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Discrete Recurrent Neural Networks 
for Grammatical Inference 

Zheng Zeng, Student Member, IEEE, Rodney M. Goodman, Member, IEEE, and Padhraic Smyth, Member, IEEE 

Abstract-We describe a novel neural architecture for learning 
deterministic context-free grammars, or equivalently, determin- 
istic pushdown automata. The unique feature of the proposed 
network is that it forms stable state representations during 
learning-previous work has shown that conventional analog 
recurrent networks can be inherently unstable in that they can- 
not retain their state memory for long input strings. We have 
recently introduced the discrete recurrent network architecture 
for learning finite-state automata. Here we extend this model 
to include a discrete external stack with discrete symbols. A 
composite error function is described to handle the different 
situations encountered in learning. The pseudo-gradient learning 
method (introduced in previous work) is in turn extended for the 
minimization of these error functions. Empirical trials validating 
the effectiveness of the pseudo-gradient learning method are 
presented, for networks both with and without an external stack. 
Experimental results show that the new networks are successful 
in learning some simple pushdown automata, though overfitting 
and non-convergent learning can also occur. Once learned, the 
internal representation of the network is provably stable; i.e., it 
classifies unseen strings of arbitrary length with 100% accuracy. 

I. INTRODUCTION 

ECURRENT neural networks have recently been demon- R strated to have the ability to learn simple grammars 121, 
141,151,161,[81,[111, 1121, [13], [17] and to learn deterministic 
context-free grammars by using an extemal “continuous stack” 
[3]. In this paper we focus our attention on “second-order’’ 
recurrent network structure of the type proposed by Giles et 
al. in 181-henceforth, this particular model is referred to as the 
analog second-order network. A typical analog second-order 
network is shown in Fig. 1. These higher-order networks are 
particularly adept at learning grammars when compared to the 
simple recurrent network structure (also known as the Elman 
structures 141, [5]) that do not use product units 181. 

In previous work 1181, we have found that in learning a 
regular grammar the analog second-order network attempts 
to form clusters of points in hidden unit activation space as 
its representation of the states of the grammar. Once formed, 
these clusters are stable for short strings (strings with lengths 
not much longer than the maximum length of training strings) 
in the sense that the hidden unit activations move from one 
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Fig. 1. An analog second-order network. Each square unit takes the product 
of its two inputs as its output. When the current input is 1. input unit “ 0  has 
value 0, and input unit “1” has value 1, and vice versa. The thickly circled 
unit is the indicator unit, whose desired value is close to 1 when the input is 
legal and close to 0 when the input is illegal. 

distinct cluster to an~ther  as the network follows a trajectory in 
hidden unit space. However, for most of the trained networks, 
when sufficiently long strings are presented for testing, the 
hidden unit activations start to converge to a single cluster 
and the original clusters ultimately become indistinguishable 
[ 181. Similar behavior for recurrent networks with different 
structures has been reported elsewhere [ 121, [ 141. In order to 
achieve stability for long strings, we proposed in [ 181 a discrete 
recurrent network architecture that uses discretization in its 
feedback links. A pseudo-gradient training method is used to 
train the network. Note that an alternative approach is to use 
a conventional analog network in training and to then apply 
various clustering techniques in the hidden unit activation 
space (after learning) to enforce stability [8]. While this is 
a valid approach, here we are more interested in constructing 
a network that stabilizes itself (or equivalently, automatically 
performs the clustering) during the learning process. 

In this paper, for context-free grammars, we introduce a 
discrete network architecture that has an external discrete 
stack. In the proposed network, instead of clusters, the states of 
the network consist of isolated points in hidden-unit activation 
space. Hence, once formed, the internal state representation is 
stable in a manner independent of string length. 

The remaining part of the paper is organized as follows: 
Section I1 summarizes our previous work on discrete recurrent 
networks for learning simple grammars. Section 111 introduces 
discrete recurrent networks that use extemal stacks, and the 
pseudo-gradient training algorithm necessary for such models. 
Section IV presents experimental results in learning determin- 
istic context-free grammars using the discrete stack model, and 
Section V concludes the paper. 
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Fig. 2. 
indicator unit: hi  > 0.5 for legal strings and SA < 0.5 for illegal strings. 

A discretized second-order network. The thick circled unithi is the 

11. SUMMARY OF PREVIOUS WORK ON DISCRETE RECURRENT 
NETWORKS FOR LEARNING SIMPLE GRAMMARS 

A.  Basic Structure of Discrete Recurrent Networks 

A discrete recurrent network can be constructed by simply 
taking an analog recurrent network and adding threshold 
units to all the feedback links. In the case of second-order 
networks, one can represent the structure as two separate 
networks controlled by a gating switch (Fig. 2) as follows [ 181: 
The network consists of two first-order networks with shared 
hidden units. The common hidden unit values are discretized 
and copied back to both netO and netl  after each time step, 
and the input stream acts like a switching control to enable 
or disable one of the two "subnetworks." For example, when 
the current input is 0, netO is enabled while netl  is disabled. 
The hidden unit values are then decided by the hidden unit 
values from the previous time step weighted by the weights 
in net0. The hidden unit activation function is the standard 
sigmoid function, f(x) = *. The discretization function 
is defined to be: 

(1) 
0.8 if x 2 0.5 
0.2 if x < 0.5. D ( x )  = 

The values 0.2 and 0.8 are chosen instead of 0 and 1 here in 
order to give some power of influence to each of the current 
hidden unit values over the next time step. A unit with value 0 
would eliminate any influence of that unit over the next time 
step. This is the general network structure that was used in 
our first set of experiments [18]. 

We use hl to denote the analog value of hidden unit z at 
time step t ,  and S," to denote the discretized value of hidden 
unit i at time step t. w: is the weight from layer 1, unit j to 
layer 2,  unit i in net n. n = 0 or 1 in the case of binary inputs. 
Hidden unit hk is chosen to be a special indicator unit whose 
activation should be greater than 0.5 at the end of a legal 
string, or smaller than 0.5 otherwise. At time t = 0, initialize 
So0 to be 0.8 and all other Sp's to be 0.2; i.e., assume that the 
null string is a legal string. The network weights are initialized 
randomly with a uniform distribution between -1 and 1. 

OO Js 10 

(b) 

Fig. 3. Extracted-state machine from the discretized network after learning 
the 10-state machine: (a) 15-state machine extracted directly from the discrete 
activation space, (b) equivalent minimal 10-state machine of (a). Note that 
the state structure in (a) and (b) are quite similar; for example, states 1 and 
6 in (a) are equivalent to 10 in (b), and states 12, 13, and 14 in (a) play a 
similar role to state 7 in (b). 

In [ 181 we showed that discretization can be included during 
both training and testing using the formulae below. Note that 
from the formulae one can clearly see that in operational mode, 
i.e., when testing, the network is equivalent to a network with 
discretization only: 

3 
S," = D(hf),  

0.8 if x 2 0.5 
0.2 if x < 0.5, where D ( x )  = 

j s," = D ( f ( C w , " j s ; - ' ) )  
3 
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TABLE I 
EXPERIMENTAL RESULTS FROM TRAINING THE DISCRETE RECURRENT NETWORK ON REGULAR GRAMMARS.* 

Training set 

# of hidden units Mean # of epochs U of epochs Mean # Of 
characters Grammar 

# of strings L,,,,. 

Tomita #1 
Tomita #2 
Tomita #3 
Tomita #4 
Tomita #5 
Tomita #6 
Tomita #7 

Vending machine 
10-state machine 

50 
100 
150 
100 
100 
100 
100 
365 
317 

5 
8 
12 
8 
8 
8 
10 
6 
12 

36.4 
38.8 
82.8 
76.6 
64.4 
20.8 
138.5 
231.8 
5798 

33.4 
27.3 
43.2 
27.0 
20.7 
8.3 

31.1 
22.4 

5205 
18120 
77040 
31712 
26662 
861 1 

70774 
383165 

143 15262 

*L,,, is the maximum length of training strings. The numbers for epochs and total characters processed during learning are the average numbers over 5 
runs with different random weight initializations, except for the 10-state machine, for which only one run was obtained. U is the standard deviation of the 
epochs over the 5 runs. All runs, except one in learning Tomita #3 and one in learning Tomita #7 which failed to converge, have perfect generalization 
performance; i.e., are 100% correct on strings of any length. 

(Here zt is the input bit at time step t.) 
Hence, the sigmoid units can be eliminated during testing 

to simplify computation. 
During training, however, the gradient of the soft sigmoid 

function is made use of in a pseudo-gradient method for 
updating the weights. 

B.  The Pseudo-Gradient Learning Method 

In order to train the discrete network, in [ 181 we proposed 
an approximation to gradient descent that we call the pseudo- 
gradient leaming rule. During training, at the end of each 
string {zo, zl, . . . , z L }  the mean squared error is calculated 
as follows (note that L is the string length and that h i  is the 
analog indicator value at the end of the string): 

1 
2 

E = -(hk - T)’, 

In carrying out the chain rule for the gradient we replace 
the real gradient +, which is zero almost everywhere, by 

the pseudo-gradient ah,. The justification of the use of the 
pseudo-gradient is as follows: suppose we are standing on one 
side of the hard threshold function S(z), at point z o  > 0, 
and we wish to go downhill. The real gradient of S(z) would 
not give any information since it is zero at 50. If instead we 
look at the gradient of the function f(z), which is positive 
at z o  and increases as zo + 0, it indicates that the downhill 
direction is to decrease 20, which is also the case in S(z). 
In addition, the magnitude of the gradient tells us how close 
we are to a step down in S(z). Therefore, we can use that 
gradient as a heuristic hint to indicate direction and how close 
a step down would be. This heuristic hint is what we use as 
the pseudo-gradient in our gradient update calculation in (2). 

ast-’ 
‘e t - 1  

awz3 

where 
1 if “legal” C .  Experimental Results on Learning Regular Grammars 
0 if “illegal.” Table I shows the experimental results obtained by training 

method on various grammars, including the Tomita grammars 
the discrete recurrent network by the pseudo-gradient learning 

[ 161, a simple vending machine model [18], and a particular 
10-state machine [9] - some of the Tomita grammar and 
vending machine results are described in more detail in [18]. 
An epoch is one presentation of the whole training set to 
the network. The total number of characters processed is the 
cumulative count of all characters in all strings presented to 

T = target = 

UNate w;, the weight from unit j to unit i in net n, at the 
end of each string presentation: - 

dE 

a w  ; 
WE = w z  - a-, V n , i , j ,  

ahL - 
- = (hf - T)L, V n .  i , j ,  
d E  
a q  aw; 

the network in all training epochs. The results in Table I 
demonstrate that the discrete recurrent network model can be 

- 
where 4 is what we call the “pseudo-gradient’’ with respect aw% I 

to W E .  . successfully trained to recognize simple grammars. Further- 
To get the pseudo-gradient %, pseudo-gradients ah, for more, because Of its discrete nature, the network is inherently 

all t, k need to be calculated forward in time at each time step: 
As an example of the ability of the network to learn 

aht %;-I grammars ofmedium complexity, Fig. 3(a) shows the effective 
+ 6kz6nztS~-1)~Vk~ t .  wz”,. (2) automaton leamed by the network trained on strings from the 

10-state machine. Application of Moore’s algorithm to this 15- 

- - L  - t  

awc3 for strings Of length. 

IC = f’. (Ew;;- 
1 aw; aw; 
- 0  

(Initially, set: $ = 0, ~ i , j ,  n, k.1 
3 

state network automaton results in a reduction to the correct 
10-state machine shown in Fig. 3(b). 
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Fig. 4. Statistical record of the pseudo-gradient learning of regular grammars. In each plot, the solid curve corresponds to the fraction of successful moves 
for each learning epoch, the bottom dotted curve corresponds to the summation of error reduction on a string by all successful moves in each epoch, and the 
remaining curve is the summation of error increases on strings by all bad moves. The training set and the number of hidden units used for each grammar are 
the same as in Table I. The grammars being learned are: (a) Tomita #3. (b) Tomita #5. (c) Tomita #7. (d) The vending machine. 

D. Empirical Investigation of the Pseudo-Gradient Learning 

Theoretical analyses of leaming in recurrent networks can 
be quitenon-trivial. In particular, analytical investigation of our 
proposed pseudo-gradient method for recurrent networks, ap- 
pears intractable. Hence, we are limited to empirical evidence 
to support our claim that the method indeed appears to work 
well on non-trivial problems. 

Figures 4(a)-(d) show the typical leaming processes of four 
of the grammars described in Section 11-C (plots of other 
grammars and of networks with different initial conditions 
have similar features and are not shown.) During each epoch 
of learning, the training strings are presented to the network 
one by one. In processing each string, pseudo-gradients are 
calculated and all weights are updated accordingly if the 
network makes an erroneous decision on that string. After 
each such weight update, we test the network with the new 

set of weights on the same string, and thus a new error is 
calculated. If the new error is smaller than the old one, we 
can then conclude that the pseudo-gradient has successfully 
decreased the error on this specific string as it was intended 
to; otherwise, we count it as a failure, or “bad move.” Thus, the 
total fraction of “successful moves” (out of the total number 
of weight updates) induced by the pseudo-gradient algorithm 
can be calculated for each epoch. In each of the plots, the 
solid curve corresponds to this fraction of “good moves” as a 
function of the epoch number. 

To evaluate the severity of the effect of all the “bad moves,” 
we also record the magnitude of each error increase or decrease 
on a string after each weight update, and sum the error 
increases and decreases for each epoch. The lower dotted 
curve in each of the plots corresponds to the summation of 
all the error increases (or the cumulative effect of all “bad 
moves”) as a function of epoch number, while the remaining 
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oscillating curve is the summation of all error decreases (“good 
moves”) per epoch. 

It is clearly evident that the pseudo-gradient algorithm 
induces successful moves over 80% of the time. In addition, 
when bad moves occur, their cumulative effect per epoch is 
always smaller (and often much smaller) than the cumulative 
effect of the successful moves, except during one epoch 
while leaming the Tomita #7 grammar. Hence, the empirical 
evidence clearly indicates that the overwhelming tendency 
of the pseudo-gradient algorithm is to reduce the error on a 
per-string and per-epoch basis. 

It is interesting to note that when one looks at the bad 
moves individually, the magnitude of an error increase by 
a single bad move is on average much larger than an error 
decrease caused by a single successful move-however, it is 
the cumulative effect that accounts for the convergence of the 
learning. Also note that the bad moves do not necessarily occur 
more frequently as the grammars become more complicated. 

In conclusion, our empirical investigations have shown that 
although following the pseudo-gradient descent direction does 

not guarantee error reduction, it is certainly an effective way 
to conduct the training of discrete recurrent networks. 

111. DISCRETE RECURRENT 
NETWORKS WITH EXTERNAL STACKS 

Regular grammars are the simplest type of grammar in 
the Chomsky language hierarchy [lo], and have a one-to-one 
correspondence with finite-state machines. Thus, a network 
that can represent any finite state machine is sufficient for 
representing regular grammars. The next class of grammars in 
the hierarchy are called context-free or type 2 grammars. They 
represent a much wider class of languages than do regular 
grammars-finite-state machines are not sufficient to represent 
all such grammars. 

The theory of finite automata and formal languages states 
that there exists a one-to-one correspondence between context- 
free languages and pushdown automata. That is, one needs 
to have an extemal stack to operate on beside the finite- 
state machine in order to represent context-free grammars. By 
training the network to behave like a pushdown automaton 
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Fig. 5. A discretized second-order network with an extemal stack.The thick 
circled unit hb is the indicator unit: h6 > 0.5 for legal strings and 11; < 0.5 
for illegal strings. 

we equivalently obtain a finite-state machine with an external 
stack that accepts the corresponding context-free grammar. 

As in [3] ,  we restrict the scope to context-free grammars 
with the following restrictions: given a current automaton 
state, there cannot be more than one choice of next state, the 
alphabet of the stack symbol is set to be the same as the 
input alphabet, only the current input symbol can be pushed 
onto the stack, and epsilon transitions (which can make state 
transitions or stack actions without reading in a new input 
symbol) are not allowed. In short, we consider a subset of 
deterministic pushdown automata, or deterministic context- 
free grammars. Note that to learn an arbitrary push-down 
automaton, a third-order architecture is necessary [3].  

Shown in Fig. 5 is the structure of a discrete recurrent 
network withan extemal stack for the case of binary input and 
stack symbols. The primary differences between this structure 
and the one proposed in [3] are that we have a discrete stack 
as well as discretized units. 

In Fig. 5 we have, in effect, four first-order networks with 
shared hidden units. In addition to the input symbol that acts 
as control to enable or disable net0 or netl ,  the current top-of- 
stack symbol also acts as a second gating control that enables 
or disables net2 or net3. Note that if the stack is empty, then 
both net2 and net3 are disabled, a situation that does not 
happen to the net0-net1 pair. 

As before, the unit ho is defined to be the “indicator” unit, 
whose activation should be greater than 0.5 at the end of a 
legal string and smaller than 0.5 otherwise. The last unit, in this 
case h 2 ,  is singled out to be the “action” unit, whose activation 
decides what stack action to take. However, the value of this 
activation does not get copied back to the next time step. If 
h 2  is greater than a certain value (for the experiments reported 
here it is set to 0.6) then the current input symbol is pushed 
to the stack. If it is smaller than a certain value (0.4 in our 
case), then a symbol is popped out of the stack. Otherwise no 
action is taken. 

The activation functions of the h units and the discretization 
function of the S units are the same as defined in Section 11. 

The error functions for training networks with stacks to 
leam context-free grammars are more complicated than for the 
simple grammars discussed in Section IV. Several situations 
can be encountered during learning, each requiring the use of a 
different error function. We start by basing our error functions 
on those proposed in [3] ,  but there are some significant 
differences. 

Let 110, hl ,  ...! h L $ r  be the hidden units of the network, where 
ho is the “indicator” unit and hAh, is the “action” unit. Assume 
the current string being processed is x:O; xl: ..., :cL, where L is 
the string length. Let dt denote the depth of the stack at time 
step L ,  and let U* be the top of stack symbol at time step t .  
The different error functions are as follows: 

1) If the string is legal and the end of the string is reached 
(without any attempt to pop an empty stack), 

1 
E = n((1 - ht)2 + (&)’). 

L 

This means that for legal strings we want both the 
indicator unit to be on and the stack to be empty. 

2) If the string is illegal and the end of string is reached 
(without any attempt to pop an empty stack), 

E = { ki - d L  if h i  - d L  > 0 
otherwise. 

This means that for illegal strings we want either the 
stack to be nonempty, or the indicator unit to be off. 

3)  If the network attempts to pop an empty stack at time 
step t ,  

i(1 - h,iT)’ - dt if the string is legal 
if the string is illegal. E =  (0  

This means that for legal strings we want to correct the 
error of attempting to pop an empty stack by forcing 
the action unit value away from 0; i.e., avoid the “pop 
stack” action and at the same time encourage the stack to 
become nonempty. On the other hand, for illegal strings, 
we do nothing because the attempt to pop an empty stack 
is considered an indication that the string is illegal. 

Das er al. have suggested in [3] that by providing the 
network with a “teacher” or an “oracle” to give hints, the 
leaming can be sped up significantly. The teacher or oracle 
works as follows: there are certain illegal strings that are not 
prefixes to any legal strings: i.e., any symbols that follow such 
strings do not provide any further information. Henceforth, we 
will call these strings dead strings. The teacher is assumed to 
have the ability to identify such strings. Whenever a point 
is reached in the input string such that no further processing 
of the remaining string is necessary, the teacher produces a 
signal and the leaming is halted. The network is then trained 
to have another special hidden unit, designated as the “dead 
unit,” tum on. After the network has been trained in this way, 
a string is considered to be classified as illegal whenever the 
dead unit is tumed on during testing. The error functions have 
to be modified accordingly. 

We found that it is not sufficient to add an error function 
only for the dead strings and to keep the other error functions 
(3)-(5) the same. For strings other than the dead strings, the 
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network needs to be trained to have the dead unit tum off 
to avoid confusion. More specifically, letting hi be the dead 

we have the following: 
If the string is legal and the end of string is reached 
(without any attempt to pop an empty stack), 

1 
E = 2((1 - h;)’ + (dL)’ + (hf)’) ,  

i.e., we want the indicator unit to be on, the stack to be 
empty and the dead unit to be off. 
If the string is illegal but not a dead string, and the 
end of string is reached (without any attempt to pop an 
empty stack), 

h i  - dL + ;(hf)’ if h[ - d L  > 0 
E = { i ( h f ) 2  otherwise, 

i.e., we want either the stack to be nonempty, or the 
indicator unit to be off, and for both cases, the dead unit 
to be off. The dead unit should not be on for such strings 
because they could be prefixes to certain legal strings. 
If the string up to time step t is a dead string, 

i((1 - hi)’ + (h;)’) if stack is empty 
otherwise. E = { g(1 - hi)’ 

This means we want the dead unit to turn on and either 
the indicalor unit to turn off or the stack to be nonempty. 
If the dead unit tums on at time step t before any possible 
signal for a dead string, 

1 E = -(hi)’ 
2 

We do not want the dead unit to turn on too early since 
the string up to thus point could still be a prefix to certain 
legal strings. 
If the network attempts to pop an empty stack at time 
step t ,  before any possible signal for a dead string, 

i (1  - hk)’ - dt if the string is legal 
if the string is illegal. E = { ;  

Here we do not try to force the dead unit to turn on or 
off because it has been behaving as desired so far. 

As in Section 111, for the case with non-stack networks, 
the pseudo-gradient method is again used for training. The 
pseudo-gradients of error functions in weight space concern 

both ah, for all t ,  I C .  71, i, j ,  and % for all t ,  n, i ,  j .  The 
former is calculated the same way as before. To calculate the 
latter, i.e., the pseudo-gradient of the depth of the stack, we 
use the iterative operational equation: 

- t  - t  

aut, aw>, 

where 

1 if z > 0.4 

0 otherwise. 
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- 0  

Initially, set % = 0 for all n,z , j .  After each time step, 
update: 

amt3 

Here, in place of the gradient of the piece-wise step function 
D1, we still use the pseudo-gradient of the action unit hn;. 
Although the value of the action unit does not get discretized 
and copied back after each time step, its pseudo-gradient can 
still be calculated by utilizing the pseudo-gradients of other 
hidden units: 

N-1 :tdl 

Here we have left out a term conceming the top-of-stack 
symbol’s dependency on the weights. Since a simple recurrent 
form of this term is analytically impossible to derive, an 
approximation was used in [15]. In our formula, the pseudo- 
gradient is itself an approximation; further fine tuning by this 
term may not be necessary. Empirical results in Section IV will 
demonstrate that the networks can indeed perform successful 
leaming without this term in the formula. Thus, the coupling 
between the stack and the network during leaming is reflected 
only in the previous formula for the gradient of the stack depth. 

Iv. EXPERIMENTAL RESULTS ON LEARNING 
DETERMINISTIC CONTEXT-FREE GRAMMARS 

A .  Overall Results 

We experimented with the same grammars as in [ 3 ] ,  i.e., 
1) The parenthesis matching grammar. 
2 )  The postfix grammar. 
3 )  anbn. 
4) amfnbmcn. 
5) anbncbmam. 
As in [3], a training set consists of all strings up to a certain 

length, with repeated legal strings so that there are about half 
as many legal strings as illegal ones. 

II(a) and (b) show the detailed results for experiments with 
and without hints, respectively. The numbers in each row 
are averages over the successful runs (out of 10 possible 
successful runs) with different initial conditions-a successful 
run is taken to mean a run in which the network generalizes 
perfectly for all string lengths. The number of overfitting runs 
indicates the number of times in the 10 runs that the network 
overfits the data by using too many internal states and did not 
generalize. The number of non-convergent runs is the number 
of times in the 10 runs that the training had not converged 
after 1000 epochs and was halted. Note that the number of 
unsuccessful runs are significantly fewer for the case with 
hints than without hints-hence, hints generally improve the 
reliability of the learning procedure. It is still an open question 
as to how to avoid overfitting in general by controlling the 
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Table 11. Experimental results from training the discrete recurrent network on context-free grammars (a) with hints; (b) without hints.* 

(a) 

mean # of 

characters 

training set 
mean of iv, 2\7s epochs n of epochs total # of hidden 

units -vn grammar 
# of strings L,,,,, 

Parenthesis 46 6 3 0 0 10 28.8 16.3 5205 
Postfix 63 7 4 1 0 9 62.3 17.1 21131 
a” b“ 32 6 4 2 0 8 127.3 4.9 16797 

arrr+nbmen 120 8 5 2 0 8 63 36.0 7560 
anbncbmam 150 7 7 3 3 4 328.8 249.1 243275 

(b ) 

training set 
# of hidden jb,-L 

units grammar 
# of strings L,,, 

mean # of of epochs mean # of 
epochs total character A’s 

Parenthesis 180 6 3 0 0 10 12.0 10.5 1 1208 
Postfix 37 1 7 4 4 2 4 185.8 149.0 408464 
a” b” 760 8 5 4 4 2 150.5 87.5 793436 

* The training set and hidden unit columns indicate the fixed learning parameters for each grammar. IO  runs with different random initial weights were carried 
out for each grammar. NS, the number of successful runs is the number of runs (of the 10 possible) for which the trained network generalized perfectly 
for strings of any length. The means for the epochs and total characters processed (and the standard deviation for the epochs) were estimated only from the 
successful runs. iV,, the number of overfitting runs is the number where the network overfitted the data and did not generalize perfectly.’\‘,,, the number of 
non-convergent runs is the number of runs where the network did not converge on the training data after 1000 epochs. 

b. -. P A  /-.PP 

(b) 

Fig. 6. Extracted pushdown automata from the discretized network withan 
external stack after learning (a) the parenthesis grammar without hints; (b) the 
grammar an b“ with hints. Double-circled means the state has an indicator unit 
on, So = 0.8; thus, a processed string is legal if the automaton arrives at such 
a state and if the stack is empty. A dead state means the state has its dead unit 
on, SI = 0.8; a processed string is illegal as soon as the automaton arrives 
at such a state. A transition rule is labeled by “x,y,z,” where x stands for 
the current input symbol, y stands for the top-of-stack symbol (“-” means an 
empty stack), and z stands for the operation taken on the stack; “PS” means 
push, “PP’ means pop. 

size of the derived automaton during learning. It should be 
noted however that overfitting did not occur for 4 out of the 
5 grammars in the experiments when hints were provided. 

The hidden unit sizes and training set sizes shown in Table 
II(a) and (b) are the minimum sizes for which generalization 
could be obtained for each problem-experiments using either 
less training data or fewer hidden units invariably resulted in 
less than perfect generalization. 

As an example, Fig. 6(a) and (b) show the derived push- 
down automata from the networks after being trained on 
the parenthesis-matching grammar and the anbn grammar 
respectively. As before, each state corresponds to one single 
point in the network’s hidden unit activation space and the 
transition rules are derived similarly: set the S:-’ units to each 
of the points (states) in the activation space, give the network 
different combinations of input and top-of-stack controls, and 
thus calculate the next state given such input and stack 
conditions. 

Note that for the parenthesis-matching grammar, the net- 
work finds a pushdown automaton that has one single state. 
Starting from an empty stack, when the input is a “(,” it pushes 
this input onto the stack. When the input is a “),” it either pops 
a “(” from the stack if the top-of-stack is a “(,” or pushes the 
“)” onto the stack otherwise. Thus, whenever there are more 
“)”s than “(”s, the machine executes a “push stack” operation 
no matter what the input symbol is, making the stack nonempty 
(indicating an illegal string) from this point on. 

B .  Empirical Investigation of the Pseudo-Gradient Learning 

In a manner similar to that of Section 11-D, we investigated 
how well the pseudo-gradient learning performed in learning 
pushdown automata. Plots of the fraction of successful moves 
by the pseudo-gradient algorithm and the accumulated error 
increases and decreases as a function of epoch number are 
shown in Fig. 7. 

It can be observed from the plots that the pseudo-gradient 
algorithm makes bad moves in learning context-free grammars 
more often than it did in learning regular grammars. However, 
the percentage of successful moves are still mostly over 80%, 
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(a) Postfix, with hint. 
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Fig. 7. Statistical record of the pseudo-gradient leaming of pushdown automata. In each plot, the solid curve corresponds to the fraction of successful 
moves for each leaming epoch. The bottom dotted curve corresponds to the summation of error reduction on a string by all successful moves in each 
epoch, and the remaining curve is the summation of error increases on strings by all bad moves. The training set and the number of hidden units 
used for each grammar are the same as in Table 11. The grammars being leamed are: (a) Postfix, with hint. (b) am+rL6mc'L , with hint. (c) Parenthesis 
matching, without hint. (d) anbn, without hint. 

and the accumulated error increases (due to bad moves) for any 
epoch are much smaller than the accumulated error decreases, 
except during one epoch in leaming anbn without hints. 
Thus, as we found with the regular grammars, the empirical 
evidence suggests that the pseudo-gradient algorithm is quite 
effective in training discrete recurrent networks with extemal 
stacks. 

C. Discussion 
Using a discrete network as well as a discrete stack results in 

the advantages of a stable network, and a clear understanding 
of the operation of the stack. In [ 3 ] ,  where a continuous stack 
was used, the results show that the trained networks do not 
always generalize perfectly. 

From the results in Table 11, it can be seen that providing 
the network with hints can indeed speed up learning, or 
even enable the learning of the grammars in cases where 
the grammar could not be learned without hints. However, 
unlike [3], we did not find incremental presentation of the 
training data helped in improving the leaming. Incremental 
presentation means that the network is initially given a small 
data set consisting of only short strings. After it has learned 
the current data set, more strings longer in length are added to 
the training set until all training strings are leamed. We found 
in our experiments that once the network finds a configuration 
to fit the small data set with short strings, it is sometimes 
very hard to drag it away from that configuration to a desired 
configuration that will fit the later (longer) strings as well. 
The training times with and without incremental presentation 
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Fig. 7. (Continued.) 

of strings are comparable in our experiments. The numbers V. CONCLUSION 
listed in Table II(aj and (b) are of runs  with the training data 
set presented to the network all at once. 

We postulate that the reason why incremental learning 
worked for analog networks but not for discrete networks is 
due to the nature of analog and discrete networks. The analog 
network always finds a “soft” solution to a data set, which 
only has clear decisions for short strings, but is vague on long 
strings. Thus it is easy for it to “harden” such a solution when 
more restrictions about longer strings are enforced. The result 
is a solution whose “hardness” or decisiveness depends on the 
maximum length of the training strings. On the other hand, 
the discrete network always finds a “hard” solution to a data 
set that has clear decisions for strings of any length. Once it 
settles in such a solution it is hard to enforce restrictions about 
longer strings that contradict the current solution. So one may 
as well provide all the restrictions to the network at once. As 
long as there exists sufficient information in the data set, the 
resulting solution does not depend on the maximum length of 
training strings. 

The primary advantages of introducing discretization into 

1) Once the network has successfully learned an automaton 
from the training set, its intemal states are stable. The 
network will always classify input strings correctly, 
independent of the lengths of these strings. 

2)  No manual clustering (as in [SI) is required to extract the 
state machine explicitly, since instead of using “cluster 
clouds” as its state representation, the network forms 
distinct, isolated points as states. Each point in activation 
space is a distinct state and, hence, the trained network 
behaves exactly like a state machine. 

3) In terms of implementation the discretized recurrent 
network is easier to implement in hardware particularly 
when an external stack is used. 

In conclusion, we have presented in this paper the basic 
ideas and algorithms for implementing stable discrete recurrent 
networks for learning deterministic context-free grammars. 

recurrentnetworks can be summarized as follows: 
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Specifically, we extended our previous discrete network mod- 
els to include an external discrete stack with discrete symbols, 
defined an appropriate error function for learning, and derived 
a pseudo-gradient learning rule for this error function. The 
available empirical evidence indicates that the pseudo-gradient 
learning algorithm is effective in training such a network. The 
overall experimental results show that the proposed network 
has similar capabilities for leaming context-free grammars 
as the analog second-order networks, while avoiding any 
problems with instability on long strings. 
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