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A b s t r a c t .  The purpose of this paper is to introduce and study the concepts of 
discrete semi-stability and geometric semi-stability for distributions with support in 
Z+. We offer several properties, including characterizations, of discrete semi-stable 
distributions. We establish that these distributions possess the property of infinite 
divisibility and that  their probability generating functions admit canonical represen- 
tations that are analogous to those of their continuous counterparts. Properties of 
discrete geometric semi-stable distributions are deduced from the results obtained for 
discrete semi-stability. Several limit theorems are established and some examples are 
constructed. 
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1. Introduction 

L~vy (1937) called a dis t r ibut ion on the real line semi-stable, with exponent  a C R 
and order  q E R ,  if its characterist ic  funct ion f ( t )  satisfies for all t E R ,  f ( t )  ~ 0 and 

(1.1) in f (q t )  = qa In f ( t ) .  

It can be assumed tha t  q > 1. Semi-stable distr ibutions are infinitely divisible (or 
i.d.) and exist only for a E (0,2).  The i r  characterist ic  functions admit  the  canonical  
representa t ion (see L~vy (1937)): 

_ (e itu - 1)dN(u)  a e (0, 1), if 
O(3 

// (1.2) In f ( t )  = (e ~tu - 1 - i t u )dN(u )  if a C (1, 2), 

o o  

where 

u - a Q l ( l n u )  if u > 0, 

(1.3) N ( u )  = [u[-aQ2(ln[u D if u < O, 

and Q1 and Q2 are periodic functions with )eriod ln q and such tha t  N ( u )  is non- 
decreasing from - c o  to 0 and f rom 0 to +oc .  In the case a = 1, the  canonical  represen- 
ta t ion  becomes 

/? (1.4) In f ( t )  -- m i t  + [(eostu - 1)dN1 (u) + i s in tudN2(u)] ,  
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where UNl(u) and uN2 (u) are periodic functions in In u and m is a constant. 
Limit theorems and other properties of semi-stable distributions were obtained by 

several authors (see for example Pillai (1971, 1985) and references therein). 
Steutel and van Harn (1979) introduced the binomial thinning operator | which 

they defined as follows: 

X 

(1.5) a | X = E Xi, 
i=1 

where a �9 (0, 1), X is a Z+-valned random variable (rv), here Z+ := {0, 1 ,2 , . . .} ,  and 
{Xi} is a sequence of iid Bernoulli(a) rv's independent of X.  The authors used the op- 
erator Q to introduce the concepts of discrete stability and discrete self-decomposability. 
Discrete stable distributions (with exponent 3' �9 (0, 1]) are characterized by the following 
canonical representation of their probability generating functions (or pgf's): 

(1.6) P(z) = exp{-c(1 - z) ~} z �9 [0, 1], 

for some c > 0. Aly and Bouzar (2000) used the operator | to offer the discrete analogue 
of the concept of geometric stability of Klebanov et al. (1984). Such distributions are 
characterized by pgf's of the form 

(1.7) P(z) = (1 + c(1 - z)'Y) -1 for some c > 0. 

The purpose of this paper is to introduce and study the concepts of discrete semi- 
stability and geometric semi-stability for distributions with support  in Z+.  In Section 2 
we give a definition of discrete semi-stability that is analogous to (1.1). We offer several 
properties, including characterizations, of discrete semi-stable distributions. Notably, 
we establish that these distributions possess the property of infinite divisibility and that 
their pgf's admit canonical representations that are similar to those of their continuous 
counterparts (described in (1.2)-(1.4)). In Section 3 we study the concept of discrete 
geometric semi-stability. We deduce properties of discrete geometric semi-stable dis- 
tributions from the results obtained for discrete semi-stability. We also establish that 
discrete geometric semi-stable distributions coincide with Jayakumax's (1995) semi- V- 
geometric distributions. Several limit theorems are given in Section 4 and examples are 
developed in Section 5. 

2. Discrete semi-stability 

DEFrNITION 2.1. A nondegenerate distribution on Z+ is said to be discrete semi- 
stable with exponent 3' > 0 and order a �9 (0, 1) if its pgf P(z) satisfies for all Izl _< 1, 
P(z) ~ 0 and 

(2.1) lnP(1  - a + az)  = c~ ~ In P(z).  

We remark from the definition that a distribution on Z+  is discrete stable with 
exponent 3' > 0 if and only if it is discrete semi-stable with exponent 3' and of all orders 
a �9 (0, 1). 

The next lemma gathers some basic properties of discrete semi-stability. 
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LEMMA 2.1. (i) I f  P(z)  is the pgf of a discrete semi-stable distribution with expo- 
nent 7 > 0 and order a E (0, 1), then for any n > 0 and Izl < 1, 

( 2 . 2 )  In P(1 - a n + c~z)  = o/n2 In P(z).  

(ii) If  there exists a discrete semi-stable distribution with exponent ~/ > 0 and order 
a E (0, 1), then necessarily 0 < 7 <- 1. In addition, if  this distribution has finite mean, 
then 7 = 1. 

PROOF. (i) follows directly from (2.1). To prove (ii), assume tha t  P(z)  satisfies 
(2.1) for ~' > 0 and a E (0, 1). Then  by differentiation, 

P'(z) = 

P'(1 - a + az)  

Since P'(z) is increasing over the interval [0, 1) and 1 - a + a z  > z for z E [0, 1), we have 

lim P'(z)  = o / 1 - ' 7  __~ 1, 
zH P'(1 - a + c~z) 

which implies tha t  7 <- 1. The addit ional  assumption of finite mean is equivalent to 
P ' (1)  < oc (see for example Feller (1968)). Using a first-order Taylor series expansion 
of In P(x) around x = 1, we obtain for z E [0, 1], 

lnP(1--o~n(1--  Z))=--(~n(1--  z)P'(1)+O(OL n) (as n---+oo), 

which combined with (2.2) yields 

o(.n)] 
(2.3) l n P ( z )  = - a  nO-'y) ( 1 -  z ) P ' ( 1 )  + J . 

If 7 < 1, then lett ing n ~ cc in (2.3) leads to In P(z)  = 0 for all z E [0, 1] and hence, 
by analytic continuation, for all ]z I < 1. This implies tha t  the distr ibution is degenerate 
(total  mass at  0) which is a contradiction. [] 

The important  property of infinite divisibility is established next. We recall a lemma 
first (see Feller (1968)). 

LEMMA 2.2. A distribution on Z+ is i.d. if and only i f  its pgf P(z)  has the form 

P(z)  = exp{-A(1 - Q(z))} (Izl _< 1), 

where A > 0 and Q(z) is a pgf. 

PROPOSITION 2.1. A discrete semi-stable distribution is i.d. 

PROOF. Let P(z) be the pgf of a discrete semi-stable distr ibution with exponent 
7 E (0, 1] and order a E (0, 1). For any n > 0 and [zl _< 1, let Pn(z) = e x p { - a - n ~ ( 1  - 
[P(z)]~"~)}. Since by Lemma 2.1 (i) [P(z)] ~n~ = P(1 - a n + anz)  is a pgf, it follows 
by Lemma 2.2 tha t  for any n >_ O, Pn(Z) is the pgf of an i.d. distr ibution on Z+ .  



500 NADJIB BOUZAR 

Moreover, we have limn-.oo Pn(z) = P(z )  for any Izl 1. Hence, any discrete semi- 
stable distr ibution is the weak limit of a sequence of i.d. distributions and is therefore 
i.d. (see Feller (1971)). [] 

COROLLARY 2.1. A distribution on Z+ is discrete semi-stable with exponent"/= 1 
if and only if it is Poisson. 

PROOF. The 'if ' part  is trivial. To prove the 'only if' part ,  let P(z )  be the pgf 
of a semi-stable distr ibution with exponent 7 = 1 and order a E (0, 1). By Proposit ion 
2.1 and Lemma 2.2, P(z)  admits  the representation l n P ( z )  = -)~(1 - Q(z))  for some 
A > 0 and some pgf Q(z).  It follows by (2.1) tha t  Q(1 - a + az)  = 1 - a + aQ(z) ,  and 
therefore, by differentiation, Q'(1 - a + c~z) = Q'(z)  for all [z[ < 1. Using the power 
series expansion Q(z) = ~n~__O qnZ n for some probabil i ty mass function (qn, n _> 0) and 
by letting z = 0, we arrive at En~176 (?2-[- 1)qn+l (1 - -a )  n = 0, which implies tha t  qn+l = 0 
for all n _> 1. Therefore, P(z)  = exp{-Al (1  - z)} for some A1 > 0. [] 

Using a special combination of ~ /and  a,  one can obtain a representation result for 
Z+-valued semi-stable rv's. 

PROPOSITION 2.2. Let X be a Z +-valued rv with a semi-stable distribution with 
exponent ~ C (0, 1] and order a C (0, 1). Assume there exist two integers n >_ 1 and 

1 Then X satisfies the equation N >_ 1 such that ct n~ = ~ .  

(2.4) X d 1 -- N1/-- ~ @ (X1 + ' ' '  -t- XN),  

where X 1 , . . .  , X N  are iid with X1 d X .  Conversely, i f  a Z+-valued rv X admits the 

representation (2.4) for some ~, C (0, 1], N > 1, and X 1 , . . . ,  X N  lid with X1 d X ,  then 
the distribution of X is discrete semi-stable with exponent ~/ and order c~ = N - 1 / %  

PROOF. Denote by P(z)  the pgf of X and by P1 (z) tha t  of ~ | (X1 + . . .  + X N ) .  
Then, by definition of the | operat ion (see (1.5)), we have 

(2.5) Pl(Z) = [P(1 - N -1/'Y + N-1/3'z)] N (Izl _< 1). 

Since c~ ~ = N1, it follows tha t  Pl(z)  = [P(1 - c~ n + c~nz)] ~ -n ' .  Therefore by (2.2), 
Pl(z)  -- P(z) .  To prove the converse, we use (2.5) with Pl(z)  = P(z) .  This implies tha t  
P(1 - N -1/~ + N-1 /~z )  = [P(z)] 1/N, or P(1 - c~ + ctz) = [P(z)] ~ ,  where c~ = N - 1 / %  [] 

Just  like their  continuous counterparts  (see (1.2)-(1.4)), discrete semi-stable distri- 
butions can be characterized by canonical representations of their pgf's. 

PROPOSITION 2.3. A distribution on Z+ is discrete semi-stable with exponent'~ c 
(0, 1] and order (x c (0, 1) if  and only if its pgf P ( z )  admits the form 

(2.6) P(z)  = exp{- (1  - z)'Yh(z)} (0 < z < 1), 

where h(-), defined over [0, 1), satisfies h(1 - c~ + c~z) = h(z) for any z e [0, 1), or, 
equivalently, 

(2.7) P(z)  = exp{- (1  - z)~g(I ln(1 - z)[)} (0 < z < 1), 
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where g('), defined over [0, c~), is a periodic function with period - l n a .  

PROOF. It  is easy to verify t h a t  if (2.6) holds,  t hen  P(z)  satisfies (2.1) for all 
z E [0, 1), and  hence,  by  ana ly t ic  con t inua t ion ,  for all Izl < 1. Conversely,  a ssume P(z)  
satisfies (2.1). Le t t i ng  h(z) = - ( 1  - z ) - ~ l n P ( z )  for z �9 [0, 1), we have by (2.1), 

h(1 - c~ + az )  = - ( a ( 1  - z)) -~  l n P ( 1  - c~ + c~z) = - a - ~ ( 1  - z ) -~a  ~ In P ( z )  = h(z), 

which implies (2.6). We conclude by showing t h a t  (2.6) and  (2.7) are equivalent .  If  (2.6) 
holds, define g(r) = h(1 - e -r)  for r _> 0. T h e n  g(I ln(1 - z)]) = h(z) for any  z �9 [0, 1). 
Moreover,  9(r - In c~) = h(1 - c~e -~)  = h(1 - c~ + a(1  - e -~) )  = h(1 - e -~)  = g(r), which 
implies t h a t  g( ')  is periodic wi th  per iod - i n  a and  thus  (2.7) is proven. If (2.7) holds,  
define h(z) = g(I ln(1 - z)1) for z �9 [0, 1). T h e n  h(1 - a + az )  = g ( -  In a + I ln(1 - z)D = 
g(I ln(1 - z)l ) = h(z), imply ing  (2.6). [] 

Using the  fact  t h a t  discrete semi-s table  d is t r ibu t ions  are i.d., one can  ob ta in  a 
modif ied canonica l  r epresen ta t ion  of their  pgf 's .  We recall t h a t  a funct ion  P(z)  on [0, 1] 
is the  pgf  of an  i.d. d iscrete  d i s t r ibu t ion  if and  only  if it  admi t s  the  represen ta t ion  (see 
Steute l  (1970)), 

jfz 1 (2.8) l n P ( z )  = - R(x)dx,  

where R(x) oo n oo = }-~n=o rnx , with  ~'n ~ 0 and,  necessarily, ~n=o rn(n + 1) -1 <2 (:X3. 

PROPOSITION 2.4. An i.d. distribution on Z+ with pgf P(z)  described by (2.8) is 
discrete semi-stable with exponent 7 �9 (0, 1] and order a �9 (0, 1) i f  and only i f  

(2.9) R ( z ) =  (1 - z )~- l r (z )  (0 < z < 1), 

where r( .) ,  defined over [0, 1), satisfies r(1 - a + az)  = r(z) for any z �9 [0, 1), or, 
equivalently, 

(2.10) R(z) = (1 - z ) e - l r l ( [ l n ( 1  - z)[) (0 _< z < 1), 

where rl(.), defined over [0, co), is periodic with period - I n s .  

PROOF. B y  (2.1) and  (2.8), P(z)  is the  pgf  of discrete  semi-s table  d i s t r ibu t ion  
wi th  exponen t  "7 and  order  ct �9 (0, 1) if and  only if 

f l fz 1 R(x)dx  = a'r R(x)dx  (0 < z < 1) 
1 --oe+o~z 

which, by  dif ferent ia t ion,  is equivalent  to  

(2.11) a ( 1  - ~ + ~ z )  = ~ - l R ( z )  (0 < z < 1). 

It  is easy to see t h a t  (2.9) implies (2.11). Conversely,  assume t h a t  (2.11) holds.  Le t t i ng  
r(z) = (1 - z) l - 'yR(z)  for z �9 [0, 1), we have 

r ( 1  - ~ + ~ z )  = ( ~ ( 1  - z ) ) ' - ~ R ( 1  - ~ + ~ z )  = ~ ' - ~ ( 1  - z ) ' - ~ - ' R ( z )  = r ( z ) ,  
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which implies (2.9). The  proof  tha t  (2.9) and (2.10) are equivalent is identical to the 
one used to establish tha t  (2.6) and (2.7) are equivalent. The details are omit ted.  [] 

New characterizat ions of discrete stabil i ty are obtained as a corollary to Proposi t ions  
2.3 and 2.4. 

COROLLARY 2.2. Let P(z) be the pgf of a discrete semi-stable distribution on Z+ 
with exponent V �9 (0, 1] and order a �9 (0, 1). The following assertions are equivalent. 

(i) This distribution is discrete stable; 
(ii) limzT1 h(z) < co, where h(z) is as in (2.6); 

(iii) limzTa r(z) < 0% where r(z) is as in (2.9). 

PROOF. ( i )~( i i ) :  The  'only if' par t  is trivial since in this case (by (1.6)) h(z) is 
constant.  Conversely, we have by (2.6) tha t  h(1 - c~ n + anz) ---- h(z) for every n > 1 and 
z �9 [0, 1). Let t ing n ~ oo, we conclude that  h(z) = limzT1 h(x) for any z �9 [0, 1). This 
implies tha t  h(z) is constant  and hence P(z) admits  the representat ion (1.6). (i)r 
is proven along the same lines. [] 

We recall (see Steutel  and van Harn (1979)) tha t  a dis tr ibut ion on Z +  with pgf 
P(z) is (discrete) self-decomposable if for any /3  �9 (0, 1) there exists a pgf Pz(z) such 
that  for every Izl < 1, 

(2.12) P(z) = P(1  - / 3  + /3z )Pz(z ) .  

Unlike discrete stable distr ibutions (see Steutel  and van Harn (1979)), discrete semi- 
stable distr ibutions are not  necessarily self-decomposable (a counter-example wi l l  be  
provided in Section 5). The next result shows how one can construct  a dis tr ibut ion 
on Z +  that  is semi-stable and self-decomposable. We will need the following canonical 
representat ion of the pgf of a discrete self-decomposable dis tr ibut ion (see Steutel  and 
van Harn (1979)): 

(2.13) lnP(z)-~ fzll~Q--~(~)dx 

where Q(z) is the pgf of an i.d. dis t r ibut ion on Z+ .  

COROLLARY 2.3. A discrete self-decomposable distribution with pgf P(z) is discrete 
semi-stable with exponent 7 E (0, 1] and order c~ C (0, 1) if and only if Q(z) of (2.13) is 
the pgf of a discrete semi-stable distribution with exponent V and order (~. In that case, 
for any/3 E (0, 1), Pz(z) of (2.12) is itself the pgf of a discrete semi-stable distribution 
(also with exponent V and order (~ ). 

PROOF. For the 'if' part ,  we note tha t  by Proposi t ion 2.3, - l nQ(z )  = (1-z)~h(z)  
with h(1 - c~ + c~z) = h(z). Since discrete self-decomposable distr ibutions are i.d., this 
implies (see (2.8)) tha t  R(z) = -lnQ(z) = ( 1  - -  z)'7-1h(z). The conclusion follows from 1--z 
Proposi t ion 2.4. Conversely, we have by (2.8), (2.9), and (2.13), In Q(z) = - ( 1 -  z)~r(z), 
with r(1 - c~ + c~z) = r(z) ,  which implies In Q(1 - c~ + az)  = c~ In Q(z). The last par t  of 
the corollary follows by noting tha t  for any/3  E (0, 1), In PZ(1 - a + c~z) = l n P ( 1  - c~ + 
c~z) - l n P ( 1  - a + a(1 - / 3  + /3z) )  = a ~ l n P ( z )  - a ~ l n P ( 1  - / 3  +/3z)  = a ~ In Pz(z) .  [] 
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Remark. van Harn et al. (1982) (see also van Ham and Steutel (1993)) used a 
continuous semi-group of pgf's (Ft, t > 0) and a generalized multiplication they denoted 
by QF to introduce F-stability for discrete distributions. The semi-group Ft(z) = 1 - 
e - t  + e - t z  leads to the discrete stability characterized by (1.7). F-semi-stability can be 
defined using the same approach. All the results in this section can be shown to have a 
version for F-semi-stable distribtutions. The details are omitted. 

3. Discrete geometric semi-stability 

DEFINITION 3.1. A nondegenerate distribution on Z+ is said to be discrete geo- 
metric semi-stable with exponent y > 0 and order a C (0, 1) if its pgf P(z)  satisfies 

(3.1) P(1 - (~ + az)  = P(z)  ([zl < 1). 
a'~ + (1 - a~)P(z )  

As in the case of discrete semi-stability, one can deduce from Definition 3.1 that a 
distribution on Z+ is discrete geometric stable with exponent ? > 0 if and only if it is 
discrete geometric semi-stable with exponent y and of all orders a E (0, 1). 

Jayakumar (1995) called a distribution on Z+ a semi-y-geometric distribution for 
some 0 < 7 -< 1 if it has a pgf of the form 

(3.2) P(z)  = (i + ~(1 - z)) -1, 

where r  is nondecreasing over [0, 1], ~(0) = 1, and there exists a E (0, 1) such that 
r = (~ r  for any Izl < 1. The author showed that  a semi-y-geometric distri- 
bution arises as the unique marginal distribution of a Z+-valued first-order stationary 
autoregressive process with a specific innovation sequence. 

It is easily seen that a semi-v-geometric distribution is discrete geometric semi-stable 
with exponent 7 (and some order a E (0, 1)). We will show later in this section that the 
converse also holds. 

The representation of a discrete geometric semi-stable distribution in terms of Z+-  
valued rv's follows immediately from the definition and is stated without proof. 

PROPOSITION 3.1. A Z+-valued rv X has a discrete geometric semi-stable distri- 
bution with exponent 7 > 0 and order a E (0, 1) i f  and only i f  it admits the following 
representation: 

N 

(3.3) X d c~ Q E Xi, 
i=1 

where {Xi} is a sequence of lid rv's, Xi  d X ,  N has the geometric distribution with 
parameter a ~, and {X~} and N are independent. 

Next, we establish the property of geometric infinite divisiblity. 

PROPOSITION 3.2. Any discrete geometric semi-stable distribution is geometric 
i.d., and hence i.d. 
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PROOF. Let P(z) be the pgf of a discrete semi-stable distr ibution with exponent  
7 > 0 and order a E (0, 1). Using (3.1) and induction, we have for every n > 1 

(3.4) P(1  - a n + anz) : P(z)  
a n~ + (1 - an~)P(z) ' 

from which it follows P(z) = l i m n - ~  Pn(Z), where Pn(z) = (1 + a -n~(1  - P(1  - a n + 
anz) ) )  -1. By  Aly and Bouzar  (2000), Pn(z) is the pgf of a geometric i.d. distr ibution 
for every n > 1. Therefore, any geometric semi-stable dis tr ibut ion is the weak limit of 
a sequence of geometric i.d. distr ibutions and, hence, must  itself be geometric i.d. (see 
Klebanov et al. (1984)). The second par t  follows by Aly and Bouzar  (2000). [] 

The next result establishes the connection be tween discrete semi-stabili ty and dis- 
crete geometric semi-stability. 

PROPOSITION 3.3. A distribution on Z+ with pgf P(z)  is discrete geometric semi- 
stable with exponent ~/ > 0 and order a C (0, 1) i f  and only if  

{ 1} 
(3.5) H(z)  = exp 1 P(z)  

is the pgf of a discrete semi-stable distribution with exponent "y > 0 and order a E (0, 1). 

PROOF. If P(z) satisfies (3.1), then we easily deduce that  l n H ( 1  - a + az )  = 
a ~ l n H ( z ) .  Since by Proposi t ion 3.2 P(z)  is geometric  i.d., it follows by Aly and Bouzar  
(2000) that  g ( z )  is a (i.d.) pgf which proves the 'only if' part .  Conversely, if H(z)  is 
the pgf of a discrete semi-stable dis t r ibut ion with exponent  y > 0 and order a E (0, 1), 
then P(z)  can be easily shown to satisfy (3.1). [] 

The following three corollaries are a direct consequence of Proposi t ion 3.3, Lemma 
2.1, and Proposi t ion 2.3. 

COROLLARY 3.1. I f  there exists a discrete geometric semi-stable distribution with 
exponent "~ > 0 and order a C (0, 1), then necessarily 0 < ~/ < 1. In addition, i f  this 
distribution has finite mean, then ~ = 1. 

COROLLARY 3.2. A distribution on Z+ with pgf P(z)  is discrete geometric semi- 
stable with exponent "7 C (0, 1] and order a E (0, 1) if and only if 

(3.6) P(z)  -- (1 - l n H ( z ) )  -1 

where H(z) is the pgf of a discrete semi-stable distribution with the same exponent and 
order. 

COROLLARY 3.3. A distribution on Z+ is discrete geometric semi-stable with ex- 
ponent "7 E (0, 1] and order a E (0, 1) if and only if its pgf P(z)  admits the form 

(3.7) P(z) = (1 + (1 - z)~h(z)) -1 (0 < z < 1), 
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where h(.), defined over [0, 1), satisfies h(1 - a + az) = h(z) for any z E [0, 1), or, 
equivalently, 

(3.8) P(z) = (1 + (1 - z)~g(I ln(1 - z)l)) -1 (0 < z < 1), 

where g(.), defined over [0, oc), is a periodic function with period - In ct. 

Finally, if a pgf P(z)  admits the representat ion (3.6), then it can be rewri t ten in 
the form (3.2) where ~b(z) = - l n H ( 1  - z) is nondecreasing on [0, 1], r  = 1, and 
r -- c~ r  We have thus established the following result. 

COROLLARY 3.4. Let 0 < "7 <- 1. A distribution on Z+ is semi-'7-geometric if  and 
only if it is discrete geometric semi-stable (with exponent '7). 

Remarks. 1) The characterizat ion ((i)r of discrete stability in Corollary 2.2 
extends almost verbat im to discrete geometic stability. The  s ta tements  and details are 
omitted. 

2) Proposit ion 3.1 is equivalent to Theorem 2.2 in Jayakumar  (1995). Incidentally, 
Definition 2.1 in Jayakumar  (1995) should read as follows: two distributions on Z +  with 
respective pgf's Pl(z) and P2(z) are said to be of the same type if for some a c (0, 1), 
Pl(z) = / ~  a + c~z) for any [z[ < 1. 

3) One can use the semi-group approach of van Harn  et al. (1982) (see the remark  
at the end of Section 2) to define F-geometric-semi-stable distributions (see also Bouzar 
(1999)). 

4) A more general notion of stability, based on random summations  and called N -  
stability, was studied by several authors (see Gnedenko and Korolev (1996), Subsection 
4.6, for details). Following Aly and Bouzar (2000), one can define discrete N-semi-  
stability tha t  will contain discrete semi-stability and geometric semi-stability as special 
cases. 

4. Limit theorems 

Pillai (1971) showed tha t  semi-stable distributions can arise as limiting distributions. 
We proceed to establish the discrete versions of Pillai's results. 

PROPOSITION 4.1. Let (Xn ,n  > 1) be a sequence of Z+-valued, lid rv's with a 
common discrete semi-stable distribution with exponent V G (0, 1] and order a C (0, 1). 
For n > 1, let kn -- [a -n~] (where Ix] denotes the largest integer smaller than or equal 
to x) and let 

kn 

(4.1) 
i = 1  

Then ~n converges weakly to a discrete semi-stable distribution with exponent "7 and order 
0~. 

PROOF. Denote by P(z)  the common pgf of the Xi ' s  and by Pn(z) the pgf of ~n 
(n _> 1). By (4.1) 

(4.2) Pn(z) = [P(1 - a n + anz)]  k". 
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By assumption and by (2.2), P(z )  = [P(1 - a n + anz) ]~-"~ .  For every n > 1, a - n ~  = 
kn + 0n for some 0 _< 0n < 1. Therefore,  

Ipn(z) _ p ( z )  I = Ip(1 _ c~n + anz)lk~ I1 _ pO. (1 - a n + anz)l ~__ I1 -- pO~ ( 1  - a n + olnz)l. 

Since 0 < a < 1 and 0 < On < 1, it follows tha t  limn--.or I1 - P~ - a n + (~nz)t = 0, 
which in tu rn  implies tha t  limn--.~ Pn(z) = P(z) .  [] 

The  converse holds in a slightly more general setting. 

PROPOSITION 4.2. Let ( X n , n  > 1) be a sequence of  Z+-valued, lid rv's. Assume 
that for  some 7 C (0, 1] and c~ E (0, 1), the sequence (~n, n > 1) defined in (4.1) (again 
with kn = [(~-n-~]) converges weakly to a Z +-valued rv, then the limiting distribution is 
necessarily discrete semi-stable with exponent ~/ and order (~. 

PROOF. Let  P(z )  be  the common pgf of the Xi ' s  and let Pn(z) be the pgf of ~n 
for n ___ 1. By  assumption and by (4.2), there exists a pgf Q(z) such tha t  

(4.3) Q(z)  = lim [P(1 - a n + anz)]kn. 
n---*(x) 

For every n > 1, c~ -n'y ---- kn -}- t~n for some 0 < 0n < 1. Since 0 < c~ < 1 and IP(z) l <_ 1 
for any Izl < 1, we have 

lim ][P(1 --oLn-}-oLnz)]k'~ - - [P (1  --o~n-}-anz)]a-'~'Y I ~_ lim I 1 - [ P ( 1  - a n  wanz)]~ I = O, 
n - - ~ O O  n - - - - ~  O O  

which implies 

(4.4) Q(z)  = lim IF(1 - a n + (~nZ)]a-n~. 
n - - ~  O O  

Moreover, for every n > 1, 

(4.5) [P(1 - -  OL n + l  -Jr- ozn+lz)]k"+l-k" = [P(1 - oz n + l  -~- oLn+lz)]~ 
x [P(1 - a n+l + an+lz)] ~176 

Now, by (4.4), 

(4.6) lira IF(1 - c~ n+l + a n + l z ) ] ~ - ~ ' ( ~ - ~ - l )  = [Q(1 - ~ + c~z)] ~-~-1 ,  
n - - - ~  O o  

and (again, since 0 < a < 1 and 0 < On < 1 for every n > 1), 

(4.7) lim [P(1 - a n+l + an+lz)]~176 = 1. 
n - - -*  (:x:) 

By (4.2), we have for every n _> 1, 

(4.8) Pn+l(Z) = [Pn(1 -- O~ + OLZ)]k"[P(1 -- Oz n+l + C~n+lz)lk"+~-k- 

Therefore,  by combining (4.3), (4.5)-(4.8),  we conclude Q(z) = [Q(1 - a + az)]  ~-~. [] 

The  following result  is the discrete analogue of Pillai 's result  (1985) obta ined for 
semi-Laplace distr ibutions.  
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PROPOSITION 4.3. Let ( X n , n  > 1) be a sequence of Z+-valued, lid rv's with a 
common discrete geometric semi-stable distribution with exponent V C (0, 1] and order 
c~ e (0, 1) and let (in, n > 1) be the sequence defined in (4.1) (with kn = [~-n~]). Then 
in converges weakly to a discrete semi-stable distribution with exponent V and order (~. 

PROOF. By Corollary 3.2 and by (2.2), the pgf Pn(z) of ~ (n > 1) satisfies 

(4.9) In Pn (z) = - k n  ln(1 - In H(1  - an + c~nz)) _- - k n  ln(1 - c~ n'y In H(z)) ,  

where H(z) is the pgf of some discrete semi-stable distribution. Since for every n > 1, 
a-n-~ = kn + t?,~ for some 0 ~ 0n < 1, 

[ l n ( 1 -  a n ~ l n g ( z ) )  ,~ ] 
lim l n P , ( z ) =  l n H ( z )  lira l | - - ~ % l n H - ~  a k , ]  = l n H ( z ) ,  

J 

or, limn--,oo Pn(Z) = H(z).  [] 

5. Examples 

We star t  out  by giving an example of a semi-stable dis t r ibut ion on R + .  Let V, a E 
_ _  2 1 r  (0, 1) and A > 0. Let m - - ~-]K-~,~ and define 

(5.1) f ( x )  = x-' / 'Y(1 - Acos (m lnx ) )  x > O. 

PROPOSITION 5.1. I f  O < A <_ (1 + m7)  -1, then 

(5.2) {// } r = exp -- (1 -- e-~/(~))dx ~- > 0, 

is the Laplace-Stieljes transform ( LST)  of a semi-stable distribution with exponent V and 
order o~. 

PROOF. First,  we note tha t  f is continuous and nonnegative on (0, c~) with 
f l  f ( x )dx  < c~. Moreover, s traightforward calculations and the assumpt ion  0 < A _< 
(1 + m v )  -1 imply f ' (x )  < 0 for every x > 0. Consequently, f is str ict ly decreasing and 

its inverse f - 1  satisfies f~ f - l ( x ) d x  < oo. Therefore, by Theorem 4.5 in Vervmut (1979), 
r of (5.2) is the LST of an i.d. distr ibution on R +  (in this case the sequence of rv 's  
(Ck, k > 1) in Vervaat 's  theorem is taken to be Ck -- 1 for every k > 1). Using a suitable 
change of variable, it can be  shown that  

(5.3) In r ---- a~ in r (T _> 0), 

which completes the proof. [] 

We use Poisson mixtures and Proposi t ion 5.1 to construct  an example  of a discrete 
semi-stable distribution. We recall tha t  if Nx (.) is a Poisson process wi th  intensity )~ > 0 
and X is an R+-va lued  rv independent  of Nx(-), then the Z+-va lued  rv N x ( X )  is called 
a Poisson mixture  with mixing rv X.  Its pgf Px,x (z) is given by 

(5.4) P x , x ( z )  = Cx( X(1 - z ) )  (Izl _< 1), 
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where Cx is the LST of X.  

PROPOSITION 5.2. I f  an R+-valued rv X has a semi-stable distribution, then for 
any A > 0, the corresponding Poisson mixture N~(X)  has a discrete semi-stable distri- 
bution with the same exponent and the same order. 

PROOF. The LST r  of X satisfies (5.3) for some 7 and a in (0, 1). Then by (5.3) 
and (5.4), the pgf of N~(X)satisf ies 

lnP~ ,z (1  - a + az)  = l n r  - z)) 

= a ~ ln r  - z)) = a ~ lnPx,x(z)  (z E (0,1)). 

Hence, N x ( X )  has a discrete semi-stable distr ibution with exponent 7 and order a .  [] 

The next two results follow straightforwardly from Proposit ions 5.1 and 5.2. 

COROLLARY 5.1. Let ~/ and a be in (0, 1), 0 < A _< (1 + rtt~/) -1, and f be as in 
(5.1). Then for any A > O, 

{/? } (5.5) Pa(z) = exp - (1 - e-X(1-z)f(X))dx (0 < z < 1) 

is the pgf of a discrete semi-stable distribution with exponent ~/ and order a. 

COROLLARY 5.2. Let 7 and a be in (0, 1), 0 < A < (1 + roT) -1, and f be as in 
(5.1). Then for any A > O, 

(/0 )l (5.6) Gx(z) = 1 + (1 - e-X(1-z)f(x))dx (0 < z < 1) 

is the pgf of a discrete geometric semi-stable distribution with exponent "y and order a. 

We conclude with two counter-examples. 
First we prove the existence of a discrete semi-stable distr ibution tha t  is not discrete 

self-decomposable (see (2.12)). By Vervaat (1979), the semi-stable distr ibution on R with 
LST r given by (5.2) is self-decomposable if and only if f ( x )  of (5.1) is log-convex. 

1 cos(2 ln x)) is not log-convex, which implies For 7 = 1/2 and a = e -27r, f ( x )  = x-2(1 - 
tha t  r is not self-decomposable. Therefore, by Theorem 5.2 in Steutel and van Harn 
(1993), there exists A > 0 such tha t  the discrete semi-stable distr ibution with pgf given 
by (5.5) (7 -- 1/2 and a = e -2~) is not discrete self-decomposable. 

The next example shows tha t  discrete geometric semi-stable distr ibutions are not  
necessarily discrete self-decomposable. This disproves Theorem 2.1 in Jayakumar  (1995). 

Consider the pgf G(z) described by (5.6) with A = 104, ~ = 1/2, and a = e -2~r (and 
f ( x )  as above). We show tha t  for/~ = 0.9, H(z)  -- G(z)/G(1 - / ~  + t3z) is not  a pgf. 
Straightforward calculations lead to 

H'(0)  = A Ia(1 + I2) - I4(1 -}- 11) 
(1 + 11) 2 
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where  I 1 : f0c~(1 - e - ' ~ f ( x ) ) d x ,  12 = f0~176 -e-Z)~/(~))dx, I3 = f~o f(x)e_~l(X)dx, 
and In -- f ~  ~f(x)e-~)'f(*)dx. Using the computer algebra system MATHEMATICA 
(command NIntegrate), we obtain the numerical approximations (with 14-digit accuracy) 

/1 ~ 184.156, /2 ~ 175.603, /3 ~ 0.00826099, /4 ~ 0.00797862. 

This implies that /3(1 + / 2 )  - / 4 ( 1  + / 1 )  ~ -0.0183786 (with a 10-digit accuracy), or 
H'(0) < 0. Therefore H(z) is not a pgf. 

Remark. Let (Tk, k > 1) denote a sequence of successive arrival times of a Poisson 
process with intensity 1, i.e., (Tk+l - Tk, k > 0) (To = 0) is a sequence of iid rv's 
with an exponential distribution with mean 1. By Theorem 4.5 in Vervaat (1979) and 
Proposition 5.1, the R+-valued rv X = )-~k~__l f(Tk) (where f is given by (5.1), with 
0 < A < (1 + mv) -1) has a discrete semi-stable distribution with LST r of (5.2). The 
corresponding Poisson mixture N~(X) has a discrete semi-stable distribution with pgf 

of (5.s). 
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