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Discrete Representation of Straight Lines

LEO DORST anp ARNOLD W. M. SMEULDERS

Abstract-1f a continuous straight line segment is digitized on a regu-
lar grid, obviously a loss of information occurs, As a tesult, the discrete
representation obtained (e.g., a chaincode string) can be coded more
conveniently than the continuous line segment, but measurements of
properties (such as line length) performed on the representation have
an intrinsic inaccuracy due to the digitization process. In this paper,
two fundamental properties of the quantization of sttaxght line seg-
ments are treated,

1) It is proved that every “straight” chaincode stting can be repre-
sented by a set of four unique integer parameters, Definitions of these
parameters are given,

2) A mathematical expression is derived for the set of all continuous
line segments which could have generated a given chaincode string. The
relation with the chord property is briefly discussed,

Index Terms—Chaincode string, chord property, coding efficiency,
digitized straight lines, quantization error.

1. INTRODUCTION

N THIS paper, we will derive two fundamental properties of

digitized straight line segments. First, it will be shown that
the chaincode string of any straight line segment can be one--
to-one characterized by a set of four integer parameters, Sec-
ondly, we will derive the set of all continuous straight lines
which could have generated a given chaincode string.
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The results derived here for the digitization for straight line
segments may be used in a first-order approximation to ar-
bitrary curves, the so-called polygon-approximation [1].

The first property derived may be useful for the efficient
encoding of digitized line drawings and two-dimensional con-
tours., Examples are the analysis and storage of line patterns in
computer-aided design (CAD-CAM) and cartography, and the
treatment of two-dimensional contours in industrial inspection
[2]. The second property shows the fundamental loss of ac-
curacy caused by the digitization of continuous straight lines,
It also gives an explicit mathematical expression for the set of
all lines lying near a specific chaincode string (near understood
in the sense of the well-known chord property, as in [3]).

II. Basic DEFINITIONS

For the digitization of two-dimensional binary images two
methods are frequently used:

o OBQ (object boundary quantization), in which the outer-
most points still belonging to an object are digitized by a
chaincode string [4] [Fig. 1(a)], which can be coded by the
Freeman scheme [5] [Fig. 1(b)];

o GIQ (grid intersection quantization), in which the grid
points closest to a curve whenever it intersects a row or a
column of the grid are connected by a chaincode string [5]
(Fig. 1(c)] .

In this paper we will restrict ourselves to straight object
boundaries and/or stralght line drawings and consequently to

“straight strings.” By definition, a straight string is a string
that could have been generated by the digitization of a straight
object boundary and/or straight line drawing. Straight strings

0162-8828/84/0700-0450$01.00 © 1984 IEEE
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Fig. 1. (a) Object boundary quantization. (b) The Freeman chaincode
scheme. (c) Grid intersect quantization,

satisfy the linearity conditions [5] and the chord property
[3], while nonstraight strings do not.

We take the digitizing grid to be a square grid, and the chain-
code strings to be made up of 8-connected chaincodes. It has
been shown that this case can be generalized to other regular
grids (e.g., the hexagonal grid) or other connectivities by
straightforward computations [6] . '

For convenience in the mathematics, we will only consider
strings consisting of chaincodes O and/or 1. This is no restric-
ticn: since the straight strings satisfy the linearity conditions,
they consist of at most two different chaincode elements, dif-
fering 1 (mod 8). By a suitable choice of coordinate axes, one
can therefore write a straight string as a string consisting only
of the chaincode elements 0 and/or 1, corresponding to the di-
rections (3) and (}) (Fig. 2).

Consider a line in the first octant of a Cartesian coordinate
system, given by y(x) = ax + e. The OBQ-digitization of this
line is, in the first n + 1 columns, given by

@) =late] i=0,1,2,-,n @))]

In this paper, |x] denotes the floor function, defined as the
largest integer not exceeding x, We will also need the ceiling-
function, [x], defined as the smallest integer not smaller
than x.

We will denote a chaincode string by its symbol, followed by
a description of the ith element ¢;. The chaincode string C
corresponding to (1) is

C:op= [y} - i~ D) 2

i=1,2,:-,n
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Fig. 2. All straight strings can be considered to consist of codes 0 and
1, by a suitable choice of the coordinate axes. (The nondepicted
cases follow by rotation of the figure.)

The GIQ-quantization of a line y(x) = ax + ¢’ is given by
y@)=leite’ - 31 i=0,1,2,-+,n (3)

and the corresponding string again by applying (2). So, in the
case of straight lines, GIQ can be obtained from OBQ by the
substitution e e’ ~ 1/2. (This is not true in general!)

In this paper we are solely concerned with straight lines, and
therefore we will only treat OBQ. In Section III we will prove
that any straight string C can be characterized by a set of four
integer parameters, In Section IV we introduce the “domain™
of a given chaincode string as the set of all continuous lines
that would, after digitization, result in that string. In Section
V these domains are related to the chaincode strings, and a
mathematical expression for the domain of an arbitrary string
is given.

III. THE QUADRUPLE (n, g, p, 5)

In this section it will be proved that any straight chaincode
string C can be uniquely characterized by a quadruple of basic
parameters, which we will write as (n, g, p, 5). :

As a preparation, we need three theorems from the theory
of numbers.

Theorem 1: Let P, Q, K, and L be integers. If P/() is an ir-
reducible fraction, then the equation

KP=L(mod Q)
has, for any given L, precisely one solution K in the range
0<K<Q.

Theorem 2: Let P/Q be an irreducible fraction, and let 7 as-
sume Q consecutive valuesi=k+0,i=k+1,- -, i=k+Q-1
for some Kk €Z . Then i(P/Q) (mod 1) assumes all values 0/Q,
1/@,-++,(Q- 1)/Q, once and only once (in some order).

Proof: A proof of these theorems can be found in most

introductory books on number theory; see, e.g., [7].
Theorem 3: Let 0<<e <1. Then

a) |x] - |x-~€] =0« x]te<x<|x]+1 »
b) [x] - lx-€e]=1+|x] <x<|x] +e¢

c) [xte]-|x]=0¢|x]<x<1+|x]-¢€

d) [x+e]-|x] =11+ |x] -e<x<|x]+1.

Proof: We will prove a) only. The other cases are similar.
Let X = |x|. We have, by the definition of the floor function,

Ix}] =X+ X<x<X+1 and
[x-e] =XeX+e<x<Xtetl.
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So both equations are satisfied if and only if
max (X, X+e)<x<min(X+1,X+e+1)

and the theorem follows. Q.E.D,
We now show that the string of any straight line can be rep-

resented by a set of four integers NV, 0, P, S. v
Theorem 4. Any straight string C can be written in the form

C: ci=,_§(i~S)J —'\—g(i—S— 1)J; 1=1,2,0
€

where P, Q, S, and N are integers, P/Q is an irreducible frac-
tion, and 0 €S < Q.

Proof: Let the line to be digitized be given by y=ax +e
and consider its digitization in V + 1 columns of the grid, lead-
ing to a string of NV elements,

We choose two integers P and Q satisfying two constraints.

1) P/Q is an irreducible fraction.

2) In the N+ 1 columns considered, the digitization of the
line y = ax + e is identical to the digitization of y = (P/Q) x + e.

(These conditions mean that P/ is a “very good” rational
approximation of a. Since the set of rationals is dense in the
set of reals, pairs of P and Q exist; in fact, one can always find
an infinity of values satisfying the constraints.)

For the intercept | ¥(i)] of the column x =i by the digitized
line we thus have

N

[y = [ai + ef =tgi+eJ

_ LH + éeQJ o0 -QleQJ J

{=2]

where the last transition is allowed since the first term be-
tween the brackets in (5) is a fraction with integer numerator
and denominator @, and for the second term we have: 0<
(eQ - 1e@1)/Q < 1/Q. This equation can be rewritten:

@)l =[ﬁi@‘f*—qj =[S0 oot 1+ ea) - 'PQ+ |

for any value of I’. In particular, we can take /' to be an in-
teger L in the range 0 <L < @ such that LP=Q - 1 (mod Q).
Theorem 1 guarantees the existence and uniqueness of L, given
Pand Q. Tt follows that LP+ 1 =0 (mod Q), so (LP+ 1)/Q is
an integer, and we have

(%)

LP+1]
Q

o) =[g G- le0] L)J + 1eQ]
s0, using formula (2),
A2 NES -
ci—[Q(z leQ] L)J [Q(z leQl L 1)J,

i=1,2,,N
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which can be rewritten as

as|ge-s)-[ges-n]. 2w @

where S = {eQ] L + (any multiple of Q). We will choose § =
leQ| L - ||eQ] L/Q} Q,implying that 0 <.S < Q. This proves
Theorem 4. : Q.E.D.

Theorem 4 states that any string C can be characterized com-
pletely by a quadruple of parameters: N, Q, P, §. This quad-
ruple was derived from a line whose digitization is C, and is
not uniquely determined: many different quadruples can repre-
sent the same string C. For calculations later in this paper we
need a “standard” quadruple of defining parameters (7, ¢, p, 5)
which is uniquely determined and which' can be calculated
from the chaincode string C itself, This standard quadruple
(n,q,p,s) will now be defined. This is done by showing
(Lemmas 1-3) how N, 0, P, and § can be found in terms of
a chaincode string, and then taking a specific, uniquely deter-
mined, quadruple as definition for the “‘standard” representa-
tion of the discrete straight line (Definitions 1-4).

First, from (4) it is seen that NV is the number of elements
of C. Therefore, the uniquely determined standard value n
of N can be defined simply by the following.

Definition 1: n is the number of elements of C.,

For the determination of the standard value of Q, P, and §
we have to introduce a string Cw defined by

C: c,a,=[§(i—5)‘|—[§(i—s—1)'|, ez ()

Note that Cis the part of C,, in the interval i=1,2,-++ | N,
The parameter Q has the following property.
Lemma 1. Q is the smallest periodicity of C...

Proof: By substitution in (7) it is obvious that ¢;, o =¢;,
and therefore that C, has a periodicity Q. Suppose C, has a
shorter periodicity K, with 0 <K <@, If Q=1 thisis impos-
sible. If Q% 1, we can always find a value of j such that ¢ =
Oand ¢j, g = 1. This will now be shown.

We demand the following:

23]

AL(]'— s;K)PJ- [(j" s;K)P“ §J= .

Using Theorem 3a, the first condition is equivalent to

P P P P _JP
Pcticaf lion? L
0 (j s)Q [(] S)QJ<1, or Q<-—Q mod 1 <

(8)

(where we introduced J=j - ), and the second condition is
equivalent to (Theorem 3b):

O<(i—s+K)§— L(j~s+K)gJ<g,

or O<(J+K)gmodl<g (9)
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To determine a value of j such that the conditions (8) and (9)
are not contradictory, we examine two cases separately.

a) P/0<1-(KP/Q mod 1). In this case we choose J such
that (JP/Q mod 1)=1~ (KP/Q mod 1). Since the right-
hand side of this equality is one of the fractions0/Q, 1/Q, -,
(@- 1)/0, it follows from Theorem 2 that J exists. Equation
(8) is now satisfied and since

(J+K)§modl={<J§mod 1> + (K-gmod 1>] modl‘

P
=lmodl1=0<—,
Q

b) P/Q>1~ (KP/Q mod 1). In this case we choose J such
that (JP/Q mod 1) =P/Q. Equation (8) is satisfied, and since

(9) is also satisfied.

(J+K)'1Qimod1={<fgﬁod 1) + (K§m0d1>} mod 1

12 (2
{Q+<KQmodl>} mf)dl

P P P
= —_ - —
ot (Kgmal) -1<5
(9) is also satisfied.

In both cases we have the contradiction ¢y, y % €44 s+ g Which
implies that the string C., as no periodicity K smaller than Q.
Hence, @ is the smallest periodicity. Q.E.D,

Now, it is obvious that the smallest period of a string C., of
the form (7), which is identical to C on the finite interval i =
1,2,+++,n,is at most n (we define the periodicity to be n if
the string is completely aperiodic on the interval considered).
We will take this smallest periodicity as the standard value
for Q. '

So, if we define q to be the smallest periodicity of C:

Definition 2.

g=min{k€{1,2, ,n}l
k

k=nVVi€{1,2,'--,n~k}: Cl'=ci+k}

then ¢q is uniquely determined if C'is a straight string.
In C.. defined by (7), the parameter P has the property:
Lemma 2: P=3£, Coy.
Proof: Since co; = [P/QG - S)] - [P/QG - S - 1)] wehave,
within one period Q:

ot .1.';‘_,1_}
oo Q@
P \ P P+1 -1
Co; =0 iff ——(i—S)modlE{—-, ,---,Q—-].
Q Qg 0 Q
Since P/Q is irreducible, Theorem 2 yields that every value in
the two sets occurs once and only once if i assumes @ consecu-
tive values. Hence c.; = 1 occurs P times, and c.; = 0 occurs
Q- P times, and we have P= 22 c..;. Q.E.D.
Since g is only a special choice for @, defined in the finite
string C instead of C., we must define the standard value p
of P corresponding to this choice as follows.

Coop =1 iff g(i-S)modle‘
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Definition 3: p=Z{. | ¢;.

Therefore p is also uniquely defined.

In Ce, the parameter S has the following property:

Lemma 3: S is the unique integer in the range 0<S<Q
satisfying:

vien: eop=| B3] Sa-s-1).

Proof: Tt is obvious from (7) that S satisfies this condition.
It remains to be shown that § is the unique solution. We do
this by a reductio ad absurdum.

Suppose S’ # § also satisfies the condition, If Q=1 this is
impossible, since there is only one S in the range 0 <S5 < Q,
namely S=0. If Q1 we derive a contradiction by finding
a value of j for which

Cooj = _g(f‘S)J _L—IQ?(];—S' 1)J =0

but simultaneously

Cooj = _—g(j-s')J —[g(j—S'— 1)J =1,

By an argument completely analogous to the proof of Lemma 1
(by putting S+ K =38") we can show that a value of j can al-
ways be found, and hence a contradiction is inevitable. Q.E.D.
As in the case of g and p, s is defined by adopting Lemma 3
to the string C.
Definition 4: Let c; be the jth element of C. Then s is the
unique integer in the range 0 < s < ¢ for which

vie{1,2, -, q} c,=[§(1-s)J —[%(i~s— 1)J.

It is a direct consequence of the Lemmas 1-3 and the Defini-
tions 1-4 that the quadruple (n,q,p,s) can be determined
uniquely from the string C; so, we have the following,

Theorem 5. Given a straight string C, one can determine the
quadruple of parameters (, q, p, s) uniquely.

Conversely, we have the following,

Theorem 6. If the quadruple (#, q, p, s) can be determined
from a string C, then C is a straight string, uniquely deter-
mined by n, q, p, and s.

Proof: Definitions 1-4 imply that the string C can be writ-
ten uniquely as

c: cj=L-Z—(i—s)J - [%(i—s— 1)J, ‘iE{l,Z,-“,n}.

To show that this is a straight string we have to give a line
which would have C as its digitization. Such a line is

_P |’P '| p
x)y==x+|=sl-=3s (10
y(x) p PRl e )
which can be easily verified by applying formula (2). Q.E.D.

Combining the Definitions 1, 2, 3, 4 and Theorems 5 and 6
we have the following,

Main Theorem: There is a one-to-one correspondence between
a straight string C and the quadruple (s, q, p, 5) defined by
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Fig. 3. The (e, o)-plane with the domains of all straight strings of up

to six elements.
ing domain.

[ »n is the number of elements of C

g=min{kE€{1,2, " ,n}|
K

k=nVVi€{l,2, -*,n-kh Cier=Ci1}
o4

W p=3. ¢
i=1

s $€{0,1,2, ,q- VY Vi€{l,2,- ", qk

L ci=[%(i—s)J—[%(i—s~ljJ (11)7

where c; is the ith element of C.

In other words, all information present in the string Cis
contained in the quadruple (n, ¢, p, $).

Combination of the Definitions 1-4 therefore leads to a
unique representation of C'in terms ofn,q,p,ands:

The chaincode string is indicated in the correspond-

¢ o= |Ba-9-|Be-s-nf =r2e

which we will sometimes write as

N

(12)

C =code (n, q, P, 5).

In Section V we will use this description to derive an expres-
sion for the domain of C.

IV. THE DOMAIN oF A CHAINCODE STRING

Consider a line I: y = ax + e, and its OBQ-digitizationinn+ |
columns:

Ly@)] = lad +e], (13)

This digitized straight line segment does not uniquely deter-
mine the line I. In fact, there is an infinity of lines that could

i=0,1,2,-,n
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Fig. 3. (Continued).

have led to the digitization points |y (i)}, and the correspond-
ing chaincode string defined by (2).

We now define the following,

Definition: The domain D of a thaincode string C is the set
of all continuous lines whose chaincode string is C.

In the next section we will calculate the domain D, for an
arbitrary straight string C, using the quadruple (n, ¢, p, 5). In
the remainder of this section we will try to elucidate the con-
cept of domain in a more intuitive way.

The formula for an arbitrary line

y=axte

(14)

is a linear relationship between x and y, given two parameters
o and e. If we introduce an (e, a)-plane, we can represent the
line by 4 point (e, @), and consider (14) as a transformation
formula from the (x, y)-plane to the (e, @)-plane [8]. A point

in the (x,y)-plane transforms by (14) to a linear relationship
between e and g, i.e., a line in the (e, c)-plane,

The domain D¢y of a string C is a set of lines in the {(x, y)-
plane, and hence transforms to a set of points in the (e, a)-
plane. A plot of the (e, &)-plane with the domains of all chain-
code strings of lengths of up to six elements (consisting of
codes O and 1) is given in Fig. 3. Similar figures were given in

Since every line in the (x, y)-plane leads to a unique chain-
code string, every point in the (e, &)-plane belongs to a unique
domain: there is no overlap, and there are no gaps between the
domains.

The domains in the (e, &)-plane-are bounded by straight lines,
corresponding to points in the (x, ¥)-plane. This can be easily
understood as follows., If a line / traverses a grid point in the
(x, ¥)-plane, its chaincode string changes. But in the (e, c)-
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plane, this movement of the line { transforms to the traversing
of a point by a line, and the change in chaincode string corre-
sponds to a change in domain.

Closer scrutiny reveals that an arbitrary domain is either tri-

angular or quadrangular and hence the digitization of any line

is determined by three or four grid points only (this will be
proved in Section V).

A geametrical interpretation of this fact is shown in Fig. 4,
where an arbitrary chaincode string C has been drawn. As
stated above, there are many lines leading to this string. One
of these lines will be found to be of special importance (Sec-
tion V). This is the line Y given by

Y: y=§-(x—s)+[%’-]

where g, p, and s are derived from C by (12). It was shown
that this line has indeed C as its digitization (proof of Theorem
6). This line is indicated in Fig. 4(a).

The line Y passes through a grid point in the columns

x=s,8+tqg,st2q, .

Let the last column in which it passes through a grid point be
L(s). (We will explain this notation in the next section.) Shift-
ing this line vertically, parallel to itself, we encounter other
grid points, lying some distance above the line Y. The lowest
grid points above the line lie at a vertical distance 1/q. If the
one with the smallest x-coordinate lies in the column F(s + 1),
then the other points of this kind lie in the columns

x=F(s+]),F(s+)+q, Fs+)+2q, .

(Again, this will be shown in Section V.) Let the last column
- of this kind be the column L(s + ). In Section V we will show
that the four points indicated in the columns s, L(s), F(s + 1),
and L(s + 1) determine the domain Do completely. More pre-
cisely, all lines passing entirely through the shaded area in
Fig. 4(b) have as their chaincode string the string C, while lines
not passing entirely through the shaded area have a different
chaincode string. Therefore, the shaded area determines the
domain of C.

For some strings the columns s and L(s), or F(s +1) and
L(s +1) may coincide. In that case the domain is determined
by three points, and its representation in the (e, a)-plane will
be triangular,

V. THE CALCULATION OF THE DOMAIN
or CoDE (n,4,p,$)

In this section the domain D¢ of the string C' = code (#, ¢,
p, s) is calculated.
A line whose chaincode string is C'is [see (10)]

y(x)=(x—s)’;’l—+ﬁ‘;—].

We are looking for all lines y = ax + ¢ whose digitization is C,
i.e., we have to solve

lai+e| = [(i-s)%Ji— [s%ﬂ (=0,1,2,--+,n). (15)

This is in fact a set of n + 1 conditions on e and e.
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A

Ffs) ’ F(‘s+L) ' ' L(S‘H) ' ) L(‘s) n
(b)
Fig. 4. (a) A chaincode string and a line which could have generated it,
(b) A chaincode string and the region which contains the set of all

lines that could have generated it.

The solution of this equation is rather elaborate. To simplify
the notation and for reasons of symmetry a few additional
variables and functions are introduced first.

We introduce an integer / by the implicit definition:

! ] 1
0<i<q and 1 +{—’-’—J P
q a 4q
The second condition can also be read as Jp = ¢ - 1 (mod ¢),
and hence Theorem 2 guarantees existence and uniqueness of
I, Note that the definition of / implies that

(16a)

Ip+1

is an integer, (16b)
a fact we will use in the proofs of the following lemmas and
theorems. Note that/=0if and only if ¢ =1,

We will need two functions L,, 4(x) and Fy, (x) (pronounced
“last x™ and ““first x,” respectively) defined as

n- xJ ¢
q
and

Fa(x)=x - 'j—J q.

Note that 72 ~ ¢ < Ly o(x)<n and 0 < F,(x)<g. In this pa-
per n and ¢ will always indicate the n and ¢ of the string C
considered. Therefore we will drop the subscripts # and g
and write L(x) and F(x) for L, o (x) and F,(x), respectively.

Lpglx)=x +t



DORST AND SMEULDERS: DISCRETE REPRESENTATION OF STRAIGHT LINES

it should be noted that F(s) =s, since 0 <s<gq. In the re-

mainder of this section, we will often use F(s) instead of s,
since the symmetry of some of the formulas is then apparent.

Fig. 4(b) represents a graphic illustration of the “first” and
the “last” function.

It can be shown that (see the Appendix)

Listl)-F(s)=n>0 if [=0

Lis+)-F(s)=I1>0 if [#0 (17a)
and

L{s)- F(s+I)=n>0 if 1=0

L)-F(s+D)=2q-1>0 if [#0. (17b)

For convenience, let us define the following quantities:
q.=L(s+1)- F(s)

q-=L(s)- F(s+1)

1
a+=B+
q 49+
_p_1
q 49-

Y, ='§-<z'— F(s)) + [F(s) 5—] (=§(z‘— s)+[sﬂ>. (18)

It follows from (17a) and (17b) that a_ <p/g < a.

In Fig. 5 the shaded area of Fig. 4(b) is schematically drawn.
The interpretation of the variables defined above can be in-
ferred from this figure.

After these preliminaries let us proceed with the calculation
of the solutions (e, &) of (15).

Lemina 4: A solution (e, @) of the set of equations:

ViE{O,i,"',iz}: lai + el = |Y;] (19)

exists if and only if o_ <a < a,.

Proof: We will prove this lemma by specifying a solution
to the n + 1 conditions given in (19) in the range a_ < o < ay,
and proving the impossibility of a solution outside this range.

Unfortunately, the proof consists of several cases and sub-
cases. Some of these cases are very similar; we will then only
treat one representative in detail. '

First ‘of all, the range of a is divided into two parts: p/g <
a<a, and a.<a<p/q, of which we will only treat the
former in detail. Introducing a small but positive § (0 <& <
1/4q.), we claim that a solution of (19) is (¢’, "), with

e’ =~ (@ - B) F(s) + [F(S) ﬂ

(20)

(This represents the line ¥ = a'x +e’, which passes through a
grid point in column F(s), and has a slope slightly smaller than
a,. See Fig. 5.) To prove that (¢',a’) indeed satisfies the n + 1
conditions given in (19), the range of i is split into three parts.
These are i) the middle range F(s) <i<L(s+/), i) the end
L(s+1)<i<n, and iii) the beginning 0 <i<F(s). These
parts are schematically indicated in Fig. 5.

o' =a,- 8.
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Lis+l) L(s)

o J5 A

s) F(ls+l.}

a0

j -

Fig. 5. Schematical representation of Fig. 4(b), as an illustration for

the proofs of Lemma 4 and the domain theorem.

i) For F(s) <i<L(s+1)we have
la'i+e’| ~ 7]

= 1o~ 8) (1= F6)] -| 24i- P
- Bi (i - F(s)} +( ! 5) fi- F(s)}J

a{L(s+1)- F@s)}
p ..
- [E{l ~ F(s)]J.

Using the fact that

1 , 1
° g(CI{L(S +1)- F(s)} 5) {i- F(s)} <;

in the interval of i considered, we have that |a'i+e'] - [Y;] =0
in this interval, in agreement with (19).

if) For the case L{s +I)<i<n we put i=L{s+1)+j with
0<j<n-L(s+1)<q.

Denoting the small and positive entity {L(s +1) - F(s)+/} &
by A, we have

la'i+e'] - [Y,)
= (o - 8){/ +L(s+1) - F(s)}]
- L%{ju(sn)-F(s)}J |

=2 i} p 1,1
-L]{L(Hl) F(s)}+q +q+qq+ AJ

- |'§{j+L(s+l)~ F(s)}J
[l
L5 0e=9)

ool oo

1)



458

which, by Theorem 3c, equals 0 if and only if
. p . D _ . p
JrD—=[-G+DH=<0<1+ ]+Z—J

’.( )qJ ( )q [( )q

-+ (22)
The first inequality follows directly from the definition of the
floor function., For the second inequality, two subcases are
to be considered. _

a) jis a multiple of [, say j = kI, with £=0,1, -+ , K. (Kis
the maximum value of &, determined by Ki<n - L(s + 1) and
K+ I>n- L(s+l) Note that 0 < kI<q,s0 0 <K <gq.)
We have

onPloionk
1+t(,+z)qJ (],H)‘?
_ bl L
1+[(k+1)qJ (k+1)q
k+1 _ I£
q J (k”)q

RZZTIN
+|. ; J (+ 1) - [oy (160)

p+1

—1+‘L(k+1)

pt+1

=1+(k+1)

+ +1 +
=1+l._k 1J+k _k+1 23)
q q q
since 0 <k +1<q.
Furthermore,
1 i 1
— - AL >-4+—=-A [by(173)]
q4 449+ q 4ql
+1
koA
q
So, in the case j = ki,
, P
1+ |(j+1 J jrH=-—-~ +tAZA>0 . (24a
t( ) ( )q q 94+ )

in agreement with (22), and {o/i+e'| equals |¥;] for the val-
ues of 7 considered in this subcase.

b) j is not a multiple of /. We know that 0 <j<gq, and
from Theorem 2 it therefore follows that in this interval of j
the. expression 1+ [(j+ 1) p/q] ~ (j +1) p/q can only assume
each of the values Q/q, 1/q, - -+ , (¢ - 1)/g (mod 1) at most

once. Equation (23) shows that forj=0,1, -+, KI the ex-
pression assumes the values 1/q, 2/, , (K +1)/q.
Therefore we have, if j # kI,
i +
+l(1 l)pJ G +l)p SK+2
q q
Furthermore,
1 i 1 7
A<=+ <A [by(17a
4 qq. q ql [by (172)]
K+2 ‘
<——-A (since j<K+1)I).
Hence,
L N\P R
+ (;+1)—J— jHD=-=-——+A>A>0 (24b
[ q ( ) qa 49 4q4. (24)
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in agreement with (21), and again |o/i + '] = |Y;].

The equat10ns (242) and (24b), together prove (22) and
show that [oi +€'| = [V;| f L(s+ ) <i<n.

iii) For the case 0 <i{<<F(s), we put i = F(s) - f, with 0 <
J<F(s). We then proceed in a way entirely analogous to ii)
to show that

[oite’)=[Y;] if 0<i<F(s).

Combining {), ii), and iif) we have shown that, for 0 < i <n,
[«/i+€'] = [¥;]. This proves that a solution (e, @) can be
found such that

vie{0,1,- P

-, n} laite] =Y if —<a<oc+. (25)

We now prove that & < a, is the strictest upper bound , by de-
riving a contradiction if & 2 a,.
Let ¢ = o, + 8 with 8 2 0. Ati=F(s) we have

(i +e] - Y] = (0 +8) F() + e] - [F@) f;—]

|- oo

The minimal value of e for which this is 0 is

emin = ~(2s +5) F) + [F) .
So, only if e ey, the digitizations |oi +e] and | Y, can

be identical for all i, However, at the same time we have for
i=L(s+D):

[¢'i+e] - [V}
= [ +8) L(s+ 1) t+e]

p o 2
- b (Ls+1)- F(s)}J [F(s) q]
= Lo~ omin + (@ +8) {L(s + 1) - F©))
- [f;- {L(s+1)- F(s)}J
> |(ay + ) {L(s + D~ FE)} - [%

[}
_[-.Z{L(SH)—F(S)}J

(B st
(2=

=L’P;‘ +H{L(s+ D)~ F)} 6J [IZ J

=14 [%J 8L+ 1) - F)} - E’}’- J [by (162)]

=1+ (6{L(s+1)- F(s)}] > 1 (26)

(Lis+1)- F(s)}}
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This indicates a conflict between |ai+e| and |Y;] at i=
L{s+1). Hence |a:+e] is not identical to |Y;] for all 7 if
>0y, So, if &> a,, there is no solution to (19), In com-
bination with (25) we have therefore proved the lemma for
the range p/q < a < a,..

The case a. < o < p/q is similar. In this case it can be shown
that (¢’, ') with

e' = (o +8) L(s) + ll(s)g'

o=a +8

(with 0 <8 <1/gq.) is a solution of (19), and that a contra-
diction occurs if @ < a_. Therefore the lemma is proved.
QE.D.
With this preparation, we are ready to prove the following,
The Domain Theorem: The only values of e and a satisfying
the equations

Vie{0,1, -+ ,n}: |aite] =|Y;] 27

are as follows.
1) Forplg<a<a,:

l-F(s) ﬂ CaF(s)<e<l+ [L(s +1) %J— aL(s + 1),

2) Fora-<a<plq:

[L(s) Pq—] ~al(s)<e<1+ [F(s +1) -z-J - aF(s+1).

Proof: By Lemma 4, only values of « in the range o <
a<a, need to be considered. As in Lemma 4, we will only
treat the case p/q < a < a,, since the case o < a < p/q is com-
pletely analogous.

Consider a line y,(x) = a,x +e,, with e, =-aF(s) + [F(s)
(p/q)]. This line passes through the grid point 4 in column
F(s), and the grid point D in column L(s +7) (see Fig. 5). Let
this line intersect an arbitrary line y =oax +e in a point P=
(%p,yp), with x, =(e- e.)/(as - @). Let us also define a
line with slope p/g through P: yo(x) =p/qx + ey, with ey =
-p/qx, +yp. Due to the fact that p/q < o <o, we have

for iZxp: §i+eo<ai+e<oc+i+e+ (28a)
and
for i<xp,: a+i+e+<ai+e<§i+eo. (28b)

It will be convenient to introduce a line also passing through P,
but with a slope infinitesimally smaller than a,. If we use 8 as
a small but positive number, this line is

L0 = (- 8) L - FE)}+5(x, - F(s)} + [F@) -fﬂ

as may be easily verified.
The inequalities (28a) and (28b) can now be reformulated as

for iZx,: yo(i)<oite<y() (29a)
and
for 1<x,: yi(i) <aite<yo(i). (29b)
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The theorem will be proved by deriving bounds for x, such
that (27) is satisfied. For this purpose, the range of values of
Xp is split in three parts.

i) F(s)<x, <L(s+1!). In this range we have

[:31‘+ei| = _s(i’xp)+yPJ

Y P P P
=l 7a. {xp - F(s)} + , {i F(s)}J + [F(s) q-‘

(since y,.=a.xp, te,)
=P ' P
-2 F(s)}J + [F(s) q]

[Y3]

where we used the fact that

]

(30)

1 1
O<—{x, ~ F(s)} <—
qm{” @} q

in the range of x,, considered.
In the proof of Lemma 4 it was shown that

(e - 8) {i - F(s)}] + [F@) {;—]

= Y]

In a similar way one can show that
A = (e ) G- PO + 30, - FOH + [P 2]

=173 €}y

The extra term in (31) is infinitesimally small and detailed
calculation shows that it does not lead to different values for
the floor function if F(s) <x, <L(s+!). (This can also be
understood geometrically from Fig. 5: the line y,(x) is the line
y4(x), slightly tilted around the point P. Therefore the critical
grid points for the line y,(x), especially point D and A4, are
harmless for y4(x).) Equations (30) and (31), combined with
(29a) and (29b) imply that oi + e always lies between two
numbers yo(i) and y.(i) whose floor function equals |Y;].
Using the definition of the floor-function, this implies that
the floor of oi + e also equals |Y;], for i=1,2,---,n We
therefore have the result that a solution of (27) can always be
found if F(s) <x, <L(s +1).

ii) x, <F(s). With x, in this range, no solution of (27) is
possible. More specifically, we can show that a contradiction
between the values of |ai + e} and | Y;] arises fori = F(s). At
i = F(s) we have

I_Oti+ GJ i lYlJ

for i=0,1,2, ",

for i=0,1,2,+,n.

= [aF(s) +e] - [F(s) —2—]

= |a{F(s)- xp} +et+ax,| - ‘yF(s) g—l
= (o - @) {xp - F()}

(since ax, te=y, =X, te,)
<0.
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So |ai+e)] #|Y;] at i=F(s). Therefore, (27) is not satisfied
for all 4, if x, < F(s).

iil) xp >L(s +1). In this case a conflict between |of + e]
and [Y;] arises fori=L(s+ ). Ati=L(s+!)we have

lai + €] - | Y]
=laL(s+)+e] - [Yisnl

2| Ls+ ) +e] - [Yyeenl  [by (28b))

=l {L(s + 1)~ FG)}] + [F(s) {ﬂ - Fien]

LZ {Ls+1)~ F(S)}+ J LZ {L(s”)"F(s)}J

FaRt

1 [oy (162)].

So, if x, = L(s +1), no solution to (27) is possible for all i
due to the conflict at i = L(s +1).

We have therefore found that the only values of x, for
which a solution to the (n+ 1) conditions of (27) is possible
are given by

F)<x, <L(s+1).

1}

il

Substituting x,, = (e - e,)/( - &) and the expressions for e,
and oy, this can be rewritten to a range of e:

I—F(s) —’ﬂ - aF(s)<e< % (Ls +1)- F(5)}

L4 [F(s) E—" CaL(s+]).
q q
The right-hand side can be written in a more convenient form,

using the identity [s(p/q)] =1 +|(sp ~ 1)/q], whichis valid for
any integers s, p, and g:

| %{L(s +1)- E(s)} +%+ [F(s) ﬂ Cal(s+1)
=m+1

+!\n~s~lJp+"sp—lJ
q q q

+1-aL(s+]) [definition L(x)]
Ip+1

___'jp~1+ +|.n—s—lJpJ
q q q

+1-al(s+1) [by(16b)]

=1+ |-L(s +1) %J -aL(s+1) (definition of L(x)].

Hence, if p/g <
(e, o) for which

a < oy, the only solutions to (27) are the pairs

[F(s) ’ﬂ (s <e<1+ [L(H ) {;—J _al(s+1).

This proves the first part of the theorem. The second part canbe
proved analogously, by considering the line y (x) =a_x +e.
with e_ =~ a_L(s) + [L(s) p/q), which passes through the point
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< C

AN B

(b) (0
Fig. 6. Schematical representation of the domains in the (e, a)-plane.
The points of Fig. 5 corresponding to the boundaries have been indi-
cated. (a) General case: quadrilateral. (b) 4 and B coincide. (c) C
and D coincide.

B (see Fig. 5), and the lines y(x) = ax + e and yo (x) = (p/q) +
eg. One then arrives at the result that a solution (e, ) with
o < a < pfq exists if and only if

l'L(s) —S‘l -al(s)<e<1l+ [F(s +1) %J - aF(s+1).

This proves the theorem, Q.ED.

This theorem can be interpreted as indicated in Fig. 6: each
chaincode string C is represented by a domain in the (e, a)-
plane. The domain of C consists of all values (e, &) corre-
sponding to continuous straight lines whose digitization would
be C.

The domain theorem shows that a domain has in general a
quadrilateral shape: it is bounded by four lines in the (e, @)-
plane. A plot of the domains in the (e, &)-plane (see Fig. 3)
reveals that sometimes this quadrangle degenerates to a tri-
angle. From the domain theorem we can see that this hap-
pens if either F(s) = L(s) or F(s+1)=L(s + ). These condi-
tions can be rewritten to conditions for n:

sty o o2 o]
9[”’ (:BJ")J =[n—F(S)J=O

@ F(s)<

n<F(s)+q
corresponding to Fig, 6(b), and similarly
Fs+D)=Ls+D*Fs+N<n<Fs+N+q

corresponding to Fig. 6(c).

As we have seen in Section IV, the boundaries of the domain
correspond to grid points in the (x, y)-plane, Therefore, the
fact that a domain in the (e, a)-plane is, in general, quadri-
lateral implies that the digitization of a line is determined by
at most four grid points. The domain theorem shows that
these four grid points lie in the columns F(s), L(s), F(s + 1),
and L(s +1).

VI. CoNcLUSION

In this paper we treated two fundamental properties of the
quantization of continuous straight line segments. The first
property is that the information present in the chaincode
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string of a continuous line segment can be contained in a set
of four integer parameters (1, g, p, s). The second property re-
veals the set of continuous line segments which could have
generated a given chaincode string. This set is called the do-
main of the string. Formulas for the domain, expressed in
(n,q,p, s), are given in the Domain Theorem.

These results were all derived for OBQ-digitization on a
square grid, represented by an 8-connected chaincode string
in the first octant. It should be noted that they can be easily
generalized to other octants by rotation and reflection (Fig. 2),
to other regular grids and connectivities by linear transforma-
tion [6], and to GIQ-quantization by a simple substitution of
variables (Section II of this paper),

The four parameters (1, ¢, p, s) can be of great practical use
since they contain the information present in a chaincode
string in a concise form. Fields of application might be the
encoding or measurement of digitized objects. In fact, the
research reported in this paper was motivated by a paper by
Vossepoel and Smeulders [6] on the accuracy of length mea-
surements of digitized straight line segments (see also [9]). By
characterizing a chaincode string by three parameters the auth-
ors were able to derive an accurate estimator for the linelength
to be associated with a chaincode string. They remarked,
though, that these three parameters were insufficient to chaz-
acterize a string completely, and that therefore their esti-
mators could still be improved. In a sequel paper, we will use
(n,q,p,s) to derive best linear unbiased estimators (BLUE)
for the measurement of an arbitrary property of a digitized
straight line segment.

At first sight, the choice of (n, ¢, p, s) as characterizing pa-
rameters of a straight string may seem arbitrary, and their
definition complex. Actually, it was shown that these pa-
rameters summarize basic properties of a straight string: n is
its length, g is its smallest periodicity, p/q is the simplest slope
in agreement with the string, and s is a phase shift. Moreover,
it was shown that the string can be obtained from (n, q, p, 5)
by the simple formula

C: CI—IJI (z~sJ [ (z-s—l)J i=1,2, < ,n

Regarding the complexity of computation, we have developed
an algorithm of order N for the decomposition of an arbitrary
chaincode string of N elements into straight substrings, which
simultaneously computes the parameters (n, ¢, p, s) of these
substrings [10].

Using the parameters (n,4,p,s) we were able to derive
mathematical expressions for the domain of an arbitrary chain-
code string in the “domain theorem.” This theorem sum-
marizes the set of all continuous lines which yield a specific
chaincode string after digitization and thus comprises a kind of

“inversion” of the digitization process.

There is a close relation between our domain theorem and
the well-known chord property. Rosenfeld [3] proved that a
chaincode string is straight if and only if it satisfies the chord
property. A string has the chord property if there exists a
continuous line lying near the grid points the string connects.
A continuous line les near a set S of grid points if for any
point (x,y) of the line, there exist a point of § such that
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max {|i- x|, |j-»|}<1. In gid intersection quantization,
the set of all lines lying near a chaincode string C is precisely
the set of all lines whose digitization is C, and this we called
the domain of C. Therefore, the analog of the domain theorem
for GIQ (instead of OBQ) gives a mathematical expression for
the set of all lines lying near a specific string, in the sense of
the chord property. This example illustrates that the results
derived in this paper relate to very fundamental properties of
digitized straight lines. :

APPENDIX
In this Appendix we will prove
Lis+)-F(@)=n>0 if 1=0
Lis+D)~-F(@E)=1>0 if 1#0.

We first need three auxiliary lemma’s.
Consider two lines

96)=L -0+ [Z]

and
[e]
7)==t - 9+[%]
and the digitizations [p(7)] and |y,(@)], fori=0,1,+',n
Lemma Al:
Y@ = [y,()]  for i=0,1, -, s+1-1,

and [y(s+ D) # |y, +D).

In words, the lowest positive 7 for which [y(7)] and |y;(D)]
are not identical is i = s + [.
Proof: First, we have

i) = | 7| 2] +1) - 9] ¢ [Z]
= K% + Z;l—l") (i- s)J + "g{zﬂ by (16a).

The range of { is divided into two parts.
) Ifo<i<sweputs-i=jwith0<j<s

a7l

Thus [y;()] is identical to [¥(Z)] in this interval if and only

if
I A AT L P At
q q ql q q
by Theorem 3a.

The right-hand side of this inequality is satisfied by the defi-
nition of the floor function. For the left-hand side two sub-
cases have to be distinguished.

a) 7 is a multiple of /, say &I (with k=0,1,:--,K). K,
the maximum value of k, is determined by the demands KI <

@)l - O] = [—~——

(*
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and (K +1)1>s. We have

L;]EJ’“E:L‘@J*@’
q q q q
. ,
=[:klp l+i_€.J+l_d_p_
- q q q

o
q q

[by (16b)]

So

l_ /2 J g
gl q 4q
in agreement with (),
b) j is not a multiple of /. In this case, [-jp/q] +jp/q will
not be equal to - 1/g, - 2/q, -+ ,- K/q, since these values were
already assumed in case a), and according to Theorem 2 they

will be assumed only once in the interval 0 <j< q. In this
subcase, () is again satisfied since j <(K + 1) It

o e ks
[.EJ+J_P.+L<L-£J+£+£_1<O.
q q ql al 49 «q

So |y(i)] and |y;(i)] are identical if 0 <i<{s.
it) If s<i<s+1!we have

0<0

i-s

il - O] =| 2 -9+ 25 |20 =0
q ql q
since 0 < (i - s)/gl <1/g,in this interval.
Parts i) and ii) show that in the interval 0 <i<s +1, | y;(i)]

is identical to [y(i)|, and thus proves the first part of the
lemma. Ati=s+/we have

@) - O] = [(% ”%)’J ) L%J
EICE

by (164) in the main paper.
‘Hence i=gs+/ is the lowest positive value of i for which

ly(@)] and |y,(@)] differ. Q.ED.
We define two strings C'and C; by

C: ¢= ] - - 1),
Gt cr= [y - - DI,
It follows from Lemma Al that ¢;=c} for i=1,2,--,s+
{- 1, butc“,?ﬁc;”.
We can now prove the following lemma.
Lemma A2: C;has shortest periodicity /.

Proof: i) First, we show that the fraction ({Ip/q] + 1)/l is
irreducible:

[ZBJ*I Ip+1
q =

q - {

i=1,2,-,n

i=1,2," ', n

[by (16a)]
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Suppose that /= al', with @ and [" both integers. Then

p+1 dp+tl Ip 1
4 __ 4 _.da a4
l a’ I

The original fraction (|lp/q| + 1)/1is therefore reducible if and
only if we can find a value of g, not equal to 1, such that
I'v/q + 1/aq is an integer, say m.

This implies

l'p=mq~-l~-
a

The term on the left and the first term on the right are both
integers. Therefore this equation is insoluble if @ # 1. Hence
(llp/q] + 1)/! is irreducible.

ii) Putting |Ip/q) +1=P,1=Q, and s = §, the string C; has
the same form as C in (4) in the main paper. Lemma 1 can
then be applied to prove that [(=Q) is the shortest periodicity,
in the sense of Definition 2. Q.ED.

Lemma A3: For any string C and the corresponding values
of 5,1, and n we have '

s+l<n.

‘Proof: By Lemma A2, the shortest periodicity of C; is [,
which is smaller than g by definition, The first s +/- 1 ele-
ments of C and C; are identical by Lemma Al, and hence C
has periodicity 7 if it consists of only s+~ I elements. By
definition, however, C has periodicity ¢. To avoid a contradic-
tion, C must have at least s + / elements,son=>s+1. QED.

We are now ready to prove
Lemma A4:

Ls+1)- F(s)=n>0 if 1=0
L(s+1)- F(s)>1>0 if I+#0.

Proof: 1t follows from the definition of [ that /=0 if and
only if ¢ = 1, In this case we have

n-s-

L(s+l)—F(s)=l+L qu=n-s=n>0

sinces=0ifg=1.
ii) In the case [ #0,

L(s+z)—F(s)=1+t"";'qu

>1

>0.

(by Lemma A3)
Q.ED.

By similar procedure one can prove the following.
Lemma AS5:

L(s)-F(s+1)=n>0 if I=0
L)-F@s+)=2q-1>0 if 1+0.
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Multiprocessor Pyramid Architectures for
Bottom-Up Image Analysis

NARENDRA AHUJA, MEMBER, IEEE, AND SOWMITRI SWAMY

Abstract—This paper describes three hierarchical organizations of
small processors for bottom-up image analysis:pyramids, interleaved
pyramids, and pyramid trees. Progressively lower levels in the hierar-
chies process image windows of decreasing size. Bottom-up analysis is
made feasible by transmitting up the levels quadrant borders and border-
related information that captures quadrant interaction of interest for a
given computation, The operation of the pyramid is illustrated by ex-
amples of standard algorithms for interior-based computations (e.g.,
area) and border-based computations of local properties (e.g., perimeter).
A connected component counting algorithm is outlined that illustrates
the role of border-related information in representing quadrant inter-
action. Interleaved pyramids are obtained by sharing processots among
several pyramids. They increase processor utilization and throughput
rate at the cost of increased hardware. Trees of shallow interleaved
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pyramids, called pyramid trees, are introduced to reduce the hardware
requirements of large interleaved pyramids at the expense of increased
processing time, without sacrificing processor utilization. The three
organizations are compared with respect to several performance
measures.’

Index Terms—Divide-and-conquer, image analysis, image decomposi-
tion, intexleaving, parallel processing, performance evaluation, pipelining,
pyramid architectures.

I, INTRODUCTION

HIS paper explores the use of hierarchical organization of

processors to perform strictly bottom-up computations.
Three architectures are described: pyramids, interleaved pyra-
mids, and pyramid trees. These architectures perform com-
putations that result in a small number of output bits (small
compared to the number of bits necessary to represent the en-
tire image). The architectures are thus intended to compute
image properties or to perform image analysis, They are not
suitable for performing image transformations, such as seg-
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