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Discrete scale invariance connects geodynamo timescales
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S U M M A R Y
The geodynamo exhibits a bewildering gamut of time-dependent fluctuations, on timescales
from years to at least hundreds of millions of years. No framework yet exists that comprises
all and relates each to all others in a quantitative sense. The technique of bootstrapped discrete
scale invariance quantifies characteristic timescales of a process, based upon log-periodic fits
of modulated power-law scaling of size-ranked event durations. Four independent geomagnetic
data sets are analysed therewith, each spanning different timescales: the sequence of 332 known
dipole reversal intervals (0–161 Ma); dipole intensity fluctuations (0–2 Ma); archeomagnetic
secular variation (5000 B.C.–1950 A.D.); and historical secular variation (1590–1990 A.D.).

Six major characteristic timescales are empirically attested: circa 1.43 Ma, 56 Ka, and
763, 106, 21 and 3 yr. Moreover, all detected wavelengths and phases of the detected scaling
signatures are highly similar, suggesting that a single process underlies all. This hypothesis is
reinforced by extrapolating the log-periodic scaling signal of any particular data set to higher
timescales than observed, through which predictions are obtained for characteristic scales
attested elsewhere. Not only do many confirm one another, they also predict the typical duration
of superchrons and geomagnetic jerks. A universal scaling bridge describes the complete range
of geodynamo fluctuation timescales with a single power law.

Key words: archeomagnetism, core dynamics, geomagnetism, geomagnetic secular varia-
tion, palaeomagnetism, scale invariance.

1 I N T RO D U C T I O N

The Earth’s internal magnetic field is most likely generated by dy-

namo action in the fluid outer core. Thermal and compositional

buoyancy sources are thought to drive convection inside a rapidly

rotating spherical shell of electrically conducting liquid, bounded by

the mantle and the gradually growing solid inner core. In this envi-

ronment reigns the non-linear interplay between buoyancy, Coriolis,

pressure and Lorentz forces, causing mutual extreme sensitivity be-

tween fluid motions and magnetic field fluctuations (a tiny change

in one may have a large effect in the other), across the widest range

of scales known in geophysics (Glatzmaier et al. 1999; Roberts

& Glatzmaier 2000; Zhang & Gubbins 2000; Dormy et al. 2000;

Hollerbach 2003) The nature of this convective regime remains

poorly understood, not least because analysis of time-dependent

change has to contend with a broad diversity of observed fluc-

tuations, from superchrons (extensive periods without reversals,

timescale: 107 yr) through dipole chrons (intervals between suc-

cessive reversals: 106–104 yr) and excursions (105–104 yr), the du-

rations of reversals and excursions proper (103–104 yr), down to

secular variation (104–10−1 yr) (Gradstein & Ogg 1996; Langereis

et al. 1997; Hongre et al. 1998; Constable et al. 2000; Jackson et al.
2000; Hulot & Gallet 2003; Korte & Constable 2003; Valet et al.
2005). As each type of change represents a different facet of the

same complex system, the questions whether and how their various

timescales are connected have immediate and far-reaching impli-

cations, for the theoretical domain and numerical and laboratory

geodynamo simulation studies alike.

This study shows how the statistical detection of characteristic

scales, in several geodynamo observables and over time, allows the

construction of a universal scaling bridge that establishes a direct,

quantified connection between palaeomagnetic superchrons, chrons,

subchrons, dipole intensity fluctuations and (non-dipole) secular

variation. It constitutes a coherent interpretation of internal geomag-

netic fluctuations spanning over seven orders of magnitude in time

as mere scale-dependent surface expressions of a single underlying

process. In addition to several novel quantitative constraints on the

physics, this approach furthermore yields predictions of other pre-

ferred geodynamo timescales outside the presently studied range

of 100–107 yr. In the following, Section 2 outlines the method,

Section 3 discusses the results of application to the four independent

geomagnetic data sets, whereas the concluding Section 4 describes

the scaling bridge.

2 M E T H O D

The detection of characteristic scales of a process requires analysis,

first of general scale-invariant properties of the studied dynamics,

and if present, to what extent this scale symmetry is adjusted. The
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statistical fingerprint of scale invariance is a power-law probability

distribution function: an observable’s fluctuations (or durations of

states) approximate a straight line on a log–log plot of, for example,

rank versus size or magnitude of change versus associated dura-

tion or frequency. Power laws are ubiquitous in nature, quantifying,

for example, size versus frequency of earthquakes, hurricanes and

volcanic eruptions, as well as various scaling properties of natural

fractals such as mountain ranges, coastlines, river networks, trees,

clouds and blood vessels in mammals (West & Shlesinger 1989;

Sornette 2004).

Regarding magnetic fields, power laws have previously been at-

tested in the solar corona (flare event sizes, durations and energy

release; Lu & Hamilton 1991; Lu et al. 1993), the geomagnetic

reversal rate (Jonkers 2003) and in the power spectra of global ge-

omagnetic intensity and intensity variations (Pelletier 1999, 2002;

de Santis et al. 2003; Holme & Olsen 2006). Note that empirical

power laws are always subject to cut-offs: at largest scales due to

finite system size, available energy or observed time span and at

smallest scales due to finite measurement resolution or physical

limitations (e.g. the size of the fundamental constituent elements;

Sornette 1998). Furthermore, the mere detection of ‘featureless’

scale-invariance in a process provides little constraint on the un-

derlying physics. However, its provisional adoption as a working

hypothesis is a prerequisite for disclosure of geophysically relevant

information that does provide such information, through the concept

of discrete scale invariance.

Discrete scale invariance (hereafter DSI), previously observed in,

for example, earthquake precursors, material rupture, mammalian

physiology and diffusion-limited aggregation, is the signature of

physical structures of specific size and/or longevity that underlie

a broad spectrum of observed changes (West & Shlesinger 1989;

Sornette et al. 1996; Johansen & Sornette 1998; Sornette 1998;

Johansen et al. 2000a). It is expressed in data as a series of log-

periodic modulations superposed on a power law. Fig. 1(A) depicts

a synthetic example, the triadic Cantor set. This simple fractal is

generated from a single line segment by iterative removal of the

middle third, leaving two smaller segments one-third in length. Con-

sequently, for each increase in resolution by a factor three, the num-

ber of discernible parts doubles. This ratio is scale-invariant (as

it remains constant regardless of absolute segment size), and is ex-

pressed by a power law. However, individual segments can be ranked

and grouped by length, here plotted as horizontal levels, or stratae, in

Fig. 1(A). These levels are called the fractal’s characteristic scales,

or preferred scales.

Characteristic scales are log-periodically spaced along the power-

law slope, and can be said to break the symmetry of pure power-law

scaling, that is, instead of featureless scale-invariance, the power-

law probability distribution function is adjusted locally, since some

absolute length scales are more likely (those forming a preferred

scaling level), others less likely (the gaps between two adjacent

levels), relative to the power-law expectation. Characteristic scales

should not be confused with traditional statistical measures of cen-

tral tendency such as mean, median or mode, nor with trends, or any

kind of time-dependent periodicity. Given an observable of some

non-linear system, DSI analysis instead examines its statistical en-

semble of magnitudes (be it event sizes, durations or pairs thereof)

for the presence of a log-periodic departure from pure power-law

scaling.

Evidence of DSI indicates specific system-preferred fluctuation

sizes and durations. These are often associated with some fundamen-

tal physical scale (either very large or very small) that provides the

basis for cascade dynamics, producing a series of ever-larger or ever-

smaller preferred scales. These leave a distinct statistical signature

that yields important (quantified) constraints on the underlying pro-

cess, and that, moreover, cannot be detected by traditional methods

such as Fourier spectral analysis, as the studied signal is statistically

stationary rather than time-dependent. For an extensive introduc-

tion to DSI theory and many application examples in physics, see

Sornette (1998). A detailed account of the method developed for

the geomagnetic case (‘bootstrapped DSI analysis’) is given in a

separate paper (Jonkers 2007); here only a brief outline is sketched.

Given an x-dependent observable O, O(x) is scale-invariant under

arbitrary magnification λx if a number μ(x) exists that satisfies:

O(x) = μO(λx). (1)

To illustrate this, recall the famous Gutenberg–Richter law in

seismology. Rank all recorded shallow earthquakes by their seismic

moment (so the largest moment is assigned rank 1, the second-largest

rank 2 and so on), let O(x) be their distribution, with x the rank and

O(x) the associated seismic moment. Scale-invariance is attested

here if, regardless of a chosen initial size of moment, a change

in that moment by a constant factor μ always yields a change in

earthquake ranking by a constant factor λ. In this case, O(x) is a

power law with C a constant and exponent α:

O(x) = Cxα, α = − log μ

log λ
. (2)

When O(x) is plotted as a straight line on a log–log scale, the

constant power-law slope thus reflects the constant ratio of these

two scale factors. The same applies when plotting the cumulative

number of earthquakes that exceed a given moment against that

moment.

Scale invariance is also a property of fractals, where it encodes ge-

ometrical self-similarity of a set divisible into subsets that resemble

the whole over a range of scales. However, many fractals obey scale

invariance only for specific choices of magnification (or resolution).

This discrete scale invariance is a weaker form of power-law scaling,

describing parts self-similar to the whole only at resolutions equal

to some multiple of a characteristic scale. Given a mathematical,

noise-free fractal, if magnification increases continuously, the num-

ber of discernable parts will increase at these specific resolutions

only, while remaining constant over the interval between any two

neighbouring characteristic scales. The scaling relationship thereby

becomes modulated:

O(x) = Cxα P

(
log x

log λ

)
, (3)

with P a function of period unity. Both power law and superposed

modulation are essential constituents of this definition; the latter can-

not exist on its own, as it is defined by its departure from the former.

Although log-periodicity could in theory be imposed on other types

of probability distributions as well, the resulting statistics would

no longer be scale-invariant, leaving the physical interpretation of

the generating process ambiguous or meaningless. Moreover, this

notion does not apply to the geodynamo analyses presented here,

where power laws abound (see below); therefore, they fall outside

the scope of this paper.

By expanding P in eq. (3) into a Fourier series:

P

(
log x

log λ

)
=

∞∑
n=−∞

an exp[i2πn(log x/log λ)] (4)

O(x) can be described as a sum of power laws with n an arbitrary

integer and a (theoretically infinite) set of complex exponents:

O(x) = Cxα, α = − log μ

log λ
+ i

(
2πn

log λ

)
, (5)
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Figure 1. Temporal discrete scale invariance (DSI) consists of a power law (black line) and superposed modulation (red line, horizontal bars mark preferred

timescales, see Table 1). (A) Ranked segment sizes of the Cantor set; (arbitrary) initial length: 106 units, first four resolutions shown (x-axis reversed). (B)

Average time before an absolute threshold of change (400 nT–60 μT, N = 21) is exceeded in historical secular variation at the core–mantle boundary; inset

histogram depicts sample size per metadata point (N = 61 166; larger thresholds toward right). (C) Average time before a threshold (380–139 601 nT, N =
313, based upon 30 557 significant results, in histogram per point) is exceeded in archeomagnetic secular variation at the core–mantle boundary. (D) Time

before virtual axial dipole moment exceeds a given threshold (N = 793, ranging from 0.35 to 6.6 × 1022 A m2). (E) Ranked chrons (Mesozoic to present,

Cretaceous Normal Superchron (CNS) included; N = 332). The diffusion timescale of the inner core (∼10 Ka) imposes a physical cut-off to power-law scaling

at bottom (x-axis reversed). (F) Residuals of the DSI signal in panel D; data become progressively more noisy for larger thresholds. (G) Chron DSI residuals

(CNS included).
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through which continuous scale invariance is recovered for the spe-

cial case n = 0, that is, eq. (5) is a more general expression of (2).

The complex solution of n �= 0 implies a characteristic scaling factor

λ, expressed as a log-periodic correction to pure power-law scaling.

Returning to the generic example of the Cantor set (after

Sornette 1998), Fig. 1(A, top left) depicts the first few iterations

of its formation. Given this spectrum of line segments, each one

provides one length datum to a data set, which, when sufficiently

large for analysis, is rank-ordered by size. Thus the original, sin-

gle segment length is given rank 1, the next two (both one-third

the original size) are assigned rank 2 and 3, respectively, the next

four (one-ninth the original size) span ranks 4–7, and so forth. No

binning is performed, as it could degrade the signal of interest. Plot-

ted on a log–log scale of rank versus segment length, the resulting

power-law slope α is, at first approximation:

α = − log 2

log 3
. (6)

However, the actual point distribution of sizes consists of a num-

ber of distinct stratae along the power-law slope, separated by scale

‘gaps’. Following eq. (5), the power-law exponent can be restated

more generally as:

α = − log 2

log 3
+ i

2πn

log 3
(7)

with the imaginary part directly controlled by the preferred scaling

ratio three under which the set is exactly self-similar. Note that line

segments map onto differently sized segments not only at magnifi-

cations of three, but also at any negative or positive integer power

thereof.

The Cantor set is, however, artificial, in consisting of stratae only.

By contrast, natural phenomena, being affected by noise and exter-

nal processes, exhibit intermediate sizes (or durations) everywhere

along the observed modulation (see Jonkers 2007, fig. 5, for an

example of Cantor synthetics with added noise). The identifica-

tion of characteristic scales in empirical data thus entails finding

a statistically significant, coherent adjustment to power-law scaling

everywhere along its slope, making the likelihood of some sizes (du-

rations) slightly larger, others smaller, than predicted by the power

law alone. DSI analysis is emphatically not dependent on the inter-

pretation of local scaling features resembling a strata, but rather, on

the entire spectrum of fluctuations captured. Preferred length scales

are consequently identified through the wavefunction that best fits

all points, a more robust approach. Let the observed x-range be

specified by:

X0 = min[log10(x)]

X range = max[log10(x)] − X0.
(8)

Within the log–log domain, given power-law intercept C and slope

α, and modulation frequency f , phase φ and amplitude β, the DSI

equation to be fitted is:

Y = C + αx + β cos

{
ϕ + f 2π

[
log10(x) − X0

X range

]}
(9)

with any residual scaling signal of higher harmonics (2f , 3f , . . .),

if at all detectable, expressed with much smaller residual amplitude

(to be discussed below). Eq. (9) allows the log10(x) coordinate of the

two nodes (Xn1 and Xn2) within one wavelength to be determined

through:

Xn1 = X0 + (0.25 − f ϕ)(X range/ f )

Xn2 = X0 + (0.75 − f ϕ)(X range/ f )
(10)

which, when inserted in eq. (9) yield the other scaling coordinate

per node (i.e. Yn1 and Yn2). The fitted phase φ thus codes the nodal

distance relative to X 0, the lower bound of the observed range. Other

nodes may be found by adding integer values to the numeric term

(0.25 c.q. 0.75) in eq. (10). Note that only one of these two nodes

represents a strata; the other one coincides with the near-vertical in-

tersection of modulation and power law, the least-preferred scales.

Proper identification is dependent upon the signs of the power-law

slope and of the amplitude (both non-zero by definition). Given a

positive amplitude, the stratae are associated with Xn1 for a posi-

tive slope, and with Xn2 for a negative slope; alternatively, given a

negative amplitude, the reverse is true. Lastly, if multiple stratae are

captured in data, the largest preferred scale is the strata closest to X 0

for a negative slope, but closest to X 0 + X range for a positive slope.

A geomagnetically relevant example of this scaling lacunarity is

the breakup of large eddies in weakly turbulent flow into only a

few smaller ones, which themselves break up following the same

approximate ratio, all translations being a multiple of a fundamental

discrete generator, making some gyre sizes more likely to occur

than others (Novikov 1990; Johansen et al. 2000b; Zhou & Sornette

2002). Whereas the derived power-law slope represents the ratio

with which the number of discernible gyres (or processes) increases

with observational resolution, DSI yields their characteristic length

scales and longevity. As stressed earlier, no temporal periodicity

(e.g. a Fourier spectrum peak) is implied, but merely that, due to

underlying physical constraints (notably, threshold dynamics), some

particular fluctuation sizes and associated durations are more (c.q.

less) likely to occur, in a probabilistic sense, than would be expected

under the assumption of a power-law probability distribution.

As the hallmark of DSI is a log-periodic modulation superposed

on a power law, possibly including higher-order harmonics of much

reduced amplitude, the detection of DSI requires statistical testing

and parameter quantification of: (1) the power-law baseline and (2)

any significant, coherent residual modulation(s) spanning at least

one wavelength. In the current context, for each data set number-

ing more than ten size-ranked durations, power laws were fitted

with weighted least squares, which assumes that the remaining er-

rors approximate a Gaussian distribution. If a different distribution

were strongly suspected, one may adjust either the fitting procedure,

the weighting, or both. Confidence limits associated with these fits

were determined with Kuiper’s statistic, related to the two-tailed

non-parametric Kolmogorov–Smirnov (K–S) test of goodness-of-

fit. Whereas the K–S test is most sensitive around the median,

Kuiper’s statistic is equally sensitive at all points, and was applied at

an α-level of 10 per cent (i.e. the 90 per cent statistical confidence

limit). This relatively moderate threshold was used because DSI im-

plies that no pure power law will be found. The frequency f of the

modulation was determined using Lomb periodograms of the power-

law residuals, using oversampling factor 10. This type of spectral

analysis was chosen over Fourier analysis because it exploits the

uneven point density of logarithmic spacing, and additionally quan-

tifies the type II-error (the probability of unwarranted acceptance,

a.k.a. false attribution probability) associated with the frequency of

maximum power.

Matrix inversion with L2-norm (again assuming approximately

Gaussian-distributed errors) yielded best-fitting estimates of phase

ϕ and amplitude β, as well as rms errors of the amplitude residuals.

Determining f and ϕ allows quantification of actual preferred scales

of the studied process, with f quantifying the log-periodicity (the

size of the gaps between preferred scales) and ϕ a time normalization

in the log–log domain used to identify the coordinates of individual

levels. DSI amplitude β can be interpreted as a measure of the
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intensity of symmetry breaking (i.e. the departure of observed scales

from a pure power law). Variance and standard deviation of the

frequency fit itself were obtained through bootstrap Monte Carlo

simulations (N = 1000 per observable, per data set), and multiplied

by an appropriate distance factor to obtain error margins beyond the

observed time range (see next section). Finally, scaling stratae were

obtained using eqs (9) and (10). It is these scaling ‘plateaus’ that are

of most interest, because across the range of points forming a strata

the associated durations remain almost constant, whereas under a

pure power-law assumption they would be expected to follow the

power-law slope.

The most straightforward application of DSI analysis is to a

ranked data set (here, dipole reversal intervals). Time-series analy-

sis, however, most often relies on one or multiple sequences of an

observable’s values sampled equidistantly over time. Both dipole

intensity fluctuation data and secular variation time-series fall into

this second category. Bootstrapped DSI, developed by the author, is

a two-stage DSI analysis (not to be confused with bootstrap Monte

Carlo simulations) to deal with this more common type of data.

A comprehensive treatment of its general application is given in a

separate publication (Jonkers 2007). Briefly summarized in three

steps:

1. A large number of thresholds of absolute change xi are defined

within data range; for each threshold, a subset is compiled of time

intervals τ i from a reference point to a later point that exceeds the

current threshold, with each endpoint becoming the new reference

for the next duration.

2. Each duration subset with more than ten members is ranked

and subjected to DSI analysis; those with statistically significant DSI

yield one meta-datapoint each, consisting of the largest preferred

timescale Ti and the threshold xi that generated that subset.

3. DSI analysis of the metadata (xi versus Ti), if significant, yields

one or more preferred timescales, associated with a preferred fluc-

tuation scale expressed in the original observable.

Regarding step 1, single-time step threshold crossings are to be

excluded, causing the number of intervals larger than unity (per

subset) at first to increase sharply with increasing threshold (the

peak in signal strength), before gradually decreasing to zero again

(at some point a threshold is reached that is never crossed within

the time-series). One might expect the number of intervals sim-

ply to decrease monotonically with increasing threshold, as small

changes occur more frequently than large ones. However, the sharp

initial rise is due to the growing number of durations exceeding a

single time step. Tiny thresholds will consist exclusively of single-

time step threshold crossings, which are excluded, generating empty

sets. With larger thresholds, the ratio of single (invalid) versus mul-

tiple time step durations (valid) will increasingly favour the latter,

causing the initial rise. Once all intervals consist of multiple time

steps, the gradual fall-off will start for larger thresholds (see fig. 3 in

Jonkers 2007). To reduce noise, the few values preceding this early

peak in signal strength are discarded, as they (1) are most prone to

observational error and (2) do not sample the complete spectrum of

fluctuations, producing spurious results. Those remaining subsets

that contain both a statistically significant power law and a signifi-

cant DSI signature each yield a largest preferred timescale Ti (the

highest recorded strata per subset). This duration is reunited with

the threshold that initially produced it, in a meta-data set of xi versus

Ti.

The metadata are subjected to DSI analysis in the last stage of the

bootstrap process, applying the same statistical criteria of acceptance

as before. Assuming that a statistically significant power law and

modulation are again attested, the resulting scaling stratae in the

metadata identify one or more preferred timescales, each associated

with a distinct range of thresholds. Unlike the initial analyses (which

used rank as x-coordinate), the metadata thus associate a preferred

timescale directly with a specific range of the original observable.

In addition, the bootstrap process acts as a low-pass noise filter, by

exploring the coherence of a large range of thresholds, rather than

interpreting a single ranked set of intervals.

More importantly, if the investigated scaling phenomenon is log-

periodic, it is possible to extend the modulation along the power-law

slope beyond the observed range in both directions (i.e. to shorter

and longer timescales than observed) to obtain predicted preferred

scales, for direct comparison with those of other data sets generated

by the same complex system. Thereby, a normalization in terms

of timescales is achieved, that is, applying the bootstrapped DSI

method to a number of different observables deemed to originate

from the same source, their potential coherence in the temporal do-

main can be quantified, and possibly even unified. The investigated

observables need not be the same; indeed, from a standpoint of inde-

pendent confirmation it is preferable that they are not, sharing only

the same temporal axis, but not necessarily overlapping in temporal

range. The geodynamo provides a case in point.

3 G E O DY N A M O R E S U LT S

Four geomagnetic data sets were subjected to extensive DSI analysis:

(1) The sequence of known reversal intervals (chrons and sub-

chrons) from 161 Ma to the present day (Gradstein & Ogg 1996).

(2) Global dipole intensity fluctuations over the last 2 Ma

(SINT2000 data set; Valet et al. 2005).

(3) Local dipole-detrended archeomagnetic secular variation at

the core–mantle boundary (field map CALS7K.2, 5000 B.C.–1950

A.D.; Korte & Constable 2005; Korte et al. 2005).

(4) local dipole-detrended historical secular variation at the core–

mantle boundary (field map gufm1, 1590–1990; Jackson et al. 2000).

Not only do these four data sets stem from completely indepen-

dent sources (lava flows, ocean floor sediments, lake floor sedi-

ments and archeological artefacts, and historical observations, re-

spectively), they measure different geodynamo phenomena, with

different temporal resolution (104, 103, 5 and 1 yr are used here,

respectively), and their time spans overlap marginally at best. In

other words, only communal, scale-invariant features would be able

to bridge these gaps.

Data processing proceeded as follows. For ranked chron data (in-

tervals between successive reversals), DSI analysis was performed

twice: once with, and once without the Cretaceous Normal Super-

chron (CNS). In the case of time-series (the three other data sets), the

more elaborate bootstrap DSI method was deployed, yielding more

accurate results. The SINT2000 data set constitutes a single time-

series of dipole moment (in A m2). To analyse the time-dependent

global field map gufm1, time-series of the non-dipole field per or-

thogonal vector component (X , Y , Z, i.e. the eastward, northward

and radial part of the field, in nT) were extracted for each cell in a

6◦ × 6◦ grid (i.e. 30 × 60 × 3 = 5400 time-series, sampled annually,

N = 401). A similar procedure was applied to field map CALS7K.2,

but due to its lower spherical harmonic resolution, using a grid reso-

lution of 30◦ × 30◦, yielding 6 × 12 × 3 = 216 time-series (sampled

every 5 yr, N = 1391). Note that if regular grids are employed on

a non-Euclidean surface (such as a sphere), area-dependent weight-

ing is to be applied to local results to obtain globally averaged meta
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Table 1. Observed preferred geodynamo scales, in intensity and time.

Data set Spherical harmonics Characteristic fluctuation Associated duration DSI strata in log10(yr) ± 2σ

Historical SV 2—14 378 nT 3.18 yr 0.503 ± 0.05

13 532 nT 21.29 yr 1.328 ± 0.05

Archeomagnetic SV 2—10 1072 nT 105.56 yr 2.024 ± 0.02

68 469 nT 762.58 yr 2.882 ± 0.02

Dipole intensity 1 1.0037 ×1022 A m2 55.58 Ka 4.745 ± 0.04

Chrons (+CNS) 1 unknown 1.43 Ma 6.156 ± 0.16

Note: SV, secular variation; DSI, discrete scale invariance; CNS, Cretaceous Normal Superchron.

datapoints per threshold. Conversely, no such weighting is to be used

when an equal-area grid is employed instead.

An alternative, computationally more efficient approach sub-

jected the spherical harmonic Gauss coefficients of these two field

maps directly to DSI analysis. Out of the 224 Gauss coefficients

that describe gufm1 at any particular time, 72 exhibited a statisti-

cally significant scaling signal, whereas for CALS7K.2, a total of 77

out of 120 fell into this category. A mere 21 Gauss coefficients tested

positive in both: g2
1, g3

0, g3
1, h4

2, g5
0, h5

4, g6
1, h6

2 h6
3, h7

2, g7
5,

h7
7, g8

2, h8
2 g8

7, h8
7, h9

6, g10
3, g10

4, g10
7 and g10

8. In both cases, the

spatial decomposition of preferred scales yielded ranges of scales

consistent with the results obtained from local field vectors. There

are, however, several reasons why the latter are considered here, in

terms of global averages per threshold, rather than using the find-

ings from the Gauss coefficients. First, many archeomagnetic Gauss

coefficients, in particular the higher degrees, suffer from consider-

able amounts of noise when studied individually, whereas the overall

DSI profile based upon local vectors is far more robust. Secondly,

the present aim is to compare scale-invariant traits of the geody-

namo as a single system, examining dipole and non-dipole parts as

global entities. Thirdly, the decomposition into Gauss coefficients

causes wide disparities in their individual threshold ranges, com-

plicating the process of attaining a single global scaling profile.

Lastly, spatially heterogeneous DSI profiles, both in terms of local

field components and breakdown into specific Gauss coefficients,

are the subject of ongoing separate investigations that incorporate

empirical data and a range of numerical geodynamo simulations.

Their intricate nature falls outside the scope of this initial study,

warranting a separate, future publication.

In addition to primary data analysis, the possible presence of a

residual DSI modulation has also been investigated. Regrettably,

due to limited computing capacity, it proved prohibitively expen-

sive to enable a statistically significant residual modulation to be

determined for secular variation (a task to be addressed in future

work). However, the palaeomagnetic data sets of dipole intensity

and chrons did allow meaningful analysis of residuals. Thereto the

appropriate value of the first-found power-law modulation was sub-

tracted for each point, followed by a new periodogram and phase

and amplitude fit of the residuals, followed by significance tests and

determination of predicted preferred timescales (stratae), as before.

Formally, in analogue to eq. (9), data residuals γ res were computed

by subtracting the best-fitting DSI modulation from the observations

γ x:

γresx = γx − C + αx + β cos

{
ϕ + f 2π

[
log10(x) − X0

X range

]}
(11)

followed by a second wave fit Y res of these residuals, this time nat-

urally without a power-law component:

Yres = βres cos

{
ϕres + fres2π

[
log10(x) − X0

X range

]}
(12)

Note that these fits of residuals were performed independently of

prior DSI parameters found for the original observables (other than

generating the residuals in the first place), that is, neither the residual

frequency, nor the phase, nor the amplitude were constrained a priori

to conform, or otherwise relate, to the values found for primary data.

To determine a confidence level associated with the new frequency

estimates, an identical strategy as before was followed, running 1000

bootstrap Monte Carlo simulations for each set, quantifying the

variance of the periodogram peak.

In theory, a significant residual frequency f res could be an en-

tirely different DSI signal, indicating two interfering dynamics that

produce their own distinct log-periodic series of preferred scales.

However, the very nature of DSI predicts that higher harmonics of

the same fundamental frequency are to be expected if data accuracy

permits. Applying Occam’s razor, one should always evaluate first

to what extent f res in eq. (12) can reasonably be interpreted as 2f in

(9), the next likely frequency given the expansion in (5). Naturally,

residuals are plagued to a much larger relative degree by noise and

error than primary data are; perfect agreement in all DSI parameters

is expected only of synthetic fractals. So even though the assump-

tion of f res = 2f yields the expectation of an approximately doubled

number of stratae for any sufficiently large scale interval, commu-

nal stratae will not necessarily coincide exactly. See Johansen &

Sornette (1998) for similar cases as observed in diffusion-limited

aggregation and a model of rupture.

As is evident in Fig. 1, all primary data sets exhibit a DSI mod-

ulation, with the palaeomagnetic data sets additionally allowing

the first residual frequency f res to be determined. Six main pre-

ferred timescales of the geodynamo are thereby observed, listed in

Table 1. They support the existence of short-term secular variation

(2–5 yr), intermediate-term secular variation of O(10 yr), long-term

secular variation of O(100 yr), and preferred dipole fluctuations on

timescales of O(10 Ka) and O(1 Ma), respectively. However, how

reliable are these estimates, and does this constitute proof of the

existence of characteristic scales?

Each individual point plotted in Fig. 1, panels B–G, represents a

meta-coordinate Ti(xi) as described in the previous section, result-

ing from a DSI subset analysis that satisfied the following condi-

tions: number of points greater than 10, non-zero negative power-

law slope, Lomb periodogram type-II error below 0.1, non-zero

amplitude, rms residuals of the DSI fit are smaller than those from

the power-law fit alone, both power-law fit and DSI fit satisfy the

Kuiper test at a two-sided confidence level of 10 per cent, and quan-

tified stratae are within observable range. The resulting statistics

are as follows. The dipole chrons, a single data set of durations

(spanning 10 Ka–36 Ma, ca. 3.5 orders of magnitude) yielded two

significant DSI results: with, and without the inclusion of the CNS.

In SINT2000, a total of 1250 thresholds (spanning 0.35–6.60 ×
1022 A m2, ca. 1.8 orders of magnitude) yielded 1142 subsets

(91.4 per cent of the total) with statistically significant DSI (of which

793 mapped the highest recorded scaling strata; the remaining ones
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captured the next lower one). For field map CALS7K.2, 313 thresh-

olds were imposed (spanning 380–139 601 nT, ca. 2.6 orders of

magnitude); 67 608 analyses were performed, of which 43 765

(64.7 per cent) yielded statistically significant DSI results (of which

30 557 mapped the highest recorded scaling strata; the remaining

ones captured the next lower one). Finally, for field map gufm1, 21

thresholds were defined (spanning the range 400 nT–60 μT, ca. 2.2

orders of magnitude), and a total of 92 954 time-series was analysed,

of which 61 166 (65.8 per cent) satisfied all significance tests and

other quality criteria. The lower percentages of significant results for

the two field maps stem from spatially heterogeneous DSI profiles

(i.e. some areas display intense preferred scaling, others do not), a

topic to be explored in future work.

All of the aforementioned conditions imposed upon subsets had to

be met again in the meta-analysis of each primary data set (but with

the sign of the power-law slope now required to be positive), and

once again for each data set of residuals. In terms of frequency fits,

all false-attribution probabilities of the Lomb periodogram peaks

remain orders of magnitude below the imposed maximum of 0.10

(which would represent a 5 per cent chance of the true frequency be-

ing higher than calculated, and a 5 per cent chance of it being lower).

For example, the false attribution probability values for CALS7K.2,

SINT2000 and dipole chrons (with superchron included) are 2.81e-

47, 3.97e-66 and 1.18e-38, respectively. Confidence in the derived

values is further enhanced by the one thousand Monte Carlo boot-

strap results per data set (primary and residual data analysed sepa-

rately), ruling out a chance attribution due to any particular ensemble

of points. Secondly, the large sample sizes (due to many thresholds

being tested in the subset stage of the analysis) should make the

Kuiper test a substantial hurdle, yet almost all data sets pass it even

at the 99.9 per cent confidence level (only SINT2000 and CALS7K.2
doing slightly less well here).

The argument in favour of significant DSI can alternatively be

cast in terms of data residuals. Given that power laws outperform

other common probability distributions (such as gamma, Poisson,

stretched exponential, normal and lognormal) in these cases, the

addition of a superposed log-periodic modulation reduces remaining

residuals in the primary data sets on average to 60.5 per cent with

respect to the power-law residuals. When the residual, doubled DSI

frequency is added, the average drops to 46.9 per cent. For example,

the rms-error of the dipole chrons (CNS included) for a power-law

fit alone is ca. 1.704, whereas the added primary DSI modulation

reduces it to 1.108, and the second modulation reduces it further to

0.748.

Finally, in terms of quantification of preferred scales, recall that

DSI analysis ‘locks in’ on the observed log-periodicity based upon

all intermediate scales (Sornette 1998) as captured in the total spec-

trum of subsets. Stratae are never assigned casually through iden-

tification of local near-horizontal clusters of points, nor using any

other kind of eyeballing. The necessary and sufficient conditions for

identifying the dominant frequency and associated phase (thereby

quantifying stratae) rely on the statistically significant fits, based

on a sufficient density of points to rule out aliasing of any higher

frequency within relevant range, and a sufficient range of scales to

capture one full DSI wavelength or more. Proof of log-periodicity

does not call for multiple stratae being observed in a single data

set (SINT2000 and dipole chrons exhibit only one strata), as pe-

riodicity in preferred scales is quantified using the full modula-

tion fit, never by measuring the distance between two observed

stratae. Nor does proof require a large absolute amplitude of DSI;

see the inset in fig. 8 of the companion paper (Jonkers 2007) for

amplitude-normalized power-law residuals of SINT2000 that dis-

play a modulation as clear as CALS7K.2 does in Fig. 1(C) in this

paper.

A separate, but related issue concerns dating errors. One of the

key measurements in bootstrapped DSI analysis is time, and the four

data sets examined here display wide variability in temporal reso-

lution. For example, the historical field observations that went into

gufm1 are usually accurate to the day or less (Jonkers et al. 2002),

whereas the error margins on dates of Mesozoic lava depositions that

registered dipole reversals can be millennia. However, rather than

absolute dates, it is their size relative to the log10 range of studied

timescales that determines their potential to degrade the DSI sig-

nal. In the latter case of chrons, the range of interest spans O(104–

107) yr, making the error margins in Fig. 1(E) vanishingly small.

The most troublesome data set in this regard is SINT2000, a ‘tuned’

composite of several different palaeomagnetic ocean cores, prone

to age errors due to finite sampling, interpolation approximations,

variations in sedimentation rates, and incomplete or inaccurate tie

point information. Conservative estimates by Valet et al. (2005) and

McMillan et al. (2004) place the current recovery cut-off at about

20 kyr, that is, well below the preferred timescale derived.

Since bootstrapped DSI analysis does not require equidistantly

sampled time-series to work on, a series of tests has been done

by adding increasing amounts of white noise to the datings of in-

dividual intensity estimates in SINT2000, and repeating the entire

bootstrap process. The introduced distortions became noticeable at

magnitudes of 10–20 kyr, independently validating the findings of

McMillan et al. (2004). Additional tests with noise-contaminated

intensities are described in the companion paper (Jonkers 2007). A

different confirmation was obtained by repeating the procedure for

subsets of SINT2000 with temporal windows 2–1 and 1–0 Ma (i.e.

1000 time steps each), based on the assumption that the more recent

fluctuations have smaller dating errors on average than the older

ones. These tests produced very similar results, differing from the

original’s DSI parameters by about five percent.

Table 1 also yields the preferred fluctuation size associated with

each characteristic duration (with the exception of reversals, for

which no such observable is presently available). However, a word

of caution is in order here. Although these values are valid within

their own empirical context, it would be premature to compare all

directly to each other. Not only are those of the dipole intensity

data set not expressed in nanoteslas, the two field maps CALS7K.2
and gufm1 moreover have different resolution, different damping

coefficients, and, as Korte & Constable (2005, figs 6 and 7) have

stressed, comparisons of power spectra of main field and secular

variation between gufm1 and CALS7K.2 consistently show the lat-

ter to have less power in all spherical harmonic degrees, in particular

when examined at the core–mantle boundary. Consequently, the two

archeomagnetic fluctuation scales must be considered substantially

too low. Note however, that this does not affect the timescale anal-

ysis.

One way to investigate the overall coherence of individual results

is through their predicted stratae for ranges beyond those observed,

since each observed DSI oscillation can be extrapolated (along its

underlying power-law slope) to cover the time spans of other data

sets. This is illustrated in Fig. 2, which, for the main observed scaling

stratae (vertical bars), plots the closest estimates from primary and

first residual modulations for each data set. In Table 2, the observed

and predicted stratae derived from secular variation are likewise

compared with the closest ones from the palaeomagnetic primary

data sets, and in Table 3 with those closest in the palaeomagnetic

residual DSI signal. These representations evince once again the

difference in quality between secular variation and palaeomagnetic
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Figure 2. Characteristic geodynamo timescales, based upon observed and extrapolated power-law modulations. At right are marked two superchrons, with

current uncertainty regarding the Kiaman Reversed Superchron (KRS) expressed as grey margin. Observed timescales are vertical bars with 2σ error bounds in

grey; predicted timescales are symbols with horizontal 2σ error bounds: circles (original data) and squares (residuals after subtracting power law and primary

modulation), for secular variation (historical and archeomagnetic), dipole intensity fluctuations, and dipole reversal intervals, with the Cretaceous Normal

Superchron (CNS) in- and excluded. Major observed scales are numbered 1–4 (see also Fig. 4).

Table 2. Characteristic geomagnetic timescales in log10(yr), as observed and predicted with discrete scale invariance, with 2σ error bounds, from primary
data.

Historical SV Archeomagnetic SV Dipole intensity fluctuations reversal intervals (CNS included) reversal intervals (CNS excluded)

∗0.502 ± 0.046 0.305 ± 0.051 0.778 ± 0.620 0.642 ± 0.582
∗1.328 ± 0.045 1.164 ± 0.035 1.627 ± 0.093

2.153 ± 0.064 ∗2.023 ± 0.021

2.979 ± 0.097 ∗2.882 ± 0.021 3.186 ± 0.058 2.571 ± 0.449 2.575 ± 0.401

3.804 ± 0.130 3.741 ± 0.036

4.630 ± 0.162 4.599 ± 0.053 ∗4.744 ± 0.035 4.363 ± 0.277 4.509 ± 0.220

5.455 ± 0.195 5.458 ± 0.070

6.281 ± 0.228 6.317 ± 0.087 6.303 ± 0.048 ∗6.156 ± 0.222 ∗6.442 ± 0.163

7.932 ± 0.293 8.034 ± 0.120 7.862 ± 0.084 7.948 ± 0.287

Note: SV, secular variation; ∗, observed; CNS, Cretaceous Normal Superchron.

results, and in particular the poor performance of the data sets of

residuals. Error bounds on all bootstrapped DSI results (secular

variation and dipole intensity fluctuations) are an order of magnitude

smaller than those of chrons and all DSI residual data sets. This not

only causes the latter’s predictions themselves to be less accurate, but

also widens their error margins to the extent that they can no longer

discriminate between scales observed far from their own empirical

range. It is hoped that future improvements in palaeomagnetic data

accuracy will ameliorate this situation.

Nevertheless, Tables 2 and 3 and Fig. 2 suggest that the observed

DSI wavelengths can be separated into two main groups: (1) palaeo-

magnetic primary data sets and (2) secular variation plus palaeomag-

netic residual data sets, with the wavelengths of the first group being

approximately double that of the second. This is illustrated with the

temporal interscale distance (TID), which denotes the log-periodic

step size along the time axis (not along the power-law slope) be-

tween adjacent scaling stratae. Fig. 3 shows TIDs with their 2σ error

margins for all data sets, relative to a Bayesian combined estimate.

Note that the TIDs of the primary palaeomagnetic data sets have

been divided by two to enable direct comparison. Their similarity

(Bayes: 0.84; historical and archeomagnetic secular variation: 0.83

and 0.86; palaeomagnetic primary data: two times 0.78, 0.90 and

0.97; palaeomagnetic residuals: 0.65, 0.97 and 0.87, respectively)

spurs the hypothesis that a single DSI signal is expressed directly in

the preferred scales of non-dipole secular variation and palaeomag-

netic residuals, and at half the frequency in palaeomagnetic primary

data sets (dipole fluctuations and reversals). Thus on timescales of

O(10 Ka) and larger, only every second strata of the modulations
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Table 3. Characteristic timescales in log10(yr) of secular variation, compared to the closest preferred timescales derived from palaeomagnetic DSI residuals,

with 2σ error bounds.

Historical SV Dipole intensity residuals Reversal residuals (CNS included) Reversal residuals (CNS excluded) Scale step

∗0.502 ± 0.046 0.412 ± 0.853 0.761 ± 0.621 0.542 ± 0.783 0.5
∗1.328 ± 0.045 1.061 ± 0.749 1.732 ± 0.528 1.411 ± 0.675 1.0

2.153 ± 0.064 2.361 ± 0.644 2.281 ± 0.567 1.5

2.979 ± 0.097 3.010 ± 0.436 2.703 ± 0.436 3.151 ± 0.459 2.0

3.804 ± 0.130 3.660 ± 0.331 3.674 ± 0.343 4.020 ± 0.351 2.5

4.630 ± 0.162 ∗4.959 ± 0.250 4.645 ± 0.250 4.890 ± 0.244 3.0

5.455 ± 0.195 ∗5.608 ± 0.250 ∗5.616 ± 0.222 ∗5.760 ± 0.215 3.5

6.281 ± 0.228 6.258 ± 0.335 ∗6.587 ± 0.222 ∗6.630 ± 0.215 4.0

7.932 ± 0.293 7.557 ± 0.543 7.558 ± 0.250 7.500 ± 0.295 4.5

Note: SV, secular variation; ∗, observed; CNS, Cretaceous Normal Superchron; last column: see Figs 2 and 4.

T
e
m

p
o

ra
l

in
te

rs
c
a
le

d
is

t a
n

c
e

Dipole
Intensity

Chrons Chrons
(+CNS) (-CNS)Secular Variation

Historical Archeo-

bootstrap
DSI results

Figure 3. Temporal interscale distance (TID) estimates with 2σ confidence

intervals, of historical and archeomagnetic secular variation (circles, full-

distance) and palaeomagnetic primary (circles, half-distance) and residual

(squares, full distance) data sets, compared to a Bayesian estimator (∼0.837)

that combines all eight (horizontal bar with 2σ confidence intervals in grey).

Chrons are shown separately with Cretaceous Normal Superchron (CNS) in-

and excluded. The TIDs of the primary palaeomagnetic data sets have been

divided by two to enable direct comparison. The three bootstrap DSI results

(on left) are not only far more accurate than the others, but, moreover, yield

almost identical values.

observed in secular variation and palaeomagnetic residuals is ev-

ident in palaeomagnetic primary data. Those preferred scales that

occur in all data sets are, therefore, numbered in Fig. 2 as major

scales, whereas the intermediate ones are considered minor scales

of the dynamics. Presumably, this contrasting profile stems from

analysing different aspects of the complex system, with the major

scaling periodicity being more prominently expressed in the global

dipole record (intensity fluctuations and reversals), and the interme-

diary scales being articulated most clearly in local non-dipole field

variability, and less strongly in the palaeomagnetic residuals.

Another aspect concerns the error bars of the preferred durations,

within the observed range based upon the Monte Carlo results, and

multiplied by an appropriate distance factor for other time ranges.

This highlights differences in quality and limitations on extrapola-

tion, for example, smaller timescales predicted by chrons primary

data and residuals generally are useful only down to the largest pre-

ferred scale in archeomagnetic secular variation, and both secular

variation data sets perform best for larger timescales than observed.

Nevertheless, all error margins are shown in Fig. 2 for completeness

and to allow comparison between predictions for the same temporal

range by different sources. It also shows the increased effects of

noise for residual data with respect to primary data to be worse for

dipole intensity fluctuations than for chrons.

More generally, bottom-up predictions (that is, those based upon

extrapolation to timescales larger than the observed range of a par-

ticular data set) tend to be more accurate than top-down predic-

tions (those based upon extrapolation to smaller timescales than

observed). This cannot be solely attributed to the higher quality

of data sets covering the recent past, as even dipole intensity- and

chron-based predictors do better above than below their respective

observed range. In other words, the geodynamo appears to exhibit a

preferred upward direction of coherent scaling. Admittedly, dating

and other problems cause all palaeomagnetic results to be inherently

less reliable than those of the more recent data sets. However, the 2σ

bounds on dipole intensity predictions, for example, are small for

chrons and superchrons alike, yet both are almost exactly on target.

Unlike large earthquakes that trigger a cascade of ever-smaller

aftershocks, the larger events and durations affecting the geomag-

netic field could thus originate in processes at smaller scales. This

concurs with several recent multiple-scale dynamo simulations in

which clear boundaries between secular variation and larger ‘events’

no longer exist, and reversals emerge spontaneously out of the long-

term evolution of small, locally interacting vortices (Le Mouël et al.
1997; Blanter et al. 1999; Narteau et al. 2000; Narteau & Le Mouël

2005). For experimental evidence of such inverse cascades (vortex

coalescence) in freely decaying 2-D turbulence, see Johansen et al.
(2000b).

Scaling predictions can additionally be extended beyond the

timescales of chrons. At the top of Fig. 2 are added the CNS and

Kiaman Reversed Superchron (KRS) intervals. The duration of the

CNS is well established, so no confidence margins were drawn. By

contrast, the duration of the KRS is still debated, so only two recent

estimates (315–260 and 311–262 Ma) have been used to draw an

upper and lower bound (Eide & Torsvik 1996; Buchan & Chandler

1999). Both CNS and KRS durations are predicted quite well by

the observed DSI signatures as observed in shorter-term fluctua-

tions and in palaeomagnetic residuals, suggesting that timescales of

O(10–100 Ma) could be part of ordinary core dynamics. A related

issue (addressed in Section 4) concerns whether or not the CNS

should be included in analyses of ordinary chrons and subchrons,

or be considered a distinct geomagnetic entity.

Given the similarity of preferred scales in Table 3, the question

arises to what extent each of the perceived typical timescales can be

associated with known geophysical processes. Regarding the longest

intervals, reversals and excursions have already been adequately de-

scribed and distinguished (e.g. Gubbins 1999); the durations listed

in Table 1 simply represent the preferred timescale associated with

each of these two types of dipole change. The broad category of

secular variation, on the other hand, presents at least four separate

timescales of interest. The largest of these is just under O(1000) yr,

a duration compatible with archeomagnetic jerks (∼500–1000 yr),

with mean azimuthal (east–west) flows (∼1500 yr), and with the

estimated convective overturn time (≥500 yr) of the outer core (and
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the associated changes in the thermal wind, that is, the non-rigid

flows associated with the buoyancy force) (Gallet et al. 2003; Dumb-

erry & Bloxham 2006). The next smaller characteristic scale is of

O(100) yr, a duration reminiscent of magnetostrophic waves (∼300

yr), (Braginsky 1964; Hide 1969; Zatman & Bloxham 1997) and

of convective fluctuations in the core about the hydrostatic state

(Buffett 1996a).

A prime candidate for attribution of the decadal timescale (of

∼20 yr in gufm1) are torsional oscillations, a component of the flow

predicted by theory (Taylor 1963; Braginsky 1970, 1984, 1993),

consisting of azimuthal oscillations of rigid coaxial cylindrical sur-

faces. These have recently been detected in secular variation (at

∼23 yr) (Jault et al. 1996; Zatman & Bloxham 1997, 1998; Holme

1998; Hide et al. 2000; Pais & Hulot 2000) and correlate well

with observed core–mantle exchanges of angular momentum, more

specifically, with the associated variations in the length of day

(Jackson et al. 1993; Jault et al. 1996; Zatman & Bloxham 1997,

1998; Holme 1998; Hide et al. 2000; Pais & Hulot 2000; Ponsar

et al. 2003). These studies have moreover been extended to the sub-

decadal timescale (of O(1) yr, dubbed ‘short-period secular varia-

tion,’ ∼2–6 yr) on which gravitational torques on the inner core may

be the most important mechanism of angular momentum exchange

(Buffett 1996a, b; Bloxham & Dumberry 2003; Mound & Buffet

2003; Buffett & Mound 2005). Lastly, torsional oscillations have

recently been linked to the even shorter timescale of geomagnetic

jerks (<1 yr; Bloxham et al. 2002; Holme & De Viron 2005), prob-

ably the shortest typical geomagnetic fluctuation of internal origin

witnessed at the Earth’s surface (Courtillot et al. 1978; Malin &

Hodder 1982; Courtillot & Le Mouël 1984; Mandea et al. 2000;

Zatman 2001).

A last point concerns the potential interdependence of these geo-

physical timescales; Holme & De Viron (2005) have argued that ge-

omagnetic jerks and decadal secular variation may have a common

origin, and Buffett (1996b) has remarked that oscillations of the in-

ner core (on a subdecadal timescale) can excite torsional oscillations

(on a decadal timescale), and vice versa. In addition, geophysical

arguments have been put forward to explain preferred geodynamo

timescales: Buffett (1996b) has proposed that torsional oscillations

may be resonantly amplified at their natural frequency on the decadal

timescale, whereas Dumberry & Bloxham (2006) have suggested a

resonant excitation of a natural mode of vibration, possibly due to

magnetostrophic waves in the core, as an explanation for the pre-

ferred millennial timescale of mean zonal flows. These are precisely

the kinds of thresholds that could not only give rise to the observed

modulations of power-law scaling presented here, but also provide

(part of) a geophysical rationale for integrating them into a single

scale-free interpretation.

4 C O N C L U S I O N

Four independent geomagnetic data sets (dipole chrons, dipole

intensity fluctuations and dipole-detrended archeomagnetic and

historical secular variation), spanning very different geodynamo

timescales, were found to exhibit similar traits of discrete scale

invariance (DSI), that is, a statistically significant modulation su-

perposed on a power-law probability distribution function, relating

an observable’s fluctuation sizes and durations. The observed scal-

ing signatures are thought to derive from threshold dynamics, due

to specific preferred physical scales relevant to the underlying gen-

erative process. Using the novel bootstrapped DSI method, data sets

were normalized in the temporal domain, allowing predicted scales

of one set to be compared directly with observed ones of the oth-

ers, both individually and using a Bayesian estimate of the temporal

interscale distance. Despite remaining uncertainties in palaeomag-

netic results, the overall coherence found can be interpreted as traits

of a single fundamental, primarily bottom-up process driving fluc-

tuations on all analysed geodynamo scales.

Presently, given the assumption of the geodynamo being a com-

plex system that generates fluctuations on many scales, and after

applying (bootstrap) DSI analysis to multiple empirical sources that

span different parts of its temporal range, a unifying scaling bridge
may be constructed. This single framework not only covers the entire

temporal range of the observed system and reduces the uncertainty

margins of individual estimates, but, additionally, predicts other pre-

ferred scales not currently described by empirical data.

In total, the various primary and residual data sets provide six-

teen observed scaling strata estimates. Provisionally adopting the

hypothesis of a single DSI modulation plus a residual doubled fre-

quency, it is possible to assign each of these levels to a specific

‘scale step,’ arbitrarily numbered in the range from 0.5 to 5, with

integers representing stratae of the major oscillation, and minor

ones halfway in between. These have been labelled in Fig. 2 (major

scales only), tabulated in Table 3 (last column) and plotted in Fig. 4.

A simple linear fit (yet another power law) yields intercept –0.456

and slope 1.758, and does a remarkable job of fitting all observed

stratae over the entire temporal range. This constitutes the scaling

bridge. Note that although the line parameters are arbitrary (since

the x-values are arbitrary), the linear dependence is not, since the

x-ratios follow directly from the DSI results in Table 3. To a first

approximation, timescales appear log-periodically at increments of

∼0.88 log10(yr) per half scale-step along the temporal axis (com-

pare the similar, earlier-stated Bayesian observed estimate of 0.84).

In addition, the pervasiveness of DSI in geodynamo time-series is
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Figure 4. The scaling bridge (see Table 4) connects observed characteristic

scales from four independent geomagnetic data sets that jointly span over

seven orders of magnitude in time, based upon primary (circles) and residual

(squares) power-law modulations. Preferred scales from dipole intensity and

chron residuals overlap in scale step 3.5 (see Table 3). Note that the scaling

bridge itself also exhibits DSI (grey modulation), which, due to small sample

size (N = 16), is not statistically significant.
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Table 4. Postulated geodynamo timescales from the scaling bridge (power law).

Geodynamo fluctuation type Scale step Duration (in yr) Duration in log10 (yr)

SV (geomagnetic jerk) 0.0 0.35 −0.456

SV (subdecadal) 0.5 2.64 0.422

SV (decadal) 1.0 20.0 1.301

SV (secular) 1.5 151.5 2.180

SV (millennial) 2.0 1147 3.059

Dipole intensity 2.5 8684 3.938

Dipole intensity 3.0 65 745 4.817

Dipole intensity/Chron 3.5 497 739 5.697

Chron 4.0 3 768 253 6.576

Superchron 4.5 28 528 429 7.455

Hectochron 5.0 215 981 032 8.334

Kilochron 5.5 1 635 134 094 9.213

Note: SV, secular variation.

once again stressed by the apparent slight modulation within the

scaling bridge itself. Regrettably, the available sixteen points are

insufficient to conclude a statistically significant modulation. The

durations predicted by the scaling bridge for each strata are listed

in Table 4.

On historical timescales, three characteristic scales appear dom-

inant, of O(1), O(10) and O(100) yr, of which only the second one

(the one likely associated with torsional oscillations) represents a

major scale. Other observed major scales are, respectively, of O(1

Ka), O(10 Ka) and O(1 Ma). On an even shorter timescale than

depicted, the bridge can be extended to scale step zero, suggest-

ing a characteristic timescale for geomagnetic jerks of about 128 d

(see Table 4). This intriguing possibility will be explored in future

work. Table 4 furthermore highlights the continuity of fluctuation

durations; no clear demarcation separates historical from archeo-

magnetic or palaeomagnetic time spans. This is particularly evident

in the crossover from SINT2000 to chron timescales, of which the

residual DSI stratae actually coincide in scale step 3.5. In addition,

the assignment of characteristic durations to specific steps offers

insight concerning the status of superchrons. Apart from the obvi-

ous observation that they fit neatly into the general scale-invariant

framework, their association with minor scale step 4.5 offers a crite-

rion to in- or exclude them in future analyses of chrons. For example,

one could examine only chrons close in duration to the major scale

of O(1 Ma), or alternatively, widen the spectrum to include the near-

est two minor scales, or an even broader set. However, the current

practice of considering subchrons and chrons as more similar to

one another than to superchrons cannot be supported from a scale-

invariant perspective; they are merely three successive scale steps

in a longer progression. The question as to whether the geodynamo

exhibits even larger preferred timescales than a superchron [notably,

a hectochron of O(108 yr), and a kilochron of O(109 yr)] will have to

await longer, high-quality palaeomagnetic records than are presently

available. The study of DSI in sufficiently long numerical and labo-

ratory dynamo simulations provide two alternative approaches that

seem more feasible in the immediate future.

The scaling bridge constitutes a coherent interpretation of internal

geomagnetic fluctuations of all sizes. Threshold dynamics can be

thought to separate preferred durations and associated magnitudes

of change, with a great many localized short-period fluctuations

forming bottom-up cascades (Braginsky & Meytlis 1990; Frick &

Roberts 1995; Johansen et al. 2000b; Biferale 2003), producing

emergent features at each higher level of resolution, and with con-

tingent change dependent on external constraints and the system’s

own long-term history (Narteau et al. 2000; Jonkers 2003). The geo-

dynamo can therewith be considered a single scale-free system with

extremely long-term memory, pervaded by DSI-modulated power

laws that jointly span over seven orders of magnitude in time, pos-

sibly more. Specific events such as geomagnetic jerks, core spots,

archeomagnetic jerks, mean zonal flows, dipole intensity fluctua-

tions, reversals and even superchrons can thereby be interpreted

as internally controlled units of secular variation associated with

a particular threshold, preferred interval and physical size (Sarson

& Jones 1999; Coe et al. 2000; Love 2000; Hulot & Gallet 2003;

Narteau & Le Mouël 2005). Together, these characteristic scales pro-

vide a quantified profile with which to constrain the relevant physics.

A C K N O W L E D G M E N T S

This work is supported by National Environment Research Council

Fellowship NE/B500131/1. The author is very grateful to Jean-

Pierre Valet for supplying the SINT2000 data set, Graeme Sarson,

Richard Holme and Andy Jackson for discussions, and Vadim

Biktashev, Mathieu Dumberry, Gauthier Hulot, Anders Johansen,

Mike Kendall, Clément Narteau, Jon Pelletier, Tine Thomas and

Johannes Wicht for comments.

R E F E R E N C E S

Biferale, L., 2003. Shell models of energy cascade in turbulence, Ann. Rev.
Fluid. Mech., 35, 441–468.

Blanter, E.M., Narteau, C., Shirnman, M.G. & Le Mouël, J.-L., 1999. Up
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Courtillot, V. & Le Mouël, J.-L., 1984. Geomagnetic secular variation im-

pulses, Nature, 311, 709–716.

Dormy, E., Valet, J.-P. & Courtillot, V., 2000. Numerical models of the

geodynamo and observational constraints, Geochem. Geophys. Geosys.,
1, 2000GC000062.

Dumberry, M. & Bloxham, J. 2006. Azimuthal flows in the Earth’s core

and changes in LOD at millennial timescales, Geophys. J. Int., 165, 32–

46.

Eide, E.A. & Torsvik, T.H., 1996. Paleozoic supercontinental assembly, man-

tle flushing, and genesis of the Kiaman Superchron, Earth Planet. Sci.
Lett., 144, 389–402.

Frick, P. & Roberts, P.H., 1995. Cascade and dynamo action in a shell

model of magnetohydrodynamic turbulence, Phys. Rev. E., 57, 4155–

4164.

Gallet, Y., Genevey, A. & Courtillot, V., 2003. On the possible occurrence

of archaeomagnetic jerks in the geomagnetic field over the past three

millenia, Earth Planet. Sci. Lett., 214, 237–242.

Glatzmaier, G.A., Coe, R.S., Hongre, L. & Roberts, P.H., 1999. The role of

the Earth’s mantle in controlling the frequency of geomagnetic reversals,

Nature, 401, 885–890.

Gradstein, F.M. & Ogg, J., 1996. A Phanerozoic timescale, Episodes, 19(1–

2), 3–5.

Gubbins, D., 1999. The distinction between geomagnetic excursions and

reversals, Geophys. J. Int, 137, F1–F3.

Hide, R., Boggs, D.H. & Dickey, J.O., 2000. Angular momentum fluctuations

with the Earth’s liquid core and torsional oscillations of the core-mantle

system, Geophys. J. Int., 143, 777–786.

Hollerbach, R., 2003. The range of timescales on which the geodynamo

operates, in Earth’s Core: Dynamics, Structure, Rotation, pp. 181–192, eds

Dehant, V., Creager, K.C. & Karato, S., Zatman, S., AGU Geodynamics

Series 31, AGU, Washington DC.

Holme, R., 1998. Electromagnetic core-mantle coupling-I. Explaining

changes in the length of day, Geophys. J. Int., 132, 167–180.

Holme, R. & De Viron, O. 2005. Geomagnetic jerks and a high-resolution

LOD profile for core studies, Geophys. J. Int., 160, 435–439

Holme, R. & Olsen, N., 2006. Core-surface flow modelling from high reso-

lution secular variation, Geophys. J. Int., 166, 518–528.

Hongre, L., Hulot, G. & Khokhlov, A., 1998. An analysis of the geomag-

netic field over the past 2000 yr, Phys. Earth Planet. Int., 106, 311–

335.

Hulot, G. & Gallet, Y., 2003. Do superchrons occur without any palaeomag-

netic warning? Earth Planet. Sci. Let., 210, 191–201.

Jackson, A., Bloxham, J. & Gubbins, D., 1993. Time-dependent flow at

the core surface and conservation of angular momentum in the coupled

core-mantle system, in Dynamics of the Earth’s Deep Interior and Earth
Rotation, Vol. 72, pp. 97–107, eds Le Mouël, J.-L., Smylie, D.E. & Herring,
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