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Abstract: We define a new theory of discrete Riemann surfaces and present its basic
results. The key idea is to consider not only a cellular decomposition of a surface, but the
union with its dual. Discrete holomorphy is defined by a straightforward discretisation
of the Cauchy—Riemann equation. A lot of classical results in Riemann theory have a
discrete counterpart, Hodge star, harmonicity, Hodge theorem, Weyl's lemma, Cauchy
integral formula, existence of holomorphic forms with prescribed holonomies. Giving
a geometrical meaning to the construction on a Riemann surface, we define a notion of
criticality on which we prove a continuous limit theorem. We investigate its connection
with criticality in the Ising model. We set up a Dirac equation on a discrete universal spin
structure and we prove that the existence of a Dirac spinor is equivalent to criticality.
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1. Introduction

We present here a new theory of discrete analytic functions, generalising to discrete
Riemann surfaces the notion introduced by Lelong—Ferrand [LF].

Although the theory defined here may be applied wherever the usual Riemann Sur-
faces theory can, it was primarily designed with statistical mechanics, and particularly
the Ising model, in mind [McCW, ID]. Most of the results can be understood without
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any prior knowledge in statistical mechanics. The other obvious fields of application in
two dimensions are electrical networks, elasticity theory, thermodynamics and hydrody-
namics, all fields in which continuous Riemann surfaces theory gives wonderful results.
The relationship between the Ising model and holomorphy is almost as old as the theory
itself. The key connection to the Dirac equation goes back to the work of Kaufman [K]
and the results in this paper should come as no surprise for workers in statistical me-
chanics; they knew or suspected them for a long time, in one form or another. The aim of
this paper is therefore, from the statistical mechanics point of view, to define a general
theory as close to the continuous theory as possible, in which claims as “the Ising model
near criticality converges to a theory of Dirac spinors” are given a precise meaning
and a proof, keeping in mind that such meanings and proofs already exist elsewhere
in other forms. The main new result in this context is that there exists a discrete Dirac
spinor near criticality in the finite size Ising modbkfore the thermodynamic limit is
taken. Self-duality, which enabled the first evaluations of the critical temperature [KW,
Ons,Wan50], is equivalent to criticality at finite size. It is given a meaning in terms of
compatibility with holomorphy.

The first idea in order to discretise surfaces is to considénlar decompositions.
Equipping a cellular decomposition of a surface with a discrete metric, that is giving
each edge a length, is sufficient if one only wants to do discrete harmonic analysis.
However it is not enough if one wants to define discrete analytic geometry. The basic
idea of this paper is to consider not just the cellular decomposition but rather what we
call its double, i.e. the pair consisting of the cellular decomposition together with its
Poincaré dual. A discrete conformal structure is then a class of metrics on the double
where we retain only the ratio of the lengths of dual edgéslsing model terms, a
discrete conformal structure is nothing more than a set of interaction constants on each
edge separating neighbouring spins in an Ising model of a given topology.

A function of the vertices of the double is said todiscrete holomor phiciif it satisfies
the discrete Cauchy—Riemann equation, on two dual edges) and(y, '),

fON =1 _ l.f(x’) - fx)
€.y Ex,x)

This definition gives rise to a theory which is analogous to the classical theory of
Riemann surfaces. We define discrete differential forms on the double, a Hodge star
operator, discrete holomorphic forms, and prove analogues of the Hodge decomposition
and Weyl's lemma. We extend to our situation the notion of pole of order one and
we prove existence theorems for meromorphic differentials with prescribed poles and
holonomies. Similarly, we define a Green potential and a Cauchy integral formula.

Up to this point, the theory is purely combinatorial. In order to relate the discrete
and continuous theories on a Riemann surface, we need to impose an extra condition
on the discrete conformal structure to give its parameters a geometrical meaning. We
call this semi-criticality in Sect. 3. The main result here is that the limit of a pointwise
convergent sequence of discrete holomorphic functions, on a refining sequence of semi-
critical cellular decompositions of the same Riemann surface, is a genuine holomorphic
function on the Riemann surface. If one imposes the stronger condition of criticality on
the discrete conformal structure, one can define a wedge product between functions and
1-forms which is compatible with holomorphy.

1 By definition, a discrete Riemann surface is a discrete surface equipped with a discrete conformal structure
in this sense.
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Fig. 1. The discrete Cauchy—Riemann equation

Finally, for applications of this theory to statistical physics, one needs to define a
discrete analogue of spinor fields on Riemann surfaces. In Sect. 4 we first define the
notion of a discrete spin structure on a discrete surface. It sheds an interesting light onto
the continuous notion, allowing us to redefine it in explicit geometrical terms. In the case
of a discrete Riemann surface we then define a discrete Dirac equation, generalising an
equation appearing in the Ising model, and show that criticality of the discrete conformal
structure is equivalent to the existence of a local massless Dirac spinor field.

In Sect. 2, we present definitions and properties of the theory which are purely
combinatorial. First, in the empty boundary case, we recall the definitions of dual cellular
complexes, notions of deRham cohomology. We define the dauplee present the
discrete Cauchy—Riemann equation, the discrete Hodge startbe Laplacian and the
Hodge decomposition. In Subsect. 2.2, we prove Dirichlet and Neumann theorems, the
basic tools of discrete harmonic analysis. In Subsect. 2.3 we prove existence theorems
for 1-forms with prescribed poles and holonomies. In Subsect. 2.4, we deal with the
basic difficulty of the theory: The Hodge star is defined/omwhile the wedge product
is on another complex, the diamorg obtained fromI" or I'* by the procedure of
tile centering [GS87]. We prove Weyl's lemma, Green’s identity and Cauchy integral
formulae.

In Sect. 3, we define semi-criticality and criticality and prove that it agrees with the
usual notion for the Ising model on the square and triangular lattices. We present Voronoi
and Delaunay semi-critical maps in order to give examples and we prove the continuous
limit theorem. We prove that every Riemann surface admits a critical map and give
examples. On a critical map, the product between functions and 1-forms is compatible
with holomorphy and yields a polynomial ring, integration and derivation of functions.
We give an example showing where the problems are.

In Sect. 4, we set up the Dirac equation on discrete spin structures. We motivate the
discrete universal spin structure by first showing the same construction in the continuous
case. We show discrete holomorphy property for Dirac spinors, we prove that criticality is
equivalent to the existence of local Dirac spinors and present a continuous limit theorem
for Dirac spinors.
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2. Discrete Harmonic and Holomor phic Functions

In this section, we are interested in propertiesasfibinatorial geometry. The construc-

tions are considered up to homeomorphisms, that is to say on a combinatorial surface,
as opposed to Sect. 3 where criticality implies that the discrete geometry is embedded
in a genuine Riemann surface.

2.1. First definitions. Let ¥ be an oriented surface without boundary. A cellular de-
compositionl” of T is a partition ofZ into disjoint connected sets, called cells, of three
types: a discrete set of points, the vertit®s a set of non intersecting paths between
vertices, the edgds;; and a set of topological discs bounded by a finite number of edges
and vertices, the oriented facEs. A parametrisation of each cell is chosen, faces are
mapped to standard polygons of the euclidean plane, and edges to the se@rhgnt
we recall particularly that for each edge, one of its two possible orientations is chosen
arbitrarily. We consider only locally finite decompositions, i.e. any compact set inter-
sects a finite number of cells. In each dimension, we define the space of Chéins
as theZ-module generated by the cells. The boundary opegatat (I') — Cr_1(T")
partially encodes the incidence relations between cells. It fulfills the boundary condition
200 = 0.

We now describe thaual cellular decomposition I'* of a cellular decomposition
of a surfacenithout boundary. We refer to [Veb] for the general definition. Though we
formally use the parametrisation of each cell for the definition of the dual, its combina-
torics is intrinsically well defined. To each fadee I'; we define the vertex™ e I';
inside the facd”, the preimage of the origin of the euclidean plane by the parametrisa-
tion of the face. Each edgee I'1, separates two faces, sy, F» € I'1 (which may
coincide), hence is identified with a segment on the boundary of the standard polygon
corresponding td@, respectivelyF,. We define the dual edgé < I'] as the preimage
of the two segments in these polygons, joining the origin to the point of the boundary
mapped to the middle af. It is a simple path lying in the face§ and F», drawn be-
tween the two verticeg; and F;' (which may coincide), cutting no edge hytonce
and transversely. As the surface is oriented, to the orientedecdgecan associate the
oriented dual edge* such that(e, ¢*) is direct at their crossing point. To each vertex
v € g, with vy, ... , v, € Toas neighbours, we define the facee I'; by its boundary
v = (w,v)*+...+ @, o) 4+ ...+ (v, V).

Remark 1. T* is a cellular decomposition af [Veb]. If we choose a parametrisation of
the cells of™*, we can consider its duBll**; itis a cellular decomposition homeomorphic
to I' but the orientation of the edges is reversed. The bidual ©fT"; is the reversed
edgee™ = —e (see Fig. 2).

The double A of a cellular decomposition is the union of these two dual cellular
decompositions. We will speak ofkacell of A as ak-cell of eitherl” or I'*.

A discretemetric ¢ is an assignment of a positive numléé#) to each edge € A,
its length. For convenience the edge with reversed orientatian will be assigned the
same length?(—e) := £(e). Two metricst, £ : A1 — (0, +00) belong to the same
discreteconformal structureif the ratio of the lengthso (e) := Ze((e;) = Eé,(fe*)), on each
pair of dual edges € I'1, e* € I'] are equal.

A function f on A is a function defined on the vertices Bfand of '*. Such a
function is said to bdénolomor phic if, for every pair of dual edgeér, x’) € I'1 and
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Fig. 2. Duality

(v, y) = (x,x")* e I'}, it fulfills

fOH = f» :l.f(x’) - f(x)
£(y, y") 0x,x")

It is the naive discretisation of the Cauchy—Riemann equation for a fungtievhich
is, in local orthonormal coordinatés, y):

aof _.of

ay ! ox’
Here, we understand two dual edges as being orthogonal.

This equation, though simple, was never considered in such a generality. It was intro-
duced by Lelong—Ferrand [LF] for the decomposition of the plane by the standard square
latticeZ?. It is also called monodiffric functions; for background on this topic, see [Duf].
Polynomials of degree two, restricted to the square lattice, give examples of monodiffric
functions. See also the works of Kenyon [Ken] and Schramm and Benjamini [BS96]
who considered more than lattices.

The usual notions of deRham cohomology are useful in this setup. We said that
chains are elements of tf#emodule Cx(A), generated by thé-cells, its dual space
C*(A) := Hom (Cr(A), C) is the space of-cochains. We will denote the coupling by
the usual integral and functional notatiorf&x) for a functionf € C°(A) on a vertex
x € Ag; [,« fora 1-forma e Cl(A) on an edge € Ax; and [ o for a 2-form
w € C2(A) on afaceF € Ao.

Thecoboundary d : CF(A) — C¥*t1(A) is defined by the Stokes formula (with the
same notations as before):

/ df == f(3x,x)) = f(x') = f(x) //da :=¢a.
F aF

(x,x")

As the boundary operator splits onto the two dual compl&xasdIl™*, the coboundary
d also respects the direct sut (A) = C¥(I") @ CK(T™).

The Cauchy—Riemann equation can be written in the usual fetfn= —idf for
the followingHodge star  : C¥(A) — C27%(A) defined by:

f*oc = —,o(e*)f o.



182 C. Mercat

We extend it to functions and 2-forms by:

[[ =g sow = [ o
F x*

As, by definition, for each edgee A1, p(e)p(e*) = ZZ((“:)) f((ei)) = 1, the Hodge star

fulfills on k-forms,+? = (—1*@=Pld 4.
Itdecomposes 1-formsintei, respectively-i, eigenspaces, callegpe (1, 0), resp.
type (0, 1) forms:

cta) =ctOn) @ cOY ().

The associated projections are denoted:
1 . 1 (1.0
(1,00 = E(Id +ix): CT(A) = C7(A),
1
01 = 5(d —i%): cln) — cOV ).

A 1-form isholomorphic if it is closed and of typ€1, 0):
aeQYA) & da=0andxa = —ia.

It is meromorphic with a pole at a vertex € Ag if it is of type (1, 0) and not closed
on the facex*. Itsresidue at x is defined by

1
ReSC(Ol) = ﬂ ;
X*

The residue theorem is merely a tautology in this context.
We defined’, d”, the composition of the coboundary with the projections on eigen-
spaces of as its holomorphic and anti-holomorphic parts:

d :=ma0od, d":=mo1od
from functions to 1-forms,
d:=do 7(0,1)s d' :=do 7T(1,0)

from 1-forms to 2-forms and’ = d” = 0 on 2-forms. They verify’?> = 0 andd”? = 0.

The usual discretkeaplacian, which splits ontd™ andl'* independently, reads :=
—d xd x—xd *d as expected. Its formula for a functighe C°(A) on a vertex: € Ao,
with x1, ..., x, as neighbours is

(M) =Y ple, xi) (fF () = f(x0) - (2.1)

k=1

As in the continuous case, it can be written in termsfoindd” operators: For
functions,A = i x (d'd” — d"”d"), in particular holomorphic and anti-holomorphic
functions are harmonic. The same result holds for 1-forms.
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In the compact case, the operatotl* = — * dx is the adjoint of the coboundary with
respect to the usual scalar produgt, g) := Y f(x)g(x) on functions, similarly

X€Ng
on 2-forms and

(o, B) := Z o(e) ([ot) (/ B) on 1-forms.

ee\1
It gives rise to théHodge decomposition,

Proposition 1 (Hodgetheorem). Inthe compact case, the k-forms are decomposed into
orthogonal direct sums of exact, coexact and harmonic forms:

C*(A) = Imd @t Im d* &+ Ker A,
harmonic forms are the closed and coclosed ones:
Ker A = Kerd N Ker d*.

In particular the only harmonic functions are locally constant. Harmonic 1-forms are
also the sum of holomor phic and anti-holomor phic ones:

Ker A = Kerd' @+ Kerd".

Beware thatA being disconnected, the space of locally constant functions is 2-
dimensional. The function which is+1 onT" and—1 onT'* is chosen as the second
basis vector.

The proof is algebraic and the same as in the continuous case. As the Laplacian
decomposes onto the two dual graphs, this result tells also that for any harmonic 1-form
onT, there exists a unique harmonic 1-form on the dual gf@pbkuch that the couple
is a holomorphic 1-form om\, it's simply ar+ := i * ar. These decompositions don’t
hold in the non-compact case; there exist non-closed and/or non-co-closed, harmonic
1-forms.

2.2. Dirichlet and Neumann problems.

Proposition 2 (Dirichlet problem). Consider a finite connected graph I", equipped
with a function p on the edges, and a certain non-empty set of points D marked as its
boundary. For any boundary function £ : (31")g — C, there exists a unique function
f,harmoniconTg \ D suchthat f|yr = f9.

We refer to the usual laplacian defined by Eqg. (2.1).

If 9 =0, the solution is the null function. Otherwise, itis the minimum of the strictly
convex, positive functionaf — (df, df), proper on the non-empty affine subspace of
functions which agree withf? on the boundary.

Definition 1. Given I" a cellular decomposition of a compact surface with boundary
¥, define the double £2 := ¥ U £, union with the opposite oriented surface, along
their boundary. The double I'? is a cellular decomposition of the compact surface ¥.2.
Consider its dual I'?* and define I'* := ¥ N I'2*. We don't take into account the faces
of I'?* which are not completely inside = but we do consider the half-edges dual to
boundary edges of I as genuine edges noted (3I"*)1 and define (aT*)g := Ff* Nox as
the set of their boundary vertices.

Afunction p onthe edges of T yields an extension to I'j by defining p(e*) := p(—le).
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Remark 2. I'* is not a cellular decomposition of the surface; the half-edges dual to
boundary edges do not bound any facé tf

Proposition 3 (Neumann problem). Consider I a cellular decomposition of a disk,
equipped with a function p onitsedges. Choose a boundary vertex yg € (9T*)o, avalue
fo € C, and on the set of boundary edges e € (aT"*)1, not incident to yp, a 1-forme.

Thenthereexistsauniquefunction f, harmoniconI'*\ (aI"*)g suchthat f (yo) = fo
and [,df = [,« for all e € (37*)1 not incident to yo.

Itis a dual problem. Letj € (3T"*);, be the edge incident tgy andeg € (3T")y its
dual. Consider, on the set of boundary edges (aI"); different fromeg, the 1-form
defined byi * «. Integrating it along the boundary, we get a functjehon (310, well
defined up to an additive constant. The Dirichlet theorem gives us a funttianmonic
onTp\ (3o corresponding tgf?. Integrating the closed 1-forin df onI'* yields
the desired harmonic functiofi.

Remark 3. The number of boundary points in is the same as if'*, and as every
harmonic function o”, when the surface is a disk, defines a harmonic functiofi‘on
such that their couple is holomorphic, unique up to an additive constant, the space of
holomorphic functions, resp. 1-forms, on the double decomposition with boundiary
[(0A)o|/2+ 1, resp|(dA)ol/2 — 1 dimensional.

The theorem is true for more general surfaces than a disk but the proof is different,
see the author’s PhD thesis [M]. There afeversions of these theorems too.

2.3. Existence theorems. We have very similar existence theorems to the ones in the
continuous case. We begin with the main difference:

Proposition 4. The space of discrete holomor phic 1-forms on a compact surface without
boundary is of dimension twice the genus.

The Hodge theorem implies an isomorphism between the space of harmonic forms
and the cohomology group af. It is the direct sum of the cohomology groupsIof
and of'* and each is isomorphic to the cohomology group of the surface which is 2
dimensional on a genyssurface. It splits in two isomorphic parts under the type0)
and type(0, 1) sum. As any holomorphic form is harmonic, the dimension of the space
of holomorphic 1-forms is 2.

We can give explicit basis to this vector space as in the continuous case [Sie]. To
construct them, we begin with meromorphic forms:

Proposition 5. Let X beacompact surfacewith boundary. For each vertexx € Ag\ 9<,
andasimplepath 1 on A going fromx totheboundary thereexistsapair of meromorphic
1-formse,, By withasingle pole at x, with residue +1 and which have pureimaginary,
respectively real holonomies, along loops which don’'t have any edge dual to an edge
of A.

Proposition 6. Let 3 be a compact surface. For each pair of vertices x, x’ € Ag with
a simple path A on A fromx to x’, there exists a unique pair of meromorphic 1-forms
oy x5 Bx.xr Withonly polesat x and x’, with residue 41 and —1 respectively, and which
have pure imaginary, respectively real holonomies, along loops which don’'t have any
edge dual to an edge of .
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In both cases, the forms afll + ix)df with f a solution of a Dirichlet problem
atx (andx’) for o and of a Neumann problem on the surface split open along the path
A for 8. The uniqueness in the second proposition is given by the difference: the poles
cancel out and yield a holomorphic 1-form with pure imaginary, resp. real holonomies,
so its real part, resp. imaginary part, can be integrated into a harmonic, hence constant
function. So this part is in fact null. Being a holomorphic 1-form, the other part is null
too. We refer to the author’'s PhD thesis [M] for details.

As in the continuous case, it allows us to construct holomorphic forms with (no poles
and) prescribed holonomies:

Corollary 1. Let A, B € Z1(A) be two non-intersecting simple loops such that there
exists exactly one edge of A dual to an edge of B (dual loops). There exists a unique
holomor phic 1-form ® 43 such that Re( [, ® 45) = 1 and fy P 4553 € iR for every loop
y which doesn’'t have any edge dual to an edge of A.

We decomposegl in two pathsiy anday. It gives us two 1-forms, , andg, ., then

1
O Yyp = ﬁ(ﬂx,y + ﬂy,x) (2.2)

fulfills the conditions.

2.4. Thediamond <> and itswedge product. Following [Whit], we define a wedge prod-
uct, on another complex, thddamond <, constructed out of the double: Each pair

of dual edges, sagx, x’) € T’y and(y, y') = (x,x')* € I'j, defines (up to homeomor-
phisms) a four-sided polygaw, y, x’, y") and all these constitute the faces of a cellular
complex called®> (see Fig. 3).

=

Fig. 3. The diamond<>

On the other hand, from any cellular decompositidrof a surface by four-sided
polygons one can reconstruct the douhleA difference is thatA may not be discon-
nected in two dual pieceB andT'*, it is so if each loop i is of even length; we
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will restrict ourselves to this simpler case. This is not very restrictive because from a
connected double, refining each quadrilateral in four smaller quadrilaterals, one gets a
double disconnected in two dual pieces.

Definition 2. A discrete surface with boundary is defined by a quadrilateral cellular
decomposition <> of an oriented surface with boundary such that its double complex A
is disconnected in two dual parts.

This definition is a generalisation of the more natural previous Definition 1. It allows
us to consider any subset of faces{ofas a domain yielding a discrete surface with
boundary. While any edge of has a dual edge, a vertex af has a dual face if and
only ifit is an inner vertex. Punctured surfaces can be understood in these terms too: An
inner vertexv € Ao is a puncture if it is declared as being on the boundary and its dual
facev* removed fromA .

We construct a discrete wedge product, but while the Hodge star lives on the double
A, the wedge product is defined on the diamench : C*(¢) x CL(&) — CHH (). It
is defined by the following formulae, fof, g € CO(<), a, B € CL($) andw € C?():

(f - 9)x) == f(x)-g(x) for x € <o,

_f® : f®
frao=——F——1[ x ya for (x, y) € <1,
(x,y)
//W > [ [o- fo [
(x1,x2,x3,x4) (Xk 1,Xk) Xk Xk4+1) (k15 Xk) (X, Xk—1)
fG)+f(x2)+ f (x3)+ f (x4)
fo " ®
(x1,x2,x3,%4) (x1,%2,x3,%x4)

for (x1, x2, x3, x4) € <o.
Lemma 1. d isa derivation with respect to this wedge product.

To take advantage of this property, one has to relate forrgsamd forms om\ where
the Hodge star is defined. We constructameraging map A from C*(<) to C*(A).
The map is the identity for functions and defined by the following formulae for 1 and
2-forms:

/A(a<>) ::% /—f- f + / +/ o, (2.3)

(x,x") (x o ox) (xy) Ox)

i / Awo) = Z /[ o (2.4

k 1(Xk Vi> X, Yk—1)

where notations are made clear in Fig. 4. With this definitibpd = Ad.,, but the map

A is neither injective nor always surjective, so we can neither define a Hodge star on
nor a wedge product of. An element of the kernel of is given for example byi.¢,
wheree is+1 onT" and—1 onT*.
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Fig. 4. Notations

Onthe double\ itself, we have pointwise multiplication between functions, functions
and 2-forms, and we construct beterogeneouswedge product for 1-forms: witla, 8
Cl(A), definea A B € CL(©) by

J[ arsim [ oo [ o [ ]

(x,y,x",y") (x,x") v,y o.y)  .x)

ItverifiesA(ae) A A(Bo) = ao A Bg, the first wedge product being between 1-forms on
A and the second between forms©nOf course, we also have for integrable 2-forms:

1
//w<>=//A<w<>>=f/A<w<>>=5//A<w<>>.
<2 Iz I3 A2

And for a functionf,

//f-wOZ%//A(ﬁwo):%/ £ Awo)
o A2 Ao

wheneverf - wq is integrable.

Explicit calculation shows that for a functigh € C%(A), denoting byy, the char-
acteristic function of avertex € Ao, (Af)(x) = — ffA2 f-xAx,. So by linearity one
getsWeyl'slemma: a function f is harmonic iff for any compactly supported function

g€ Con),
/ f-Ag=0
A2

One checks also that the usual scalar product on compactly supported forns on
reads as expected:

([ ([9) ff

ec\1
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In some cases, for example, the decomposition of the plane by lattices, the averaging
map A is surjective. We define the inverse m&p: cl(A) — C1(<)/Ker A and
= d¢ B * d and we then have

Proposition 7 (Green’sidentity). For twofunctions f, g onacompact domain D C <>,
J[ 0 sos—5- 80— (1 Beds = Budp) =
D oD

This means that for any representatives of the class€d)/Ker A the equality
holds, but each integral separately is not well defined on the classes.

2.5. Cauchy integral formula.

Proposition 8. Let A a double map and D a compact region of <» homeomorphic
to a disc. Consider an interior edge (x, y) € D; there exists a meromorphic 1-form
Vx,y € CY(D\ (x, y)) such that the holonomy g§y vx,y alongacycley in D only depends

onitshomology classin D \ (x, y), and ¢, , vx,y = 2i.

Consider the meromorphic 1-form, , = o, +ay € e CY(AND) defined by existence
Theorem 5 orD. It is uniquely defined up to a global holomorphic form Bnlts only
poles arex andy of residue+1 so it verifies a similar holonomy property, but on
AND\ (x,y). We define a 1-formv, , on<>N D \ R, such thau, , = Av, , inthe
following way: Letf(m) vy,y 1= A, afixed value, and for an edge’, y') € Dy, with

x" € To, y' € Tg, given two paths inD, A7, € C1(T") andkf/ € C1(T'*) respectively
from x’ to x and fromy to y’,

/ Vx,y ::/ Mx,y +/ Vx,y + /v/ Mx,y _f Mx,y,
',y jf,/ (x,A) Ay [v]

where[y ] is the homology class of;, + (x, y) +Ay, +(y’, x") on the punctured domain.
vx,y IS the discrete analogue 91”— with zg = (x, y). It is closed on every face of
D\ R. By definition, the average of, , on the double map is the meromorphic form

Avx,y = Mx,y-
It allows us to state

Proposition 9 (Cauchy integral formula). Let D be a compact connected subset of <o
and (x, y) € D1 two interior neighbours of D with a non-empty boundary. For each
function f € C9(A),

§ o= [ ey I
aD D 2

The proofis straightforward: The edge, y) bounds two faces i, let R = (abcd)
the rectangle made of these faces (see Fig. 5).
OnD\ R,

do(f -vey) =dof Avey+ f-dovyy.
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Fig. 5. The rectangle? in a domainD defined by an edgeéx, y) € &1

The (1, 0) part ofdf disappears in the wedge product against the holomorphic form
Wx,y, SO We can substitute

dof Avey =daf ANAvey =d" f A iy y.
Integrating overD, asvy , is closed onD \ R, we get:

ff f'Vx,yZ// d”f/\ux,y—i-% fvxy.
aD D\R aR

Explicit calculus shows thaf, , f - ve,y = [ g d” f A sy + 2in LOFW g

Remark 4. Since for alle € C1(<), the locally constant functioa defined bye(I') =

+1, e(T'*) = —1, verifiese - « = 0, an integral formula will give the same result for a
function f and f + Ae. Therefore such a formula can not give access to the value of the
function at one point but only to its average value at an edge. of

Corollary 2. For f € Q(A) aholomorphicfunction, the Cauchyintegral formulareads,
with the same notations,
JO+f» 1 Fou
2 o 2im D e

The Green function on the lattices (rectangular, triangular, hexagonal, Kagomé,
square/octogon) is exactly known in terms of hyperelliptic functions ([Hug] and ref-
erences in Appendix 3). As the potential is real, it means that the discrete Dirichlet
problem on these lattices can be exactly solved this way, once the boundary values on
the graph and its dual are given: if these values are reallaadd imaginary on its
dual, the solution is real of and pure imaginary on the dual so the contributigiis)
andf (y) are simply the real and imaginary parts of the contour summation respectively.
Unfortunately, this pair of boundary values are not independant but related by a Dirichlet
to Neumann problem [CdV96].

3. Criticality

The term criticality, as well as our motivation to investigate discrete holomorphic func-
tions, comes from statistical mechanics, namely the Ising model. A critical temperature
is defined that restrains the interaction constants, interpreted here as lengths. We will
see these geometrical constraints in Sect. 3.3.

Technically, as far as the continuous limit theorem is concerned, a weaker property,
calledsemi-criticality is sufficient, it gives us a product between functions and forms.
Moreover, at criticality, this product will be compatible with holomorphy.
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3.1. Semi-criticality. DefineCy := {(r,t) : r > 0,t € R/67Z}/(0, t) ~ (0, t") with the
metricds? := dr? + r2dr? as thestandard cone of angle > 0 [Tro].

The cones can be realized by cutting and pasting paper, demonstrating their local
isometry with the euclidean complex plane.

Let X be a compact Riemann surface aRdc X a discrete set of points. Aat
Riemannian metric with P as conic singularitiesis an atlas{Zy, : Uy — U’ C
Co, >}xep Of Open setd/, C X, a neighbourhood of a singularity € P, into open
sets of a standard cone, such that the singularity is mapped to the vertex of the cone and
the changes of coordinat€y; v : U NV — C are euclidean isometries.

There is a lot of freedom allowed in the choice of a flat metric for a given closed
Riemann surfac&: Any finite setP of points onX with a set of angles, > 0 for
everyx € P suchthat x(2) = ) . p(27 — 6,), defines uniquely a Riemannian flat
metric onX with these conic singularities and angles [Tro].

Consider such a flat riemannian metric on a compact Riemann siface (A, ¢)

a double cellular decomposition &f as before.

Definition 3. (A, ¢) is a semi-critical map for this flat metric if the conic singularities
areamong theverticesof A and<> can berealized suchthat eachface (x, y, x', y') € <2
is mapped, by a local isometry Z preserving the orientation, to a four-sided poly-
gon (Z(x), Z(y), Z(x"), Z(y")) of the euclidean plane, the ssgments[Z(x), Z(x")] and
[Z(y), Z(y")] being of lengths £(x, x"), £(y, y") respectively and forming a direct or-
thogonal basis. We name § (A, £) the supremum of the lengths of the edges of <>.

The local isometric mapg are discrete holomorphic.

Voronoi and Delaunay complexes [PS85] are interesting examples of semi-critical
dual complexes. Any discrete set of poi2son a flat Riemannian surface, containing
the conic singularities, defines such a pair:

We first define two partition¥ andD of X into sets of three types: 2-sets, 1-sets and
0-sets, and then show that they are in fact dual cellular complexes. They are defined by
a real positive functiom g on the surface, theltiplicity.

Consider a point € X; as the seD is discrete, the distana®&(x, Q) is realized
by geodesics of minimal length, generically a single one.igtx) € [1, co) be the
number of such geodesics.rfy (x) = 1, there exists a vertex(x) € Q such that the
shortest geodesic fromto 7 (x) is the only geodesic from to Q with such a small
length.

The Voronoi 2-set associated to a verteix Q, is 7 ~1(v), that is to say the set of
points of X closer to this vertex than to any other vertex@n Each 2-set otV is a
connected component m‘él(l).

Likewise, the 1-sets are the connected componerﬁs&ﬁ’(Z). They are associated
to pairs of points inQ.

The 0-sets are the connected componentmg’f([& +00)). Generically, they are
associated to three points (.

V is a cellular complex (see below) and the compl@xs its dual (generically a
triangulation), its vertices are the pointginits edges are segmertis x’) for x, x’ € Q
such that there exist points equidistant and closer to them.

Proposition 10. The Voronoi partition, on a closed Riemann surface with a flat met-
ric with conic singularities, of a given discrete set of points Q containing the conic
singularities, isa cellular complex.
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We have to prove that 2-sets are homeomorphic to discs, 1-sets are segments and
0-sets are points.

First, 2-sets are star-shaped, for every pairtloser tov € Q than to any other
pointin Q, along a unique portion of a geodesic, the whole segfaent has the same
property.

2-sets are open, ¥ is closer tov € Q than to any other point i@, as it is discrete,

d(x, @\ v) —d(x,v) > 0. By triangular inequality, every point in the open ball of this
radius centred at is closer tov than to any other point i.

So 2-sets are homeomorphic to discs.

Let x be a point in a 1-set. It is defined by exactly two portions of geodd3icd’
fromx to y, y’ € Q (they may coincide). By definition, the open sphere centred at
containingD U D’ doesn’t contain any point af so it can be lifted to the universal
covering, where the usual rules of euclidean geometry tell us that the set of points
equidistant toy and y’ aroundx is a submanifold of dimension 1. As the surface is
compact, if it is not a segment, it can only be a circle. Then, it's easy to see that the
surface is homeomorphic to a 2-sphere and thaidy’ are the only points irQ. But
this is impossible because an euclidean metric on a 2-sphere has at least three conic
singularities [Tro].

The same type of arguments shows that 0-sets are isolated points.

Fig. 6. The Voronoi/Delaunay decompositions associated to two points on a genus two surface

Proposition 11. Such Delaunay/Voronoi dual complexes are semi-critical maps of the
surface. Hence any Riemann surface admits semi-critical maps.

The edge irV dualto(x, x’) € D1 is a segment of their mediatrix so is orthogonal to
(x, x"). Hence, equipped with the Euclidean length on the ed@ed)) is a semi-critical
map.

Remark 5. Apart from Voronoi/Delaunay maps, circle packings [CdV90] give another

very large class of examples of interesting semi-critical decompositions (see Fig. 7).
The semi-criticality of a double map gives a coherent system of aggieg0, )

on the oriented edges of. An edge(x, x") € A1 is the diagonal of a certain diamond;

¢ (x, x’) is the angle of that diamond at the vertexn particularg (x, x') # ¢ (x/, x) a

priori. They verify that for every diamond, the sum of the angles on the four directions
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|
|
|
I
Fig. 7. Circle packing, the dual vertex to a face

of the two dual diagonals is2(see Fig. 8). Then the conic angle at a vertex is given by
the sum of the angles over the incident edges.

Ay

Fig. 8. A system of angles for a semi-critical map

3.2. Continuous limit. We state the main theorem, a converging sequence of discrete
holomorphic functions on a refining sequence of semi-critical maps of the same Riemann
surface, converges to a holomorphic function. Precisely:

Theorem 3. Let = be a Riemann surface and (A, ¢;)ren @ sequence of semi-critical
maps on it, with respect to the same flat metric with conic singularities. Assume that the
lengths 8, = 8(*A) tend to zero and that the angles at the vertices of all the faces of the
ko areintheinterval [, 27 — n] withn > 0.

Let (fr)ren be a sequence of discrete holomorphic functions £ € €2(*A), such that
there exists a function f on = which verifies, for every converging sequence (x)en Of
points of X with each x; € *Ag, f(limg(xx)) = limg(fi(xx)), then the function f is
holomorphic on X.

Such a refining sequence is easy to produce (see Fig. 9) but the theorem takes into
account more general sequences. A more natural refining sequence, which mixes the two
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Fig. 9. Refining a semi-critical map

dual sequences is given by a series of tile centering procedures [GS87]: If one t&lls
the cellular decomposition constructed frepnby replacing each tile by four smaller
ones of half its size, and(<$>/2), I'* (<>/2) the double cellular decomposition it defines,
one had'(<>/2) = I'(¥)" U"T'*($) and the interesting following sequence:

reQ) >0—-> T2 >0/2— -+ =>0/2" > ...

7N\ /! N / N (3.1)
'*(<X) I'*(</2) .. .

The horizontal arrows correspond to tile centering procedures, and the ascending, re-
spectively descending arrows, to tile centering, resp. edge centering procedures. This
sequence is not that exciting though since locally, the graph rapidly looks like a rectan-
gular lattice. More interesting inflation rules staying at criticality can be considered too
(see Fig. 21).

The demonstration of the continuous limit theorem needs three lemmas:

Lemma 2. Let (fx)ren be a sequence of functions on an open set 2 ¢ C such that there
exists a function f on  verifying, for every converging sequence (xx)ren Of points of
Q, f(limg(xp)) = limg(fi(xr)). Then the function f is continuous and uniform limit
of (fx) on any compact.

Taking a constant sequence of points, we see(thatconverges tg’ pointwise. So
with the notations of the theorerf; (x;)) converges tgf (x) and( f; (xx))ien 10 f (xx).
Combining the two( f (xx)) converges tof (x) so f is continuous. If the convergence
was not uniform on a compac sett, then there would exist a converging sequgnce
with (fi(xx) — f(xx)) not converging to zero. Buf is continuous inc = lim(x;) and
(fx (xx)) converges tof (x), which, combined, contradicts the hypotheses.

Lemma 3. Let (ABC D) be a four sided polygon of the Euclidean plane such that its
diagonals are orthogonal and the vertices angles are in [, 2t — n] withn > 0. Let
(M, M) bea pair of points on the polygon. There exists a path on (ABC D) from M to
M’ of minimal length ¢. Then

MM’  sinp
> —.
¢~ 4
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Itis a straightforward study of a several variables function. If the two points are on the
same sideM M’ = ¢ and sim < 1. If they are on adjacent sides, the extremal position
with M M’ fixed is when the trianglé/ M’ P, with P the vertex of(ABC D) between

them, is isocel. The angle iA being less than, MTM >sing > % If the points are

. . . . . . . / sin
on opposite sides, the extremal configuration is given by Fig. 10.2., wh¥re= S71.

M M
M’ M’
1. M, M’ on adjacent sides 2. M, M’ on opposite sides

Fig. 10. The two extremal positions

Lemma 4. Let (A, £) be any double cellular decomposition and « € C1(<>) a closed
1-form. The 1-form f - « is closed for any holomorphic function f € Q(A) if and only
if « is holomorphic.

Just check.

Proof of Theorem 3. We interpolate each functiofj. from the discrete set of pointa o
to a function f; of the whole surface, linearly on the edgeg®fand harmonicly in its
faces.

Let (¢x) be a converging sequence of pointssin Eachg; is in the adherence of a
face of%>. Let xy, yx be the minimum and maximum of R& around the face. By the
maximum principle for the harmonic function Rg,

Re fi(xx) < Re fi (&) < Re fi(yx).

Moreover, the distance betwegpand¢y is at most 3, as well as foty,. Itimplies that
(xx) and(yx) converge tor = lim(gx), (fi(xx)) and(fx(yx)) to f(x), and(Re fi (¢k))

to Re f(x); and similarly for its imaginary part. So, by Lemma 2, the functibns
continuous, and is the uniform limit aff;) on every compact set. In particular, it is
bounded on any compact.

By the theorem of inessential singularities, sirfces continuous hence bounded on
any compact set, and that conic singularities form a discrete &&tto show thatf is
holomorphic, we can restrict ourselves to each elembert  of a euclidean atlas of
the punctured surface (without conic singularities). We have an explicit coordinate
U.

Let y be a homotopically trivial loop i/ of finite length¢. We are going to prove
that9§y fdz = 0. The theorem of Morera then states tlids holomorphic.

Let us fix the integek. By application of Lemma 3 on every face’f crossed by,

we construct a loop; € C1(%>), homotopic toy, of lengtht(y;) < si% (see Fig. 11).
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As the diameter of a face &% is at most 3y, all these faces are contained in the tubular
neighbourhood ofs of diameter 4. Its area is 8¢ and it contains the saf of X
betweeny andyy.

Fig. 11. The discretised path

Assumef is of clas<C1, on the compadt, |3 f| is bounded by a numbef . Applying
Stockes formula tgfdz,

’%f(z)dz— f(Z)dz‘ S// 10 f(z)|dz AdZ < M x 48;L.
14 Yk C

So 5Ey f(2)dz = lim fyk f(z)dz. Taking a sequence of clagg functions converging
uniformly to f on C, we prove the same result fgrsimply continuous because all the
paths into account are of bounded lengths.

As (fi) converges uniformly tof on C and the paths are of bounded lengths, we
also have tha| fyk (fk(z) — f(z))dz|)keN tends to zero. But because the interpolation

is linear on edges &%, fyk fi(z)dz = ﬁyk fxdZ, the second integral being the coupling

between a 1-chain and a 1-cochaifiof But sincef; andd Z are discrete holomorphic,
fidZ is a closed 1-form, an@k fidZ = 0. Sofm fr(z)dz tends to zero and

%f(z)dz -0. O
Y

3.3. Criticality.

Proposition 12. Let o be a holomorphic 1-form, f - « isholomorphic for any holomor-
phic function if and only if f<y,x)°‘ = f(x',v')“ for each pair of dual edges

(x, x"), (v, ¥).
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Let (x, y, x’, y") € <2 be a face ok>, the Cauchy—Riemann equation f6r o, on
the couplex, x’) and(y, y’) is the nullity of:

[ fa [ fa /
o) (x.x) 1 <f(x)+f()’) /a+f(x)+f(y) /a
2

1 =
£(y,y") £(x,x") £(y,y")
(%) (x.y)

_'_f(x/)-Z!-f(y)fa+f(x/)-|2-f(y/) / a)

(y,x") &',y
1 <f(x) + f(y) f f&)+ () /
—1 o+ — o
£(x, x") 2

(x,y) y,x")

+f(x)J;f(y’)/OHLJ‘(X’);LJ‘(y’) / a)

(x,y") o',x")

fOH—=f»
(/‘”(/ ) Gy
vy, x")

(v, x)

after having developed, used the holomorphw pthen the holomorphy of.

So to be able to construct out of the holomorphic 1-fouasgiven by local flat
isometries, and a holomorphic function a holomorphic 1-fgi#¥, we have to impose
that for each facéx, y, x’, y') € <2, Z(x) — Z(y) = Z(y') — Z(x'). Geometrically, it
means that each face of the graplis mapped byZ to a parallelogram if©. But as the
diagonals of this parallelogram are orthogonal, it is a lozenge (or rhombus, or diamond).

Definition 4. Adouble (A, ¢) of aRiemann surface T iscritical if itissemi-critical and
each face of <>, arelozenges. Let §(A) be the common length of their sides.

Remark 6. This has an intrinsic meaning @i, the faces of> are genuine lozenges on
the surface and every edge sfcan be realized by segments of length giver? pwo
dual edges being orthogonal segments.

Another equivalent way to look at criticality can be useful: a doghlg?) is critical if

there exists an applicaticf : E/Y/P — C from the universal covering of the punctured
surfaceX \ P for a finite setP C Ao into C identified to the oriented Euclidean plane
R? such that

— the image of an edgec A1 is a linear segment of lengtha),

— two dual edges are mapped to a direct orthogonal basis,

— Z is an embedding out of the vertices,

— there exists a representatiprof the fundamental group; (X \ P) into the group of
isometries of the plane respecting orientation such that,

Vy emi(Z\P),Zoy =p(y)oZ,

— and the lengths of all the segments corresponding to the edgesua all equal to
the same > 0.
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The criticality of a double map gives a coherent system of anglies(0, =) on the
unoriented edges df, ¢ (x, x’) isthe angle in the lozenge for whi¢h, x’) is a diagonal,
at the vertexx (or x’). They verify that for every lozenge, the sum of the angles on the
dual diagonals i&. Then the conic angle at a vertex is given by the sum of the angles
over the incident edges.

Every discrete conformal structu¢d, ¢) defines a conformal structure on the asso-
ciated topological surface by pasting lozenges together according to the combinatorial
data (though most of the vertices will be conic singularities). Conversely,

Theorem 4. Every closed Riemann surface accepts a critical map.

Proof. We first produce critical maps for cylinders of any modulus: Consider a row of
n squares and glue back its ends to obtain a cylinder, its modulus, the ratio of the square
of the distance from top to bottom by its aree;}ls

Stackingm such rows upon each other, one gets a cylinder of modfilus

Squares can be bentinto lozenges yielding a continuous family of cylinders of moduli
ranging from zero tc%— (see Fig. 12). Hence we can get cylinders of any modulus.

Fig. 12. Two bent rows

Dehn twists can be performed on these critical cylinders, see Fig. 13.

g
8
L3

n

0 N
¢ A\
Fig. 13. Performing a Dehn twist

Gluing three cylinders together along their bottonés to be even), one can produce
trinions of any modulus (see Fig. 14) and these trinions can be glued together according
to any angle. Hence, every Riemann surface can be so produced [Bus].

Remark 7. An equilateral surface is a Riemann surface which can be triangulated by
equilateral triangles with respect to a flat metric with conic singularities. Equilateral
surfaces are the algebraic curves @@¢voSh] so are dense among the Riemann surfaces.
Cutting every equilateral triangle into nine, three times smaller, triangles (see Fig. 15),
one can couple these triangles by pairs so that they form lozenges, hence a critical map.

In Figs. 16—19 are some examples of critical decompositions of the plane. In Fig. 20,
a higher genus example, found in Coxeter [Cox1], of the cellular decomposition of a
collection of handlebodies (the genus depends on how the sides are glued pairwise) by
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[]
LT >
I"".Q:Q’O
{ 0’&

Fig. 14. Gluing three cylinders into a trinion

Fig. 15. An equilateral triangle cut in nine yielding lozenges

ten regular pentagons, the centre is a branched point of order three; together with its
dual, they form a critical map. It is the case for any cellular decomposition by just one
regular tile when its vertices are co-cyclic. This decomposition gives rise to a critical
sequence using the Penrose inflation rule [GS87]. Figure 21 illustrates this inflation rule
sequence on a simpler genus two example where each outer side has to be glued with
the other parallel side.

3.4. Physical interpretation.

Theorem 5. A trandationally invariant discrete conformal structure (A, p) on A the
double square or triangular/hexagonal |attices decomposition of the plane or the genus
one torus, is critical and flat if and only if the Ising model defined by the interaction
constants K, := %Arcsinhpe on each edge e € Aj iscritical as usually defined in
statistical mechanics[McCW].

Proof. We prove it by solving another problem which contains these two particular
cases, namely the translationally invariant square lattice with period two [Yam]. At a
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Fig. 17. A 2-parameters family of critical deformations of the triangular/hexagonal lattices. This family, key
to the solution of the triangular Ising model, induced Baxter to set up the Yang—Baxter equation [Bax]. Our
notion of criticality fits beautifully into this framework

.Q.‘;\‘l!
SO0
.-\_\.0{ _

Fig. 18. The order 5 Penrose quasi crystal
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Fig. 19. Lozenge patchworks

Fig. 20. Higher genus critical handlebody
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particular vertex, the flat critical condition on the four conformal parameters is:

4

Z arctang; = 7,
i=1

which is obviously invariant by all the symmetries of the problem, including duality.
Whenp; = p;+2, we get the usual period one Ising model criticality on the square lattice

sinh 2K sinh 2K, = 1,

and likewise when one of the four parameters degenerates to zero or infinity, the three
remaining coefficients fulfill

sinh 2K sinh 2K}, sinh 2K|;; = sinh 2K; + sinh 2K}, + sinh 2K},

which is (a form of) the criticality condition for the triangular/hexagonal Ising model.
The case shown in Fig. 16 occurs when= p3 = 1, implying o204 =1. 0O

We see here that flat criticality, when the angles at conic singularitites are multiples
of 27, is more meaningful than criticality in general. This theorem is important because
it shows that statistical criticality is meaningful even at the finite size level. It is well
known [KW] that for lattices, it corresponds to self-duality, which has a meaning for finite
systems; here we see that self-duality corresponds to a compatibility with holomorphy.
In a sense, our notion of criticality defines self-duality for more complex graphs than
lattices. Furthermore, we will see in Sect. 4 that criticality implies the existence of
a discrete massless Dirac spinor, which is the core of the Ising model. Although we
saw that criticality implies a continuous limit theorem, the thermodynamic limit is not
necessary for criticality to be detected, and to have an interesting meaning.

It is easy to produce higher genus flat critical maps and compute their critical tem-
perature, the examples in Figs. 20-21 have four kinds of interactions corresponding to
the diagonals of the two kinds of quadrilateral tiles. They are critical when the angles of
the quadrilaterals arg, 2, 3%, and“Z, corresponding to Ising interactions

. nmw
sinh 2K, = tan 0 3.2)
The author had made no attempt to verify these values numerically.

A general way is, considering a critical genus one torus made up of a translationally
invariant lattice, to cut two parallel segments of equal length and seam them back,
interchanging their sides. This creates two conic singularities where an extra curvature
of —27 is concentrated at each point, yielding a genus two handlebody. Repeating the
process, we may produce critical handlebodies of arbitrarily large genus if we start with
a very fine mesh. One has to beware that our continuous limit theorem applies only
to fixed genus, it cannot grow with the refinement of the mesh. This explains why the
union-jack lattice (the square lattice and its diagonals) or the three dimensional Ising
model, which can be modelled as a gemug surface fora : x 2n x 2p cubic network,
are beyond the scope of our technique as far as a continuous limit theorem is concerned.
With this restriction in mind, we see that both the existence and the value of a critical
temperature is essentially a local property and neither depends on the genus nor on the
modulus of the handlebody. It is not the case for more interesting quantities such as the
partition function, which can be obtained in principle from the discrete Dirac spinor that



202 C. Mercat

Fig. 22. The diamond graph of a critical labyrinth lattice

criticality provides, defined in Sect. 4. But such a calculus is beyond the scope of this
article.

Apart from the standard lattices, the critical temperature of other well known graphs
can be computed using our method, for example the labyrinth [BGB], whose diamond is
picturedin Fig. 22, has the topology of the square lattice but has five differentinteractions
strengths controlled by two binary words, labelling the columns and rows by O's and 1's.
And also new ones such as the “street graph” depicted in Fig. 23. Its double row transfer
matrix appears to be the product of three commuting transfer matrices, two triangular
and a square one.

Other cases such as the Kagomé [Syo] or more generally lattices of chequered
type [Uti] can be handled using a technique called electrical moves [CdV96] which
enables us to move around, and causes appearing or disappearing conic singularities of
a flat metric. This will be the subject of a subsequent article, explaining the relationship
between discrete holomorphy, electrical moves and knots and links. These electrical
moves act in the space of all the graphs with discrete conformal structures in a similar
way to that of the Baxterisation processes in the spectral parameter space of an integrable
model (see [AdABM]). We are going to see that the link with statistical mechanics is even
deeper than simply pointing out a submanifold of critical systems inside the huge space
of all Ising models, as the similarity with the continuous case extends to the existence
of a discrete Dirac spinor near criticality.
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Fig. 23. The “street” lattice

3.5. Polynomial ring.

Definition 5. Let (A, ¢£) beacritical map. Inagivenflatmap Z : U — C onthesimply
connected U, choose a vertex zo € Ag, and for a holomorphic function f, define the
holomorphic functions T and f” by the following formulae:

@) =e@f@,

where f denotes the complex conjugate and &(T") = +1, e(I'*) = —1,

A\

See [Duf] for similar definitions. Notice that’ is defined up ta if one changes the
base point.

Proposition 13. Let (A, ¢)be a critical map. Ina givenflat map Z : U — C on the
simply connected U, for every holomorphic function f € Q(A),df = f'dZ.\ehence
call f’ thederivativeof f.

Consider an edgex, y) € ¢1,x € I'o, y € I'g,

4 x y Ty
f'o) = 5 (/ de2+/ f*dz>
20 X

- - T'
4 _ y
='W+ (M(zm - Z(x)))

2 - -
=—f'(x) - 52 (SO = FONZ) = Z(x)).

S0 [y yy f1dZ = LSOV (Z(y) — Z))(Z(y) — Z(x) = f(3) = F ).
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Definition 6. Let U be a simply connected flat region and zo € U. Define inductively
the holomorphic functions Z*(z) := [ 17147 given Z° := 1. As the space of
holomorphic functions on U is finite dimensional, these functions are not free; let Py
be the minimal polynomial suchthat Py (Z) = 72" +... =0.

Conjecture 6. The space of holomorphic functions dh, convex, is isomorphic to
Cizl/py.

We won't define here the notion of convexity, see [CdV96]. The question is whether
the set(Z¥) generates the space of holomorphic functions. The problem is that zeros are
not localised, and as the power Bf increases, the set of its zeros spread on the plane
and get out of/. Figure 24 is an example on the unit square lattice Witthe square
[—10, 10] & [—10, 10]i, the degree increases withuntil 16 where four zeros get out of
the square. So a definition of the degree of a function by a Gauss formula is delicate.

& N i
; B
F i i
\ A ) RRNNER
f ~ f
e
3 -4
' ~/ "
f N 7 ¥ #1
LN = i
7 \ : Bk
L . a
Z15 and its zeros 716 and its zeros

Fig. 24. The zeros ofz16 get out of the square-10, 10] @ [—10, 10]i

4. Dirac Equation

Although we believe our theory can be applied to a lot of different problems, our moti-
vation was to shed new light on statistical mechanics and the Ising model in particular.
This statistical model has been linked with Dirac spinors since the work of Kaufman [K]
and Onsager and Kaufman [KO]. We refer among others to [McCW81, SMJ, KC]. Hence
we are interested in setting up a Dirac equation in the context of discrete holomorphy.
To achieve this goal we first have to define the discrete analogue of the fibre bundle
on which spinors live. We therefore have to define a discrete spin structure. Physics
provides us with a geometric definition [KC] based on paths in a cefigimomology,

that we generalise to our need (higher genus, boundary, arbitrary topology). We begin
by showing that such an object in the continuum is indeed a spin structure, then define
the discrete object. We then set up the Dirac equation for discrete spinors, show that
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it implies holomorphy and that the existence of a solution is equivalent to criticality.
The Ising model gives us an object which satisfies the discrete Dirac equation, namely
the fermion,& = ou as defined in [KC], corresponding to a similar object defined
previously by Kaufman [K]. It fulfills the Dirac equation at criticality, but also off crit-
icality, corresponding to eassive Dirac spinor. We will end this article by describing
off-criticality, as defined by the author’s Ph.D. advisor, Daniel Bennequin.

4.1. Universal spin structure. A spin structure [Mil] on a principal fibre bundl&, B)
over a manifoldB, with SO(n) as a structural group, is a principal fibre bundi®, B),
of structural group Spife), and a mapf : E’ — E such that the following diagram is
commutative:
E’' x Spin(n) - E’
N
Lfxx Lf B
/!

E x SOn) — E

wherea is the standard 2-fold covering homomorphism from $pjrio SQn).

In this paper we consider only spin structures on the tangent bundle of a surface. On
a generic Riemann surfacg, there is not a canonical spin structure. We are going to
describe a surfacg, 22~ x®)-fold covering ofE, on which there exists a preferred spin
structure. It allows us to define every spin structureébas a quotient of this universal
spin structure. We will treat the continuous case and then the discrete case.

Definition 7. Let © be a differentiable surface with a base-point y°; T is the set of
pairs (z, [A]2), where z € ¥ isa point and [1]» the homology of a path A from y° to z
considered in the relative homology H1(Z, {y°, z}) ® Z.

> is the Z27x() covering associated to the intersectiinof the kernels of all the
homomorphisms fronr1 () to Zy, that is to say the quotient of the universal covering
by the subgroug C 71(X) of loops whose homology is null modulo two.

Choosevg a tangent vector at®. For each point € ¥, definex. := £\ {y°, z} u
STuS?, the blown up ofs aty? andz (add only one circle in the cas@ = z). Consider
the set of oriented paths i, from the point corresponding to the vectgrat y° to
the directions at (the vectoryg is needed only when = y©). Define an equivalence
relation~ (see Fig. 25) on this set by stating that two paths’ are equivalent if and
only if A — A" is a cycle andi — 1']2 = 0 in the homologyH1(Z \ {z}, Z>).

V0

1.z#H° 2.z=H°

Fig. 25. Paths of different classes with respectigfor z # yo andz = yO
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Definition 8. The universal spin structure S of ¥ is the set of pairs (z, [A]~,), with
z € T and [A]~, the ~,-equivalence class of the path A fromy° to z in ;.

Theorem 7. S is a spin structure on 3 and is the only one such that the action of the

fundamental group 1(X) on = can belifted to. Moreover it isthe pull-back of any spin
structureon X.

Proof. The proof is in three steps, we check tkiatis a spin structure, we define a
spin structureSp through group theory and we show that both are equal to a third spin
structureSs. )

There is an obvious projection frodito X defined by(z, [A]~,) = (z, [A]2). The
fibre of this projection afz, [1]2) is the set of~,-equivalence classes of paths frof
to the blown-up circle at. To each class is associated the tangent directiarsatS,
is a covering ofST,(X). As Hi(Z \ {z}, Z») is 2-*(®) dimensional (a loop around
is not homologically trivial), for each point 7 (X), there are two different lifts. The
path inS; corresponding to turning aroundonce yields theZ,-deck transformation.
HenceS is a spin structure ox.

Let G := 71(X) andG’ := m1(STX); theS-fibre bundleST(X) — T induces a
short exact sequené — G’ — G. Every double covering a§T T is defined by the
kernelS’ of an homomorphism from G’ to Z/2, moreover, fos’ to be a spin structure,
its intersection with the subgromust be Z.

Likewise, the fibratior — % implies that the fundamental grodp := 71 (STS)
of the directions bundle of is the subgroup o’ over H := 71(%),

Z—H — H

VoL, (4.1)
Z— G —- G

The intersection of the subgroupg ands’ is a well defined spin structu® on 3:
Indeed, consider another spin structfife= Ker (v : G’ — Z/2) on %, its intersection
with Z is 2Z hence the kernel of — v contains the whole subgro®j that is to sayt — v
comes from a homomorphism 6f to Z/2 and we haves” N H' = S’ N H'. In other
words,Sg is the unique spin structure dhwhich is the pull-back of a spin structure on
¥ and it is the pull-back of any spin structure.

Letz € ¥ be a point, consider the set of pathsSiii = from the base pointy?, v°)
to any direction at. Consider on this set the equivalence relatidndefined by fixed
extremitiesZ/2-homology. The clasg.]., of a patha from (y°,v°) to (z, v) is its

homology class itH1 (ST Z, {(y°, v9), (z, v)}) ® Z/2. The projectior§ T £ — X splits
H1(STZ, {(y°,v9), (z, v)}) ® Z/2 into

Z)2 — Hi(STZ, {(°, 00, (z, v)}) ® Z/2 — Hi(Z, H°, 2)) ® Z/2, (4.2)

hence the sef; of pairs(z, [A]~) for all pointsz € X and all paths., is a spin structure
ons.

Let S’ be a spin structure oR, it defines an element iti/2 for each loop inST X.
So each path iST X beginning a(y°, v°) defines, through the splitting 4.2, an element
in S1 which is then the pull-back of’ to 3, henceSy = Si.

On the other hand = S; because there is a continuous projection f®to Sp: For
an elementz, [A]~,), consider aCl-patha € T representing the class. Lift it to a path
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in ST X by the tangent direction at each point, its clgss.; only depends ofit]~, and
gives us an element if;. O '

4.2. Discrete spin structure.

Definition 9. Let T be a cellular complex of dimension two, a spin structureon Y isa
graphY’, double cover of the 1-skeleton of Y such that the lift of the boundary of every
faceis a non-trivial double cover. They are considered up to isomorphisms. Let Sp be
the set of such spin structures.

A spinor v on Y’ is an equivariant complex function on Y’ regarding the action of
Z/2, thatisto say, for all £ € Y4, ¥ (&) = —y (&) if & represents the other lift.

Remark 8. Usually, a spinor field is a section of a spinor bundle, that is to say a square
root of a tangenvector field. Here, we consider square rootscofectors; we should
saycospinors.

A discrete spin structure is encoded by a representation of the cyclesaf(Y) :=
Ker d N C1(Y), into Z/2 which associates tp € Z1(Y), the valueu(y) = 0 if it can
be lifted in Y’ to a cycle andu(y) = 1 if it can not. By construction, the value of the
boundary of a face is 1 and the value of a cycle which is the boundary of a 2-cHain of
is the number of faces enclosed, modulo two.

We are going to show that this structure is indeed a good notion of discrete spin
structure. First, there are as many discrete spin structures on a surface as there are in the
continuous case:

Proposition 14. On a closed connected oriented genus g surface %, the set Sp of in-
equivalent discrete spin structures of a cellular decomposition Y isof cardinal 22¢. The
space of representations of the fundamental group of the surface into Z/2 acts freely
and transitively on Sp.

We explicitly build discrete spin structures and count them:Lée a maximal tree of
T, that is to say a sub-complex of dimension one containing all the verticésaofd a
maximal subset of its edges such that there is no cyde @©hoose 2 edgege;)1<k<2¢
in T \ T such that the 2 cycles(yx) € Z1(Y7)%8 extracted from(T U ex)1<k<2¢ forma
basis of the fundamental group Bf (andY). Let 7+ := T Uy ¢, and consideff”’, the
sub-complex of the duat* formed by all the edges inf* not crossed by, . It is a
maximal tree ofY*. Likewise we defind’| := T’ Uy ¢}.

We construct inductively a spin structul: its first elements are a double copy of
T and we add edges without any choice to make as we take leaves@utwhen only
cycles are left, a choice concerning an edgéas to be taken, opening a cycleif.

The process goes on unfil_is empty.

These choices are completely encoded by a represenjasoch as in the remark,
and the 2 values(u(yx))1<k<2, determine the spin structure. On the other hand, this
representation defines the spin structure and theréami2h different representations.
Hence the choices of the maximal tree and the edgease irrelevant.

Because a cycle iff belongs to a class in the fundamental group of the surface (up
to a choice of a path to the base point, irrelevant for our matter), the representations of
the fundamental group intd/2 obviously act on spin structures: A representajon
m1(X) — 7Z/2 associates to a spin structure defined by a representaticfy (T) —

7./2, the spin structure defined by the representatiqr) such thap (1) (y) := u(y)+
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o([y]D, where[y] € m1(X) is the class of the cycle in the fundamental group. This

action is clearly free, and transitive because the set of representations is of cattlinal 2
GivenA = I' uT'* a double cellular decomposition, we introduce a cellular decom-

position which is the discretised version of the tangent directions bundle of batul

r*:

Definition 10. Thetriplegraph T isa cellular complex whose vertices are unoriented
edges of &, Yo = {{x, y}/(x, y) € &1}, Two vertices {x, y}, {x’, ¥’} € Yo are neigh-
boursin T iff the edges (x, y) and (x’, y) areincident (that istosay x = x’ or x =y’
or y = x’ or y = y’), and they bound a common face of <>. There are two edgesin T
for each edgein A. For thisto be a cellular decomposition of the surface in the empty
boundary case, one needs to add faces of three types, centred on verticesof I', of I'* and
on faces of < (see Fig. 26).

Fig. 26. The triple graphr

Remark 9. The topology of the usual tangent directions bundle is not at all mimicked by
the incidence relations of, the former is 3 dimensional and the latter is a 2-cellular
complex.

Let (x9, y0) € &1 be a given edge. All the complex&sT*, &, T are lifted toX.
Definition 11. The discrete universal spin structure Y is the following 1-complex: Its
verticesareof theform((x, y), [)/yyo]).where(x, y) € Ygisapair of neighboursin<and
)/;O isa path from y? to y on I'*, avoiding the faces x* and x%*. We areinterested only in

its relative homology class modulo two, that isto say [y, ] € Hi(I'* \ x*, {y°, y}) ® Zo.
We will denote a point by ((x, y), yyyo) and identify it with ((x, y), y’io) whenever 7,

and y’“yv », are homologous.
N 0 ~
Two points ((x, y), y\—}o) and ((x', "), yyy, ) are neighboursin Y if

0 70 . .
—x=x',(y,y) efandy; —y);‘, +(y, y') ishomologousto zeroin Hy (I' \x*) ®Z»,

0 0 . .
-y=y,(x,x)eljand yyY — y}‘ ishomologousto zeroin Hi(I'* \ x*) ® Zo.
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Y’ is a double covering of and it is connected around each face (see Fig. 27). Itis a
discrete spin structure of in the sense defined above. Once a basis of the fundamental
groupr1(Y) is chosen, every representation of the homology group ioto Z; allows
us to quotient this universal spin structure into a double covering, gielding a usual
spin structureY”.

Fig. 27. Double covering around faces of

4.3. Dirac equation. A spinor changes sign between the two liftsiihof a vertex ofY',
in other words it is multiplied by-1 when it turns around a face. The facestoivhich
are centred on diamonds are four sided. We set ughresymmetry equation for a
function¢ on Yy, on a positively oriented fac&:, &2, £3, £&4) € Y2 around a diamond,

lifted to an 8-term cycle&,r, &5, &5, &, 67,65, &5, €,) € Za(Y'):
£(EF) = ic(&)). (4.3)

It implies obviously that is a spinor, that is to say(¢;") = —¢(&.5).

The coherent system of anglg@given by a semi-critical structure locally provides a
spinor respecting the spin symmetry away from conic singularities: Define half angles
6 on oriented edges of in the following way: Each edgé, ¢’) € Ty cuts an edge
a € Ay, setf&, &) = i@ whether(§, £’) turns in the positive or negative direction
around the diamond. Choose a base pgjrn¢ Y|, defines by ¢(£0) = 1 and

C(E) :==expi Y 0L (4.4)

rey

for any pathy from &g to &£. The sum of the half angles are equaktaround the faces of

< and half the conic angle around a vertex, so if itis a regular flat point, W%gei b4

again, hence is a well defined spinor. As diagonals of the faces>odre orthogonal,

¢ fulfills the spin symmetry. Moreover, if the conic angles are congruous tm@dulo

47, ¢ can be extended to any simply connected region; if the fundamental group acts by
translations; is defined on the whol&”.
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We are going to define a propagation equation which comes from the Ising model.
It is fulfilled by the fermion defined by Kaufman [K] which is known to converge to
a Dirac spinor near criticality. We will use the definitigh = o 1 given by Kadanoff
and Ceva [KC]. The Dirac equation has a long history in the Ising model, beginning
with the work of Kaufman [K] and Onsager and Kaufman [KO], we refer among others
to [McCW81,SMJ,KC]. The equation that we need is defined explicitly in [DD], hence
we will name it theDotsenko equation, even though it might be found elsewhere in
other forms. It is fulfilled by the fermion at criticality as well as off criticality. But this
equation is only a part of the full Dirac equation. For a funcgamn Y, with the same
notations as before, anddfe A is the diagonal of the diamond, betwegn, ¢3) and

(¢4, ¢1) (see Fig. 28):

CED = V14 p(@2(ES) — pla)t(EF). (4.5)

A check around the diamond shows that it also implies ¢higta spinor: We write
the Dotsenko equation i andé;

£ =V1+ p@n2c(EF) — pa) ),
(&) =1+ p@Z(ED) — p@)¢ (D),
hence, as/1+ p(a)2\/1+ p(a*)? = p(a) + p(a®),
L&) =p@HED) — Vi+ panZ ()
=p(@)(V1+ p@%(ED) — p(@tED) — V1+ p@n2e(E))

=—0@).

TheDirac equation is the conjunction of the symmetry (4.3) and the Dotsenko (4.5)
equations. We will see that this same equation describes the massive and massless Dirac
equation, the mass measuring the distance from criticality.

®
&3
a A —Pa
O-----=-H------- o
A A ,/l—l—pg
§1 ° &2

Fig. 28. The Dotsenko equation

Given two spinors ¢, ¢’, their pointwise product is no longer a spinor but a regular
function on Y. As there are two edges in Y for each edge in A, there is an obvious
averaging map from 1-formson Y to 1-formson A: We define dy¢¢’ € C1(A) by the
following formula, with the same notation as before,

2/ drig’ = £(E3)¢ (63) — £(£2)¢" (82) + £ (Ea)S (Ea) — ¢ (€S (BD).

dy ¢’ isby definition an exact 1-form on Y but its average is not a priori exact on A.
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Fig. 29. The 1-form on A associated to two spinors.

Proposition 15. If ¢ and ¢’ respect whether the spin symmetry or the Dotsenko equation,
thend¢ ¢ isaclosed 1-form. If ¢ isaDirac spinor and ¢’ fulfillsthe Dotsenko equation,
then d ¢ ¢’ isholomorphic, dy ¢ ¢’ anti-holomorphic and every holomorphic 1-formon
A can bewritten this way on a simply connected domain, uniquely up to a constant.

A sufficient condition for dv¢ ¢’ to be closed on A isthat, with the same notations as

above, ¢(£3)¢"(§3) — ¢(2)¢"(52) = ¢(Ea)¢’ (Ea) — ¢(61)¢ (61) because f, . dy¢ ¢’ for
avertex y € Ag isasum of such differences on the edges of Y around y. Thisis so if
thereexistsa2 x 2-matrix A such that

<z;(s;>) 4 (4(&?))
(& tGEH)’
- , 10 10 .
asimilar formulafor ¢/, and ' A ( ) A= < ) The solutions are of the form

0-1 0-1
ev1+ A2 A L
A= for acomplex number A € C, ¢ = +1 and adetermination
( er V14 xz) P € e

of +/1 + A2. Thisisthecasefor thespin symmetry, . = —i, ¢ = +1andfor the Dotsenko

equation, A = p(a), e = —1,4/1+ 12 > 0.
If ¢ isaDirac spinor and ¢’ fulfills the Dotsenko equation, then

[ avee =cehieeh - cehie e

=itENW 1+ p@?2¢' &) — p@)t (&) — it €N &)
=iCENWL+ p@2' () — pa)t'(EF))
— (/14 p(@2¢ (&) — p(@)t (EFNC ()

=ip(a) (CEN T ED) — CENL(E)) = ip(a) f dv¢g

So dv ¢ ¢’ isholomorphic. Of course, dz ¢’ isanti-holomorphic. Conversely, if dy¢¢’ is
holomorphic with ¢ a Dirac spinor, then ¢’ fulfills the Dotsenko equation.

Given a holomorphic 1-form « € Q&9 (A), define oy on Y1 by the obvious map
f({x,v},{y,x’}) ay = f(x,x’)a' It is a closed 1-form on Y because « is closed on A,
o there exists a function @ on any simply connected domain of Yo, unique up to an
additive constant, such that dya = a~. A check shows that the only spinors ¢” such
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that dr¢¢” = 0 on A arethe one proportional to ¢ . It is consistent with the fact that the
Dirac spinor is of constant modulus (see Eq. (4.6)). Hencethefunction¢” := a/¢ on Y’
is the unique spinor (up to aconstant times1/¢ ~ ¢) suchthat dv¢¢’ = a.

Notice that for ¢ a Dirac spinor, the holomorphic 1-form associated to it on A is
locally, for agiven flat coordinate Z, dv¢¢ = AdZ, with A € C a certain constant.

4.4. Existence of a Dirac spinor.

Theorem 8. There exists a Dirac spinor on a double map iff it iscritical for a given flat
metric with conic angles congruous to 27 modulo 47 and such that the fundamental
group acts by translations. The Dirac spinor is unique up to a multiplicative constant.

Proof. Let¢ beanon-zero Dirac spinor. Consider apositively orientedface(£1, &2, £3, £2)
€ Yo around a diamond with diagonals a, a* as in Fig. 28, lifted to an 8-term cycle

1 &5 &5, 65,867,865 ,65, &) € C1(Y). The equation
p(a*) +i
V1+ p(a*)?

definesan angle ¢ (a) € (0, ) for every edgea € Aj.
The Dotsenko and symmetry equations combine into

elz =

pla) +i

V1+ p(a)?

The fact that ¢ is a spinor implies that, summing the four angles around the diamond,
we get ¢/ @@+¢@) = _1 Aseach angleislessthan r, their sum is equal to 7. The

same consideration around avertex x € Ao, yields expi Y, 1cp, 2% = —1. S0
¢ isacoherent system of angles and the map is critical with conic angles congruous to
27 modulo 4.

Conversely, given ¢ a coherent system of angles with conic angles congruous to
27 modulo 47, the preceding construction described by Eq. (4.4) gives the only Dirac

spinor. O

t(6)) = D). (4.6)

Inthiscase, dZ isawell defined holomorphic 1-form on the whole surface.

Corollary 9. Let (A, p) be a discrete conformal structure and P a set of vertices, con-
taining among others the vertices v such that thesum ) ", Arctanp(e), summed over
all edgese incident to v, isgreater than 2. The discrete conformal structureiscritical
with P as conic singularities if and only if there exist Dirac spinors on every simply
connected domain containing no point of P.

We definein which sense adiscrete spinor convergesto acontinuous spinor. We don’t
define these spinors on specific spin structures but rather on the universal spin structure
S.

Consider a sequence of finer and finer critical maps such asin Theorem 3. Choose a
converging sequence of base points (x,?, y,?) € ko on each critical map such that the
d(. )

direction sequence ( ) converges to atangent vector (x°, v0).
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Consider a sequence of points (xx, yx) € Yo, defining a sequence of points (x;)

converging to x in ¥ and a converging sequence of directions v = lim d(’;if’;k). By
compacity of the circle, there exist such sequences for every point x € ¥ and the
criticality impliesthat itisin at least three directions for flat points, separated by angles
lessthan .

The different limits allow us to identify, after a certain rank, the relative homol ogy
groups Hy(*T* \ x}, {2, yi}) ® Zo with H1(Zy, {(x0, v0), (x, v)}) ® Z», the classes of

paths in the blown-up of = at x° and x.

Definition 12. We will say that a sequence (¢ )xen Of Spinors converges if and only if,
for any converging sequences, ((xk, Vi) € kTo) vy Jefining a limit tangent vector, and
([Ax])gen Of classes of pathsin KT from y,? to y, avoiding the face x;, the sequence of
values (& (xk, [Ax])) converges.

Remark 10. It defines a continuous limit spinor ¢ by equivariance: Let x € 3, the set
D, of directionsin which there exist converging sequences of discrete directions is by
definition aclosed set. Let u, v two boundary directions of D, such that theentirearc A
of directions between themisnotin D,. Consider [(x, [A].), (x, [A])] C S alift of A.
The circle ST acts on the directions, hence on the ~,-classes, let v € (0, ) the angle
such that (x, ¢!V [A]c) = (x, [A],). Define

£(x, € P[A]y) i= eV Pr(x, [Aly),

where v(¢) = %i((fc”[a’]]f; (v(¢p) = £ for Dirac spinors).

Theorem 10. Given a sequence of critical mapssuch asin Theorem3with Dirac spinors
on all of them, they can be normed so that they converge to the usual Dirac spinor on
the Riemann surface.

Inalocal flat map Z, the square of the discrete Dirac spinor on ¥ is(up to amultiplica-
tive constant) the 1-form d Z evaluated on the edges. Hence their sequence converges.

4.5. Massive Dirac equation, discrete fusion algebra and conclusions. For complete-
ness and motivation, we describe below the situation off-criticality where eliptic inte-
grals come into play, and investigate a form of the discrete fusion algebrain the Ising
model. Thiswork was done by Daniel Bennequin and will be the subject of asubsequent
article.

A massive system in the continuous theory is no longer conformal. In the same
fashion, Daniel Bennequin defined a massive discrete system of modulus k£ as adiscrete
double graph (A, p) such that, for each pair (a, a*) of dual edges,

1
pla)p(a®) = T 4.7)

The massless case correspondsto k£ = 1. We showed that criticality was equivalent to

a coherent system of angles ¢ (a) such as shown in Fig. 8, defined by tan 252 = p(a),
and adding up to 2 at each vertex of the double, except at conic singularities. The Dirac
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spinor was constructed using the half angles &2"). Similarly, for every edge, we define
the massive “half angle” u(a) astheéliptic integral

¢g) d¢
u(a) :=/ , 4.8
o Ay (48
where the measure is deformed by
R+k? =1, (4.9)

Ap) :==+/1—k2sin?gp, (4.10)
A(@) :=+/1—k?sin? . (4.12)

Using these non-circular half angles, and the corresponding “square angle” I :=

07 A?—(“’, one can construct a massive Dirac spinor wherever the following “fl athess”
condition isfulfilled:

> Uy —u(@) =1Iy mod 4l forexhface F € A, (4.12)
acoF
Y (u(a)) = Iy mod 4l for each vertex v € Ao. (4.13)

asv

Daniel Bennequin noticed that the fusion algebra of the Ising model could be under-
stood at thefinite level: Consider atrinion made of cylinders of asquareléttice, of width
m and n, gluedinto acylinder of widthm +n. 1t hasbeen known since Kaufman [K] that,
in the transfer matrix description of the Ising model, the configuration space of thelsing
model on each of thethree boundariesisarepresentation of spin groupsspin(m), spin(n)
and spin(m +n) respectively. If m isodd, there existsauniqueirreducible representation
A of spin(m) but when m iseven, thereare two irreducible representations, A* and A~.
A pair of pantsgivesusamap spin(m) x spin(n) — spin(m + n), inthe case of apair of
pants of height zero, it'sthe inclusion given by the usual product. The representations of
spin(m + n) induce representations of the product group that can be splitinto irreducible
representations. If the three numbers are even,

AT S ATRAT+HAT AT, (4.14)
AT > ATR@AT+ATQAT, (4.15)

whileif only one of themis even,
A—>ATRA+A®A, (4.16)
and if m and n are both odd,

AT > AQA, (4.17)
A" = A®A. (4.18)
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Let us compile these datain an array and relabel A by o, At by 1and A~ by €:

1 ¢ o
111 € o

ele 1 o

(4.19)

olo o l+e.

This is read as follows, the 1 + ¢ in the dot 0 ® o for example, means that the
representation 1 and the representation ¢ of spin(m + n) both induce afactor o ® o in
the representation in the product group spin(m) x spin(n).

We get exactly the fusion rules of the Ising model. The only difference compared
with the continuous case is that the algebrais not closed at afinite level. The columns,
rows and entries are not representations of the same group, rather we have a product of
representations of spin(n) and spin(m) as afactor of arepresentation of spin(n + m).

Theseresults provide evidence that a discrete conformal field theory might belooked
for: the discrete Dirac spinor at criticality is the discrete version of the conformal block
associated with thefield W and some sort of fusion algebra can beidentified at thefinite
level. The program we contemplateis, first to investigate other statistical modelsand see
if there are such patterns. If that is the case, we must then mimic in the discrete setup
the vertex operator algebra of the continuous conformal theory. This can be attempted
by defining a discrete operator algebra, in asimilar fashion to Kadanoff and Ceva[KC],
and splitting this algebra according to its discrete holomorphic and anti-holomorphic
parts. The hope is that some aspects of the powerful results and techniques defined by
Belavin, Polyakov and Zamolodchikov [BPZ] will still hold. A very interesting issue
would be, as we have done for the Ising model, to realize the fusion rules of atheory in
the discrete setup, yielding its Verlinde algebra.
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