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DISCRETE SEMICLASSICAL ORTHOGONAL POLYNOMIALS
OF CLASS ONE

DIEGO DOMINICI AND FRANCISCO MARCELLÁN

We study discrete semiclassical orthogonal polynomials of class s D 1. By
considering particular solutions of the Pearson equation, we obtain five
canonical families of such polynomials. We also consider limit relations
between these and other families of orthogonal polynomials.

1. Introduction

Discrete orthogonal polynomials with respect to uniform lattices have attracted the
interest of researchers from many points of view [Nikiforov et al. 1985]. A first
approach comes from the discretization of hypergeometric second-order linear dif-
ferential equations and thus the classical discrete orthogonal polynomials (Charlier,
Krawtchouk, Meixner, Hahn) appear in a natural way. As a consequence of the
symmetrization problem for the above second-order difference equations, one can
deduce that such polynomials are orthogonal with respect to (discrete) measures.
This yields the so-called Pearson equation that the measure satisfies.

In the last twenty years, new families of discrete orthogonal polynomials have
been considered in the literature, taking into account the so-called canonical spectral
transformations of the orthogonality measure. Under a Uvarov transformation, mass
points are added to the discrete measure; sequences of orthogonal polynomials with
respect to the new measure have been studied extensively in this case (see [Chihara
1985; Álvarez and Marcellán 1995a; Álvarez et al. 1995], among others). Under a
Christoffel transformation, the discrete measure is multiplied by a polynomial; a
few results are available in this case [Ronveaux and Salto 2001].

From a structural point of view, some effort has been made to translate to the
discrete case the well-known theory of semiclassical orthogonal polynomials (see
[Maroni 1991]). In particular, characterizations of such polynomials in terms
of structure relations of the first and second kind, as well as discrete holonomic
equations (second-order linear difference equations with polynomial coefficients of
fixed degree and where the degree of the polynomial appears as a parameter) were
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given in [Marcellán and Salto 1998]. Linear spectral perturbations of semiclassical
linear functionals have been studied in the Uvarov case [Godoy et al. 1997].

On the other hand, we must point out that the linear canonical spectral transforma-
tions (Christoffel, Uvarov, Geronimus) of classical discrete orthogonal polynomials
yield discrete semiclassical orthogonal polynomials. But, as a first step, the problem
of classification of discrete semiclassical linear functional of class one remains
open. Symmetric discrete semiclassical linear functionals of class one have been
described in [Maroni and Mejri 2008]. A classification of D-semiclassical linear
functional of class one was given in [Belmehdi 1992] and of those of class two in
[Marcellán et al. 2012].

This article provides a constructive method for findingDw -semiclassical orthogo-
nal polynomials, based on the Pearson equation satisfied by the corresponding linear
functional. We will focus our attention on the classification of D1-semiclassical
linear functionals of class s D 1. In such a way, new families of linear functionals
appear. Notice that an alternative method is based on the Laguerre–Freud equations
satisfied by the coefficients of the three-term recurrence relations associated with
these orthogonal polynomials. Their complexity increases with the class of the
linear functional and the solution is cumbersome. Basic references concerning this
approach are [Foupouagnigni et al. 1998] as well as [Maroni and Mejri 2008].

The structure of the article is as follows: Section 2 deals with the basic definitions
and the theoretical background we will need in the sequel. In Section 3 we describe
the D1-classical linear functionals as D1-semiclassical of class sD 0. The fact that
most of the semiclassical linear functionals of class s D 1 are related to the class
s D 0 will prove to be very useful later on. Indeed, in Section 4, a classification
of such semiclassical linear functionals is given. Some of them are not known
in the literature, as far as we know. Finally, Section 5 studies limit relations for
semiclassical orthogonal polynomials of class s D 1.

2. Preliminaries and basic background

Definition 1. Let f�ngn�0 be a sequence of complex numbers and let L be a linear
complex-valued function defined on the linear space P of polynomials with complex
coefficients by

hL; xni D �n:

Then L is called the moment functional determined by the moment sequence
f�ngn�0, and �n is called the moment of order n.

Given a moment functional L, the formal Stieltjes function of L is defined by

SL.z/D�

1X
nD0

�n

znC1
:
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For any moment functional L and any polynomial q.x/, we define the moment
functional qL by

hqL; P i D hL; qP i; P 2 P:

Definition 2. Let L be the linear functional associated with the moment sequence
f�ngn�0 and

�n D det

26664
�0 �1 � � � �n
�1 �2 � � � �nC1
:::

:::
: : :

:::

�n �nC1 � � � �2n

37775 :
We call L regular if �n ¤ 0 for all n 2 N0 WD fn 2 Z W n� 0g. We call it positive
definite if �n > 0 for all n 2 N0.

Definition 3. A sequence of polynomials fPn.x/gn�0, with degPn D n, is said to
be an orthogonal polynomial sequence with respect to a regular linear functional L

if there exists a sequence of nonzero real numbers f�ngn�0 such that

hL; PkPni D �nık;n; k; n 2 N0:

If �n D 1, then fPn.x/gn�0 is said to be an orthonormal polynomial sequence.
If the linear functional is positive definite, such a sequence is unique under the
assumption that each entry has a positive real leading coefficient.

Theorem 4 [Chihara 1978, Theorem 4.4]. Let fbngn�0 and fngn�0, with n ¤ 0
for every n 2N0, be arbitrary sequences of complex numbers and let fPn.x/g be a
sequence of monic polynomials defined by the three-term recurrence relation

(1) PnC1.x/D .x� bn/Pn.x/� nPn�1.x/;

with P�1 D 0 and P0 D 1. Then, there is a unique linear functional L such that
L.1/D 0 and

hL; Pk.x/Pn.x/i D 01 � � � nık;n:

If the linear functional is positive definite and fpn.x/gn�0 is the corresponding
orthonormal polynomial sequence, formula (1) becomes

anC1pnC1.x/D .x� bn/pn.x/� anpn�1.x/;

where an is a real number and a2n D n.

Definition 5. Let L be a linear functional and U � W P! P a linear operator. The
linear functional UL is defined by

hUL; P i D �hL; U �P i; P 2 P:

Example 6. If U is the standard derivative operator D, we have U � D U DD.
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Definition 7. A regular linear functional L is called U -semiclassical if it satisfies
the Pearson equation U.�L/C LD 0 or, equivalently,

hU.�L/C L; P i D 0; P 2 P;

where �; are two polynomials and � is monic. The corresponding orthogonal
sequence fPn.x/gn�0 is called U -semiclassical.

Semiclassical linear functionals with respect to several choices of operators have
been studied in the literature. For example, when U DD (the standard derivative
operator), the theory of D-semiclassical linear functionals has been exhaustively
studied by P. Maroni and coworkers (see [Maroni 1991] for an excellent survey on
this topic).

If U DD! , where

D!f .x/D
f .xC!/�f .x/

!
; ! ¤ 0;

a regular linear functional L is said to beD!-semiclassical if there exist polynomials
�; , where � is monic and deg � 1, such that D!.�L/C LD 0.

Notice that
D1f .x/D f .xC 1/�f .x/D�f .x/;

D�1f .x/D f .x/�f .x� 1/ Drf .x/

are the forward and backward difference operators, respectively, and

lim
!!0

D!f .x/DDf.x/D f
0.x/:

If U D D! , we define U � D D�! . With this definition, we have �� D r and
when !! 0 we recover the identity U � DD D U .

The concept of the class of a D!-semiclassical linear functional plays a central
role in giving a constructive theory of such linear functionals.

Definition 8. If L is aD!-semiclassical linear functional, the class s of L is defined
by

s Dmin
�; 

maxfdeg� � 2; deg � 1g;

among all polynomials �; such that the Pearson equation holds. Notice that the
class s is always nonnegative.

For any complex number c, we introduce the linear map �c W P! P, defined by

�c.p/.x/D
p.x/�p.c/

x� c
:
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Theorem 9 [Maroni 1991]. A regular linear functional L satisfying the Pearson
equation

D!.�L/C LD 0

is of class s if and only ifY
c2Z.�/

�
j .c �!/C .�c�/.c �!/jC jhL; �c�!. C �c�/ij

�
> 0;

where Z.�/ denotes the set of zeros of the polynomial �.x/.
When there exists c 2Z.�/ such that

 .c �!/C .�c�/.c �!/D hL; �c�!. C �c�/i D 0;

the Pearson equation becomes

D! Œ.�c�/L�C Œ�c�!. C �c�/�LD 0:

Remark 10. When s D 0, we obtain the D!-classical orthogonal polynomials (see
[Abdelkarim and Maroni 1997]). For ! D 1, several characterizations of classical
orthogonal polynomials were given in [García et al. 1995]. Indeed, we explain in
more detail in the next section the main characteristics of these polynomials and
their corresponding linear functionals.

The D1-semiclassical linear functionals have been studied by F. Marcellán and
L. Salto [1998] and they are characterized following the same ideas as in the D
case. P. Maroni and M. Mejri [2008] deduced the Laguerre–Freud equations for the
coefficients of the three-term recurrence relation of Dw -semiclassical orthogonal
polynomials of class s D 1. In the symmetric case, when the moments of odd
order vanish, they deduced the explicit values of these coefficients, and the integral
representations of the corresponding linear functionals are given.

On the other hand, the Pearson equation yields a difference equation for the
moments of the linear functional, and, as a consequence, we get a linear difference
equation with polynomial coefficients satisfied by the Stieltjes function associated
with the linear functional:

Theorem 11. If L is a D!-semiclassical moment functional, the formal Stieltjes
function of L satisfies the nonhomogeneous first-order linear difference equation

�.z/D!SL.z/D a.z/SL.z/C b.z/;

where a.z/ and b.z/ are polynomials depending on � and  , with deg a � sC 1
and deg b � s.
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3. Discrete semiclassical orthogonal polynomials

We consider linear functionals

hL; P i D

1X
xD0

P.x/�.x/;

for some positive weight function �.x/ supported on a countable subset of the real
line. With this choice, the Pearson equation

h�.�L/C L; P i D 0; P 2 P;

yields

(2) �.��/C �D 0:

We rewrite this equation as

(3)
�.xC 1/

�.x/
D
�.x/� .x/

�.xC 1/
D

�.x/

�.xC 1/
;

with
�.x/D x.xCˇ1/.xCˇ2/ � � � .xCˇr/;

and
�.x/D c.xC˛1/.xC˛2/ � � � .xC˛l/:

Since the Pochhammer symbol .˛/x defined by .˛/0 D 1 and

(4) .a/x D a.aC 1/ � � � .aC x� 1/; x 2 N;

satisfies the identity
.˛/xC1

.˛/x
D xC˛; x 2 N0;

we obtain

(5) �.x/D
.˛1/x � � � .˛l/x

.ˇ1C 1/x � � � .ˇr C 1/x

cx

xŠ
:

We will denote the orthogonal polynomials associated with �.x/ by

P .l;r/n .xI˛1; : : : ; ˛l ; ˇ1; : : : ; ˇr I c/:

The moments of the weight function (5) are given by

�n D

1X
xD0

xn
.˛1/x � � � .˛l/x

.ˇ1C 1/x � � � .ˇr C 1/x

cx

xŠ
; nD 0; 1; : : : :

By [Olver et al. 2010, 16.2], they exist if one of the following conditions holds:
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l � r and c 2 C:(6)

l � r C 1; c 2 C; and one or more of the top parameters ˛i is a nonpositive(7)
integer.

l D r C 1; and jcj< 1:(8)

l D r C 1; jcj D 1; and Re.ˇ1C � � �Cˇr �˛1� � � � �˛l/ > 0:(9)

3.1. Discrete classical polynomials. Let s D 0. We solve the Pearson equation (3)
with deg D 1 and 1� deg� � 2: Three canonical cases appear (see [Nikiforov
et al. 1985]), according to the following table, where �D  C�:

deg� deg� deg 

0 1 1

1 1 1

2 2 1

Case 1: If deg�D 0 and deg� D 1, we can take

(10) �.x/D c; �.x/D x;  .x/D �.x/��.x/D x� c;

and from (5) we obtain

(11) �.x/D
cx

xŠ
; c > 0; x 2 N0:

The family of orthogonal polynomials associated with the weight function (11) is
known as the Charlier polynomials; we denote them by P .0;0/n .xI c/. They have
the hypergeometric representation (see [Koekoek et al. 2010, 9.14.1])

(12) P .0;0/n .xI c/D 2F0

�
�n;�x

�
I �
1

c

�
;

where the hypergeometric function pFq.z/ is defined by

(13) pFq

�
a1; : : : ; ap

b1; : : : ; bq
I z

�
D

1X
kD0

.a1/k � � � .ap/k

.b1/k � � � .bq/k

zk

kŠ
:

The monic Charlier polynomials yP .0;0/n .xI c/ are given by

(14) yP .0;0/n .xI c/D .�c/nP .0;0/n .xI c/:

It is usual to denote these polynomials by

(15) Cn.xI a/D P
.0;0/
n .xI a/:

Case 2: If deg�D 1 and deg� D 1, we can take

(16) �.x/D c.xC˛/; �.x/D x;  .x/D .1� c/x� c˛;
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and from (5) we have

(17) �.x/D .˛/x
cx

xŠ
; ˛ > 0; 0 < c < 1; x 2 N0:

From (8), the condition 0 < c < 1 is needed for the moments to exist. The first
moment �0 is given by

(18) �0 D

1X
xD0

.˛/x
cx

xŠ
D .1� c/�˛:

The family of orthogonal polynomials associated with the weight function (17) is
known as the Meixner polynomials; we denote them by P .1;0/n .xI˛I c/. They have
the hypergeometric representation (see [Koekoek et al. 2010, 9.10.1])

(19) P .1;0/n .xI ˛I c/D 2F1

�
�n; �x

˛
I 1�

1

c

�
;

and the monic Meixner polynomials yP .1;0/n .xI˛I c/ are given by

(20) yP .1;0/n .xI˛I c/D .˛/n

�
c

c � 1

�n
P .1;0/n .xI˛I c/:

It is usual to denote these polynomials by

Mn.xIˇ; c/D P
.1;0/
n .xIˇI c/:

If we want c to be unbounded, we can use (7) and set ˛D�N , with N 2N. For
the weight function to be positive we need c < 0, and we obtain the Krawtchouk
polynomials P .1;0/n .xI �N I c/, with

(21) �.x/D .�N/x
cx

xŠ
; c < 0; N 2 N; x 2 Œ0; N �;

and

(22) �.x/D x;  .x/D .1� c/xC cN:

It is usual to denote these polynomials by

Kn.xIp;N /D P
.1;0/
n

�
xI �N I

p

p� 1

�
:

Case 3: If deg�D 2 and deg� D 2, we can take

�.x/D c.xC˛1/.xC˛2/; �.x/D x.xCˇ/:

Thus,

 .x/D �.x/��.x/D .1� c/x2C x.ˇ� c˛1� c˛2/� c˛1˛2;
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and since deg D 1, we must have c D 1. Hence,

(23) �.x/D x.xCˇ/;  .x/D x.ˇ�˛1�˛2/�˛1˛2;

and

(24) �.x/D
.˛1/x.˛2/x

.ˇC 1/x

1

xŠ
; x 2 N0:

From (9), we need Re.ˇC 1� ˛1 � ˛2/ > 0 for the moments to exist. The first
moment �0 is given by (see [Olver et al. 2010, 15.4.20])

�0 D

1X
xD0

.˛1/x.˛2/x

.ˇC 1/x

1

xŠ
D
�.ˇC 1/�.ˇC 1�˛1�˛2/

�.ˇC 1�˛1/�.ˇC 1�˛2/
:

Thus, we need ˛1; ˛2>0 and ˇC1>˛1C˛2. The family of orthogonal polynomials
associated with the weight function (24) is known as the Hahn polynomials; we de-
note them by P .2;1/n .xI˛1; ˛2; ˇI 1/. They have the hypergeometric representation
[Erdélyi et al. 1953, 10.23.12]

(25) P .2;1/n .xI ˛1; ˛2; ˇI 1/D 3F2

�
�n; �x; nC˛1C˛2�ˇ�1

˛1; ˛2
I 1

�
:

In the literature (see [Koekoek et al. 2010, 9.5.1]), the so-called Hahn polynomials
Qn.xI˛; ;N / correspond to the choice ˛1 D ˛C1, ˛2 D�N ,  D�N �ˇ�1,
with N 2 N.

Another family of Hahn polynomials is

(26) hn.xI˛; ˇ;N /D P
.2;1/
n .xIˇC 1; 1�N;�N �˛I 1/I

see page 34 in [Nikiforov et al. 1985]. In fact two different families of Hahn
polynomials are considered in that reference; the polynomials involved in the
corresponding Pearson equations are related by negating the variable x. Indeed, for
the second family we also have a relation

(27) Qhn.xI�; �;N /D P
.2;1/
n .xI 1�N � �; 1�N;�I 1/;

as well as

(28) hn.xI˛; ˇ;N /D Qhn.xI �N �˛;�N �ˇ;N /:

4. Discrete semiclassical polynomials of class one

When s D 1, we solve the Pearson equation (2) with deg D 2 and 1� deg� � 3;
and obtain five canonical cases:
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deg� deg� deg 

0 2 2

1 2 2

2 1 2

2 2 2

3 3 2

Case 4: If deg�D 0 and deg� D 2, we can take

�.x/D c; �.x/D x.xCˇ/;  .x/D x2Cˇx� c;

and from (5) we have

(29) �.x/D
1

.ˇC 1/x

cx

xŠ
; x 2 N0;

where ˇ >�1 and c > 0. The family of orthogonal polynomials associated with the
weight function (29) is known as the generalized Charlier polynomials; we denote
them by P .0;1/n .xIˇI c/ and study them in Section 4.1 below.

Case 5: If deg�D 1 and deg� D 2, we can take

�.x/D c.xC˛/; �.x/D x.xCˇ/;  .x/D x2C .ˇ� c/x� c˛:

From (5), we have

(30) �.x/D
.˛/x

.ˇC 1/x

cx

xŠ
; x 2 N0;

where ˛.ˇC 1/ > 0 and c > 0. The family of orthogonal polynomials associated
with the weight function (30) is known as the generalized Meixner polynomials;
we denote them by P .1;1/n .xI˛; ˇI c/ and study them in Section 4.2.

Case 6: If deg�D 2 and deg� D 1, we can take

�.x/D c.xC˛1/.xC˛2/; �.x/D x:

From (5), we have

�.x/D .˛1/x.˛2/x
cx

xŠ
;

and from (7) we need ˛2 D �N , with N 2 N, for the moments to exist. Setting
˛1 D ˛, we get

�.x/D c.xC˛/.x�N/; �.x/D x;  .x/D�cx2Cx.Nc�c˛C1/CNc˛:

The family of orthogonal polynomials associated with the weight function

(31) �.x/D .˛/x.�N/x
cx

xŠ
; x 2 Œ0; N �;
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with c <0 and ˛>0, will be referred to as the generalized Krawtchouk polynomials;
we will denote them by P .2;0/n .xI˛;�N I c/ and study them in Section 4.3.

Case 7: If deg�D 2 and deg� D 2, we can take

�.x/D c.xC˛1/.xC˛2/; �.x/D x.xCˇ/;

 .x/D .1� c/x2C .ˇ� c˛1� c˛2/x� c˛1˛2:

From (5), we have

(32) �.x/D
.˛1/x.˛2/x

.ˇC 1/x

cx

xŠ
; x 2 N0;

and from (8) we need 0 < c < 1, with ˛1˛2.ˇC 1/ > 0. The family of orthogonal
polynomials associated with the weight function (32) will be referred to as the gen-
eralized Hahn polynomials of type I; we will denote them by P .2;1/n .xI˛1; ˛2IˇI c/

and study them in Section 4.4.

Case 8: If deg�D 3 and deg� D 3, we can take

�.x/D c.xC˛1/.xC˛2/.xC˛3/; �.x/D x.xCˇ1/.xCˇ2/;

 .x/D x.xCˇ1/.xCˇ2/� c.xC˛1/.xC˛2/.xC˛3/:

For  .x/ to be of second degree we need c D 1. Thus,

�.x/D .xC˛1/.xC˛2/.xC˛3/; �.x/D x.xCˇ1/.xCˇ2/;

 .x/D�x2.˛1C˛2�ˇ1C˛3�ˇ2/�x.˛1˛2C˛1˛3C˛2˛3�ˇ1ˇ2/�˛1˛2˛3;

and from (5) we obtain

(33) �.x/D
.˛1/x.˛2/x.˛3/x

.ˇ1C 1/x.ˇ2C 1/x

1

xŠ
; x 2 N0:

For the moments to exist, (9) gives ˇ1Cˇ2 � ˛1 � ˛2 � ˛3 > 0, while positivity
demands that ˛1˛2˛3.ˇ1C 1/.ˇ2C 1/ > 0. The family of orthogonal polynomials
associated with the weight function (33) will be referred to as generalized Hahn
polynomials of type II; we will denote them by P .3;2/n .xI˛1; ˛2; ˛3Iˇ1; ˇ2I 1/ and
study them in Section 4.5.

4.1. Generalized Charlier polynomials. This is Case 4 above, with weight func-
tion given by (29) (with ˇ > �1 and c > 0). The first moments are

�0 D c
�
ˇ
2 Iˇ .2

p
c /�.ˇC 1/; �1 D c

1�ˇ
2 IˇC1.2

p
c /�.ˇC 1/;

where I�.z/ is the modified Bessel function of the first kind [Olver et al. 2010,
10.25.2].
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Hounkonnou, Hounga and Ronveaux studied the semiclassical polynomials
associated with the weight function

(34) �r.x/D
cx

.xŠ/r
; r D 0; 1; : : :

(see [Hounkonnou et al. 2000]). For r D 2, they derived the Laguerre–Freud
equations for the recurrence coefficients and a second-order difference equation.
Note that from (34) we have

�r.xC 1/

�r.x/
D

c

.xC 1/r
;

and from (3) we conclude that

�r.x/D c; �r.x/D x
r ;  r.x/D x

r
� c;

and therefore the orthogonal polynomials associated with �r.x/ are of class r � 1.
The case r D 2 is a particular example of (29) with ˇ D 0.

Van Assche and Foupouagnigni [2003] also considered (34) with r D 2. Simpli-
fying the Laguerre–Freud equations from [Hounkonnou et al. 2000], they got

unC1Cun�1 D
1
p
c

nun

1�u2n
and vn D

p
cunC1un;

with nD c.1�u2n/ and ˇnD vnCn. They showed that these equations are related
to the discrete Painlevé II equation dPII [Van Assche 2007]

xnC1C xn�1 D
.anC b/xnC c

1� x2n
:

They also obtained the asymptotic behavior

lim
n!1

n D c; lim
n!1

vn D 0;

and concluded that the asymptotic zero distribution is given by the uniform distri-
bution on Œ0; 1�, as is the case for the usual Charlier polynomials [Kuijlaars and
Van Assche 1999].

Smet and Van Assche [2012] studied the orthogonal polynomials associated with
the weight function (29). They obtained the Laguerre–Freud equations

(35) .a2nC1�c/.a
2
n�c/D c.bn�n/.bn�nCˇ/; bnCbn�1 D n�1�ˇC

cn

a2n
;

for the orthonormal polynomials. They showed that these equations are a limiting
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case of the discrete Painlevé IV equation dPIV [Van Assche 2007]

xnC1xn D
.yn�ın�E/

2�A

y2n�B
;

ynCyn�1 D
ınCE�ı=2�C

1CDxn
C
ınCE�ı=2CC

1Cxn=D
:

Finally, Filipuk and Van Assche [2013] related the system (35) to the (continuous)
fifth Painlevé equation PV.

4.2. Generalized Meixner polynomials. This is Case 5 above, and the weight
function is given by (30), with ˛.ˇC 1/ > 0 and c > 0. The first moments are

�0 DM.˛; ˇC 1I c/; �1 D
˛c

ˇC 1
M.˛C 1; ˇC 2I c/;

where M.a; bI z/ is the confluent hypergeometric function [Olver et al. 2010,
13.2.2].

Ronveaux [1986] considered the semiclassical polynomials associated with the
weight function

�r.x/D

rY
jD1

. j̨ /x
cx

.xŠ/r
; r D 1; 2; : : : ;

and in [Ronveaux 2001] he made some conjectures on the asymptotic behavior of
the recurrence coefficients.

Smet and Van Assche [2012] studied the orthogonal polynomials associated with
the weight function (30). They obtained the Laguerre–Freud equations

(36)

.unC vn/.unC1C vn/D
˛� 1

c2
vn.vn� c/

�
vn� c

˛� 1�ˇ

˛� 1

�
;

.unC vn/.unC1C vn�1/D
un

un�
cn
˛�1

.unC c/

�
unC c

˛� 1�ˇ

˛� 1

�
;

for the orthonormal polynomials, with

a2n D cn�.˛�1/un; bn D nC˛Cc�ˇ�1�
˛�1

c
vn:

They also proved that the system (36) is a limiting case of the asymmetric discrete
Painlevé IV equation ˛-dPIV [Van Assche 2007].

Filipuk and Van Assche [2011] showed that the system (36) can be obtained from
the Bäcklund transformation of the fifth Painlevé equation PV. The particular case
of (30) when ˇ D 0 was considered by Boelen, Filipuk, and Van Assche [Boelen
et al. 2011].
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If we set ˛ D�N , N 2 N, in (30), we obtain

�.x/D
.�N/x

.ˇC 1/x

cx

xŠ
;

where we now have ˇ > �1 and c < 0. This case was analyzed in [Boelen et al.
2013].

Singular limits. If we let ˛! 0 and ˇ!�1 in (30), we have �.x/! Q�.x/, where
Q�.x/ is a new weight function satisfying the Pearson equation

(37) �Œ.x� 1/x Q��C Œx� .cC 1/�x Q�D 0:

Assuming Q� satisfies x Q�.x/D xu.x/ for some weight function u.x/ we get

(38) �Œ.x� 1/xu�C Œx� .cC 1/�xuD 0:

Using the product rule

(39) �.fg/D f�gCg�f C�f�g

in (38), we have

xuC .x� 1/�.xu/C�.xu/C Œx� .cC 1/�xuD 0;

or
x�.xu/C Œx� .cC 1/C 1�xuD 0:

Dividing by x, we obtain

�.xu/C .x� c/uD 0:

Comparing with (10), we see that u.x/ is the weight function corresponding to the
Charlier polynomials (11), and therefore (37) implies that

(40) Q�.x/D
cx

xŠ
CMı.x/;

where ı.x/ is the Dirac delta function.
The orthogonal polynomials P .1;1/n .xI 0;�1I c/ associated with the weight func-

tion (40) were first studied by Chihara [1985]. He showed that they satisfy the
three-term recurrence relation (1) with

bn D c
n

nC 1

Dn

DnC1
C .nC 1/

DnC1

Dn
; n D c

n2

nC 1

D2n
Dn�1DnC1

;

where

Dn D
cn

nŠ

M

ec CMKn�1
; Kn D

nX
jD0

cj

j Š
; K�1 D 0:

Note that for Dn to be well-defined for all n, we need M > �1, since Kn% ec .
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Bavinck and Koekoek [1995] obtained a difference equation satisfied by these
polynomials and Álvarez-Nodarse, García, and Marcellán [Álvarez et al. 1995]
found the hypergeometric representation

P .1;1/n .xI 0I �1I c/D .�c/n3F1

�
�n; �x; 1Cx=Dn

x=Dn
I �

1

c

�
:

Since limz!1
.1Cz/x
.z/x

D 1, we see that

lim
M!0

P .1;1/n .xI 0;�1I c/D yCn.xI c/;

where yCn.xI c/ is the monic Charlier polynomial (14).

4.3. Generalized Krawtchouk polynomials. This is Case 6 above, and the weight
function is given by (31), with c < 0, N 2 N, and ˛ > 0. The first moments are

�0 D CN

�
�˛I �

1

c

�
; �1 D�c˛NCN�1

�
�˛� 1I �

1

c

�
;

where Cn.xI a/ is the Charlier polynomial (15).
To our knowledge, these polynomials have not appeared before in the literature.

4.4. Generalized Hahn polynomials of type I. This is Case 7 above, and the
weight function is given by (32), with 0 < c < 1 and ˛1˛2.ˇ C 1/ > 0. The
first moments are

�0 D 2F1

�
˛1; ˛2

ˇC1
I c

�
; �1 D c

˛1˛2

ˇC1
2F1

�
˛1C1; ˛2C1

ˇC2
I c

�
;

where 2F1
�
a; b
c
I z
�

is the hypergeometric function.

Singular limits. (a) If we let ˛2 ! 0; ˇ ! �1 and ˛1 D ˛ in (32), we have
�.x/! Q�.x/, where Q�.x/ is a new weight function satisfying the Pearson equation

(41) �Œ.x� 1/x Q��C Œ.1� c/x� .1C c˛/�x Q�D 0:

Assuming that Q�.x/ satisfies x Q�.x/D xu.x/ for some weight function u.x/, we
get

(42) �Œ.x� 1/xu�C Œ.1� c/x� .1C c˛/�xuD 0:

Using the product rule (39) in (42), we have

xuC .x� 1/�.xu/C�.xu/C Œ.1� c/x� .1C c˛/�xuD 0;

or
x�.xu/C Œ.1� c/x� .1C c˛/C 1�xuD 0:
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Dividing by x, we obtain �.xu/C Œ.1� c/x � c˛�u D 0. Comparing with (16),
we see that u.x/ is the weight function corresponding to the Meixner polynomials
(17), and therefore (37) implies that

(43) Q�.x/D .˛/x
cx

xŠ
CMı.x/:

The orthogonal polynomials associated with the weight function (43) were first
studied by Chihara [1985]. He showed that they satisfy the three-term recurrence
relation (1) with

bnD
c.˛Cn/

c�1

n

nC1

Bn

BnC1
C
nC1

c�1

BnC1

Bn
; nD

c

.c�1/2
n2.˛Cn/

nC1

B2n
Bn�1BnC1

;

where

Bn D
cn.˛/n

.1� c/nŠ

M

.1� c/�˛CMKn�1
; Kn D

nX
jD0

.˛/j
cj

j Š
; K�1 D 0:

For Bn to be well-defined for all n, we need M > �1, since Kn% .1� c/�˛.
In [Brezinski et al. 1991], Richard Askey proposed the problem of finding a

second-order difference equation satisfied by these polynomials. The problem
was solved in [Bavinck and van Haeringen 1994]; in [Álvarez et al. 1995] the
hypergeometric representation

P .2;1/n .xI ˛; 0; �1I c/D .˛/n

�
c

c�1

�n
3F2

�
�n; �x; 1Cx=Bn

˛; x=Bn
I 1�

1

c

�
was given. In this case,

lim
M!0

P .2;1/n .xI˛; 0;�1I c/D yMn.xI˛; c/;

where yMn.xI˛; c/ is the monic Meixner polynomial (20).

(b) If ˛1 D �N , N 2 N, we can remove the restriction that 0 < c < 1 and take
any c < 0, with ˛2 … Œ�N; 0�, ˇ … Œ�N � 1;�1�, and ˛2.ˇ C 1/ > 0. If we let
˛2!�.N � 1/ and ˇ!�N , we have �.x/! Q�.x/, where Q�.x/ is a new weight
function satisfying the Pearson equation

(44)
 .x/D .1� c/x2C .ˇ� c˛1� c˛2/x� c˛1˛2;

�Œx.x�N/ Q��C Œ.1� c/xC c.N � 1/�.x�N/ Q�D 0:

Assuming that Q�.x/ satisfies .x�N/ Q�.x/D .x�N/u.x/ for some weight function
u.x/, we get

(45) �Œx.x�N/u�C Œ.1� c/xC c.N � 1/�.x�N/uD 0:
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Using the product rule (39) in (45), we have

xuC .x�N C 1/�.xu/C Œ.1� c/xC c.N � 1/�.x�N/uD 0;

or
.x�N C 1/�.xu/C .x�N C 1/.xCNc � cx/uD 0:

Dividing by x �N C 1, we obtain �.xu/C Œ.1� c/xC cN �u D 0. Comparing
with (22), we see that u.x/ is the weight function corresponding to the Krawtchouk
polynomials (21), and therefore (44) implies that

Q�.x/D .�N/x
cx

xŠ
CMı.x�N/:

4.5. Generalized Hahn polynomials of type II. This is Case 8, and the weight
function is (33), with ˇ1Cˇ2�˛1�˛2�˛3 >0 and ˛1˛2˛3.ˇ1C1/.ˇ2C1/ > 0.
The first moments are

�0 D 3F2

�
˛1; ˛2; ˛3

ˇ1C1; ˇ2C1
I 1

�
;

�1 D
˛1˛2˛3

.ˇ1C 1/.ˇ2C 1/
3F2

�
˛1C1; ˛2C1; ˛3C1

ˇ1C2; ˇ2C2
I 1

�
;

where 3F2
�
a1; a2; a3
b1; b2

I z
�

is the hypergeometric function.

To our knowledge, these polynomials have not appeared before in the literature.

Singular limits. (a) If we let ˛3! 0; ˇ2!�1, ˇ1 D ˇ in (33), we have �.x/!
Q�.x/, where Q�.x/ is a new weight function satisfying the Pearson equation

(46) �Œ.x� 1/.xCˇ/x Q��C Œ.ˇ� 1�˛1�˛2/x�˛1˛2�ˇ�x Q�D 0:

Assuming that Q�.x/ satisfies x Q�.x/D xu.x/ for some weight function u.x/, we
get

(47) �Œ.x� 1/.xCˇ/xu�C Œ.ˇ� 1�˛1�˛2/x�˛1˛2�ˇ�xuD 0:

Using the product rule (39) in (47), we have

.xCˇ/xuC x�Œ.xCˇ/xu�C Œ.ˇ� 1�˛1�˛2/x�˛1˛2�ˇ�xuD 0;

or
x�Œ.xCˇ/xu�C Œ.ˇ�˛1�˛2/x�˛1˛2�xuD 0:

Dividing by x, we obtain

�Œ.xCˇ/xu�C Œ.ˇ�˛1�˛2/x�˛1˛2�uD 0:
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Comparing with (23), we see that u.x/ is the weight function corresponding to the
Hahn polynomials (24); therefore (46) implies that

(48) Q�.x/D
.˛1/x.˛2/x

.ˇC 1/x

1

xŠ
CMı.x/:

(b) Similarly, if we let ˛3 D �N; ˛2 ! �.N � 1/; ˇ2 ! �N , ˛1 D ˛, ˇ1 D ˇ,
˛.ˇC 1/ < 0 in (33), we have �.x/! Q�.x/, where Q�.x/ is a new weight function
satisfying the Pearson equation

(49) �Œx.xCˇ/.x�N/ Q��C Œ.ˇ�˛CN � 1/xC˛.N � 1/�.x�N/ Q�D 0:

Assuming that Q�.x/ satisfies .x�N/ Q�.x/D .x�N/u.x/ for some weight function
u.x/, we get

(50) �Œx.xCˇ/.x�N/u�C Œ.ˇ�˛CN � 1/xC˛.N � 1/�.x�N/uD 0:

Using the product rule (39) in (50), we have

.xCˇ/xuC .x�N C 1/�Œ.xCˇ/xu�

C Œ.ˇ�˛CN � 1/xC˛.N � 1/�.x�N/uD 0;

or

.x�N C 1/�Œ.xCˇ/xu�C .x�N C 1/Œ.ˇ�˛CN/xC˛N �uD 0:

Dividing by x�N C 1, we obtain

�Œ.xCˇ/xu�C Œ.ˇ�˛CN/xC˛N �uD 0:

Comparing with (23), we see that u.x/ is the weight function corresponding to
the truncated Hahn polynomials (26), and therefore (49) implies that

(51) Q�.x/D
.˛/x.�N/x

.ˇC 1/x

1

xŠ
CMı.x�N/:

The orthogonal polynomials associated with the weight functions (48) and (51)
were first studied in [Álvarez and Marcellán 1995b].

5. Limit relations between polynomials

From the identities (see [Koekoek et al. 2010])

lim
�!1

.�˛/x

�x
D ˛x and lim

�!1

.�˛/x

.�ˇ/x
D

�
˛

ˇ

�x
;

we have the following limit relations:
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1. generalized Hahn polynomials of type II to generalized Hahn polynomials of
type I

lim
˛!1

P .3;2/n .xI˛1; ˛2; ˛; ˇ; ˛=cI 1/D P
.2;1/
n .xI˛1; ˛2; ˇI c/;

2. generalized Hahn polynomials of type I to generalized Krawtchouk polynomials

lim
ˇ!1

P .2;1/n .xI˛;�N;ˇI cˇ/D P .2;0/n .xI˛;�N I c/;

3. generalized Hahn polynomials of type I to generalized Meixner polynomials

lim
˛2!1

P .2;1/n .xI˛; ˛2; ˇI c=˛2/D P
.1;1/
n .xI˛; ˇI c/;

4. generalized Meixner polynomials to generalized Charlier polynomials

lim
˛!1

P .1;1/n .xI˛; ˇI c=˛/D P .0;1/n .xIˇI c/;

5. generalized Meixner polynomials to Meixner polynomials

lim
ˇ!1

P .1;1/n .xI˛; ˇI cˇ/DMn.xI˛I c/;

6. generalized Charlier polynomials to Charlier polynomials

lim
ˇ!1

P .0;1/n .xIˇI cˇ/D Cn.xI c/:

We also have the following singular limits, where “˚ ı.x � x0/” denotes the
addition of a delta function to the measure of orthogonality at the point x0:

1. generalized Meixner polynomials to Charlier-Dirac polynomials

lim
˛!0
ˇ!�1

P .1;1/n .xI˛; ˇI c/D Cn.xI c/˚ ı.x/;

2. generalized Hahn polynomials of type I to truncated Hahn polynomials

lim
˛2!�N

c!1

P .2;1/n .xI˛; ˛2; ˇI c/DQn.xI˛; ˇ;N /;

3. generalized Hahn polynomials of type I to Meixner–Dirac polynomials

lim
˛2!0

ˇ!�1

P .2;1/n .xI˛; ˛2; ˇI c/DMn.xI˛I c/˚ ı.x/;

4. generalized Hahn polynomials of type I to Krawtchouk–Dirac polynomials

lim
˛2!�NC1

ˇ!�N

P .2;1/n .xI �N; ˛2; ˇI c/DKn.xI �N I c/˚ ı.x�N/;

5. generalized Hahn polynomials of type II to Hahn–Dirac polynomials

lim
˛2!0

ˇ2!�1

P .3;2/n .xI˛; ˛2;�N;ˇ; ˇ2I 1/DQn.xI˛; ˇ;N /˚ ı.x/;
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6. generalized Hahn polynomials of type II to Hahn–Dirac polynomials

lim
˛2!�NC1

ˇ2!�N

P .3;2/n .xI˛; ˛2;�N;ˇ; ˇ2I 1/DQn.xI˛; ˇ;N /˚ ı.x�N/:

We can summarize these results in the following scheme:

P
.3;2/
n

//

��

Hahn˚ ı.x/

��

Hahn˚ ı.x�N/

��
P
.2;1/
n

�� &&

// Meixner˚ ı.x/

))

Krawtchouk˚ ı.x�N/

��
P
.2;0/
n P

.1;1/
n

�� ))

// Charlier˚ ı.x/ Hahn

vvvvvvvv
P
.0;1/
n

**

Meixner–Krawtchouk

��
Charlier

6. Concluding remarks

We have described the discrete semiclassical orthogonal polynomials of class
s D 1 using the different choices for the polynomials in the canonical Pearson
equation that the corresponding linear functional satisfies. We have focused our
attention to the case where the linear functional has a representation in terms
of a discrete positive measure supported on a countable subset of the real line.
Some new families of orthogonal polynomials appear, as well as some families
of orthogonal polynomials (generalized Charlier, generalized Krawtchouk, and
generalized Meixner) which have attracted the interest of researchers in the last
years, since the coefficients of their three-term recurrence relations are related to
discrete and continuous Painlevé equations. We have also studied limit relations
between these families of orthogonal polynomials, having in mind an analogue of the
Askey tableau for classical orthogonal polynomials. It would be very interesting to
find the equations satisfied by the coefficients of the three-term recurrence relations
for the above new sequences of semiclassical orthogonal polynomials. Furthermore,
an analysis of the class s D 2 will also be welcome in order to get a complete
classification of such a class as well as to check if new families of orthogonal
polynomials appear as in the case of the D-semiclassical orthogonal polynomials
pointed out in [Marcellán et al. 2012].
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