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Discrete region competition for unknown

numbers of connected regions

Janick Cardinale, Grégory Paul, Ivo F. Sbalzarini, Member, IEEE

Abstract

We present a discrete, unsupervised multi-region-competition algorithm for image segmentation over

different energy functionals. The number of regions present in an image does not need to be known

a priori, nor their photometric properties. The algorithm jointly estimates the number of regions, their

photometries, and their contours. The required regularization is provided by defining a region as a

connected set of pixels. The evolving contours in the image are represented by computational particles

that move as driven by an energy-minimization algorithm. We present an efficient discrete algorithm

that allows minimizing a range of well-known energy functionals under the topological constraint of

regions being connected components. The presented framework and algorithms are implemented in the

open-source Insight Toolkit (ITK) image-processing library.

Index Terms

Region competition, multi-region segmentation, energy-based segmentation, discrete level set, de-

convolution, digital topology, connected component, topological constraint

I. INTRODUCTION

Multi-region image segmentation partitions a digital image domain Ω ⊂ N
d (here the dimension d = 2

or 3) into a background region X0 and (M − 1) > 0 disjoint foreground regions Xi, i = 1, . . . ,M − 1,

bounded by contours or surfaces1 Γi, i = 1, . . . ,M − 1. A large class of segmentation algorithms can

Copyright (c) 2012 IEEE. Personal use of this material is permitted. However, permission to use this material for any other

purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

J. Cardinale, G. Paul, and I. F. Sbalzarini are with the MOSAIC Group at ETH Zurich and the Swiss Institute of Bioinformatics

in Zurich, Switzerland.

1The term “contour” is used throughout this article to mean either “outline” (2D) or “surface” (3D). Similarly, we use “pixel”

to mean either “pixel” (2D) or “voxel” (3D).
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be interpreted as (local) minimizers of certain energy functionals. Energy-based segmentation allows ac-

counting for prior knowledge about the imaged objects and about the image-formation process, including

knowledge about the topology of objects [1] or their shapes.

A prominent and well-studied example of a segmentation energy is the functional proposed by Mumford

and Shah [2] (MS). For binary images and images containing two regions (foreground and background)

of constant intensities, this functional is notably known from the works of Chan and Vese [3] (CV). In

the CV case, optimal solutions can be found using graph-cut algorithms [4], [5]. For images containing a

priorly known number of constant-intensity regions, the MS energy can be convexified allowing globally

optimal solutions to be computed efficiently [6], [7].

Regions in an image are usually defined through their intensities or other photometric or texture

features. Multi-region segmentation then amounts to grouping pixels according to their features. Regions

may hence comprise several disconnected sets of pixels, and the number of regions (i.e., the number of

feature groups) frequently needs to be imposed, penalized, or learned a priori. Here we introduce the

constraint that a foreground region has to consist of a connected set of pixels. This is motivated by the

observation that frequently discrete physical objects are represented in an image. Moreover, topological

constraints can be evaluated using local information only, whereas region-number priors require global

information. The present definition of a region regularizes the problem of estimating the number of

regions jointly with their photometric features and contours. We extend concepts from digital topology

to enforce the topological region definition, and we present an efficient discrete energy minimization

algorithm that can locally minimize a range of well-known energy functionals under this hard constraint.

We focus on images that contain unknown numbers of regions of not necessarily homogeneous

intensities. The corresponding energy functionals are often non-convex, as for example the piecewise

smooth MS energy [2], [8] or a deconvolving energy [9]. Segmentations are found as regularized local

minimizers, formalized in the framework of deformable models. Deformable models entail an evolvable

(deformable) continuous or discrete representation of the contours Γi. Local optimization is done by

iterated perturbation of an initial contour Γ0 such as to locally minimize the energy.

In unsupervised multi-region segmentation the number of regions, their photometric features, and their

contours are to be jointly estimated from the image. This requires additional regularization on top of

the usual smoothness priors. Most multi-region methods use region-number priors (e.g., [10], [11]).

Alternatively, a length/area balancing term can be used [12]. Brox and Weickert proposed recursive

splitting of regions into pairs of sub-regions such as to minimize an energy that includes a region-

number penalty [10]. A separate level set is evolved for each region. In order to prevent regions from
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overlapping, an additional penalization term is introduced into the energy functional. The number of

level functions that need to be evolved is reduced to one in unsupervised region-competition methods

[13]. A representation with only one level function, however, cannot capture multiple contours touching

in one point. Other multi-region segmentation methods impose a fixed number of regions (or an upper

bound on it) that is often learned prior to contour evolution using, e.g., pixel-feature clustering or model

selection. This is for example the case in multi-phase level sets, which evolve log2M level functions

in order to segment a fixed number of M regions [14]. Besides the increased computational cost of

evolving multiple level functions, undefined statistics from empty regions may hamper the evolution

[10]. Mansouri et al. [15] presented a multi-region-competition [16] implementation where the contours

are implicitly represented by multiple level functions. Lie et al. represented multiple regions using a

single level function that converges to a piecewise constant function indicating the different regions [17].

Homeomorphic level sets prevent topological changes during energy minimization [18].

Discrete implicit methods directly operate on the discrete constituents of a digital image, such as pixels

or voxels. They switch the region labels of pixels in order to minimize an energy functional. Song and

Chan introduced a fast discrete level-set method for the two-region piecewise constant CV model [19].

He and Osher generalized this method to an arbitrary, but priorly known number of piecewise constant

regions [20] and related the approach to topological derivatives [21]. Yu et al. optimized a two-region

piecewise smooth image energy using a discrete level function on a lattice [22]. Fast discrete level-set

methods have been used for real-time tracking of a known, fixed number of regions [23] and for fast

approximate surface evolution [24]. Graph min-cut algorithms [4] are efficient combinatorial optimizers

for discrete problems with theoretical performance guarantees, both for priorly known numbers of regions

[4] and for unknown numbers of regions using a region-number penalty [11].

Here we replace the prior or penalization on the region number (or its upper bound) by the topological

constraint that foreground regions have to be connected components. Together with an efficient discrete

contour evolution algorithm that accounts for this constraint, this constitutes the main contribution of the

present work. We present an implementation of a versatile discrete-contour multi-region-competition

algorithm in 2D and 3D, inspired by discrete level sets [23]. The algorithm is based on the idea

of using computational particles to represent the evolving contour and is able to segment a priorly

unknown and arbitrary number of connected regions. Regions are dynamically fused and split during

energy minimization. This enables jointly estimating the number of connected regions in an image,

their photometric features, and their contours. We use digital topology to provide optional control over

region splits and merges during contour evolution. The topological constraint for foreground regions to
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be connected components, however, is always present.

We demonstrate the applicability of the present method to three well-known segmentation energy func-

tionals: The first energy describes images containing an unknown number of regions where each region

has a different, but constant (homogeneous) intensity. The energy is regularized using a penalty on the

approximated length of the overall contour. The second energy extends this model to account for regions

containing piecewise smooth intensity distributions. The third energy extends explicit deconvolving active

contours [9] to handle topological changes during energy minimization and to arbitrary dimensions. This

renders the method less sensitive to the topology of the initial segmentation.

The computational cost of the present algorithm mainly depends on the energy functional to be

minimized. For piecewise constant and piecewise smooth image models it scales linearly with the number

of particles used to represent the contour and is independent of the size of the image. The present

algorithm is implemented as an image filter in the Insight Toolkit (ITK) image-processing library [25]

and is available as open source from the web page of the authors.

The remainder of this paper is organized as follows: In Sec. II we motivate the proposed definition

of foreground regions and present an extension of digital topology to multiple regions. In Sec. III we

present an efficient discrete algorithm for region-competition energy minimization under hard topological

constraints. Section IV presents the applicability of the present framework to three well-known image

models on both synthetic and real-world images in 2D and 3D, and compares its performance with that

of a multi-label graph-cut minimizer [11]. Section V summarizes and discusses the results.

II. DIGITAL GEOMETRY REPRESENTATION

In order to jointly estimate the number of regions, their photometric properties, and their contours,

unsupervised multi-region segmentation energies typically include a region-number penalty [10], [11], [13]

or a length/area regularizer [12]. Here we instead define a foreground (FG) region as a connected set of

pixels in a certain digital geometry representation, amounting to a topological constraint. This definition is

motivated threefold: (1) We wish that regions determined by a segmentation algorithm delineate different

physical objects represented in an image (see Fig. 1). This frequently causes the problem of choosing

an appropriate number of regions so as to avoid over- and under-segmentation (see arrows A and B in

Fig. 1b). (2) It resolves the dependence between the number of regions and the regularization constant

in the energy (see Fig. 2). (3) It can be evaluated using only local information, whereas region-number

penalties require global information (see Sec. II-B).
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A

(a)

B

B

(b)

A B

B

(c)

Fig. 1. A motivation for defining FG regions as connected components. The image shows a collection of cell nuclei, which

are distinct real-world objects (image: Dr. Prisca Liberali, University of Zurich). (a) Segmentation (black outlines) using graph

cuts [4] to minimize the two-region CV energy. Due to their different intensities, not all nuclei are correctly delineated (see,

e.g., arrow A). (b) Graph-cut segmentation minimizing a ten-region piecewise constant energy. It is not clear what number of

regions to choose in order to avoid over-segmentation and fusion of objects (see arrows B). (c) Segmentation using the present

algorithm constraining FG regions to be connected components. The algorithm finds 39 connected FG regions, corresponding

to the 39 nuclei in the image.

GC, M = 2

GC, M = 8

present

λ = 0.5 : λ = 1 :

I =

Fig. 2. Illustration of the dependence between the number of

regions and the length-regularization coefficient λ in a piecewise

constant image. 1st row: raw image I (left) and initialization

for the present algorithm (right). 2nd and 3rd rows: resulting

reconstructed images using graph cuts (GC) [4] with M = 2 and

M = 8 regions, respectively. The lowest intensity that is detected

depends on both M and λ. 4th row: present reconstruction when

defining a FG region as a connected component. The result

corresponds to the GC result with the ground-truth number of

M = 8 regions. The lowest intensity detected only depends on

λ.

We first present the digital geometry representation used here and then provide an extension of digital

topology to multiple regions.

A. Digital geometry representation

1) Connectivity of regions: We constrain FG regions in the image to be represented by connected

pixels. All void space between FG regions is represented by one and the same background (BG) region.

Regions that can be captured by this representation must be larger than a single pixel. Consequently,

regions cannot be connected via edges or corners of the pixel lattice. The FG regions are hence defined

as face-connected neighborhoods, i.e., 4-connected in 2D and 6-connected in 3D. In the following we
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refer to this type of connectivity as the FG connectivity. According to Jordan’s theorem, the BG region

then needs to be 8-connected in 2D and 18 or 26-connected in 3D [26]. Here we choose the (FG, BG)-

connectivity pairs (4, 8) and (6, 26) for 2D and 3D, respectively.

2) Contour: The discrete contour Γi around FG region Xi, i = 1, . . . ,M − 1, is defined by all pixels

with at least one FG-connected neighbor belonging to a different region Xj 6= Xi, j = 0, . . . ,M − 1.

These contour points are part of the corresponding FG region, i.e., Γi ⊂ Xi, making all FG regions

closed, connected subsets of Ω. The BG region is the open complement set X0 = Ω \
⋃M−1

i=1 Xi.

B. Multi-region digital topology

For images with one FG and one BG region, the concept of digital topology allows detecting if changing

the region label of a point (pixel) changes the genus of either the FG or the BG region [1], [26]–[28].

We briefly introduce the notions of connectivity, geodesic neighborhoods, and topological numbers.

For more details on these topics we refer to Refs. [1], [27], [28]. We then extend these concepts to

multiple FG regions.

We adopt the notation and definitions from Refs. [26], [27], [29]. Digital topology is a binary concept

that defines the FG X as a set of discrete points x and the BG as its complement X̄ , such that X∩X̄ = ∅

and X ∪ X̄ = Ω. Both FG and BG have a certain connectivity. In 2D, two points are 4-connected if

they share an edge and 8-connected if they share a corner. In 3D, two points are 6-connected if they

share a face, 18-connected if they share an edge, and 26-connected if they share a corner. In order to

avoid topological paradoxes, only the following combinations of FG and BG connectivities are admissible

according to Jordan’s theorem: (n, n̄) ∈ {(4, 8), (8, 4), (6, 26), (26, 6), (6, 18), (18, 6)}.

The n-neighborhood Nn(x) is the set of n-connected points adjacent to point x.

Definition 1. Let X ⊂ Ω. The geodesic neighborhood of order k of a point x ∈ X is the set Nk
n(x,X)

defined recursively by:



N1
n(x,X) = {Nn(x)\x} ∩X

Nk
n(x,X) = N1

m(x,X) ∩
⋃
{Nn(y), y ∈ Nk−1

n (x,X)}

with m = 8 in 2D and m = 26 in 3D.

Intuitively, the geodesic neighborhood Nk
n(x,X) comprises all points y ∈ N1

m(x,X)\x that are n-

connected to x along a path that is not longer than k [27].

From this, a topological number can be defined as the number of n-connected components #Cn(·)

within a geodesic neighborhood:
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Definition 2. The topological numbers Tn(x,X) relative to the point x and the set X are:

T4(x,X) = #C4(N
2
4 (x,X))

T6(x,X) = #C6(N
2
6 (x,X))

T18(x,X) = #C18(N
2
18(x,X))

T8(x,X) = #C8(N
1
8 (x,X))

T6+(x,X) = #C6(N
3
6 (x,X))

T26(x,X) = #C26(N
1
26(x,X)) .

The notation n = 6+ indicates that the dual connectivity n̄ is 18, whereas the dual connectivity for

n = 6 is 26.

Topological numbers are an efficient tool to characterize points in binary images. They can be computed

from local information. For example, if Tn(x,X) = Tn̄(x, X̄) = 1, we know that changing the region

label of point x does not change the genus of neither the FG, nor the BG. All points for which this is

true are called simple points.

We use topological numbers to classify points also in the present multi-region framework by splitting

the FG X =
⋃M−1

i=1 Xi into multiple disjoint sub-regions Xi. The BG region remains a single set X̄ = X0.

Definition 3. A point x is foreground simple (FG-simple) iff Tn(x,Xi) = Tn̄(x, X̄i) = 1 for all i > 0.

Intuitively, Tn(x,Xi) is the topological number when considering all other regions Xj , j 6= i, to be

part of the BG. Changing the region label of a FG-simple point does not change the genus of any FG

region. For example, all contour points except (b,5), (c,5), and (d,4) in Fig. 3 are FG-simple.

This extended definition of FG simplicity allows distinguishing different topological events on the FG

regions. In this framework, the topological constraint that FG regions have to be connected components

can be interpreted as a hard penalty in the segmentation energy.

III. ENERGY MINIMIZATION ALGORITHM

We introduce a versatile region-competition mechanism inspired by discrete level set methods. In the

present framework, minimization of an energy E uses a rank-based discrete optimizer that does not

require information about the gradient of the energy functional. This is beneficial since the hard penalty

introduced by the topological constraint on regions is not differentiable. We start by introducing the data

structures and then describe the minimization algorithm used to perform topologically consistent contour

evolution. The algorithm is designed with data locality and parallelism in mind.
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A. Data structures

The present method relies on three main data structures: First, regions are identified using a label

function (or label image) L: Ω 7→ N that maps a discrete space coordinate x to the region label currently

assigned to that pixel. Contour pixels are assigned the negative label of the region they bound. This

allows identifying contour points directly from the label image. The label of the BG region is fixed to 0.

Second, all points belonging to a contour are stored as computational particles. Each particle p is

defined by its location xp, i.e., the integer pixel coordinates of the corresponding contour point, and its

properties. These properties are used to propagate the contour and are stored in a particle data structure

containing:

• the currently assigned label L(xp) to avoid expensive lookups in the label image;

• the candidate label l′ as the label that minimizes ∆Ep among all other candidate labels;

• the change in energy ∆Ep when changing the current label l to the candidate label l′;

• lists with the particle indices of the parent and child points of p. Parents are all FG-connected points

that belong to a different FG region. They are responsible for expanding the FG region they belong

to. Children are all FG-connected points that belong to a different region, including the BG.

• the count r of parents with label l′.

Third, we use a hash map Ω 7→ C as an efficient data structure to iterate over the particles and to map

space coordinates x to particle indices p. The hash map allows index lookups in O(1).

B. Algorithm

We describe an algorithm that iteratively propagates the contour points (viz., the particles) of multiple

regions over the image such as to locally minimize an energy functional under topological constraints

on the FG regions. After initialization, the algorithm proceeds in iterations (see Algorithm 1), each of

which comprising three steps: optimization, contour propagation, and topology processing.

Application-specific segmentation methods can be derived from the present algorithm by specifying

a particular energy functional and a set of topological constraints. The former allows including prior

knowledge about the image-formation process (e.g., the point-spread function of a microscope in de-

convolving active contours [9]) and the morphology of the imaged objects. The latter allows including

prior knowledge about whether FG regions are allowed to fuse or split (or both or none) during the

energy minimization process [1], [27], [28]. Regardless of additional topological constraints on contour

evolution, however, a FG region is always defined as a FG-connected component.
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Algorithm 1 Discrete region competition

1: Initialization: Set up L and C.

2: repeat

3: M = C

4: Optimization: see Algorithm 2

5: Contour propagation: see Algorithm 3

6: Topology processing: see Algorithm 4

7: until convergence

The input arguments to the algorithm are an energy functional E , the image data I , and, since it is

an iterative process, an initial segmentation L0. Pixels in L0 that have a special label f can be used to

indicate forbidden regions. These regions are treated as a boundaries that are never penetrated by any

contour, nor do they have an active contour themselves. In order to avoid boundary checking at the border

of the image domain Ω, we initially pad the entire image by a layer of pixels with label f .

1) Initialization: (line 1 in Algorithm 1) All FG pixels with a neighbor of a different label are marked

as contour points. For each contour point, a particle is generated and added to the hash map C, where

the corresponding space coordinate is the key of the map and the particle index its value.

2) Optimization: In the main loop (line 2 in Algorithm 1), we first copy the current set of particles

C to M. M is the candidate list containing all particles we consider moving to another region. We first

attempt moving them to the BG by setting all candidate labels l′ in M to 0 (line 2 in Algorithm 2). We

then calculate for each particle p the energy difference ∆Ep = ∆E(xp, l→ 0) = E(xp, 0)− E(xp, l).

In the next step, we attempt growing the FG regions. To do so, all particles p ∈ M perform the

following steps: All neighboring points that belong to a different region (including the BG) register p

as a parent (line 4). Particles for contour points that do not yet exist (since their current label is 0) are

created and added to M (line 6). All particles now know the set of pixels they could potentially move

to, and the set of pixels they are attacked from.

The candidate label l′q of q is set to the label of p if this is favorable in energy (lines 8–11). This

means that if the candidate label of q is different from the label of p (else we increase the parent count

r since this candidate label is supported by two or more parents, line 9), we set l′q to the label lp of the

parent if ∆E(xq, lq → lp) < ∆E(xq, lq → l′q). In addition, we remove particles with ∆E ≥ 0 from the

candidate list (line 13).
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Algorithm 2 Optimization

1: for all p ∈M do

2: set parent flag; l′p = 0;∆Ep = ∆E(xp, l→ 0).

3: for all {q | xq ∈ {N
1
n(xp, L 6= lp)}, lq 6= f} do

4: set child flag of q; register p in q’s parent list; register q in p’s daugther list

5: if q /∈M then

6: add q to M; Set lq = 0; rq = 1; l′q = lp; ∆Eq = ∆E(xq, 0→ l′q)

7: else

8: if lp = l′q then

9: rq = rq + 1

10: else if ∆E(xq, lq → l′q) > ∆E(xq, lq → lp) then

11: l′q = lp

12: construct G from M

13: M =M\{p : ∆Ep ≥ 0}

While each individual move in M is guaranteed to decrease the overall energy, this may not be true

for several moves performed simultaneously. This property is inherent to discrete contour-propagation

methods and can cause contour and energy oscillations. We therefore monitor the history of the contours

and halve the percentage of accepted moves whenever the contours do not propagate anymore. This

amounts to reducing the step size in a rank-based optimization scheme. Unless the algorithm has already

converged, the step size eventually reduces to 1, i.e., only a single move from M is executed in each

iteration. This guarantees that the energy can only decrease from then onward, and the algorithm hence

converges to a local minimum of E .

3) Contour propagation: The set of moves that will be executed simultaneously needs to be selected

according to the topological and causal constraints. Simply executing all minimum-energy moves deter-

mined in the optimization step could lead to violations of the topological constraints. Only contour points

that are not FG-simple are allowed to cause a topological change in any FG region.

Topological violations can arise from the fact that moves at iteration t may depend on moves at iteration

t+1. This is illustrated in Fig. 3 for the points (d, 2) and (c, 3). Whether region A is allowed to propagate

to pixel (d, 2) without disconnecting depends on the label of pixel (c, 2) at iteration t + 1. The move

at iteration t is only valid if pixel (c, 2) will still belong to region A at iteration t + 1. But (c, 2) has
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Algorithm 3 Contour propagation

1: find maximal-connected subgraphs Gk of G.

2: for all Gk = {Vk, Ek} do

3: sort Vk according to ∆E

4: for all p ∈ Vk with Ep < 0 do

5: if conditions C1, C2, and C3 are true then

6: ∀ children q with l′q = lp : rq = rq − 1.

7: else

8: M =M\p

1 2 3 4 5

b

c

d

6

A B C
a

Fig. 3. Illustration of 3 adjacent FG regions A (light gray),

B (dark gray), and C (gray) in 2D. Points in the background

region are white. Particles are shown as crosses. Points without

a particle are interior points; they are not FG-connected to any

other region. The arrows point from parents to the correspond-

ing children. The circles indicate non-foreground-simple points;

interior points are not considered. See main text for details about

the algorithm.

a parent at (c, 3), proposing it to join region B. This point at (c, 3) in turn is a candidate for label C

through the parent at (d, 3). Situations like this can induce topological dependence chains of arbitrary

length. We identify the set of moves that are topologically dependent by constructing an undirected graph

G = {V,E} (line 12 in Algorithm 2). The vertices V correspond to particles and the undirected edges

E to parent–child relationships. Topologically dependent sets are then given by the maximal-connected

subgraphs Gk of G. The maximal-connected subgraph in the example of Fig. 3 contains the vertices

{(c, 2), (c, 3), (d, 2), (d, 3)}.

The contour is then propagated by selecting all compatible moves in Gk such as to minimize the sum of

their energy differences. This is done independently for each subgraph Gk. In order to avoid enumerating

all compatible moves, we use a sub-optimal heuristic (Algorithm 3). This starts by sorting the vertices

Vk of each subgraph by ascending ∆E (line 3 in Algorithm 3) and purging all invalid moves from M

in this order. Moving particle p is valid if it fulfills all of the following conditions (line 5):

C1: if p is a child, its parent count is rp ≥ 1;

C2: if p is a parent, all of its children q that have already been accepted as a move have rq > 1;
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Algorithm 4 Topology processing

1: change = true

2: while change do

3: change = false

4: for all p ∈M do

5: if xp is FG-simple then

6: Update data structures: Algorithm 5(xp)

7: change = true

8: for all p ∈M do

9: if holes are disallowed AND
(
Tn(xp, L = l′p) ≥ 2 OR Tn̄(xp, L 6= lq) ≥ 2

)
then

10: next p

11: if Tn(xp, L = lp) ≥ 2 then

12: next p if splits are disallowed

13: store the seed set S = {N1
n(xp, L = l)}.

14: Update data structures: Algorithm 5(xp)

15: for all Xi ∼ Xj , i, j = 1, . . . ,M − 1, do

16: if fusions are allowed AND region merging criterion is true then

17: merge regions Xi and Xj and add seed to S

18: Recompute L using flood fill from seeds S

C3: if p is a parent, at least one of its children is not yet accepted or has a candidate label l′q 6= lp.

C1 ascertains that the particle is connected to the propagating region. C2 ensures that no child of this

particle would lose connection to the propagating region if this parent changed its label. C3 prohibits

moves to interior points. Valid moves for a parent p reduce the parent counts of all its children q with

l′q = lp (line 6).

4) Topology processing: We detect and account for topological changes in the FG regions using

concepts from digital topology [1], [23], [26]–[28]. The BG region is allowed to change its topology

arbitrarily. A genus change in a FG region can be a split of the region into several regions, a fusion of

two or more regions into one, or the introduction of a hole into a region.

Splits and the introduction of holes are detected using the FG topological number. If Tn(xp, {y :

L(y) = l′p}) ≥ 2 or Tn̄(xp, {y : L(y) 6= lq}) ≥ 2, changing the label of particle p to l′p introduces a hole
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Algorithm 5 Data-structure update

1: L(xp) = l′p.

2: if lp 6= 0 then

3: Add x′ ∈ N1
n(xp, lp) to C; L(~x′) = −lp′

4: if lp′ 6= 0 then

5: Remove all interior points in x′ ∈ N1
n̄(xp, l

′
p) ∪ xp from C and set L(~x′) = |l′p|.

6: else

7: C = C\xp

in the children of region lq (line 9 in Algorithm 4). Similarly, if the FG topological number for the label

lp is larger than 1, the corresponding region splits, unless splits are disallowed by the user (lines 11–12).

If region fusions are allowed, all competing pairs of regions (indicated by ∼ in line 15) undergo a

region-merge check (line 16). In principle, this check depends on the energy functional E . Different

energy-independent merging criteria, however, have been introduced based on region statistics [16],

[30], [31]. Here we use the symmetric Kullback-Leibler merging criterion [30] based on measuring

the similarity between the empirical intensity distributions PXi
and PXj

of the two regions Xi and Xj ,

i, j > 0. The regions fuse if

DKL(PXi
||PXi∪Xj

) +DKL(PXj
||PXi∪Xj

) < θ , (1)

where DKL(·||·) is the Kullback-Leibler divergence between the two distributions in the argument. The

merging threshold θ is a free parameter of the method. For θ = 0, regions are prevented from fusing.

Whenever region labels change due to splits or fusions, a seeded flood fill in L is performed to identify

the new connected components. For fusions, the seed point is one of the pixels where the regions touch.

For splits, all FG points neighboring points where the regions were last in contact are seeds. The points

of last contact are easily found as those that are not FG-simple (line 13). If a seed point moves to a

different region, another point in its geodesic neighborhood of order 1 becomes the new seed. The flood

fill (line 18) then reconstructs the label image L.

5) Data-structure update: During topology processing, moves that do not induce topological violations

are executed and the data structures updated (Algorithm 5 called from lines 6 and 14 of Algorithm 4).

The labels of the corresponding points are changed to the respective candidate labels, and the label image

is updated accordingly (line 1 in Algorithm 5). These changes may causes the creation of new contour

points, the particles of which are added to the hash map C (line 3). Similarly, the particles from pixels
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that newly became interior points are removed from C (lines 5 and 7).

IV. BENCHMARKS AND APPLICATIONS

We demonstrate the capabilities and limitations of the proposed topological region prior and minimizer

by applying them to synthetic benchmark images with three different energy models. In each case, we

also illustrate the practical applicability of the method to real-world images and provide computational

timings. All times reported have been measured on a single 2.67 GHz Intel i7 core with 4 GB RAM using

the Intel C++ compiler (v. 12.0.2). All test cases and results are summarized in Table I. As a benchmark,

we compare with iterated extended α-expansions with label costs as a region-number penalty [11]. We

use an 8-neighborhood with edge weights following the Cauchy-Crofton formula [5]. The α-expansions

are iterated in a PEARL-like manner in order to solve the joint estimation problem of region numbers,

intensities, and contours [32]. We choose this graph-cut-based benchmark algorithm, referred to as GC

below, since it is also discrete and provides good theoretical performance guarantees. The corresponding

source code was obtained from http://vision.csd.uwo.ca/code/.

The first two benchmarks consider discrete versions of the MS energy [2]

E(u, I; η, λ) =
M−1∑

i=0

(
∑

x∈Xi

(u(x)− I(x))2 + η
∑

x∈Xi

|∇u|2 + λ|Γi|

)
,

where η and λ are regularization parameters, ∇ a discrete Nabla operator, and Γ0 = ∅. Minimizing this

functional amounts to finding a regularized piecewise smooth approximation u to the original image I ,

such that the total edge set |Γ| =
∑

i |Γi| is minimized.

The terms in E generally fall into two categories: external and internal energy terms. External energy

terms are responsible for data fidelity. They measure how likely it is that the current segmentation has

produced the given image I . In the MS energy, the first sum over x represents the external energy. Internal

energy terms are independent of the image I . They provide regularization and are often used to model

prior knowledge about the noise process and the properties of the imaged objects, such as their shape,

size, intensity, or texture.

In the following benchmarks we use the energy

E = Edata + λElength + αEmerge . (2)

The internal energies Elength and Emerge are described in the next sub-section. They include a regularization

for the discrete contour length and a prior for region merging. All benchmarks use these same internal

energies, but different external energies. For the external energy Edata, we first consider the MS energy
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with η →∞, resulting in a piecewise constant approximation of I . While we consider arbitrary numbers

of FG regions, the binary case with two regions would correspond to the CV model [3]. The second

benchmark considers a piecewise smooth approximation with an arbitrary number of regions. In the third

benchmark we extend deconvolving active contours [9] to not priorly known numbers of regions. This

is done by augmenting the piecewise constant multi-region energy by a convolution operation in the

image-formation model.

A. Internal energy

1) Contour length regularization: The contour length energy is given by Elength = |Γ|. In continuous

active contour representations, such as level-set methods, the contour length can easily be computed. In

discrete methods, however, it needs to be approximated from the discrete contour pixels using concepts

from digital geometry.

Zhu and Yuille argued [16] that blurring an image with a Gaussian filter has similar effects as including

a length-regularization term in the energy functional. One problem with this approach, however, is that

edges get smoothed. Also, spurious intensity fluxes across close regions can be a problem since they

change the mean intensities of these regions.

Another approximation used in Refs. [19], [22], and in techniques based on the Ising model, counts

the number of region changes on the pixel grid. While this approach is computationally very efficient,

it causes the regions to tend to polygonal shapes instead of developing smooth contours [33] [22]. Also,

the contour generally does not evolve smoothly, due to the discrete objective function. Shi and Karl

[23] hence smoothed the contour of a discretized level function using a Gaussian kernel, followed by a

re-discretization step. A drawback of this approach is that the smoothing is not represented in the energy

functional. The resulting tradeoff between regularity and data fidelity is hence difficult to assess [33].

This has been addressed by Kybic and Kratky [33], who proposed a regularizing flow for discrete

level-set methods that approximates the local curvature κ as

κ(x) = C

(
|SRκ

x ∩X|L(x)||

|SRκ |
−

1

2

)
,

with SRκ

x a hypersphere of radius Rκ centered at x and |SRκ | its volume. C is a constant that depends on

the dimension d and on Rκ. Here we adopt this approach, exploiting the fact that curvature regularization

is equivalent to contour-length regularization.2 Unless otherwise stated we use Rκ = 4, which is found

2This is seen by applying variational calculus to
∑

i>0 λ|Xi| = λ
∑

i>0

∫
Γi
ds.
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to provide a good tradeoff between regularity and resolution. We directly add the curvature-regularizing

flow to the ∆E of the particles. The direction of the flow is given by the outward normal on the contour.

We adapt the sign of κ to account for the direction of the flow: for expanding regions, κ is subtracted

from the energy difference, for shrinking regions it is added to it.

2) Region-merging prior: Since we define regions as connected components, they can naturally split

during the energy-minimization process, provided these topological changes are permitted by the user.

The criterion for regions to merge as introduced in Eq. 1 can be formulated as a hard region-merging

penalty in the energy functional:

Emerge =
∑

(i,j)>0:Xi∼Xj

H[DKL(PXi
||PXi∪Xj

) +DKL(PXj
||PXi∪Xj

)− θ] . (3)

H(·) is the Heaviside distribution and Xi ∼ Xj indicates that Xi and Xj are FG-connected competing

regions. Two regions merge if this is favorable for the overall energy. In order to reflect the discrete-event

character of topological changes, the weight α of this contribution to the total energy in Eq. 2 is set to

∞.

B. Multi-region piecewise constant image model

We first consider images comprising an unknown and arbitrary number of connected FG regions with

each region having a potentially different, but constant mean intensity.

1) External energy: The external energy in this case is given by the “cartoon limit” of the MS energy

for η →∞. This results in a piecewise constant approximation of I . The resulting external energy term

is:

EPC
data =

M−1∑

i=0

(
∑

x∈Xi

(ci − I(x))2

)
. (4)

M dynamically counts the number of regions during energy minimization. The scalar ci is the estimated

mean intensity in region i.

2) Implementation: The intensity estimates ci are taken to be the mean intensities µi of the corre-

sponding region [2]. They are updated on the fly whenever a pixel enters or leaves a region. This allows

evaluating ∆Edata from the data structures presented in Sec. III-A without ever computing the absolute

energy. The overall algorithmic complexity thus is in O(|Γ|Rd
κ), where |Γ| is the number of particles and

O(Rd
κ) results from the memory lookups in the label image that are needed to evaluate ∆Elength.
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TABLE I

TEST CASES BENCHMARKING THE PRESENT OPTIMIZER (PRESENT) AGAINST MULTI-LABEL GRAPH CUTS (GC) FOR

DIFFERENT ENERGY FUNCTIONALS (PC: PIECEWISE CONSTANT; PS: PIECEWISE SMOOTH; DEC: DECONVOLVING) AND

IMAGES. EGT IS THE ENERGY OF THE GROUND-TRUTH SEGMENTATION FOR THE SYNTHETIC TEST CASES.

Optimizer Initialization Optimizer parameters Edata Energy parameters Final E (E − EGT)/EGT Iterations CPU time

Icecream PC 2D, 130 × 130, Fig. 4

present 6 × 6 bubbles θ = 0.2, Rκ = 4 PC λ = 0.04 71.42 4e-5 64 0.39s

GC M = 12 labelcost = 5 PC λ = 0.04 71.28 -1e-3 3 0.28s

GC M = 6 labelcost = 0 PC λ = 0.04 75.85 0.06 3 0.09s

Icecream PC 2D, 410 × 410

present 8 × 8 bubbles θ = 0.2, Rκ = 8 PC λ = 0.04 467.2 5.2e-3 110 7.34s

GC M = 12 labelcost = 5 PC λ = 0.04 464.3 -1.0e-3 5 8.18s

GC M = 6 labelcost = 0 PC λ = 0.04 760.8 0.63 3 1.3s

Icecream PC 3D, 100 × 100 × 100

present 5 × 5 × 5 bubbles θ = 0.2, Rκ = 4 PC λ = 0.04 1863 5.5e-3 62 57s

GC M = 12 labelcost = 5 PC λ = 0.04 1844 -4.4e-3 5 76.9s

GC M = 6 labelcost = 0 PC λ = 0.04 1880 0.014 5 38.5s

Zebrafish embryo nuclei 3D, 512 × 512 × 39, Fig. 6

present local maxima θ = 0, Rκ = 2 PC λ = 0.04 * - 44 7.3m

Bird, 481 × 32, Fig. 5a/b

present 18 × 12 bubbles θ = 0.5, Rκ = 8 PC λ = 0.2 * - 83 4.06s

GC M = 5 labelcost = 50 PC λ = 0.2 * - 9 8.81s

Icecream PS 2D, 130 × 130, Fig. 7

present 5 × 5 bubbles θ = 0.2, Rκ = 4 PS λ = 0.04, β = 0.05, R = 8 87.94 8.5e-4 71 0.49s

GC 5 × 5 bubbles labelcost = 20.5 PS λ = 0.04, β = 0.05, R = 8 87.87 -5.3e-5 9 10.2s

GC 3 × 3 bubbles labelcost = 40 PS λ = 0.04, β = 0.05, R = 8 87.87 -5.3e-5 8 3.47s

Icecream PS 3D, 100 × 100 × 100

present 3 × 3 × 3 bubbles θ = 0.3, Rκ = 4 PS λ = 0.04, β = 0.05, R = 8 4618 6.7e-4 77 4m

GC M = 3 labelcost = 20.5 PS λ = 0.04, β = 0.05, R = 8 4615 -2.7e-6 4 12m

Zebrafish embryo germ cells 3D, 188 × 165 × 30, voxel size = (506 × 506 × 1500 nm), Fig. 8

present bounding box Rκ = 0.04 PS λ = 0.08, β = 0.005, R = 4.5µm * - 207 5.3m

Cloud 2D, 481 × 32, Fig. 9a/b

present 18 × 12 bubbles θ = 0.2, Rκ = 8 PS λ = 0.2, β = 0.1, R = 30 * - 157 57.77s

GC 3 × 5 bubbles labelcost = 175 PS λ = 0.2, β = 0.1, R = 30 * - 16 12.3m

Elephants 2D, 130 × 130, Figs. 5c/d and 9c/d

present 18 × 12 bubbles θ = 0.5, Rκ = 8 PC λ = 0.2 * - 163 11.26s

GC M = 5 labelcost = 50 PC λ = 0.2 * - 13 42.57s

present 18 × 12 bubbles θ = 0.2, Rκ = 8 PS λ = 0.2, β = 0.05, R = 30 * - 385 25.57s

GC 3 × 5 bubbles labelcost = 175 PS λ = 0.2, β = 0.05, R = 30 * - 17 13.2m

Convolved artificial image 2D, 49 × 72, Fig. 10

present bounding box θ = 0.2, Rκ = 4 DEC λ = 0.04 27.13 -5e-2 53 2.3s

Endosomes 2D, 512 × 386, Fig. 11

present local maxima θ = 0.1, Rκ = 2 DEC λ = 0.04 * - 41 32s

* Final energy not comparable due to different definitions of a region.
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3) Benchmarks on synthetic data: Figure 4 illustrates the behavior of the present algorithm and of GC

using the above energy functional on a synthetic image. The image contains 6 regions, each of which

having a different, but constant mean intensity. The present algorithm is started with an initial segmentation

far from the correct result and with a wrong number of initial regions (Fig. 4e). This demonstrates the

capability of the algorithm to merge regions and to correctly delineate boundaries between touching

regions. The total computational time used for this example is 0.39 s, despite the unfavorable choice of

initial contours.

The evolution of the total, external, and internal energies for this case is shown in Fig. 4i. The present

algorithm converges after 64 iterations. The circle symbols mark the time points at which fusions between

two or more regions occurred. GC rapidly finds a solution with a slightly lower energy than the ground

truth. This can be explained by the noise introducing spurious minima in the energy landscape. The CPU

times until convergence are comparable for the two algorithms. In order to test how the results scale

with image size, we also consider the same problem with the image zoomed (not padded) to 410×410

pixels, and with a 3D version of the image (see Table I). In all cases GC is sensitive to the initial

number of regions (Figs. 4c and 4d) when using uniformly distributed initial region intensity estimates.

With an initial number of M = 12 regions GC solves the problem with a CPU time comparable to the

present algorithm; for M = 6 GC fails to find the correct segmentation. The GC implementation requires

≈1.76GB of main memory for this 3D case; the present code uses ≈125MB.

4) Application to real data: We assess the real-world applicability of the present algorithm by applying

it to 2D natural-scene images from the Berkeley database [34] and to a 3D confocal fluorescence

microscopy image of stained nuclei in a zebrafish embryo. The results are shown in Figs. 5 and 6.

In Fig. 5 we visually compare with GC results; the energies, however, cannot be compared due to the

different definitions of what constitutes a region. The nuclei in Fig. 6 are small enough to justify the

model of constant intensity within each nucleus. Different nuclei, however, have different intensities, e.g.,

arrows A and B in Fig. 6a, benefitting from a multi-region segmentation approach. The final label image

after 44 iterations is shown in Fig. 6b. For better visualization, the gray-scales are the region labels rather

than the estimated intensities. An overlay of the original image and the final contours is shown in Fig. 6c

for the region highlighted by the yellow area in Fig. 6b. Figure 6d shows the result when allowing region

fusions, illustrating the effect of topological control during contour evolution.
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Fig. 4. Synthetic example using the energy EPC. (a) Piecewise constant ground-truth image. (b) Ground-truth image corrupted

with Poisson noise. The 5 FG regions correspond to peak signal-to-noise ratios (SNR) of 4, 5.25, 6.5, 7.75, and 9, respectively.

(c) Final result from GC when initialized with the ground-truth number of M = 6 regions. The GC algorithm fails due to

inaccurate estimates of the region intensities. (d) Correct GC result with 6 final regions when initializing with M = 12 regions.

(e–h) Contour evolution at iterations 0, 15, 25, and 64 of the present algorithm with contour points (particles) shown in white.

The correct number of 5 connected FG regions is found. (i) Energy evolution for both algorithms. For the present algorithm we

show Elength (dash-dotted), EPC
data (dashed), and the total energy (sold). Circles mark region-fusion events. The red line shows the

GC energy evolution for an initial M = 12. Crosses mark iterations. The residual energy of the ground-truth image is indicated

by the horizontal dashed blue line.

(a) (b) (c) (d)

Fig. 5. Visual comparison on natural-scene images using EPC. (a/c) Segmentation result using the present algorithm; (b/d)

using GC. GC finds 3 regions in (b) and 4 in (d). The present algorithm finds 3 connected FG regions in (a) and 9 in (c).

C. Multi-region piecewise smooth image model

1) External energy: Larger objects in images frequently have an inhomogeneous intensity distribution.

This requires a model that allows for piecewise smooth representations of the image, such as the MS

functional. Brox and Cremers have shown [35] that the MS functional is a first-order approximation to

a Bayesian posterior maximizer where the likelihood considers region statistics over local windows. We

therefore approximate the piecewise smooth MS model by overlapping piecewise constant patches within

each region. We use spherical patches centered at each particle. Patches at interior pixels are not required.
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Fig. 6. Real-world application using EPC to segment nuclei in a zebrafish embryo imaged by confocal fluorescence microscopy.

(a) Visualization of the nuclei in the raw 3D data (image: Dr. Andrew Oates and Bhavna Rajasekaran, MPI-CBG Dresden).

(b) Maximum-intensity projection of the final label image L. The algorithm is initialized with small FG regions placed at all

local intensity maxima after Gaussian (σx = 5 px, σy = 5 px, σz = 2 px) blurring. The topology is fixed to the initial topology,

with the exception that regions are allowed to vanish. On average 1.03 · 106 candidate particles are processed per iteration.

99.99% of the particles stop moving after 25 iterations. The algorithms converges after 44 iterations finding 3218 connected FG

regions. Since every connected component is a separate region with its own intensity estimate, nuclei of different brightnesses

(e.g., arrows A and B) are correctly segmented. (c) Magnified z-plane showing an overlay of the original image with the final

contours (black) in the region highlighted in yellow in (b) (intensities inverted for display purposes only). Touching nuclei

are not fused if region merges are disallowed during contour evolution. (d) Allowing regions to merge, touching nuclei of

similar intensities are assigned to the same region (e.g., arrow C) and the final number of connected FG regions is 1452. The

visualizations in (a) and (b) were done using Imaris by Bitplane, Inc.

All statistics of the propagating regions are then computed locally per patch. This leads to the external

energy

EPS
data =

M−1∑

i=0

∑

x∈Xi




∑

y∈SR
x ∩Xi

I(y)

|Xi ∩ SR
x |
− I(x)



2

, (5)

with R the radius of the spherical patches and SR
x the hypersphere of radius R centered at x. Within each

patch SR
x the intensity is constant. Smaller R hence lead to better representation of intensity gradients

within regions, at the cost of reduced minimization robustness. The smaller R, the closer the initial

segmentation needs to be to the final result.

In order to render the contour evolution more robust with respect to the initial segmentation, we propose

adding the data-dependent balloon energy

Eballoon = I ·H(−L+ 1) . (6)

This generates an outward flow whose strength depends on the image intensity. This flow counteracts the

curvature-regularization flow in a data-dependent manner. The external energy for the pieceweise smooth

case hence is EPS
data + βEballoon.
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Fig. 7. Synthetic example using the energy EPS. Two overlapping linearly shaded circles on a linearly shaded background,

corrupted with Poisson noise. The brighter parts of the circles (top right) approximately correspond to a peak SNR of 8.7,

while the low-intensity parts (bottom left) have SNR ≈3.2. (a–d) Contour evolution at iterations 0, 5, 15, and 70 of the present

algorithm. The correct number of 2 connected FG regions is found. (e–h) Evolving contour at iterations 0, 1, 4, and 9 of the GC

algorithm, also finding the correct number of regions. (i) Energy evolution for the two algorithms. For the present algorithms

we show the evolution of EPS
data (dashed), Elength (dash-dotted), Eballoon (dotted), and of the total energy EPS (solid). Circles mark

region-fusion events. The red line shows the energy for GC. Crosses mark iterations. The residual energy of the ground-truth

image is indicated by the horizontal dashed blue line.

We also adapt the region-merging criterion to only rely on local statistics: the empirical distributions

PXi
and PXj

in Eq. 3 are only computed over the spherical mask SR
x , as PXi∩SR

x
and PXj∩SR

x
. This

prevents merging regions that are separated by a large intensity gradient, even if they globally share

similar empirical distributions (see Fig. 7d). For efficiency, P can be computed along with ∆EPS
data.

2) Implementation: A neighborhood of size O(Rd) needs to be read from the images I and L for

every evaluation of the energy functional. Double lookups are avoided by computing the statistics in

SR
x along with the curvature flow. This results in an overall computational complexity in O(|Γ|Rd) per

iteration.

3) Benchmarks on synthetic data: Figure 7 illustrates the behavior of the present algorithm (Figs. 7a

to 7d) on an image with linearly shaded FG and BG and compares it to GC (Figs. 7e to 7h). In the

high-SNR areas, the data term of the energy dominates the evolution, and the contours immediately stick

to intensity edges. Within the shaded FG circles, the regions expand as driven by the balloon force. After

5 iterations, regions that are not separated by large intensity gradients begin to merge.

The present algorithm is robust with respect to different choices of the patch radius R. However, R

should be chosen smaller than the length scale of intensity variations and large enough such that |SR|
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(a) (b) (c)

Fig. 8. Real-world application using EPS to segment primordial germ cells in a zebrafish embryo. (a) The raw 3D confocal

image showing 3 cells with a fluorescent membrane stain (image: Mohammad Goudarzi, University of Münster). Intensities are

inverted for display purposes only. (b) Intensity isocontour illustrating the inhomogeneity of the objects (bottom view). (c) Final

segmentation using the present algorithm with EPS (bottom view). The algorithm is initialized with a single box-shaped contour

encompassing all objects and ultimately finds 3 connected FG regions. Visualizations were done using Imaris by Bitplane, Inc.

(a) (b) (c) (d)

Fig. 9. Visual comparison on natural-scene images using EPS. (a/c) Segmentation result using the present algorithm; (b/d) using

GC. GC finds 6 regions in (b) and 9 in (d). The present algorithm finds 17 connected FG regions in (a) and 14 in (c).

constitutes a representative sample to construct the local intensity histograms P .

Figure 7i shows the evolution of all energy terms for the present example. When initialized with 25

bubbles as shown, GC is about 20 times slower than the present algorithm since it evaluates the energy

everywhere in the image, whereas the present algorithm evaluates it only on the particles. Both methods

find solutions close to ground truth and correctly estimate the number of regions.

The results for a 3D version of the image in Fig. 7 are given in Table I. In the 3D case, GC is initialized

with the ground-truth number of regions and an initial contour close to the ground-truth solution in order

to keep CPU times reasonable. The present algorithm is again initialized with bubbles.

4) Application to real data: Real-world applications of the present image model are shown in Figs. 8

and 9. The data consist of a 3D confocal image of primordial germ cells in a zebrafish embryo (Fig. 8a)

and 2D natural-scene images from the Berkeley database (Fig. 9) [34]. The difficulty in segmenting

these images is that the intensity is inhomogeneous within each object, as illustrated in Fig. 8b. Also
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the background is heavily inhomogeneous in all images, requiring a piecewise smooth model. The final

segmentations obtained with the present algorithm are shown in Figs. 8c, 9a, and 9c. The segmentations

using GC are shown in Figs. 9b and 9d. Comparing Figs. 9c/d with Figs. 5c/d illustrates the difference

between a piecewise constant and a piecewise smooth image model.

D. Multi-region deconvolving image model

1) External energy: The process of image acquisition maps the light irradiance of a real-world scene

to a scalar field in Ω. This mapping is often modeled by its impulse response function, the point-spread

function (PSF). Most notably in microscopes and telescopes, the mapping is largely linear, with nonlinear

imaging effects playing a subordinate role. Image formation in these cases can hence be modeled as a

(discrete) convolution of the real-world scene with the PSF. The result is corrupted by a pixel-wise

noise process [8], [9]. Frequently, one is interested in reconstructing the shapes of the imaged real-world

objects from the observed image, attempting to undo the PSF mapping. This is an inverse problem

and the presence of noise renders its direct solution infeasible. The process of solving a regularized

version of this inverse problem is often referred to as deconvolution, and multiple regularization methods

are available [36]–[38]. In deconvolving active contours [9], the image model and the evolution of the

contour serve as a natural regularization for the deconvolution. Moreover, the actual inverse problem

never needs to be computed, since forward convolution is sufficient to evaluate the model energy. This

has enabled highly accurate and robust reconstructions of small, diffraction limited objects in biological

cells using fluorescence microscopy [39]. Here we extend the concept of deconvolving active contours

to higher-dimensional images and to multiple regions, the number of which does not need to be known

a priori.

Assuming that the noise process in the image-formation model follows a Gaussian distribution, the

maximum-likelihood solution of the deconvolution problem is found by minimizing the energy functional

Edec
data =

∑

x∈Ω

(
c0 +

(
M−1∑

i=1

ciOi(x)

)
∗ PSF(x)− I(x)

)2
, (7)

where ci is the difference between the estimated intensity in FG region i and the BG intensity c0, Oi the

indicator function of region i, PSF the point-spread function of the imaging device, and I the observed

image. This model assumes that the intensities ci are constant within regions.

2) Implementation: Naive evaluation of the energy difference at a particle p requires two local convolu-

tions around xp. This can be avoided by introducing the model image J = c0+
(∑M−1

i=1 ciOi

)
∗PSF. This

model image is pre-computed using FFT at the beginning of each iteration. When a particle at position x
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changes from region i to region j, the binary indicator Oi is updated to Oi−δx and Oj becomes Oj+δx,

where δx is the Kronecker delta (unit impulse) at x. Due to the linearity of the convolution operator:
(

M−1∑

k=1

Okck + δxcj − δxci

)
∗ PSF =

(
M−1∑

k=1

Okck

)
∗ PSF

︸ ︷︷ ︸
J−c0

+(δxcj − δxci) ∗ PSF . (8)

The first term on the right-hand side corresponds to the pre-computed model image J without the

BG. The second term is a scaled, discretized PSF mask. The model image J is then updated as

J̃x = J + δx ∗ PSF · cj
ci

. Hence, Eq. 8 allows computing ∆Edec
data as a local operation: We iterate through

a local window (centered at xp) with a radius ρ equal to the PSF support. At each pixel y in the window

we calculate J̃xp
(y) and sum the quadratic differences to form ∆Edec

data(xp) =
∑

y

(
I(y)− J̃xp

(y)
)2
−

∑
y (I(y)− J(y))2. After updating ci, the entire model image J is re-computed from its definition. The

computational complexity of the overall algorithm hence is in O(|Ω| log |Ω| + |Γ|ρd), where |Ω| is the

total number of pixels in the image. Unlike for the previous energy functionals, the computational cost

here depends on the size of the image, due to the convolution for computing J .

3) Intensity estimation: Estimating the region intensities ci requires special attention in the present

image model, particularly for objects that are small compared to the width of the PSF. We perform

alternate minimization of the energy functional with respect to the contour shape and the estimated

region intensities. The latter is done for fixed L (and hence O). We then estimate the intensities ci

such that the current model image J minimizes the L2-distance to the data image I . We do this by

formulating the problem as a 2D linear regression for each FG region: Considering the pixels within

a region i as the data points, we find an affine transform of the set A = {I(x) : |L(x)| = i} to the

set B = {J(x) : |L(x)| = i}. We hence minimize
∑M−1

i=0 (~w · [1, Ai]
T − Bi)

2 with respect to ~w. The

regression coefficient w0 then serves as an estimate for the BG intensity, while w1 is used as a correction

factor for the current FG intensity estimates, hence ci ← w1ci.

4) Benchmark on synthetic data: Figure 10 illustrates the behavior of the present algorithm using

the deconvolving energy functional on a synthetic image. The image simulates a realistic scenario in

fluorescence microscopy with a pixel size of 80 nm and a half-width of the PSF of 120 nm. The image

as blurred by the PSF (Fig. 10b) is corrupted with Poisson noise (Fig. 10c) with a peak SNR of 3 and

4 for the dimmer and brighter object, respectively. The width of the gap between the objects is equal to

the half-width of the PSF.

Without using the information of how many objects are represented in the image, we start the segmen-

tation from a single, rectangular initial contour (Fig. 10f). Figures 10f to10j show the evolution of the
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Fig. 10. Synthetic example using the energy Edec. (a) The ground-truth image. (b) The image convolved with a Gaussian

point-spread function with σ = 1.75 px, modeling a confocal fluorescence microscope. (c) The blurred image after addition of

Poisson noise. The intensity of the u-shaped object corresponds to a peak SNR of 3, that of the circular region to an SNR of

4. (d) The reconstructed image using the deconvolving model. (e) The reconstructed image using a piecewise constant model

with λ = 0.1, θ = 0.8. (f–j) The contour after 1, 10, 20, 35, and 53 iterations, finding the correct number of 2 connected FG

regions. (k) Energy evolution for the deconvolving model. The solid line represents the total energy, the dashed line Edec
data, and

the dash-dotted line Elength. The circle symbol indicates a region-merging event. The residual energy of the ground-truth image

is indicated by the horizontal dashed blue line.

contour. Since the area of the circle is larger than the area of the u-shaped object, the intensity estimate is

initially dominated by the circle. This causes initial over-segmentation of the u-shaped object. At iteration

19, the lower region splits into two regions with independent intensity estimates. This causes the regions

segmenting the u-shaped object to merge again, resulting in a correct detection in the end. Figure 10k

shows the evolution of the energies during this segmentation process.

We compare the results with those obtained using the piecewise constant energy without deconvolution

(Eq. 4). The corresponding final reconstruction is shown in Fig. 10e. The PC model is not able to separate

the two objects. It is moreover necessary to set λ to be 10 times larger than for the deconvolving energy

in order to prevent overfitting the blurry object boundaries with many small regions.

5) Application to real data: The deconvolving energy functional is particularly useful when segmenting

near-diffraction-limited objects as they occur, e.g., in intra-cellular imaging. We illustrate this in Fig. 11

using a single plane of a 3D confocal image showing endosomes labeled with fluorescent Rab5 protein

[39]. Endosomes are small membrane-bound organelles of about 20 to 200 nm size. Accurately recon-

structing the outlines of the many blurred, dense objects in this image is challenging when not accounting

for the microscope PSF. Here we use a simple Gaussian model PSF whose width is determined by fitting
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(a)

(b) (c)

Fig. 11. Real-world application of the deconvolving model

to fluorescently labeled endosomes in live HER911 cells. (a)

Confocal fluorescence microscopy image after background sub-

traction using a rolling-ball algorithm (image: Prof. Urs Greber,

University of Zurich, and Dr. Christoph Burckhardt, Harvard

University). (b) Final reconstructed image in the inset window

shown in (a). (c) The final contours (black pixels) overlaid

onto the original image data. Starting from 1541 spherical

FG regions centered at local intensity maxima, the algorithm

finds 72 connected FG regions. We approximate the PSF by a

Gaussian with σ = 1.011 px, found by fitting to signals of point-

like structures in the image. Intensities are inverted for display

purposes only.

it to point-like structures in the image. A separate measurement of the actual PSF of the microscope

was not performed. Initially, we place small circular contours around every local intensity maximum

in the image. These contours then rapidly evolve to concentrate around the endosomes. The number of

regions in the image does not need to be known when initializing the algorithm. This is an advantage

over explicit deconvolving active contours [9]. Explicit deconvolving active contours, however, provide

sub-pixel resolution, whereas the present method is limited to pixel-level accuracy. This prevents the

correct detection of objects covering less than 2 pixels. After 73 iterations, the algorithm converges to

the reconstructed model image shown in Fig. 11b. The original image overlaid with the final outlines in

the region indicated in Fig. 11a is shown in Fig. 11c. The two touching objects in the lower-right corner

are properly separated based on their different intensities.

V. DISCUSSION AND CONCLUSIONS

We have presented a discrete multi-region-competition framework based on the topological constraint

that each foreground region has to correspond to a connected set of pixels in some discrete geometry

representation. An energy-minimization algorithm that accounts for this topological constraint has been

implemented in both 2D and 3D and tested using three popular energy functionals. The number of regions

in an image does not need to be known a priori, and the initial segmentation can have a different topology

than the final result. We have presented a novel discrete contour propagation scheme and adapted concepts

from digital topology to multiple regions in order to enforce the topological region definition and provide

optional control over region merging and splitting during contour evolution. The contours are represented
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by computational particles that evolve as driven by the energy-minimizing flow. Like discrete level-set

methods [23], the present algorithm only requires evaluations of the energy functional, but not of its

gradient. This is beneficial given the non-differentiable topological constraint. Contour oscillations are

suppressed by adaptive step size reduction in the rank-based minimization algorithm.

We illustrated the algorithm on synthetic images and demonstrated its applicability to real-world data

using three different energy functionals. We compared with results obtained using a state-of-the-art

discrete energy minimizer based on multi-label graph cuts (GC) [11]. The first energy represented a

piecewise constant image intensity model, extending the Chan-Vese model [3] to multiple foreground

regions. The second functional used a piecewise smooth image model to allow for inhomogeneous

intensity distributions within regions. This was done using local window statistics and an additional

intensity-scaled balloon flow to improve the robustness with respect to the initial segmentation. The

third energy functional included a convolution kernel to model the transfer function of an imaging

device. This unites image deconvolution and segmentation and extends explicit deconvolving active

contours [9] to handle topological changes during energy minimization and to higher-dimensional images.

The benchmarks demonstrated that the solution quality and the runtime of the present algorithm are

competitive. Compared with GC, the present algorithm is particularly beneficial for large numbers of

regions and for costly energy functionals, such as the approximated piecewise smooth energy.

Due to the discrete contour representation, the present method is limited to single-pixel accuracy.

Sub-pixel accurate segmentations, such as those achieved by explicit deconvolving active contours [9]

would require continuously varying particle positions, hampering the efficient solution of the energy

minimization problem and the application of digital topology. A limitation of the present method compared

to GC is that contours can advance at most one pixel per iteration. For initial contours far from the final

solution, segmentation may hence be slow. Nevertheless, the timings of the present implementation as

reported for each test case are encouraging when compared with GC. The computational cost of the

algorithm depends on the energy functional to be minimized. In the example of Fig. 8, evaluations

of the energy functional accounted for 88% of the computational time (66% for EPS
data, 22% for the

curvature-regularizing flow), whereas topology processing took 1%, contour propagation 4%, and data-

structure update 3%. Table II shows this breakdown of the computational cost for each of the three

energy functionals considered. For the PC model, curvature approximation and contour propagation are

the most expensive parts. This is due to lookups in L and I . For the same reason, the computational time

using the PS model is dominated by evaluating the data energy. For the deconvolving energy functional,

pre-computing the model image J dominates the processing time. The time complexity of the algorithm
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TABLE II

RELATIVE COMPUTATIONAL COSTS OF THE DIFFERENT STEPS OF THE ALGORITHM FOR THE THREE ENERGY FUNCTIONALS

(PC, PS, DEC) CONSIDERED HERE. ALL TIMES WERE MEASURED USING THE RESPECTIVE BIOLOGICAL EXAMPLE IMAGES.

evaluating Edata evaluating Elength optimization contour propagation topology processing data-structure update

PC 1% 31% 21% 31% 4.5% 11.5%

PS 66% 22% 4% 4% 1% 3%

DEC 97% <1% 2% <1% <1% <1%

with the PC and PS image models is linear in the total number of particles, i.e., the total contour length,

and is independent of the image size. For the deconvolving energy functional, however, the convolution

renders the complexity dependent on the image size.

The computational performance of the present method could be further improved in a number of

ways. Storing the image data along a space-filling curve is expected to improve cache efficiency, as

points that are close in the image will also be close in memory. Future work will also explore the

possibility of computing the energy differences of different particles in parallel, using multi-threading

or graphics processing units (GPU). In addition, we are currently extending the present framework to

include particle–particle interaction potentials as additional regularization [40].

The presented algorithm has been implemented as an image filter in the Insight Toolkit (ITK) image-

processing library [25] and is available as open source from the authors.
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