite-state machine with an external
stack that accepts the corresponding context-free grammar.

As in [3] , we restrict the scope to context-free grammars
with the following restrictions: given a current automaton
state, there cannot be more than one choice of next state, the
alphabet of the stack symbol is set to be the same as the
input alphabet, only the current input symbol can be pushed
onto the stack, and epsilon transitions (which can make state
transitions or stack actions without reading in a new input
symbol) are not allowed. In short, we consider a subset of
deterministic pushdown automata, or deterministic context-
free grammars. Note that to learn an arbitrary push-down
automaton, a third-order architecture is necessary [3].

Shown in Fig. 5 is the structure of a discrete recurrent
network withan extemal stack for the case of binary input and
stack symbols. The primary differences between this structure
and the one proposed in [3] are that we have a discrete stack
as well as discretized units.

In Fig. 5 we have, in effect, four first-order networks with
shared hidden units. In addition to the input symbol that acts
as control to enable or disable net0 or netl , the current top-of-
stack symbol also acts as a second gating control that enables
or disables net2 or net3. Note that if the stack is empty, then
both net2 and net3 are disabled, a situation that does not
happen to the net0-net1 pair.

As before, the unit ho is defined to be the “indicator” unit,
whose activation should be greater than 0.5 at the end of a
legal string and smaller than 0.5 otherwise. The last unit, in this
case h 2 , is singled out to be the “action” unit, whose activation
decides what stack action to take. However, the value of this
activation does not get copied back to the next time step. If
h 2 is greater than a certain value (for the experiments reported
here it is set to 0.6) then the current input symbol is pushed
to the stack. If it is smaller than a certain value (0.4 in our
case), then a symbol is popped out of the stack. Otherwise no
action is taken.

The activation functions of the h units and the discretization
function of the S units are the same as defined in Section 11.

The error functions for training networks with stacks to
leam context-free grammars are more complicated than for the
simple grammars discussed in Section IV. Several situations
can be encountered during learning, each requiring the use of a
different error function. We start by basing our error functions
on those proposed in [3] , but there are some significant
differences.

Let 110, hl , ...! h L $ r be the hidden units of the network, where
ho is the “indicator” unit and hAh, is the “action” unit. Assume
the current string being processed is x:O; xl: ..., :cL, where L is
the string length. Let dt denote the depth of the stack at time
step L , and let U* be the top of stack symbol at time step t .
The different error functions are as follows:

1) If the string is legal and the end of the string is reached
(without any attempt to pop an empty stack),

1
E = n((1 - ht)2 + (&)’).

L

This means that for legal strings we want both the
indicator unit to be on and the stack to be empty.

2) If the string is illegal and the end of string is reached
(without any attempt to pop an empty stack),

E = { ki - d L if h i - d L > 0
otherwise.

This means that for illegal strings we want either the
stack to be nonempty, or the indicator unit to be off.

3) If the network attempts to pop an empty stack at time
step t ,

i(1 - h,iT)’ - dt if the string is legal
if the string is illegal. E = (0

This means that for legal strings we want to correct the
error of attempting to pop an empty stack by forcing
the action unit value away from 0; i.e., avoid the “pop
stack” action and at the same time encourage the stack to
become nonempty. On the other hand, for illegal strings,
we do nothing because the attempt to pop an empty stack
is considered an indication that the string is illegal.

Das er al. have suggested in [3] that by providing the
network with a “teacher” or an “oracle” to give hints, the
leaming can be sped up significantly. The teacher or oracle
works as follows: there are certain illegal strings that are not
prefixes to any legal strings: i.e., any symbols that follow such
strings do not provide any further information. Henceforth, we
will call these strings dead strings. The teacher is assumed to
have the ability to identify such strings. Whenever a point
is reached in the input string such that no further processing
of the remaining string is necessary, the teacher produces a
signal and the leaming is halted. The network is then trained
to have another special hidden unit, designated as the “dead
unit,” tum on. After the network has been trained in this way,
a string is considered to be classified as illegal whenever the
dead unit is tumed on during testing. The error functions have
to be modified accordingly.

We found that it is not sufficient to add an error function
only for the dead strings and to keep the other error functions
(3)-(5) the same. For strings other than the dead strings, the

326

network needs to be trained to have the dead unit tum off
to avoid confusion. More specifically, letting hi be the dead

we have the following:
If the string is legal and the end of string is reached
(without any attempt to pop an empty stack),

1
E = 2((1 - h;)’ + (dL)’ + (hf)’) ,

i.e., we want the indicator unit to be on, the stack to be
empty and the dead unit to be off.
If the string is illegal but not a dead string, and the
end of string is reached (without any attempt to pop an
empty stack),

h i - dL + ;(hf)’ if h[- d L > 0
E = { i (h f) 2 otherwise,

i.e., we want either the stack to be nonempty, or the
indicator unit to be off, and for both cases, the dead unit
to be off. The dead unit should not be on for such strings
because they could be prefixes to certain legal strings.
If the string up to time step t is a dead string,

i((1 - hi)’ + (h;)’) if stack is empty
otherwise. E = { g(1 - hi)’

This means we want the dead unit to turn on and either
the indicalor unit to turn off or the stack to be nonempty.
If the dead unit tums on at time step t before any possible
signal for a dead string,

1 E = -(hi)’
2

We do not want the dead unit to turn on too early since
the string up to thus point could still be a prefix to certain
legal strings.
If the network attempts to pop an empty stack at time
step t , before any possible signal for a dead string,

i (1 - hk)’ - dt if the string is legal
if the string is illegal. E = { ;

Here we do not try to force the dead unit to turn on or
off because it has been behaving as desired so far.

As in Section 111, for the case with non-stack networks,
the pseudo-gradient method is again used for training. The
pseudo-gradients of error functions in weight space concern

both ah, for all t , I C . 71, i, j , and % for all t , n, i , j . The
former is calculated the same way as before. To calculate the
latter, i.e., the pseudo-gradient of the depth of the stack, we
use the iterative operational equation:

- t - t

aut, aw>,

where

1 if z > 0.4

0 otherwise.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 5 . NO. 2. MARCH 1994

- 0

Initially, set % = 0 for all n,z , j . After each time step,
update:

amt3

Here, in place of the gradient of the piece-wise step function
D1, we still use the pseudo-gradient of the action unit hn;.
Although the value of the action unit does not get discretized
and copied back after each time step, its pseudo-gradient can
still be calculated by utilizing the pseudo-gradients of other
hidden units:

N-1 :tdl

Here we have left out a term conceming the top-of-stack
symbol’s dependency on the weights. Since a simple recurrent
form of this term is analytically impossible to derive, an
approximation was used in [15]. In our formula, the pseudo-
gradient is itself an approximation; further fine tuning by this
term may not be necessary. Empirical results in Section IV will
demonstrate that the networks can indeed perform successful
leaming without this term in the formula. Thus, the coupling
between the stack and the network during leaming is reflected
only in the previous formula for the gradient of the stack depth.

Iv. EXPERIMENTAL RESULTS ON LEARNING
DETERMINISTIC CONTEXT-FREE GRAMMARS

A . Overall Results

We experimented with the same grammars as in [3] , i.e.,
1) The parenthesis matching grammar.
2) The postfix grammar.
3) anbn.
4) amfnbmcn.
5) anbncbmam.
As in [3], a training set consists of all strings up to a certain

length, with repeated legal strings so that there are about half
as many legal strings as illegal ones.

II(a) and (b) show the detailed results for experiments with
and without hints, respectively. The numbers in each row
are averages over the successful runs (out of 10 possible
successful runs) with different initial conditions-a successful
run is taken to mean a run in which the network generalizes
perfectly for all string lengths. The number of overfitting runs
indicates the number of times in the 10 runs that the network
overfits the data by using too many internal states and did not
generalize. The number of non-convergent runs is the number
of times in the 10 runs that the training had not converged
after 1000 epochs and was halted. Note that the number of
unsuccessful runs are significantly fewer for the case with
hints than without hints-hence, hints generally improve the
reliability of the learning procedure. It is still an open question
as to how to avoid overfitting in general by controlling the

ZENG et al.: DISCRETE RECURRENT NEURAL NETWORKS FOR GRAMMATICAL INFERENCE 327

Table 11. Experimental results from training the discrete recurrent network on context-free grammars (a) with hints; (b) without hints.*

(a)

mean # of

characters

training set
mean of iv, 2\7s epochs n of epochs total # of hidden

units -vn grammar
of strings L,,,,,

Parenthesis 46 6 3 0 0 10 28.8 16.3 5205
Postfix 63 7 4 1 0 9 62.3 17.1 21131
a” b“ 32 6 4 2 0 8 127.3 4.9 16797

arrr+nbmen 120 8 5 2 0 8 63 36.0 7560
anbncbmam 150 7 7 3 3 4 328.8 249.1 243275

(b)

training set
of hidden jb,-L

units grammar
of strings L,,,

mean # of of epochs mean # of
epochs total character A’s

Parenthesis 180 6 3 0 0 10 12.0 10.5 1 1208
Postfix 37 1 7 4 4 2 4 185.8 149.0 408464
a” b” 760 8 5 4 4 2 150.5 87.5 793436

* The training set and hidden unit columns indicate the fixed learning parameters for each grammar. IO runs with different random initial weights were carried
out for each grammar. NS, the number of successful runs is the number of runs (of the 10 possible) for which the trained network generalized perfectly
for strings of any length. The means for the epochs and total characters processed (and the standard deviation for the epochs) were estimated only from the
successful runs. iV,, the number of overfitting runs is the number where the network overfitted the data and did not generalize perfectly.’\‘,,, the number of
non-convergent runs is the number of runs where the network did not converge on the training data after 1000 epochs.

b. -. P A /-.PP

(b)

Fig. 6. Extracted pushdown automata from the discretized network withan
external stack after learning (a) the parenthesis grammar without hints; (b) the
grammar an b“ with hints. Double-circled means the state has an indicator unit
on, So = 0.8; thus, a processed string is legal if the automaton arrives at such
a state and if the stack is empty. A dead state means the state has its dead unit
on, SI = 0.8; a processed string is illegal as soon as the automaton arrives
at such a state. A transition rule is labeled by “x,y,z,” where x stands for
the current input symbol, y stands for the top-of-stack symbol (“-” means an
empty stack), and z stands for the operation taken on the stack; “PS” means
push, “PP’ means pop.

size of the derived automaton during learning. It should be
noted however that overfitting did not occur for 4 out of the
5 grammars in the experiments when hints were provided.

The hidden unit sizes and training set sizes shown in Table
II(a) and (b) are the minimum sizes for which generalization
could be obtained for each problem-experiments using either
less training data or fewer hidden units invariably resulted in
less than perfect generalization.

As an example, Fig. 6(a) and (b) show the derived push-
down automata from the networks after being trained on
the parenthesis-matching grammar and the anbn grammar
respectively. As before, each state corresponds to one single
point in the network’s hidden unit activation space and the
transition rules are derived similarly: set the S:-’ units to each
of the points (states) in the activation space, give the network
different combinations of input and top-of-stack controls, and
thus calculate the next state given such input and stack
conditions.

Note that for the parenthesis-matching grammar, the net-
work finds a pushdown automaton that has one single state.
Starting from an empty stack, when the input is a “(,” it pushes
this input onto the stack. When the input is a “),” it either pops
a “(” from the stack if the top-of-stack is a “(,” or pushes the
“)” onto the stack otherwise. Thus, whenever there are more
“)”s than “(”s, the machine executes a “push stack” operation
no matter what the input symbol is, making the stack nonempty
(indicating an illegal string) from this point on.

B . Empirical Investigation of the Pseudo-Gradient Learning

In a manner similar to that of Section 11-D, we investigated
how well the pseudo-gradient learning performed in learning
pushdown automata. Plots of the fraction of successful moves
by the pseudo-gradient algorithm and the accumulated error
increases and decreases as a function of epoch number are
shown in Fig. 7.

It can be observed from the plots that the pseudo-gradient
algorithm makes bad moves in learning context-free grammars
more often than it did in learning regular grammars. However,
the percentage of successful moves are still mostly over 80%,

328 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 5, NO. 2, MARCH 1994

Fraction of Good Moves

Accumulated Error Decrease I - .~... ' 1 -Accumulated Error Increase

1

m m
s

0.8 =
I

0.6 5
,E
I

0.4

0.2

0
0 10 20 30 40 50 60 70 BO

Epoch number

(a) Postfix, with hint.

Fraction of Good Moves

Accumulated Error Decrease

, I , ' , ,
- 2 '

Epoch number

10 15 20 25 30 35

(b) uTn+n6nrrn , with hint.

Fig. 7. Statistical record of the pseudo-gradient leaming of pushdown automata. In each plot, the solid curve corresponds to the fraction of successful
moves for each leaming epoch. The bottom dotted curve corresponds to the summation of error reduction on a string by all successful moves in each
epoch, and the remaining curve is the summation of error increases on strings by all bad moves. The training set and the number of hidden units
used for each grammar are the same as in Table 11. The grammars being leamed are: (a) Postfix, with hint. (b) am+rL6mc'L , with hint. (c) Parenthesis
matching, without hint. (d) anbn, without hint.

and the accumulated error increases (due to bad moves) for any
epoch are much smaller than the accumulated error decreases,
except during one epoch in leaming anbn without hints.
Thus, as we found with the regular grammars, the empirical
evidence suggests that the pseudo-gradient algorithm is quite
effective in training discrete recurrent networks with extemal
stacks.

C. Discussion
Using a discrete network as well as a discrete stack results in

the advantages of a stable network, and a clear understanding
of the operation of the stack. In [3] , where a continuous stack
was used, the results show that the trained networks do not
always generalize perfectly.

From the results in Table 11, it can be seen that providing
the network with hints can indeed speed up learning, or
even enable the learning of the grammars in cases where
the grammar could not be learned without hints. However,
unlike [3], we did not find incremental presentation of the
training data helped in improving the leaming. Incremental
presentation means that the network is initially given a small
data set consisting of only short strings. After it has learned
the current data set, more strings longer in length are added to
the training set until all training strings are leamed. We found
in our experiments that once the network finds a configuration
to fit the small data set with short strings, it is sometimes
very hard to drag it away from that configuration to a desired
configuration that will fit the later (longer) strings as well.
The training times with and without incremental presentation

ZENG er al.: DISCRETE RECURRENT NEURAL NETWORKS FOR GRAMMATICAL INFERENCE

0 -

329

---_._

0 2 4 6 8 10 12

c
A g 20

a !i

Fraction of Good Moves

Accumulated Error Decrease

’O E -Accumulated Error Increase

0.6

4 0
14

1 1.2

C 50
0

40

10

0

1
m
>

0.8 $
x
,E

0.6 5

I

0
0.4

0.2

0
0 20 40 60 ao i o 0

Epoch number

(d) un bn, without hint.

Fig. 7. (Continued.)

of strings are comparable in our experiments. The numbers V. CONCLUSION
listed in Table II(aj and (b) are of runs with the training data
set presented to the network all at once.

We postulate that the reason why incremental learning
worked for analog networks but not for discrete networks is
due to the nature of analog and discrete networks. The analog
network always finds a “soft” solution to a data set, which
only has clear decisions for short strings, but is vague on long
strings. Thus it is easy for it to “harden” such a solution when
more restrictions about longer strings are enforced. The result
is a solution whose “hardness” or decisiveness depends on the
maximum length of the training strings. On the other hand,
the discrete network always finds a “hard” solution to a data
set that has clear decisions for strings of any length. Once it
settles in such a solution it is hard to enforce restrictions about
longer strings that contradict the current solution. So one may
as well provide all the restrictions to the network at once. As
long as there exists sufficient information in the data set, the
resulting solution does not depend on the maximum length of
training strings.

The primary advantages of introducing discretization into

1) Once the network has successfully learned an automaton
from the training set, its intemal states are stable. The
network will always classify input strings correctly,
independent of the lengths of these strings.

2) No manual clustering (as in [SI) is required to extract the
state machine explicitly, since instead of using “cluster
clouds” as its state representation, the network forms
distinct, isolated points as states. Each point in activation
space is a distinct state and, hence, the trained network
behaves exactly like a state machine.

3) In terms of implementation the discretized recurrent
network is easier to implement in hardware particularly
when an external stack is used.

In conclusion, we have presented in this paper the basic
ideas and algorithms for implementing stable discrete recurrent
networks for learning deterministic context-free grammars.

recurrentnetworks can be summarized as follows:

330 lEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 5, NO. 2, MARCH 1994

Specifically, we extended our previous discrete network mod-
els to include an external discrete stack with discrete symbols,
defined an appropriate error function for learning, and derived
a pseudo-gradient learning rule for this error function. The
available empirical evidence indicates that the pseudo-gradient
learning algorithm is effective in training such a network. The
overall experimental results show that the proposed network
has similar capabilities for leaming context-free grammars
as the analog second-order networks, while avoiding any
problems with instability on long strings.

REFERENCES

[I] J. Carroll, D. Long, Theory of Finite Automata, Englewood Cliffs, NJ:
Prentice Hall, 1989.

[2] A. Cleeremans, D. Servan-Schreiber, and J. L. McClelland, “Finite state
automata and simple recurrent networks,” Neural Computation, vol. 1.
pp. 372-381, 1989.

[3] S. Das, C. L. Giles, and G. Z . Sun, “Using prior knowledge in
an NNPDA to learn context-free languages,” in Advances in Neural
Information Processing Systems 5 , S. J. Hanson, J. D. Cowan and C. L.
Giles, Eds. San Mateo, CA: Morgan Kaufmann, pp. 65-72, 1993.

[4] I. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14, pp.
179-211, 19CN.

(51 J. L. Elman, “Distributed representations, simple recurrent networks,
and grammatical structure,” Machine Learning, vol. 7, nos. 2 and 3, pp.
195-225, 1991.

[6] S. E. Fahlman, “The recurrent cascade-correlation architecture,” Ad-
vances in Neural Information Processing Systems 3, R. P. Lippmann,
J. E. Moody, and D. S . Touretzky, Eds. San Mateo, CA: Morgan
Kaufmann, pp. 190-196, 1991.

[7] K. S . Fu, Synfactic Pattern Recognition and Applications, Englewood
Cliffs, NJ: Prentice-Hall, 1982.

[SI C. L. Giles, C. B. Miller, D. Chen, H. H. Chen, G. Z. Sun, and Y.
C. Lee, “Learning and extracting finite state automata with second-
order recurrent neural networks,” Neural Computation, vol. 4, no. 3,
pp. 393405, 1992.

[9] C. L. Giles, C . B. Miller, D. Chen, G. Z. Sun, H. H. Chen, and Y.
C. Lee, “Extracting and leaming an unknown grammar with recurrent
neural networks,” in Advances in Neural Information Processing Systems
4 , J. E. Moody, S. J. Hanson, and R. P. Lippmann, Eds. San Mateo,
CA: Morgan Kaufmann, pp. 317-324, 1992.

[IO] J. E. Hopcroft and J . D. Ullman, Introduction to Automata Theory,
Languages and Computation, Reading, MA: Addison-Wesley, 1979.

[1 I 1 M. I. Jordan, “Serial order: A parallel distributed processing approach,”
Tech. Rep. no. 8604, San Diego: University of California, Institute for
Cognitive Science, 1986.

[I21 J. B. Pollack, “The induction of dynamical recognizers,” Machine
Learning, vol. 7, nos. 2 and 3, pp. 227-252, 1991.

(131 D. E. Rumelhart, J. L. McClelland, and the PDP Research Group,
Parallel Distributed Processing, pp. 354-36 1, Cambridge, MA: The
MIT Press, 1986.

[14] D. Servan-Schreiber, A. Cleeremans, and J. L. McClelland, “Graded
state machines: The representation of temporal contingencies in simple
recurrent networks,” Machine Learning, vol. 7, nos. 2 and 3, pp.

[151 G. Z. Sun, H. H. Chen, C. L. Giles, Y. C. Lee, and D. Chen,
“Connectionist pushdown automata that learn context-free grammars,”
Proceedings of the International Joint Conference on Neural Networks,
vol. 1, pp, 577, Washington, DC, 1990.

[16] M. Tomita, “Dynamic construction of finite-state automata from exam-
ples using hill-climbing,” Proceedings of the Fourth Annual Cognitive
Science Conference. p. 105, 1982.

161-193, 1991.

[17] R. J. Williams and D. Zipser, “A learning algorithm for continually
running fully recurrent neural networks,” Neural Computation, vol. I,
no. 2, pp. 270-280, 1989.

[18] Z. Zeng, R. Goodman, and P. Smyth, “Learning finite state machines
with self-clustering recurrent networks,” Neural Computation, vol. 5,
no. 6. 1993.

Zheng Zeng was bom in Nanjing, the People’s
Republic of China, in 1965. She received the B.S.
degree in Electronics Engineenng with honors from
Tsinghua University, Beijing, the People’s Republic
of China in 1988, and the M.S degree in Elec-
tncal Engineering from the Califomia Institute of
Technology, Pasadena, CA, in 1991, where she 15

currently pursuing the Ph.D. degree. Her research
interests include machine leaming techniques, neu-
ral network models and algonthms, their applica-
tions in pattem recognition, grammatical inference.
and sequence analysis.

Rodney M. Goodman, (M’85). was born in Lon-
don England, on February 22, 1947. He received
the B.Sc. degree in Electncal Engineering from
Leeds University, Yorkshire, U.K. in 1968, and the
Ph.D. in Electronics at the University of Kent at
Canterbury, U.K., in 1975. In 1985 Dr. Goodman
joined the faculty of the Department of Electncal
Engineering at the Califomia Institute of Technol-
ogy as Associate Professor. Dr Goodman’s research
interests are in error control coding, cryptography,
neural networks, and expert systems-from both a

theoretical and a VLSI implementation viewpoint. He has consulted for a wide
variety of government and commercial organizations, and is a founder of two
advanced technology research and development companies in the U.K He is
currently a consultant for the Jet Propulsion Laboratory, and Pacific Bell. Dr.
Goodman is a Chartered Electrical Engineer of the I.E.E. in the U.K., and a
Member of the IEEE.

Padhraic Smyth, (S’82-M’85-S’S5-M’88), was
bom in Kilmovee, Ireland in 1962. He received a
first-class honours B.E. (Bachelor of Engineering)
degree from University College Galway, National
University of Ireland, in 1984, and the M.S. and
Ph.D. degrees in electrical engineering, in 1985 and
1988 respectively, from the Califomia Institute of
Technology. From 1985 to 1988 he worked part-
time as a research consultant with Pacific Bell in
the areas of telecommunications switching systems
and automated network management. In 1988 he

joined the Communications Systems Research Section at the Jet Propulsion
Laboratory, Pasadena, where he is currently a Technical Group Leader. He
has received 10 NASA certificates of appreciation for technical innovation
since 1988 and was awarded the Lew Allen Prize for Excellence at JPL in
1993. Dr. Smyth’s research interests include statistical pattem recognition, de-
cision theory, information theory, source coding, telecommunications, and the
application of probability and statistics to problems in artificial intelligence.

