DISCRETE ω-SEQUENCES OF INDEX SETS(1)

BY

LOUISE HAY

ABSTRACT. We define a discrete ω-sequence of index sets to be a sequence $\left\{\theta A_{n}\right\}_{n \geq 0}$ of index sets of classes of recursively enumerable sets, such that for each $n, \theta A_{n+1}$ is an immediate successor of θA_{n} in the partial order of degrees of index sets under one-one reducibility. The main result of this paper is that if S is any set to which the complete set K is not Turing-reducible, and A^{S} is the class of recursively enumerable subsets of S, then θA^{S} is at the bottom of c discrete ω-sequences. It follows that every complete Turing degree contains c discrete ω-sequences.

Introduction. Let $\left\{W_{x}\right\}_{x \geq 0}$ be a standard enumeration of all recursively enumerable (r.e.) sets. If A is any collection of r.e. sets, the index set of A is $\left\{x \mid W_{x} \in A\right\}$ and is denoted by θA. If $\left\{A_{n}\right\}_{n \geq 0}$ is a sequence of classes of r.e. sets, call the sequence $\left\{\theta A_{n}\right\}_{n \geq 0}$ a discrete ω-sequence of index sets if
(a) $\theta A_{n}<_{1} \theta A_{n+1}$ for each n, and
(b) for every class B of r.e. sets, $\theta A_{n} \leq_{1} \theta B \leq_{1} \theta A_{n+1}$ implies $\theta B \cong \theta A_{n}$ or $\theta B \cong \theta A_{n+1}$.

That discrete ω-sequences exist was proved in [3]; it was shown there that if $\left\{Z_{m}\right\}_{m \geq 0}$ is the sequence of index sets of nonempty finite classes of finite sets (classified in [4] and, independently, in [2]), then $\left\{Z_{m}\right\}_{m} \geq 0$ is a discrete ω-sequence of index sets. Moreover, it easily follows from the results in [3] that the c nonisomorphic sequences $\left\{Y_{m}\right\}_{m \geq 0}$ satisfying $Y_{m}=Z_{m}$ or \bar{Z}_{m} for each m are discrete ω-sequences of index sets. In this paper it is shown that discrete ω-sequences of index sets occur in great profusion. The fact that the sets Z_{m} are index sets of finite classes of finite sets appears not to be relevant; what generalizes is the fact that $Z_{0}=\theta\{\varnothing\} \cong\left\{x \mid W_{x} \subseteq S\right\}$, where S is any co-r.e. set. The main results are as follows: (1) if $K{\underset{\sim}{T}} S$ (where K denotes Post's complete set) and $A^{S}=\left\{W_{x} \mid W_{x} \subseteq S\right\}$, then θA^{S} and θA^{S} are at the bottom of c discrete ω-se-

Received by the editors December 13, 1971.
AMS (MOS) subject clas sifications (1970). Primary 02F25; Secondary 02F30.
Key words and phrases. Index sets, classes of recursively enumerable sets, one-one reducibility, complete degrees.
(1) Research supported by National Science Foundation Grant GP-19958. Presented to the Special Session on Recursion Theory at the November 27, 1971 meeting of the American Mathematical Society at Milwaukee, Wisconsin.
quences of index sets; (2) every Turing degree a>锅contains c discrete ω-sequences; (3) 0^{\prime} contains c discrete ω-sequences containing no sets recursively isomorphic to Z_{m} or \bar{Z}_{m} for any m. We also prove a conjecture made in [3] that there exist sequences $\left\{\theta A_{m}\right\}_{m \geq 0}$ satisfying $Z_{m}<_{1} \theta A_{m}$ and $\bar{Z}_{m} \not_{1} \theta A_{m}$, for each $m \geq 0$.

Notation. The terminology and notation is that of [6]. K denotes the complete set $=\left\{x \mid x \in W_{x}\right\}$. N denotes the set of natural numbers. For $X, Y \subseteq N, X \times Y$ denotes the recursive Cartesian product, via an effective pairing function $\langle x, y\rangle$ whose inverses are denoted by π_{1}, π_{2}; thus $z=\left\langle\pi_{1}(z), \pi_{2}(z)\right\rangle .\left\{D_{n}\right\}_{n \geq 0}$ is the canonical indexing of finite subsets of N, with $D_{0}=\varnothing$. For $X, Y \subseteq N, X \leq Y$ means X is one-one reducible to Y. If $X \leq Y$ and $Y \leq X$, we invoke Myhill's isomorphism theorem [5] and write $X \cong Y, X \leq_{T} Y$ means X is Turing reducible to Y. $X \mid Y$ means X and Y are 1-1 incomparable.

0 . Required previous results. We list here for more convenient reference some results of [3] which will be needed. The proofs can be found in [3]. In that paper, for each $m>0, f_{m}: N^{m} \rightarrow N$ denotes a recursive one-one onto map with recursive inverses denoted by $x_{i}^{m}, 0 \leq i<m$; i.e., $x=f_{m}\left(x_{0}^{m}, \ldots, x_{m-1}^{m}\right)$. For $m=1, f_{1}$ is the identity and $x_{0}^{1}=x$.

Lemma 0.1 (Lemma 10 of [3]). If \bar{A} is nonempty, then
(a) $N \in A \rightarrow K \leq \theta A$,
(b) $\varnothing \in A \rightarrow \bar{K} \leq \theta A$.

Definition 0.2 (Definitions 1, 2 of [3]). For each x, let

$$
k_{m}(x)=\text { cardinality }\left\{i \mid x_{i}^{m+1} \in K\right\}
$$

For each $n \geq 0$, let

$$
Z_{2 n}=\left\{x \mid k_{2 n}(x) \text { is even }\right\}, \quad Z_{2 n+1}=\left\{x \mid k_{2 n+1}(x) \text { is odd }\right\} .
$$

Note that since $x=f_{1}(x), x \in Z_{0} \leftrightarrow x \notin K$, so that $Z_{0}=\bar{K}$.
Lemma 0.3 (Theorem 2 of [3]). For all $n \geq 0$,
(a) $Z_{n+1} \cong \bar{K} \times \bar{Z}_{n}$,
(b) $Z_{2 n+1} \cong K \times Z_{2 n}$,
(c) $\bar{Z}_{2 n+2} \cong K \times \bar{Z}_{2 n+1}$.

Lemma 0.4 (Theorem 3(a), (b), (c) of [3]). For all $m \geq 0$,
(a) $Z_{m}<Z_{m+1}, \bar{Z}_{m}<\bar{Z}_{m+1}$,
(b) $Z_{m}<\bar{Z}_{m+1}, \bar{Z}_{m}<Z_{m+1}$,
(c) $Z_{m} \mid \bar{Z}_{m}$.

Lemma 0.5 (From Theorem 5 of [3]). For all $n \geq 0$,
(a) if $\theta A \cong Z_{n}$ then $N \notin A$,
(b) if $\theta A \cong \bar{Z}_{2 n}$ then $\varnothing \notin A$,
(c) if $\theta A \cong \bar{Z}_{2 n+1}$ then $\varnothing \in A$.

Lemma 0.6 (Theorem 3(d), (e) of [3]). For all $m \geq 0$,
(a) there is no A satisfying $Z_{m}<\theta A<Z_{m+1}$ or $\bar{Z}_{m}<\theta A<\bar{Z}_{m+1}$,
(b) there is no A satisfying $\bar{Z}_{m}^{m}<\theta A<Z_{m+1}$ or $Z_{m}<\theta A<\bar{Z}_{m+1}^{m+1}$.

Lemma 0.7 (Lemma 13 of [3]). If $\theta A \leq K \times \theta B$ and $\varnothing \in A$, then $\theta A \leq \theta B$.
Lemma 0.8 (Lemma 14 of [3]). If $\theta A \leq \bar{K} \times \theta B$ and $N \in A$, then $\theta A \leq \theta B$.
Lemma 0.9 (Lemma 15 of [3]). If $\theta A \leq \theta B \leq K \times \theta A$, then $\theta B \cong \theta A$ or $\theta B \cong$ $K \times \theta A$.

Lemma 0.10 (Lemma 16 of [3]). If $\theta A \leq \theta B \leq \bar{K} \times \theta A$, then $\theta B \cong \theta A$ or $\theta B \cong$ $\bar{K} \times \theta A$.

Lemma 0.11 (Lemma 9 of [3]). For all $A, \theta A \nsubseteq \theta \bar{A}$.

1. Index sequences.

Definition l.l. Let $I_{n}=\{0,1, \cdots, n\}, n \geq 0, J=\{0, \overline{0}, 1, \overline{1}, 2, \overline{2}\}$ where $\overline{0}$, $\overline{1}, \overline{2}$ are formal symbols introduced for notational purposes. An index sequence σ is any function $\sigma: I_{n} \rightarrow J$ such that
(a) $\sigma(0) \in\{0, \overline{0}\}$,
(b) $\sigma(i) \in\{1, \overline{1}, 2, \overline{2}\}$ for $0<i \leq n$.

If σ is an index sequence and domain $\sigma=I_{n}, \sigma$ has length $n+1$, denoted by l_{σ}. In the following, σ will be freely identified with the concatenation $\sigma(0) * \sigma(1)$ $* \ldots * \sigma\left(l_{\sigma}-1\right)$ and $\sigma * i$ will be abbreviated to $\sigma i, i=1, \overline{1}, 2, \overline{2}$. In this notation, it is clear that $0, \overline{0}$ are index sequences, and that σi is an index sequence $\leftrightarrow \sigma$ is an index sequence and $i=1, \overline{1}, 2, \overline{2}$.

Definition 1.2. If σ is an index sequence, its complementary sequence $\bar{\sigma}$ is defined inductively as follows:
(a) $0, \overline{0}$ are complementary,
(b) $\sigma 1$ and $\bar{\sigma} \overline{1}$ are complementary,
(c) $\sigma 2$ and $\bar{\sigma} \overline{2}$ are complementary.

It is easily seen by induction on l_{σ} that $\overline{\bar{\sigma}}=\sigma$ for all index sequences σ.
Definition l.3. Suppose S is an infinite subset of $N, S=\left\{s_{0}, s_{1}, \cdots\right\}$ in any order, $s_{i} \neq s_{j}$ for $i \neq j$. For each index sequence σ, define a corresponding class A_{σ}^{S} of r.e. sets inductively on length σ, as follows:
(a) $A_{0}^{S}=\left\{W_{x} \mid W_{x} \subseteq S\right\}$,
(b) $A_{\bar{\sigma}}^{S}=\overline{A_{\sigma}^{S}}$,
(c) if σ has length $i+1, i \geq 0$,

$$
\begin{aligned}
& A_{\sigma 1}^{S}=\left\{W_{x} \mid s_{i} \in W_{x} \text { and } W_{x} \in A_{\sigma}^{S}\right\} \\
& A_{\sigma 2}^{S}=\left\{W_{x} \mid s_{i} \notin W_{x} \text { and } W_{x} \in A_{\sigma}^{S}\right\}
\end{aligned}
$$

Note that $A_{\sigma_{1}}^{S}, A_{\sigma_{2}}^{S} \subseteq A_{\sigma}^{S}$ for all σ, S.
Remark. The classes A_{σ}^{S} are defined relative to a given enumeration of S. The notation makes no explicit reference to the enumeration, since it will shortly be shown that the index sets θA_{σ}^{S} corresponding to a given σ are unique up to recursive isomorphism.

Lemma 1.4. Let A be any class of r.e. sets, and let $s \in N$. Then
(a) if $A_{1}=\left\{x \mid s \in W_{x}\right.$ and $\left.W_{x} \in A\right\}$ then $\theta A_{1} \leq K \times \theta A$,
(b) if $A_{2}=\left\{x \mid s \notin W_{x}\right.$ and $\left.W_{x} \in A\right\}$ then $\theta A_{2} \leq \bar{K} \times \theta A$.

Proof. Let $g(x)$ be a recursive function which computes the index of an r.e. set generated according to the following instructions:

$$
\begin{aligned}
W_{g(x)} & =\varnothing & & \text { if } s \notin W_{x}, \\
& =N & & \text { if } s \in W_{x} .
\end{aligned}
$$

Then $g(x) \in K \leftrightarrow s \in W_{x}$. Let $b(x)=\langle g(x), x)$. Then

$$
\begin{aligned}
x \in \theta A_{1} & \leftrightarrow s \in W_{x} \text { and } W_{x} \in A \\
& \leftrightarrow g(x) \in K \text { and } x \in \theta A \\
& \leftrightarrow b(x) \in K \times \theta A,
\end{aligned}
$$

and

$$
\begin{aligned}
x \in \theta A_{2} & \leftrightarrow s \notin W_{x} \text { and } W_{x} \in A \\
& \leftrightarrow g(x) \in \bar{K} \text { and } x \in \theta A \\
& \leftrightarrow b(x) \in \bar{K} \times \theta A .
\end{aligned}
$$

So $\theta A_{1} \leq K \times \theta A$ and $\theta A_{2} \leq \bar{K} \times \theta A$, both via b. (As usual, we need not bother to make b one-one, since all sets in question are index sets and thus cylinders [6].)

Lemma 1.5. Let S be any infinite subset of $N, S=\left\{s_{0}, s_{1}, \cdots\right\}$. Let $S_{0}=$ $\varnothing, s_{i}=\left\{s_{0}, s_{1}, \ldots s_{i-1}\right\}$ for $i \geq 1$. If σ is an index sequence, $l_{\sigma}=i+1, i \geq 0$ and T is any finite subset of $S-S_{i}$, then

$$
W_{x} \in A_{\sigma}^{S} \leftrightarrow W_{x} \cup T \in A_{\sigma}^{S} \leftrightarrow W_{x}-T \in A_{\sigma}^{S} .
$$

Proof. By induction on i. It suffices to prove the result for the cases when $\sigma=0, r 1$ or $\tau 2$. The complementary cases follow by symmetry since, e.g., $W_{x} \epsilon$ $A_{\tau \overline{1}}^{S} \leftrightarrow W_{x} \notin \overline{A_{\tau \overline{1}}^{S}}=A \frac{S}{\tau_{1}}$. If $i=0$ then $l_{\sigma}=1$, so $\sigma=0$ and T is any finite subset of $S-S_{0}=S$. Since $A_{0}^{S}=\left\{W_{x} \mid W_{x} \subseteq S\right\}_{2}$ it is clear that

$$
W_{x} \in A_{0}^{S} \leftrightarrow W_{x} \subseteq S \leftrightarrow W_{x} \cup T \subseteq S \leftrightarrow W_{x}-T \subseteq S
$$

Now assume the lemma holds for all τ of length $i+1$ and let $l_{\sigma}=i+2, T \subset$ $S-S_{i+1}$; then $\sigma=\tau 1$ or $\tau 2$ where τ has length $i+1$. But $S_{i} \subset S_{i+1}$ implies $T \subset$ $S-S_{i+1} \subset S-S_{i}$ so, by the induction hypothesis,

$$
W_{x} \in A_{\tau}^{S} \leftrightarrow W_{x} \cup T \in A_{\tau}^{S} \leftrightarrow W_{x}-T \in A_{\sigma}^{S}
$$

Also, $s_{i} \in S_{i+1}$ implies $s_{i} \notin T$, so

$$
s_{i} \in W_{x} \leftrightarrow s_{i} \in W_{x} \cup T \leftrightarrow s_{i} \in W_{x}-T
$$

These two sets of equivalences imply

$$
\begin{aligned}
s_{i} \in W_{x} \text { and } W_{x} \in A_{\tau}^{S} & \leftrightarrow s_{i} \in W_{x} \cup T \text { and } W_{x}-T \in A_{\tau}^{S} \\
& \leftrightarrow s_{i} \in W_{x}-T \text { and } W_{x}-T \in A_{\tau}^{S}
\end{aligned}
$$

and

$$
\begin{aligned}
s_{i} \notin W_{x} \text { and } W_{x} \in A_{\tau}^{S} & \leftrightarrow s_{i} \notin W_{x} \cup T \text { and } W_{x} \cup T \in A_{\tau}^{S} \\
& \leftrightarrow s_{i} \notin W_{x}-T \text { and } W_{x}-T \in A_{\tau}^{S}
\end{aligned}
$$

Now if $\sigma=\tau 1, A_{\sigma}^{S}=\left\{x \mid s_{i} \in W_{x}\right.$ and $\left.W_{x} \in \mathbb{R}_{\tau}^{S}\right\}$ while if $\sigma=\tau 2, A_{\sigma}^{S}=\left\{x \mid s_{i} \notin W_{x}\right.$ and $\left.W_{x} \in A_{\tau}^{S}\right\}$. In either case, it follows that

$$
W_{x} \in A_{\sigma}^{S} \leftrightarrow W_{x} \cup T \in A_{\sigma}^{S} \leftrightarrow W_{x}-T \in A_{\sigma}^{S}
$$

Lemma 1.6. If S is any infinite set and σ any index sequence of length $i>$ 0 , then

$$
K \times \theta A_{\sigma}^{S} \leq \theta A_{\sigma 1}^{S} .
$$

Proof. $A_{\sigma 1}^{S}=\left\{W_{x} \mid s_{i} \in W_{x}\right.$ and $\left.W_{x} \in A_{\sigma}^{S}\right\}$. Let b be a recursive function which computes the index of an r.e. set generated according to the following instructions:

Let

$$
\begin{aligned}
W_{b(x)} & =\varnothing & & \text { if } \pi_{1}(x) \notin K, \\
& =W_{\pi_{2}(x)} \cup\left\{s_{i}\right\} & & \text { if } \pi_{1}(x) \in K .
\end{aligned}
$$

Then

$$
\begin{aligned}
b(x) \in \theta A_{\sigma 1}^{S} & \leftrightarrow s_{i} \in W_{b(x)} \text { and } W_{b(x)} \in A_{\sigma}^{S} \\
& \leftrightarrow \pi_{1}(x) \in K \text { and } W_{b(x)}=W_{\pi_{2}(x)} \cup\left\{s_{i}\right\} \in A_{\sigma}^{S}
\end{aligned}
$$

Since $s_{i} \in S-S_{i}$, Lemma 1.5 implies that

$$
W_{\pi_{2}(x)} \cup\left\{s_{i}\right\} \in A_{\sigma}^{S} \leftrightarrow W_{\pi_{2}(x)} \in A_{\sigma}^{S}
$$

so $b(x) \in \theta A_{\sigma_{1}}^{S} \leftrightarrow \pi_{1}(x) \in K$ and $W_{\pi_{2}(x)} \in A_{\sigma}^{S}$, and $K \times \theta A_{\sigma}^{S} \leq \theta A_{\sigma_{1}}^{S}$ via b.
Lemma 1.7. If S is any infinite set and σ any index sequence of length $i>$ 0 , then $\bar{K} \times \theta A_{\sigma}^{S} \leq \theta A_{\sigma 2}^{S}$.

Proof. $A_{\sigma 2}^{S}=\left\{W_{x} \mid s_{i} \notin W_{x}\right.$ and $\left.W_{x} \in A_{\sigma}^{S}\right\}$. Let b be a recursive function which computes the index of an r.e. set generated according to the following instructions:

$$
\begin{aligned}
W_{b(x)} & =W_{\pi_{2}(x)}-\left\{s_{i}\right\} & & \text { if } \pi_{1}(x) \notin K, \\
& =N & & \text { if } \pi_{2}(x) \in K .
\end{aligned}
$$

Then

$$
\begin{aligned}
b(x) \in \theta A_{\sigma 2}^{S} & \leftrightarrow s_{i} \notin W_{b(x)} \text { and } W_{b(x)} \in A_{\sigma}^{S} \\
& \leftrightarrow \pi_{1}(x) \notin K \text { and } W_{b(x)}=W_{\pi_{2}(x)}-\left\{s_{i}\right\} \in A_{\sigma}^{S} \\
& \leftrightarrow \pi_{1}(x) \notin K \text { and } W_{\pi_{2}(x)} \in A_{\sigma}^{S},
\end{aligned}
$$

using Lemma 1.5 as in the previous lemma. So $\bar{K} \times \theta A_{\sigma}^{S} \leq \theta A_{\sigma_{2}}^{S}$ via b.
Definition 1.8. If S is any infinite set and σ any index sequence, let

$$
X_{\sigma}^{S}=\theta A_{\sigma}^{S}, \quad X_{\bar{\sigma}}^{S}=\theta A_{\bar{\sigma}}^{S}=\overline{\theta A_{\sigma}^{S}}=\overline{X_{\sigma}^{S}}
$$

Lemma 1.9. For all infinite sets S and all index sequences σ,
(a) $X_{\sigma 1}^{S} \cong K \times X_{\sigma}^{S}$,
(b) $X_{\sigma_{2}}^{S} \cong \bar{K} \times X_{\sigma}^{S}$,
(c) $X_{\sigma}^{S} \leq X_{\sigma i}^{S}, i=1, \overline{1}, 2, \overline{2}$.

Proof. By the definitions of $A_{\sigma 1}^{S}$ and $A_{\sigma_{2}}^{S}$, Lemma 1.4 implies $X_{\sigma_{1}}^{S} \leq K \times X_{\sigma}^{S}$ and $X_{\sigma 2}^{S} \leq \bar{K} \times X_{\sigma}^{S}$. That $K \times X_{\sigma}^{S} \leq X_{\sigma 1}^{S}$ and $\bar{K} \times X_{\sigma}^{S} \leq X_{\sigma 2}^{S}$ is given by Lemmas 1.6 and 1.7. It follows immediately that $X_{\sigma}^{S} \leq X_{\sigma i}^{S}$ if $i=1,2$. For $i=\overline{1}, \overline{2}, X_{\sigma i}=\overline{X \frac{S}{\sigma i}}$, where $\bar{i}=1,2$ so $X_{\bar{\sigma}}^{S} \leq X_{\overline{\sigma i}}^{S}$ which implies $X_{\sigma}^{S}=\overline{X_{\bar{\sigma}}^{S}} \leq X_{\sigma i}^{S}$.

Remark. Lemma 1.9 justifies the claim made after Definition 1.3 that the sets θA_{σ}^{S} obtained from different enumerations of the set S are recursively isomorphic. For $l_{\sigma}=1$ the sets θA_{σ}^{S} depend only on S, and for $l_{\sigma}>1$, the isomorphism is easily obtained by induction, using Lemma 1.9 (a) and (b).

Lemma 1.10. Let S be any infinite set $\varsubsetneqq N$. If σ is any index sequence, then X_{σ}^{S} is in the bounded trutb-table degree of $X_{0}^{S}=\theta A_{0}^{S}$.

Proof. By induction on l_{σ}. If $\sigma=0$ or $\overline{0}, X_{\sigma}^{S}=X_{0}^{S}$ or $X_{\overline{0}}^{S}$, so $X_{\sigma}^{S} \equiv_{b t} X_{0}^{S}$. Assume $l_{\sigma}=n+1$ and that the result holds for all τ such that $l_{\tau} \leq n$. Then by Definition 1.1, $\sigma=\tau i$ for some $i=1, \overline{1}, 2$ or $\overline{2}$ and r such that $X_{\tau}^{S} \equiv_{b t t} X_{0}^{S}$. So it suffices to show that $X_{\tau}^{S} \equiv_{\text {btt }} X_{\tau_{i}}^{S}$.

Case 1. i=1 or 2. By Lemma 1.9, $X_{\tau i}^{S} \cong K \times X_{\tau}^{S}$ or $\bar{K} \times X_{\tau}^{S}$. In either case, $X_{r}^{S} \leq X_{\tau i}^{S}$ so $X_{\tau}^{S} \leq_{b t t} X_{\tau i}^{S}$. To show $X_{\tau i}^{S} \leq_{b t t} X_{\tau}^{S}$ it suffices to have $K, \bar{K} \leq_{b t t} X_{\tau}^{S}$. But by Lemma 0.1 , since S and thus each A_{τ}^{S} is nontrivial, $K \leq X_{\tau}^{S}$ or $\bar{K} \leq X_{\tau}^{S}$. In either case, $K, \bar{K} \leq_{b t i} X_{T}^{S}$ and $X_{T i}^{S} \leq_{b t t} X_{\tau}^{S}$.

Case 2. $i=\overline{1}$ or $\overline{2}$. Then $X_{T i}^{S}=\frac{b_{b t}}{X_{\bar{i}}^{S}}$ where $\bar{i}=1$ or 2 , so by Case $1, X_{\bar{T}}^{S}$ $\equiv_{\mathrm{btt}} X_{\bar{\tau}}^{S}=\overline{X_{\tau}^{S}}$. So by complementation, $X_{\tau_{i}}^{S} \equiv_{\mathrm{btt}} X_{\tau}^{S}$.

Definition l.11. Let R be any (fixed) nonempty r.e. set such that \bar{R} is infinite. The sets $X_{\sigma}^{\bar{R}}$ will be denoted by Y_{σ}.

Lemma 1.12. $Y_{0} \leq \bar{K}$.
Proof, $Y_{0}=\left\{x \mid W_{x} \subseteq \bar{R}\right\}$, so $\bar{Y}_{0}=\left\{x \mid W_{x} \cap R \neq \varnothing\right\}$ which is r.e., since R is assumed to be r.e. So $\bar{Y}_{0} \leq K$ and $Y_{0} \leq \bar{K}$.

Lemma l.13. Let S be any infinite set $\varsubsetneqq N$. Then
(a) $\bar{K} \leq X_{0}^{S}$,
(b) for all index sequences $\sigma, Y_{\sigma} \leq X_{\sigma}^{S}$.

Proof. (a) $A_{0}^{S}=\left\{W_{x} \mid W_{x} \subseteq S\right\}$ so $\varnothing \in A_{0}^{S}$ and $N \in \overline{A_{0}^{S}}$, so by Lemma $0.1, \bar{K} \leq$ $\theta A_{0}^{S}=X_{0}^{S}$.
(b) By induction on l_{σ}. By Lemma 1.12 and part (a), $Y_{0} \leq X_{0}^{S}$ and, complementing, $Y_{-}=\overline{Y_{0}} \leq X_{\overline{0}}^{S}$. Now assume the lemma holds for all τ of length $k>0$ and let $l_{\tau}=k+1$. Then $\sigma=\tau 1, \tau 2, \tau \overline{1}$ or $\tau \overline{2}$ for some τ with $l_{\tau}=k$. By the in-
duction hypothesis, $Y_{\tau} \leq X_{\tau}^{S}$ which implies $K \times Y_{\tau} \leq K \times X_{\tau}^{S}$ and $\bar{K} \times Y_{\tau} \leq \bar{K} \times X_{\tau}^{S}$. If $\sigma=r 1$, then by Lemma 1.9(a), $Y_{\sigma} \cong K \times Y_{\tau} \leq K \times X_{\tau}^{S} \cong X_{\sigma}^{S}$; if $\sigma=\tau 2$, then by Lemma 1.9(b), $Y_{\sigma} \cong \bar{K} \times Y_{\tau} \leq \bar{K} \times X_{\tau}^{S}=X_{\sigma}^{S}$. So if $\sigma=\tau 1$ or $\tau 2, Y_{\sigma} \leq X_{\sigma}^{S}$. If $\bar{\sigma}=\tau \overline{1}$ or $\tau \overline{2}$, the result follows by complementation, since $\bar{\sigma}=\bar{\tau} 1$ or $\bar{\tau} 2$ where $l_{\bar{\gamma}}=k$, so that $Y_{\bar{\sigma}} \leq X_{\sigma}^{S}$ which implies $Y_{\sigma} \leq X_{\sigma}^{S}$.

Remark. Lemma 1.13 justifies the lack of reference to R in the notation Y_{σ}, since if R^{\prime} 'is any other nonempty r.e. set with \bar{R}^{\prime} infinite, it follows that $Y_{\sigma}^{R} \leq$ $X_{\sigma}^{\bar{R}^{\prime}}=Y_{\sigma}^{R^{\prime}}$ and $Y_{\sigma}^{R^{\prime}} \leq X_{\sigma}^{\bar{R}}=Y_{\sigma}^{R}$. Thus for every index sequence $\sigma, Y_{\sigma}^{R} \cong Y_{\sigma}^{R^{\prime}}$, so Y_{σ} is independent of the choice of R.
2. Acceptable index sequences.

Definition 2.1. The subset \mathfrak{Q} of acceptable index sequences is defined inductively as follows.
(a) $0, \overline{0} \in \mathbb{Q}$.
(b) if l_{σ} is odd,

$$
\begin{aligned}
& \sigma 1 \in \mathbb{Q} \leftrightarrow \sigma=0 \text { or } \sigma=\tau \overline{1} \text { or } \tau 2 \text { for some } \tau \in \mathbb{Q}, \\
& \sigma 2 \in \mathbb{Q} \leftrightarrow \sigma=\overline{0} \text { or } \sigma=\tau 1 \text { or } \tau \overline{2} \text { for some } \tau \in \mathbb{Q}, \\
& \sigma \overline{1} \in \mathbb{Q} \leftrightarrow \sigma=\overline{0} \text { or } \sigma=\tau 1 \text { or } \tau \overline{2} \text { for some } \tau \in \mathbb{Q}, \\
& \sigma \overline{2} \in \mathbb{Q} \leftrightarrow \sigma=0 \text { or } \sigma=\tau \overline{1} \text { or } \tau 2 \text { for some } \tau \in \mathbb{Q},
\end{aligned}
$$

(c) if l_{σ} is even,

$$
\begin{array}{lll}
\sigma 1 \in \mathbb{Q} \leftrightarrow \sigma=\tau \overline{1} \text { or } r \overline{2} & \text { for some } \tau \in \mathbb{Q}, \\
\sigma 2 \in \mathbb{Q} \leftrightarrow \sigma=\tau \overline{1} & \text { or } \tau \overline{2} & \text { for some } \tau \in \mathbb{Q}, \\
\sigma \overline{1} \in \mathbb{Q} \leftrightarrow \sigma=\tau 1 & \text { or } \tau 2 & \text { for some } \tau \in \mathbb{Q}, \\
\sigma \overline{2} \in \mathbb{Q} \leftrightarrow \sigma=\tau 1 \text { or } \tau 2 & \text { for some } \tau \in \mathbb{Q} .
\end{array}
$$

It is clear that if $\sigma \in \mathcal{G}$,

$$
\begin{aligned}
& l_{\sigma} \text { odd } \rightarrow \text { one of } \sigma, \bar{\sigma} \text { must have form } \\
& \quad 0, r \overline{1} 1, r \overline{2} 1, r \overline{1} 2 \text { or } r \overline{2} 2 \text { for some } r \in \mathbb{Q}, \\
& l_{\sigma} \text { even } \rightarrow \text { one of } \sigma, \bar{\sigma} \text { must have form } \\
& \quad 01, \overline{0} 2, r \overline{1} 1, r 21, r 12 \text { or } r \overline{2} 2 \text { for some } r \in \mathbb{Q} .
\end{aligned}
$$

We note for later use that for each $\sigma \in \mathcal{G}$, there are exactly two ways to extend σ to a sequence $\sigma i \in \mathbb{Q}$.

Lemma 2.2. Let S be any infinite set $\varsubsetneqq N$ and let $\sigma \in \mathcal{Q}$. Then (a) if l_{σ} is odd,

$$
\begin{aligned}
& \sigma=0 \text { or } r \overline{1} \text { or } r 2 \rightarrow \varnothing \in A_{\sigma}^{S} \text { and } N \notin A_{\sigma}^{S}, \\
& \sigma=\overline{0} \text { or } r 1 \text { or } r \overline{2} \rightarrow \varnothing \notin A_{\sigma}^{S} \text { and } N \in A_{\sigma}^{S} .
\end{aligned}
$$

(b) if l_{σ} is even,

$$
\begin{aligned}
& \sigma=\tau \mathrm{I} \text { or } \tau 2 \rightarrow \varnothing \notin A_{\sigma}^{S} \text { and } N \notin A_{\sigma}^{S}, \\
& \sigma=\tau \overline{\mathrm{I}} \text { or } \tau \overline{2} \rightarrow \varnothing \in A_{\sigma}^{S} \text { and } N \in A_{\sigma}^{S} .
\end{aligned}
$$

Proof. If $\sigma=0, A_{\sigma}^{S}=\left\{W_{x} \mid W_{x} \subseteq S\right\}$, so clearly $\varnothing \in A_{\sigma}^{S}$ and $N \notin A_{\sigma}^{S}$. If $\sigma=\overline{0}$, $A_{\sigma}^{S}=\overline{A_{0}^{S}}$, so $\varnothing \notin A_{\sigma}^{S}$ and $N \in A_{\sigma}^{S}$. Now assume the lemma holds for all r such that $1 \leq l_{\tau}<l_{\sigma}$.

Case 1. $l_{\sigma}=2 i+2$.
Subcase 1.1. $\sigma=\tau 1$ for some $\tau \in \mathbb{Q}$. Then by Definition $2.1, \tau=0$ or $\lambda \overline{1}$ or $\lambda 2$ for some $\lambda \in \mathbb{Q}$. By the induction hypothesis, since $l_{\tau}=2 i+1, N \notin A_{\tau}^{S}$. By Definition 1.3, $A_{\sigma}^{S}=\left\{W_{x} \mid s_{2 i} \in W_{x}\right.$ and $\left.W_{x} \in A_{\tau}^{S}\right\}$. Clearly $\varnothing \notin A_{\sigma}^{S}$ and $N \notin A_{\tau}^{S}$ implies $N \notin A_{\sigma}^{S}$, since $A_{\sigma}^{S}=A_{\tau 1} \subseteq A_{\tau}^{S}$.

Subcase 1.2. $\sigma=r 2$ for some $\tau \in \mathbb{Q}$. Then by Definition $2.1, \tau=\overline{0}$ or $\lambda 1$ or $\lambda \overline{2}$ for some $\lambda \in \mathbb{U}$. By the induction hypothesis, since $l_{\tau}=2 i+1, \varnothing \notin A_{\tau}^{S}$. By Definition 1.3, $A_{\sigma}^{S}=\left\{W_{x} \mid s_{2 i} \notin W_{x}\right.$ and $\left.W_{x} \in A_{\tau}^{S}\right\}$. Clearly $N \notin A_{\sigma}^{S}$, and $\varnothing \notin A_{r}^{S} \rightarrow$ $\varnothing \notin A_{\sigma}^{S}$, since $A_{\sigma}^{S}=A_{\tau 2}^{S} \subseteq A_{\tau}^{S}$,

Subcase 1.3. $\sigma=r \overline{1}$ or $\tau \overline{2}$ for some $r \in \mathbb{Q}$. The result follows by complementation from the other subcases since $\bar{\sigma}=\bar{\tau} 1$ or $\bar{\tau} 2$ and $\varnothing, N \in A_{\sigma}^{S} \leftrightarrow \varnothing, N \notin A_{\bar{\sigma}}^{S}$.

Case 2. $l_{\sigma}=2 i+3$.
Subcase 2.1. $\sigma=\tau 1$ for some $\lambda \in \mathbb{Q}$. Then by Definition 2.1, $\tau=\lambda \overline{1}$ or $\lambda \overline{2}$ for for some $\lambda \in \mathbb{U}$, and by the induction hypothesis, since $l_{\tau}=2 i+2, N \in A_{r}^{S}$. By Definition 1.3, $A_{\sigma}^{S}=\left\{W_{x} \mid s_{2 i+1} \in W_{x}\right.$ and $\left.W_{x} \in A_{\tau}^{S}\right\}$. Clearly $\varnothing \notin A_{\sigma}^{S}$ and, since $N \in A_{\tau}^{S}$ and $s_{2 i+1} \in N, N \in A_{\sigma}^{S}$.

Subcase 2.2. $\sigma=\tau 2$ for some $r \in \mathbb{Q}$. Then by Definition $2.1, \tau=\lambda 2$ for some $\lambda \in \mathbb{C}$, and by the induction hypothesis, since $l_{\tau}=2 i+2, \varnothing \in A_{\tau}^{S}$. By Definition 1.3, $A_{\sigma}^{S}=\left\{W_{x} \mid s_{2 i+1} \notin W_{x}\right.$ and $\left.W_{x} \in A_{\tau}^{S}\right\}$. Clearly $N \notin A_{\tau}^{S}$ and, since $\varnothing \in A_{\tau}^{S}$ and $s_{2 i+1} \notin \varnothing, \varnothing \in A_{\sigma}^{S}$.

Subcase 2.3. $\sigma=r \overline{1}$ or $\tau^{\tau} \overline{2}$ for some $\tau \in \mathbb{Q}$. By complementation from Subcases 2.2 and 2.3.

Lemma 2.3. Let $\sigma \in \mathbb{G}$. Then
(a) $\sigma=0 \rightarrow Y_{\sigma} \cong Z_{0}$, $\sigma=\overline{0} \rightarrow Y_{\sigma} \cong \bar{Z}_{0}$.
(b) If $l_{\sigma}=2 n+2$, then

$$
\begin{aligned}
& \sigma=\tau 1 \text { or } \tau 2 \rightarrow Y_{\sigma} \cong Z_{2 n+1}, \\
& \sigma=\tau \overline{1} \text { or } \tau \overline{2} \rightarrow Y_{\sigma} \cong Z_{2 n+1} . \\
& \text { (c) If } l_{\sigma}=2 n+3, \text { then } \\
& \sigma=\tau \overline{1} \text { or } \tau 2 \rightarrow Y_{\sigma} \cong Z_{2 n+2^{\prime}}, \\
& \sigma=\tau 1 \text { or } \tau \overline{2} \rightarrow Y_{\sigma} \cong \bar{Z}_{2 n+2} .
\end{aligned}
$$

Proof. By induction on l_{σ}. If $l_{\sigma}=1$ then $\sigma=0$ or $\overline{0}$. By Lemma 1.12, $Y_{0} \leq$ \bar{K} and by Lemma $1.13(\mathrm{a}), \bar{K} \leq X_{0}^{\bar{R}}=Y_{0}$. So $Y_{0} \cong \bar{K}=Z_{0}$, by Definition 0.2 , and $Y_{\overline{0}}=\overline{Y_{0}} \cong \overline{Z_{0}}$. Now assume the results hold for all $\dot{\tau} \in \mathbb{C}$ such that $1 \leq l_{\gamma}<l_{\sigma}$.

Case $1 . l_{\sigma}=2 n+2$.
Subcase 1.1. $\sigma=\tau 1$ or $\tau \overline{1}$ for some $\tau \in \mathbb{Q}$. By Definition 2.1, $\tau 1 \in \mathbb{Q} \leftrightarrow \tau=0$ or $\lambda \overline{1}$ or $\lambda 2$ for some $\lambda \in \mathbb{Q}$. By the induction hypothesis, since $l_{\tau}=2 n+1, Y_{\tau} \cong$ $Z_{2 n}$. Then by Lemmas 1.9 and $0.3 Y_{\tau 1} \cong K \times Y_{\tau} \cong K \times Z_{2 n} \cong Z_{2 n+1}$. Replacing τ by $\bar{\tau}$ in this argument gives $Y_{\bar{T} 1} \cong Z_{2 n+1}$, so $Y_{\tau \overline{1}}=\bar{Y}_{\bar{T}_{1}} \cong \bar{Z}_{2 n+1}$.

Subcase 1.2. $\sigma=\tau 2$ or $\tau \overline{2}$ for some $\tau \in \mathbb{Q}$. By Definition 2.1, $\tau 2 \epsilon \mathbb{Q} \leftrightarrow \tau=\overline{0}$ or $\lambda 1$ or $\lambda \overline{2}$ for some $\lambda \in \mathbb{Q}$. By the induction hypothesis, $Y_{\tau} \cong \bar{Z}_{2 n}$, so by Lemmas 1.9 and $0.3, Y_{\tau 2} \cong \bar{K} \times Y_{\tau} \cong \bar{K}^{\prime} \bar{Z}_{2 n} \cong Z_{2 n+1}$. Similarly, $Y_{\bar{\tau} 2} \cong Z_{2 n+1}$, so $Y_{\tau 2}=$ $\bar{Y}_{\bar{r}_{2}} \cong \bar{Z}_{2 n+1}$.

Case 2. $l_{\sigma}=2 n+3$.
Subcase 2.1. $\sigma=\tau 1$ or $\tau \overline{1}$ for some $\tau \in \mathcal{G}$. By Definition 2.1, $\tau 1 \in \mathbb{Q} \leftrightarrow \tau=\lambda \overline{1}$ or $\lambda \overline{2}$ for some $\lambda \in \mathbb{Q}$. By the induction hypothesis, $Y_{\tau} \cong \bar{Z}_{2 n+1}$. Then by Lemmas 1.9 and $0.3, Y_{\tau 1} \cong K \times Y_{\tau} \cong K \times \bar{Z}_{2 n+1} \cong \bar{Z}_{2 n+2}$. Similarly, $Y_{\bar{F}_{1}} \cong \bar{Z}_{2 n+2}$, so $Y_{\tau \overline{1}}=\bar{Y}_{\bar{T}_{1}} \cong Z_{2 n+2}$.

Subcase 2.2. $\sigma=\tau 2$ or $\tau \overline{2}$ for some $\tau \in \mathbb{A}$. By Definition 2.1, $\tau 2 \in \mathbb{Q} \leftrightarrow \tau=\lambda \overline{1}$ or $\lambda \overline{2}$ for some $\lambda \in \mathbb{Q}$. By the induction hypothesis, $Y_{\tau} \cong \bar{Z}_{2 n+1}$, so by Lemmas 1.9 and $0.3, Y_{\tau 2} \cong \bar{K} \times Y_{\tau} \cong \bar{K} \times \bar{Z}_{2 n+1} \cong Z_{2 n+2}$. Similarly, $Y_{\bar{\tau} 2} \cong Z_{2 n+2}$, so $Y_{T \overline{2}}=\bar{Y}_{\bar{T} 2} \cong \bar{Z}_{2 n+2}$.

Lemma 2.4. (a) If $\sigma \in \mathbb{A}$ then $Y_{\sigma} \cong Z_{l_{\sigma-1} \text {. or }} \overline{Z_{l \sigma-1}}$.
(b) If $\sigma, \tau \in \mathbb{Q}$ and $l_{\tau}<l_{\sigma}$, then $Y_{\tau}<Y_{\sigma}$.

Proof. (a) follows from Lemma 2.3, since the various cases exhaust \mathbb{C}. For (b), assume $l_{\tau}=m+1$ and $l_{\sigma}=n+1$ for $m<n$. Then by (a), $Y_{\tau} \cong Z_{m}$ or \bar{Z}_{m} and $Y_{\sigma} \cong Z_{n}$ or \bar{Z}_{n}. Then by Lemma $0.4, Y_{\tau}<Z_{m+1} \leq Z_{n}$ and $Y_{\tau}<\bar{Z}_{m+1}<\bar{Z}_{n}$. Thus in any case $Y_{\tau}<Y_{\sigma}$.

Lemma 2.5. For all m, n,
(a) $Z_{m} \not \equiv \bar{Z}_{n}$,
(b) $m \neq n \rightarrow Z_{m} \nRightarrow Z_{n}$.

Proof. By Lemma 0.4, $m<n \rightarrow Z_{m}<\bar{Z}_{m+1}<\bar{Z}_{n}$, and $m=n \rightarrow Z_{m} \mid \bar{Z}_{n}$. Thus in either case (a) holds. Lemma 0.4 also implies (b), since, e.g., $m<n \rightarrow Z_{m}<$ $Z_{m+1} \leq Z_{n}$.

Lemma 2.6. Let $\sigma \in \mathbb{Q}$. Then
(a) $Y_{\sigma} \cong Z_{0} \rightarrow \sigma=0$,
(b) $Y_{\sigma} \cong Z_{2 n+1} \rightarrow l_{\sigma}=2 n+2$ and $\sigma=\tau 1$ or $\tau 2$ for some $\tau \in \mathbb{Q}$,
(c) $Y_{\sigma} \cong Z_{2 n+2} \rightarrow l_{\sigma}=2 n+3$ and $\sigma=\tau \overline{1}$ or $\tau 2$ for some $\tau \in \mathbb{Q}$.

Proof. (a) Assume $\sigma \neq 0$. Then $\sigma=\overline{0}$ or τi for some $\tau \in \mathbb{Q}, i=1,2, \overline{1}$ or $\overline{2}$. By Lemma 2.3, this implies $Y_{\sigma}=Z_{\bar{\sigma}}$ or $Y_{\sigma}=Z_{m}$ or \bar{Z}_{m} for some $m>0$. In any case, by Lemma 2.5, $Y_{\sigma} \not \equiv Z_{0}$.
(b) Let $m=l_{\sigma}-1$. If $l_{\sigma} \neq 2 n+2$, then $m \neq 2 n+1$ and, by Lemma 2.4(a), $Y_{\sigma} \cong Z_{m}$ or \bar{Z}_{m}. By Lemma 2.5, this implies $Y_{\sigma} \neq Z_{2 n+1}$. If $l_{\sigma}=2 n+2$ but $\sigma \neq$ $\pi 1$ or $r 2$ for some $\tau \in \mathcal{Q}$, then $\sigma=\overline{1}$ or $\tau \overline{2}$. Then by Lemma 2.3(b), $Y_{\sigma} \cong \bar{Z}_{2 n+1} \neq Z_{2 n+1}$.
(c) Let $m=l_{\sigma}-1$. If $l_{\sigma} \neq 2 n+3$, then $m \neq 2 n+2$ and, by Lemma 2.4(a), $Y_{\sigma} \cong Z_{m}$ or \bar{Z}_{m} So by Lemma 2.5, $Y_{\sigma} \neq Z_{2 n+2}$. If $l_{\sigma}=2 n+3$ but $\sigma \neq \tau \overline{1}$ or $\tau 2$ for some $\tau \in \mathbb{Q}$ then $\sigma=r 1$ or $\tau \overline{2}$, so by Lemma 2.3 (c), $Y_{\sigma} \cong \bar{Z}_{2 n+2} \neq Z_{2 n+2}$.

Theorem 2.7. Let $\sigma \in \mathbb{Q}$. Then
(a) $Y_{\sigma} \cong Z_{0} \leftrightarrow \sigma=0$,
(b) $Y_{\sigma} \cong \bar{Z}_{0} \leftrightarrow \sigma=\overline{0}$,
(c) $Y_{\sigma} \cong Z_{2 n+1} \leftrightarrow l_{\sigma}=2 n+2$ and $\sigma=\tau 1$ or $\tau 2$ for some $\tau \in \mathbb{Q}$,
(d) $Y_{\sigma} \cong \bar{Z}_{2 n+1} \leftrightarrow l_{\sigma}=2 n+2$ and $\sigma=\tau \overline{1}$ or $r \overline{2}$ for some $\tau \in \mathbb{Q}$,
(e) $Y_{\sigma} \cong Z_{2 n+2} \leftrightarrow l_{\sigma}=2 n+3$ and $\sigma=\tau \overline{1}$ or $\tau 2$ for some $\tau \in \mathbb{Q}$,
(f) $Y_{\sigma} \cong \bar{Z}_{2 n+2} \leftrightarrow l_{\sigma}=2 n+3$ and $\sigma=\tau 1$ or $\tau \overline{2}$ for some $\tau \in \mathbb{Q}$.

Proof. (a), (c) and (e) follow from Lemmas 2.3 and 2.6. The other parts are obtained by complementation, since $l_{\sigma}=l_{\bar{\sigma}}, \overline{\tau i}=\bar{\tau} \bar{i}$ and $Y_{\sigma} \cong Z_{m} \leftrightarrow Y_{\bar{\sigma}} \cong \bar{Z}_{m}$.

Lemma 2.8. If $\sigma i, \sigma j \in \mathbb{Q}(i, j=1,2, \overline{1}$ or $\overline{2})$ then $i \neq j \rightarrow Y_{\sigma i} \cong \bar{Y}_{\sigma_{j}}$.
Proof. Assume $i \neq j$ and $\sigma i, \sigma j \in \mathfrak{A}$.
Case 1. $l_{\sigma}=2 n+1$. If $\sigma=0$ or $\tau \overline{1}$ or $\tau 2$ for some $\tau \in \mathbb{Q}$, then, by Definition 2.1, $\sigma i, \sigma j \in \mathbb{Q} \leftrightarrow i, j=1$ or $\overline{2}$, say $i=1$ and $j=\overline{2}$. Since $l_{\sigma i}=l_{\sigma j}=2 n+2$, it follows by Theorem 2.7 that $Y_{\sigma_{1}} \cong Z_{2 n+1}$ and $Y_{\sigma_{2}} \cong \bar{Z}_{2 n+1}$, so $Y_{\sigma i} \cong \bar{Y}_{\sigma_{j}}$. If $\sigma=\overline{0}$ or $\tau 1$ or $\tau \overline{2}$, the result follows by consideration of complements.

Case 2. $l_{\sigma}=2 n+2$. If $\sigma=\tau 1$ or $\tau 2$ for some $\tau \in \mathfrak{Q}$ then, by Definition 2.1, $\sigma i, \sigma j \in \mathbb{Q} \leftrightarrow i, j=\overline{1}$ or $\overline{2}$, say $i=\overline{1}$ and $j=\overline{2}$. Since $l_{\sigma i}=l_{\sigma j}=2 n+3$, it follows by Theorem 2.7 that $Y_{\sigma \overline{1}} \cong Z_{2 n+2}$ and $Y_{\sigma \overline{2}} \cong \bar{Z}_{2 n+2}$, so $Y_{\sigma i}=\overline{Y_{\sigma j}}$. If $\sigma=r \overline{1}$ or $\tau \overline{2}$, the result again follows by considering complements.

Lemma 2.9. Let S be any infinite set $\varsubsetneqq N$. Tben for all $\sigma \in \mathbb{Q}$, if $i=1, \overline{1}, 2$, $\overline{2}$ and $\sigma i \in \mathbb{A}, X_{\sigma} \nsupseteq Y_{\sigma i}$.

Proof. Case 1. $l_{\sigma}=2 n+1, \sigma=0$ or $\tau \overline{1}$ or $\tau 2$ for some $\tau \in \mathbb{Q}$. Then by Lemma 2.2, $\varnothing \in A_{\sigma}^{S}$ and $N \notin A_{\sigma}^{S}$. By Definition 2.1, $\sigma i \in \mathbb{Q} \rightarrow i=1$ or $\overline{2}$.

Subcase 1.1. $i=1$. Then by Theorem 2.7, since $l_{\sigma i}=2 n+2, Y_{\sigma i} \cong Z_{2 n+1}$. It follows by Lemma 0.5 that $\theta A \cong Y_{\sigma i} \rightarrow \overline{\theta A} \cong \bar{Z}_{2 n+1} \rightarrow \varnothing \in \bar{A}$. But this implies $X_{\sigma}^{S}=\theta A_{\sigma}^{S} \nRightarrow Y_{\sigma i}$ since $\varnothing \in A_{\sigma}^{S}$.

Subcase 1.2. $i=\overline{2}$. Then by Theorem 2.7, $Y_{\sigma i}=\bar{Z}_{2 n+1}$, so by Lemma $0.5, \theta A=$ $Y_{\sigma i} \rightarrow \theta \bar{A}=Z_{2 n+1} \rightarrow N \in A$. But this implies $X_{\sigma}^{S}=\theta A_{\sigma}^{S} \neq Y_{\sigma i}$, since $N \notin A_{\sigma}^{S}$.

Case 2. $l_{\sigma}=2 n+1, \sigma=\overline{0}$ or $\tau 1$ or $\tau \overline{2}$ for some $\tau \in \mathbb{Q}$. Then $\bar{\sigma}=0$ or $\bar{\tau} \overline{1}$ or $\bar{\tau} \overline{2}$ so, by Case $1, X_{\bar{\sigma}}^{S} \neq Y_{\bar{\sigma} i}=Y_{\overline{\sigma i}}$. But this implies $X_{\sigma}^{S}=\bar{X}_{\bar{\sigma}}^{S} \neq \bar{Y}_{\overline{\sigma i}}=Y_{\sigma i}$.

Case 3. $l_{\sigma}=2 n+2, \sigma=\tau 1$ or $\tau 2$ for some $\tau \in \mathbb{Q}$. Then by Lemma 2.2, $\varnothing \notin A_{\sigma}^{S}$ and $N \notin A_{\sigma}^{S}$. By Definition 2.1, $\sigma i \in \mathbb{Q} \rightarrow i=\overline{1}$ or $\overline{2}$.

Subcase 3.1. $i=\overline{1}$. Then by Theorem 2.7, $Y_{\sigma i} \cong Z_{2 n+2}$, so by Lemma 0.5, $\theta A=Y_{\sigma i} \rightarrow \theta \bar{A}=\bar{Z}_{2 n+2} \rightarrow \varnothing \in A$. It follows that $X_{\sigma}^{S}=\theta A_{\sigma}^{S} \neq Y_{\sigma i}$, since $\varnothing \notin$ A_{σ}^{S}.

Subcase 3.2. $i=\overline{2}$. Then by Theorem 2.7, $Y_{\sigma i} \cong \bar{Z}_{2 n+2}$, so by Lemma 0.5, $\theta A \cong Y_{\sigma i} \rightarrow \theta \bar{A}=Z_{2 n+2} \rightarrow N \in A$. If follows that $X_{\sigma}^{S}=\theta A_{\sigma}^{S} \nsubseteq Y_{\sigma i}$, since $N \notin A_{\sigma}^{S}$.

Case 4. $l_{\sigma}=2 n+2, \sigma=\bar{\tau} \overline{1}$ or $\tau \overline{2}$ for some $\tau \in \mathbb{Q}$. Then $\bar{\sigma}=\bar{\tau} \overline{1}$ or $\bar{\tau} 2$, so by Case $3, X_{\bar{\sigma}}^{S} \neq Y_{\overline{\sigma i}}=Y_{\overline{\sigma i}}$. It follows that $X_{\sigma}^{S}=\overline{X_{\bar{\sigma}}^{S}} \not \approx \bar{Y}_{\overline{\sigma i}}=Y_{\sigma i}$.

Lemma 2.10. For all $S, S \leq X_{0}^{S}$.
Proof. Recall that $X_{0}^{S}=\left\{x \mid W_{x} \subseteq S\right\}$, and let g be a recursive function such that $\{n\}=W_{g(n)}$, for all n. Then $n \in S \leftrightarrow\{n\} \subseteq S \leftrightarrow g(n) \in X_{0}^{S}$.

Lemma 2.11. Let S be any set such that \bar{S} is not r.e. Then for all $\sigma \in \mathbb{Q}$, $Y_{\sigma}<X_{\sigma}^{S}$.

Proof. By Lemma 1.13, $Y_{\sigma} \leq X_{\sigma}^{S}$, so it suffices to prove $X_{\sigma \underline{X}}^{S} Y_{\sigma}$, by induction on l_{σ}.

Case 1. $l_{\sigma}=1$. Then $\sigma=0$ or $\overline{0}$. If $\sigma=\overline{0}, Y_{\sigma} \cong Z_{\sigma}=K$, by Lemma 2.3; also $\bar{s} \leq X_{0}^{S}=X_{\sigma}^{S}$, by Lemma 2.10. Then $X_{\bar{\sigma}}^{S} \leq Y_{\sigma} \rightarrow \bar{S} \leq X_{\sigma}^{S} \leq K$ which implies \bar{S} is r.e., contrary to hypothesis. The result for $\sigma=0$ follows by symmetry.

Case 2. $l_{\sigma}=k+2, k \geq 0$. Assume the result holds for all $\tau \in \mathcal{Q}$ such that $l_{\tau}<l_{\sigma}$, but that $X_{\sigma}^{S} \leq Y_{\sigma}$.

Since $l_{\sigma}>1, \sigma=\tau_{i}$ for some $\tau \in \mathbb{Q}$. By Lemmas 1.13 and 1.9 (c), $Y_{\tau} \leq X_{T}^{S} \leq$ $X_{r i}^{S} \leq Y_{\tau i}$. Since $l_{\tau}=k+1$, it follows by Lemma 2.4(a) that $Y_{\tau} \cong Z_{k}$ or \bar{Z}_{k} and $Y_{\tau i} \cong Z_{k+1}$ or \bar{Z}_{k+1}. Then by Lemma $0.6, Y_{\tau} \leq X_{\tau}^{\mathrm{S}}=\theta A_{\tau}^{S} \leq Y_{\tau i}$ implies $Y_{\tau} \cong X_{\tau}^{S}$
or $Y_{\tau i} \cong X_{\tau}^{S}$ ．But the first of these contradicts the induction hypothesis and the latter contradicts Lemma 2．9．

Theorem 2．12．Let S be any infinite set $\subsetneq N$ and let $\sigma \in \mathbb{U}$ ．Then
（a）$Z_{0} \leq X_{0}^{S}$ ；
（b） $\bar{Z}_{0} \leq X_{\overline{0}}^{S}$ ；
（c）if $l_{\sigma}=2 n+2$ and $\sigma=\pi 1$ or $\tau 2$ for some $\tau \in \mathbb{Q}$ ，then $Z_{2 n+1} \leq X_{\sigma}^{S}$ ；
（d）if $l_{\sigma}=2 n+2$ and $\sigma=r \overline{1}$ or $\tau \overline{1}$ for some $\tau \in \mathbb{Q}$ ，then $\bar{Z}_{2 n+1} \leq X_{\sigma \text { ；}}^{S}$ ，
（e）if $l_{\sigma}=2 n+3$ and $\sigma=r \overline{1}$ or $\tau 2$ for some $\tau \in \mathbb{Q}$ ，then $Z_{2 n+2} \leq X_{\sigma}^{S}$ ；
（f）if $l_{\sigma}=2 n+3$ and $\sigma=\tau 1$ or $\tau \overline{2}$ for some $\tau \in \mathbb{Q}$ ，then $\bar{Z}_{2 n+2} \leq X_{\sigma}^{S}$ ．
If，in addition， \bar{s} is not r．e．，all the inequalities are strict．
Proof．By Lemma 1．13，Theorem 2.7 and Lemma 2．11．
Lemma 2．13．Let S be any infinite set such that $K \underline{甘}_{T} S$ ．Then for all $\sigma \in \mathbb{Q}$ ， $Y_{\bar{\sigma}} \notin X_{\sigma}^{S}$.

Proof．By induction on l_{σ} ．For $\sigma=0, Y_{0} \cong \bar{K}$ by Lemma 2．3．That $\bar{K} \npreceq X_{0}^{S}=$ $\left\{x \mid W_{x} \cap \bar{S} \neq \varnothing\right\}$ if $K 太_{T} S$ was proved in［1，Theorem 3．5］，by observing that $X_{\overline{0}}^{S}$ is r．e．in S ，so that $\bar{K} \leq X_{0}^{S} \rightarrow \bar{K}$ r．e．in $S \rightarrow K \leq_{T} S$ ，contrary to hypothesis． By symmetry，$Y_{\overline{0}} \notin X_{0}^{S}$ ．Now assume the result for all $\tau \in \mathbb{Q}$ such that $l_{\tau}<l_{\sigma}$ ．

Case 1．$\sigma=\tau 1$ or $\tau \overline{1}$ for some $\tau \in \mathbb{C}$ ．If $\sigma=\tau 1$ then，by Lemma 1．9，$X_{\sigma}^{S} \cong K \times$ X_{τ}^{S} and，by Lemma 2．2，$\varnothing \in A_{\bar{\sigma}}^{\bar{R}}=A_{\sigma}^{\bar{R}}$ ．So $Y_{\bar{\sigma}} \leq X_{\sigma}^{S} \rightarrow Y_{\bar{\sigma}}=\theta A \frac{\bar{\sigma}}{\bar{R}} \leq K \times X_{\tau}^{S}$ which by Lemma 0.7 implies $Y_{\bar{\sigma}} \leq X_{\tau}^{S}$ ．It follows by Lemma $2.4(\mathrm{~b})$ ，since $l_{\tau}<l_{\sigma}$ ，that $Y_{\bar{\tau}}<Y_{\bar{\sigma}} \leq X_{\tau}^{S}$ ，which contradicts the induction hypothesis．If $\sigma=\bar{\tau} \overline{1}$ the result follows by complementation．

Case 2．$\sigma=\tau 2$ or $\tau \overline{2}$ for some $\tau \in \mathbb{Q}$ ．If $\sigma=\tau 2$ ，then by Lemma 1．9，$X_{\sigma}^{S} \cong \bar{K} \times$ X_{τ}^{S} and，by Lemma 2．2，$N \in A_{\bar{\sigma}}^{\bar{R}}=A_{\sigma}^{\bar{R}}$ ．So $Y_{\bar{\sigma}} \leq X_{\sigma}^{S} \rightarrow Y_{\bar{\sigma}}=\theta A \overline{\bar{\sigma}} \leq \bar{K} \times X_{\tau}^{S}$ which by Lemma 0.8 implies $Y_{\bar{\sigma}} \leq X_{T}^{S}$ ．It follows by Lemma 2．4（b）that $Y_{\bar{T}}<Y_{\bar{\sigma}} \leq X_{T}^{S}$ ， which contradicts the induction hypothesis．The result for $\sigma=\tau \overline{2}$ follows by com－ plementation．

Lemma 2．14．Let S be any infinite set $\varsubsetneqq N$ sucb that $K \varliminf_{T} S$ ．Then for any index sequence σ and $i=1, \overline{1}, 2$ or $\overline{2}, \sigma \in \mathbb{U}$ and $\sigma i \in \mathbb{Q} \rightarrow X_{\sigma}^{S}<X_{\sigma i}^{S}$ ．

Proof．By Lemma 1．9，$X_{\sigma}^{S} \leq X_{\sigma i}^{S}$ so it suffices to prove $X_{\sigma i}^{S} \not X_{\sigma}^{S}$ ．Now by Lemma 2．4（b），$Y_{\bar{\sigma}} \leq Y_{\sigma i}$ and，by Lemma 1．13，$Y_{\sigma i} \leq X_{\sigma i}^{S}$ ．Then $X_{\sigma i}^{S} \leq X_{\sigma}^{S}$ implies $Y_{\bar{\sigma}} \leq Y_{\sigma i} \leq X_{\sigma i}^{S} \leq \bar{X}_{\sigma}^{S}$ ，which contradicts Lemma 2．13．

Lemma 2．15．Let S be any infinite set $\varsubsetneqq N$ such that $K \underline{甘}_{T} S$ ，and let $\sigma \epsilon$ Q．If for $i, j=1, \overline{1}, 2$ or $\overline{2}, \sigma i \in \mathbb{Q}$ and $\sigma_{j} \in \mathbb{Q}$ ，then $i \neq j \rightarrow X_{\sigma i}^{S} \mid X_{\sigma_{j}}^{S}$ ．

Proof. By Lemma 1.13, $Y_{\sigma i} \leq X_{\sigma_{i}}^{S}$, so to show $X_{\sigma_{i}}^{S} \not X_{\sigma_{j}}^{S}$ it suffices to prove $Y_{\sigma_{i}} \nsubseteq X_{\sigma_{j}}^{S}$ for $j \neq i$. But, by Lemma 2.8, $Y_{\sigma_{i}}=\bar{Y}_{\sigma_{j}}=Y_{\overline{\sigma_{j}}}$, and by Lemma 2.13, $Y_{\sigma_{j}} \npreceq X_{\sigma_{j}}^{S}$, which implies $X_{\sigma_{i}}^{S} \npreceq X_{\sigma_{j}}^{S}$. The other half follows by symmetry.

3. Acceptable index functions.

Definition 3.1. Let f be a function, $f: N \rightarrow\{0, \overline{0}, 1, \overline{1}, 2, \overline{2}\}$. For each $i \in N$, let $\sigma(i, f)$ be defined inductively as follows:
(a) $\sigma(0, f)=f(0)$,
(b) $\sigma(\mathrm{i}+1, f)=\sigma(i, f) * f(i+1)$.

If $\sigma(i, f)=\sigma$ then $\bar{\sigma}(i, f)$ denotes $\bar{\sigma}$.
Definition 3.2. Let f be a function, $f: N \rightarrow\{0, \overline{0}, 1, \overline{1}, 2, \overline{2}\} . f$ is an acceptable index function (a.i.f.) if, for every $i \in N, \sigma(i, f) \in \mathcal{G}$.

Note that by this definition f is an a.i.f. only if $f(0) \in\{0, \overline{0}\}$ and $f(i) \epsilon$ $\{1, \overline{1}, 2, \overline{2}\}$ for all $i>0$.

Remark 1. There exist continuum-many acceptable index functions such that $f(0)=0$ and continuum-many such that $f(0)=\overline{0}$. This is easily seen as follows: By Definition 2.1, 0 and $\overline{0}$ are both in \mathcal{Q}, and as noted after Definition 2.1, for each $\sigma \in \mathbb{Q}$ there are exactly two ways to extend σ to a sequence $\sigma i \in \mathbb{Q}$; and there are c paths through an infinite tree which branches twice at each node.

Lemma 3.3. Let f be defined by $f(0)=0, f(2 n+1)=1, f(2 n+2)=\overline{1}$. Then f is an acceptable index function and, for each $m, Z_{m} \cong Y_{\sigma(m, f)}$.

Proof. We show by induction on m that $\sigma(m, f) \in \mathbb{Q}$ and $Z_{m} \cong Y_{\sigma(m, f)}$. For $m=0$, the result holds since $\sigma(0, f)=0 \in \mathbb{Q}$ and $Z_{0} \cong Y_{0}$ by Theorem 2.7. Now assume the result holds for m.

Case $1 . m+1$ is odd. Then $\sigma(m+1, f)=\sigma(m, f) * f(m+1)=\sigma(m, f) * 1$, and $Y_{\sigma(m, f)} \cong Z_{m}$ implies $\sigma(m, f)=0$ or $\tau \bar{l}$ or $\tau 2$ for some $\tau \in \mathbb{Q}$, by Theorem 2.7(a) and (e). Since $l_{\sigma(m, f)}=m+1$ is odd, it follows by Definition 2.1 that $\sigma(m+1, f)$ $=\sigma(m, f) * 1 \in \mathcal{G}$, and by Theorem $2.7(\mathrm{c})$ that $Y_{\sigma(m+1, f)} \cong Z_{m+1}$.

Case 2. $m+1$ is even. Then $\sigma(m+1, f)=\sigma(m, f) * f(m+1)=\sigma(m, f) * \overline{1}$, and $Y_{\sigma(m, f)} \cong Z_{m}$ implies $\sigma(m, f)=r 1$ or $r 2$ for some $\tau \in \mathbb{Q}$, by Theorem 2.7(c). Since $l_{\sigma(m, f)}=m+1$ is even, it follows by Definition 2.1 that $\sigma(m+1, f)=$ $\sigma(m, f) * \overline{1} \in \mathcal{G}$, and by Theorem 2.7(e) that $Y_{\sigma(m+1, f)} \cong Z_{m+1}$.

4. Discrete ω-sequences.

Definition 4.1. Let $\left\{A_{n}\right\}_{n \geq 0}$ be a sequence of classes of r.e. sets. The sequence $\left\{\theta A_{n}\right\}_{n \geq 0}$ is a discrete ω-sequence of index sets iff
(a) $\theta A_{n}<\theta A_{n+1}$ for each n;
(b) for any class B of r.e. sets and each $n, \theta A_{n} \leq \theta B \leq \theta A_{n+1}$ implies $\theta B \cong \theta A_{n}$ or $\theta B \cong \theta A_{n+1}$.

Definition 4.2. A discrete ω-sequence of 1-degrees denotes the sequence of 1 -degrees of a discrete ω-sequence of index sets.

Evidently two different sequences of sets may determine the same sequence of 1 -degrees.

Definition 4.3. If S is a set and $/$ an acceptable index function, the sequence $\left\{\theta A_{\sigma_{(n, f)}}\right\}_{n \geq 0}$ is the S-sequence of index sets determined by f. The corresponding sequence of 1 -degrees is the S-sequence of 1 -degrees determined by f.

Lemma 4.4. The 1-degrees of Z_{0} and $\overline{Z_{0}}$ are each at the bottom of c discrete ω-sequences of 1-degrees, each contained in the bounded truth-table degree of Z_{0}.

Proof. Let $\left\{X_{m}\right\}_{m \geq 0}$ be any sequence such that $X_{0}=Z_{0}, X_{m}=Z_{m}$ or \bar{Z}_{m} for each $m>0$. Then by Lemmas 0.4 and 0.6 , each such sequence is a discrete ω-sequence. Since $Z_{m} \neq \bar{Z}_{m}$, it follows as in Remark 1 that there are c such sequences and that distinct sequences determine distinct sequences of degrees; similarly if $X_{0}=\bar{Z}_{0}$. That the sequences are contained in the btt-degree of Z_{0} follows from Lemma 0.3 and the fact that $Z_{0}=\bar{K}$, as in the proof of Lemma 1.10.

Lemma 4.5. Let $X=Z_{1}$ or \bar{Z}_{1}. Then

is an initial segment of the partial ordering of index sets under one-one reducibility.

Proof, Let B be any class of r.e. sets. It is well known that $\varnothing, N<K, \bar{K}$, which together with Lemma 0.4 , implies $\varnothing, N<Z_{0}, \bar{Z}_{0}<X$. Assume B is a class of r.e. sets such that $\theta B \leq X$. We will show that $\theta B \cong \varnothing, N, Z_{0}$ or $\overline{Z_{0}}$.

Case 1. $B=\varnothing$ or $\bar{B}=\varnothing$. Then $\theta B=\varnothing$ or $\theta B=N$, respectively.
Case 2. $B \neq \varnothing$ and $\bar{B} \neq \varnothing$. If $\varnothing \in B$, then by Lemma $0.1, \bar{K}=Z_{0} \leq \theta B \leq X$. So by Lemma $0.6, \theta B \cong Z_{0}$ or $\theta B \cong X$. If $\varnothing \notin B$, then by Lemma $0.1, \bar{K}=Z_{0} \leq$ $\theta \bar{B} \leq \bar{X}$ so, by Lemma $0.6, \theta \bar{B} \cong Z_{0}$ or $\theta \bar{B} \cong \bar{X}$. It follows that $\theta B \cong \overline{Z_{0}}$ or $\theta B \cong X$, which completes the proof.

Remark 2. Lemma 4.5 cannot be strengthened by replacing Z_{1} by Z_{m} for $m>1$; i.e., we can prove that, for all $m>1, Z_{m}$ has a predecessor θB such that $\theta B \nsubseteq Z_{k}$ or \bar{Z}_{k} for any $k<m$. The proof will appear elsewhere [7].

Theorem 4.6. If S is co-r.e., then the 1-degrees of θA_{0}^{S} and $\theta \bar{A}_{0}^{S}$ are at the bottom of c discrete ω-sequences of 1 -degrees. If $S \neq N$, these sequences are all contained in the bounded trutb-table degree of θA_{0}^{S}.

Proof. Case 1. $S \neq N$. Then $\theta \bar{A}_{0}^{S}=\left\{x \mid w_{x} \cap \bar{S} \neq \varnothing\right\}$ is r.e. and $N \in \theta \bar{A}_{0}^{S}$, so $\theta \bar{A}_{0}^{S} \leq K$ and, by Lemma $0.1, K \leq \theta \bar{A}_{0}^{S}$. So $\theta \bar{A}_{0}^{S} \cong K=\bar{Z}_{0}$ and $\theta A_{0}^{S} \cong Z_{0}$. The conclusion then follows from Lemma 4.4.

Case 2. $S=N$. Then $\theta A_{0}^{S}=N$ and $\theta \bar{A}_{0}^{S}=\varnothing$. Let $\left\{X_{m}\right\}_{m \geq 0}$ be any sequence such that $X_{0}=N, X_{m+1}=Z_{m}$ or \bar{Z}_{m} for all m. As in the proof of Lemma 4.4, there are c such sequences, and similarly if $X_{0}=\varnothing$. These sequences are discrete, by Lemmas 4.4 and 4.5, and determine distinct sequences of degrees since $X_{m} \cong \bar{X}_{m}$, for all m.

Theorem 4.7. Let S be any infinite set $\varsubsetneqq N$ such that $K{\underset{甘}{*}}_{T}$. If f is any acceptable index function, the S-sequence of index sets determined by f is a discrete ω-sequence of index sets, all contained in the bounded truth-table degree of θA_{0}^{S}.

Proof. Let θA_{n} denote $\theta A_{\sigma(n, f)}^{S}$. By Lemma 1.10, each θA_{n} is in the btt-degree of θA_{0}^{S}. By Lemma 2.14, $\theta A_{n}=X_{\sigma(n, f)}^{S}<X_{\sigma(n+1, f)}^{S}=\theta A_{n+1}^{n}$, since $\sigma(n+1, f)=\sigma(n, f) * i$ and $\sigma(n, f), \sigma(n+1, f) \in \mathbb{Q}$. It remains to show the sequence is discrete. Assume $\theta A_{n} \leq \theta B \leq \theta A_{n+1}$.

Case 1. $f(n+1)=1$. Then $\sigma(n+1, f)=\sigma(n, f) * 1$, so by Lemma 1.9, $\theta A_{n+1}=$ $X_{\sigma(n+1, f)}^{S} \cong K \times X_{\sigma(n, f)}^{S}=K \times \theta A_{n}$. But by Lemma 0.9, $\theta A_{n} \leq \theta B \leq \theta A_{n+1} \cong K \times$ θA_{n} implies $\theta B \cong \theta A_{n}$ or $\theta B \cong \theta A_{n+1}$.

Case 2. $f(n+1)=2$. Then $\sigma(n+1, f)=\sigma(n, f) * 2$ so by Lemma 1.9, $\theta A_{n+1}=$ $X_{\sigma(n+1, f)}^{S} \cong \bar{K} \times X_{\sigma(n, f)}^{S}=\bar{K} \times \theta A_{n}$. Then by Lemma 0.10, $\theta A_{n} \leq \theta B \leq \theta A_{n+1} \cong$ $\bar{K} \times \theta A_{n}$ implies $\theta B \cong \theta A_{n}$ or $\theta B \cong \theta A_{n+1}$.

Case 3. $f(n+1)=\overline{1}$ or $\overline{2}$. Then $\sigma(n+1, f)=\sigma(n, f) * i$ where $i=1$ or 2 , and $\theta A_{n} \leq \theta B \leq \theta A_{n+1}$ implies $\theta \bar{A}_{n} \leq \theta \bar{B} \leq \theta \bar{A}_{n+1}$ where $\theta \bar{A}_{n}=X_{\bar{\sigma}(n, f)}$ and $\theta \bar{A}_{n+1}=$ $X_{\bar{\sigma}(n+1, f)}=X_{\bar{\sigma}(n, f) * i}$, where $i=1$ or 2 . By Cases 1 and 2 , replacing σ by $\bar{\sigma}$ (since $\sigma \in\left(\mathcal{Q} \leftrightarrow \bar{\sigma} \in \mathscr{\mathcal { C }}\right.$), $\theta \bar{A}_{n} \leq \theta \bar{B} \leq \theta \bar{A}_{n+1}$ implies $\theta \bar{B} \cong \theta \bar{A}_{n}$ or $\theta \bar{B} \cong \theta A_{n+1}$. The result follows by complementation.

Lemma 4.8. Let S be any infinite set $\varsubsetneqq N$ such that $K \leq_{T} S$. If f and g are acceptable index functions which determine the same S-sequence of 1 -degrees, then $f=g$.

Proof. Assume $f \neq g$. Then $f(k) \neq g(k)$ for some $k \in N$. Let n be the least such k. It will suffice to show that $\theta A_{\sigma(n, f)}^{S} \neq \theta A_{\sigma(n, g)}^{S}$.

Case 1. $n=0$. Since f, g are a.i.f.'s, $f(0) \in\{0, \overline{0}\}$ and $g(0) \in\{0, \overline{0}\}$; since $f(0) \neq g(0)$, assume $f(0)=0$ and $g(0)=\overline{0}$. Then, $\theta A_{\sigma(0, f)}^{S}=X_{0}^{S}$ and $\theta A_{\sigma(0, g)}^{S}=$ $X_{\overline{0}}^{S}=\overline{X_{0}^{S}}$, and, by Lemma 1.11, $X_{0}^{S} \neq X_{0}^{S}$.

Case 2. $n=m+1$ for some $m \geq 0$. Then since n is the least k such that $f(k) \neq g(k), \sigma(m, f)=\sigma(m, g)$; let τ denote this common index sequence. Then $\sigma(n, f)=\sigma(m, f) * f(m+1)=\pi i$ and $\sigma(n, g)=\sigma(m, g) * g(m+1)=\tau j$ where $i \neq j$ by hypothesis. Since f, g are a.i.f.'s, $\pi i \in \mathbb{Q}$ and $\pi j \in \mathbb{Q}$. Then by Lemma 2.15, $\theta A_{\sigma(n, f)}=X_{\tau i}^{S} \not \equiv X_{\tau j}^{S}=\theta A_{\sigma(n, g)}^{S}$.

Theorem 4.9. Let S be any set such that $K \underline{K}_{T} S$. Then the 1-degrees of θA_{0}^{S} and $\overline{\theta A_{0}^{S}}$ are at the bottom of c discrete ω-sequences of 1 degrees. If $S \neq$ N, these sequences are contained in the bounded truth-table degree of θA_{0}^{S}.

Proof. Case 1. S is finite or $S=N$. Then S is co-r.e., so the result follows from Theorem 4.6.

Case $2 . S$ is infinite, $S \varsubsetneqq N$. By Remark 1, there are c acceptable index functions such that $f(0)=0$, and c such that $f(0)=\overline{0}$. By Lemma 4.8, these functions determine different S-sequences of 1 -degrees. By Theorem 4.7, these sequences are discrete are contained in the btt-degree of θA_{0}^{S}.

Definition 4.10. For any set P, let
(a) $P^{\prime}=\left\{x \mid x \in W_{x}^{P}\right\}$,
(b) $P_{0}=\left\{\langle u, v\rangle \mid D_{u} \subseteq P\right.$ and $\left.D_{v} \subseteq \bar{P}\right\}$,
(c) $P^{*}=X \overline{P_{0}^{0}}=\left\{x \mid W_{x} \cap P_{0} \neq \varnothing\right\}$.

Lemma 4.11. For all sets $P, P \leq P_{0}$ and $P_{0} \leq_{t t} P$.
Proof. Let $D_{0}=\varnothing$ and let $g(n)$ be a recursive function such that $D_{g(n)}=\{n\}$ for each n. Then $P \leq P_{0}$ via $b(n)=\langle g(n), 0\rangle$. It is easily seen that $P_{0} \leq_{\mathrm{tt}} P$ via (unbounded) truth-tables.

Lemma 4.12. For all sets $P, P^{\prime} \cong P^{*}$.
Proof. P^{*} is r.e. in P, which implies $P^{*} \leq P^{\prime}$. Let $g(x)$ be a recursive function defined by $W_{g(x)}=\left\{(u, v\rangle \mid(\exists y)\left(\langle x, y, u, v\rangle \in W_{\rho(x)}\right)\right\}$ where $\rho(x)$ is as in [6, p. 132]. It is easily verified that $P^{\prime} \leq P^{*}$ via g.

Lemma 4.13. Let a be any Turing degree such that $0^{\prime} \leq a$. Then there exists a set P such that
(a) P is not r.e,
(b) $K \underline{K}_{T} P$,
(c) $P^{\prime} \in \mathbf{a}$.

Proof. Assume $0^{\prime} \leq a$.
Case $1.0^{\prime}<a$. By Friedberg's Theorem [6, Corollary 13-IX(a)], there exists b such that $b^{\prime}=b \cup 0^{\prime}=a$. Clearly $0^{\prime} \npreceq b$, while $b \leq 0^{\prime}$ implies $a=0^{\prime}$. So $b \mid 0^{\prime}$, and any $P \in \mathbf{b}$ will satisfy the conditions of the lemma.

Case 2. $0^{\prime}=\mathrm{a}$. It is a well-known fact (proved by Friedberg) that there exists d such that $\mathbf{0}<\mathrm{d}$ and $\mathrm{d}^{\prime}=\mathbf{0}^{\prime}$; any such d contains a non-r.e. set P, and for such a $P, K{\underset{甘}{T}}^{P}$.

Lemma 4.14. Let S be any infinite set such that \bar{S} is not r.e. and $K 太_{T} S$, and let f be any acceptable index function. Then the S-sequence of 1-degrees determined by f does not contain the 1-degree of Z_{m} or \bar{Z}_{m} for any $m \geq 0$.

Proof. It must be shown that for all $m, n, X_{\sigma(n, f)}^{S} \neq Z_{m}$ or \bar{Z}_{m}. Since by Theorem 2.7, each $Z_{m}, \bar{Z}_{m} \cong Y_{\tau}$ for some $\tau \in \mathcal{Q}$, it suffices to show that $X_{\sigma}^{S} \not \equiv$ Y_{τ} for any $\sigma, \tau \in \mathbb{Q}$.

Case 1. $l_{\sigma}<l_{\tau}$. Then by Lemma 2.4, $Y_{\bar{\sigma}}<Y_{\tau}$, so $X_{\sigma}^{S} \cong Y_{\tau}$ implies $Y_{\bar{\sigma}}<X_{\sigma}^{S}$, contradicting Lemma 2.13.

Case 2. $l_{\sigma}>l_{\tau}$. Then by Lemma 2.4, $Y_{\tau}<Y_{\sigma}$, and by Lemma 2.11, $Y_{\sigma}<X_{\sigma}^{S}$. So $Y_{\tau}<X_{\sigma}^{S}$ which implies $X_{\sigma}^{S} \neq Y_{\tau}$.

Case 3. $l_{\sigma}=l_{\tau}$. Assume $X_{\sigma}^{S} \cong Y_{\tau}$. By Lemma 2.4(a), $Y_{\tau} \cong Z_{l_{\tau-1}}$ or $\bar{Z}_{l_{T-1}}$, so $X_{\sigma}^{S} \cong Z_{l_{\tau-1}}$ or $\bar{Z}_{l_{\sigma-1}}$. Also by Lemma 2.4(a), $Y_{\sigma} \cong Z_{l_{\sigma-1}}$ or $\bar{Z}_{l_{\sigma-1}}$ and, since $l_{\sigma}=l_{\tau}, Z_{l_{\sigma-1}}=Z_{l_{\tau-1}}$. It follows that $X_{\sigma}^{S} \cong Y_{\sigma}$ or \bar{Y}_{σ}. But, by Lemma 2.11, $Y_{\sigma}<X_{\sigma}^{S}$ and, by Lemma 2.13, $\bar{Y}_{\sigma}=Y_{\bar{\sigma}} \nless X_{\sigma}^{S}$. Thus either way we get a contradiction.

Theorem 4.15. Let a be any Turing degree such that $\mathbf{0}^{\prime} \leq \mathbf{a}$. Then a contains c discrete ω-sequence of 1-degrees, none of whose elements are 1 -degrees of Z_{m} or \bar{Z}_{m} for any m.

Proof. Assume $\mathbf{a} \geq \mathbf{0}^{\prime}$. By Lemma 4.13, there is a set P such that P is not r.e., $K \leq_{T} P$ and $P^{\prime} \in$ a. Now by Lemma 4.12, $P^{*}=X_{-}^{\overline{P_{0}}} \cong P^{\prime}$, so $X_{0}^{\overline{P_{0}}} \in$ a. By Lemma 4.11, $P \leq P_{0}$ and $P_{0} \leq_{T} P$. It follows that P not r.e. $\rightarrow P_{0}$ not r.e., and that $K \underline{\nless}_{T} P \rightarrow K \leq_{T} P_{0}$. The bounded truth-table degree of $\theta \overline{A_{0}}$ is then contained in a, so that by Theorem 4.9, a contains c discrete ω-sequences of 1degrees and by Lemma 4.14, these ω-sequences do not contain the 1 -degree of Z_{m} or \bar{Z}_{m} for any m.

In [3] it was conjectured that for each $m \geq 0$, there exists a class A with $Z_{m}<\theta A$ and $\bar{Z}_{m} \nless \theta A$. The present technique yields the following stronger result:

Theorem 4.16. Every Turing degree $a \geq 0^{\prime}$ contains a discrete ω-sequence $\left\{\theta A_{m}\right\}_{m \geq 0}$ of index sets such that, for each $m, Z_{m}<\theta A_{m}$ and $\overline{Z_{m}} \nless \theta A_{m}$.

Proof. Assume $a \geq 0^{\prime}$, and let P_{0} be as in Theorem 4.15, i.e., P_{0} is not r.e., $K \underline{\not}_{T} P_{0}$ and $X_{-}^{\frac{P_{0}}{0}} \epsilon$ a. By Lemma 3.4, there exists an acceptable index
function f such that, for all $m \geq 0, Z_{m} \cong Y_{\sigma(m, f)}$. Let $A_{m}=A_{\sigma(m, f)}^{P_{0}}$. Then by Theorem 4.7, $\left\{\theta A_{m}\right\}_{m \geq 0}$ is a discrete ω-sequence of index sets contained in \mathbf{a}; for each $m, Z_{m} \cong Y_{\sigma(m, f)}<\theta A_{\sigma(m, f)}^{\overline{P_{0}}}=\theta A_{m}$, by Lemma 2.11; and $\bar{Z}_{m} \cong$
$Y_{\bar{\sigma}(m, f)} \geqq \theta A_{\sigma_{(m, f)}}=\theta A_{m}$, by Lemma 2.13.

REFERENCES

1. J. C. E. Dekker and J. Myhill, Some theorems on classes of recursively enumerable sets, Trans. Amer. Math. Soc. 89 (1958), 25-59. MR 20 \#3780.
2. Y. L. Eršov, A hierarchy of sets. I, Algebra i Logika 7 (1968), 47-74=Algebra and Logic 7 (1968), 25-43. MR 42 \#5794.
3. L. Hay, A discrete chain of degrees of index sets, J. Symbolic Logic 37 (1972), 139-149.
4. _._ Index sets of finite classes of recursively enumerable sets, J. Symbolic Logic 34 (1969), 39-44. MR 40 \#4103.
5. L. Hay, A non-initial segment of index sets (to appear).
6. J. Myhill, Creative sets, Math. Logik Grundlagen Math. i (1955), 97-108. MR 17, 118.
7. H. Rogers, Jr., Theory of recursive functions and effective computability, McGrawHill, New York, 1967. MR 37 \#61.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT CHICAGO CIRCLE, CHICAGO, ILLINOIS 60680

