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ABSTRACT. We define a discrete «-sequence of index sets to be a sequence

\6A \ n of index sets of classes of recursively enumerable sets, such that for

each  zz, &A      . is an immediate successor of  ÔA    in the partial order of degrees

of index sets under one-one reducibility. The main result of this paper is that if
SS is any set to which the complete set K is not Turing-reducible, and A     is the

Sclass of recursively enumerable subsets of S, then  8A    is at the bottom of c dis-

crete   «-sequences. It follows that every complete Turing degree contains c dis-

crete «-sequences.

Introduction. Let \W   j   a „ be a standard enumeration of all recursively enu-

merable (r.e.) sets. If A  is any collection of r.e. sets, the index set of A  is

{x\ W   £ A\ and is denoted by 8A. If {A   \      n  is a sequence of classes of r.e.

sets, call the sequence  \8A   )   ^ Q a discrete co-sequence of index sets if

(a) 8A    <, 8A     , for each 72, and
7!        1 77.+1

(b) for every class  B  of r.e. sets, dA^ <, 8B <, 8A implies 8B = ÖA^ or
8B^8A     ,.

7Z+1

That discrete «-sequences exist was proved in [3]; it was shown there that

if \Z   \    > 0 is the sequence of index sets of nonempty finite classes of finite

sets (classified in [4] and, independently, in [2]), then \Z   \    >Q is a discrete

<y-sequence of index sets. Moreover, it easily follows from the results in [3] that

the c nonisomorphic sequences  \Y    \    . n satisfying  Y    = Z     or Z      for each m
r n 77!   77!  ä U '        ° 77! 77! 77!

are discrete &)-sequences of index sets. In this paper it is shown that discrete

tu-séquences of index sets occur in great profusion. The fact that the sets Z     are

index sets of finite classes of finite sets appears not to be relevant; what gener-

alizes is the fact that  ZQ = 8\0\ = |x| W    C S\, where  5  is any co-r.e. set. The

main results are as follows: (l) if  K ¿_ S (where  K denotes Post's complete set)

and A    = |W  | W   CS\, then 8A    and 8A     ate at the bottom of c discrete tu-se-
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294 L. HAY

quences of index sets; (2) every Turing degree a > 0  contains c  discrete «-se-

quences; (3) 0  contains c  discrete «-sequences containing no sets recursively

isomorphic to Z     or Z     for any 772. We also prove a conjecture made in [3] thatx m m ' * '

there exist sequences Ï0^4   Î    ^Q satisfying Z    <   8A     and Z    ¿j ÖA   , for each

772 > 0.

Notation. The terminology and notation is that of [6]. K denotes the complete

set = \x\ x £ W }. N denotes the set of natural numbers. For X, Y C N, X x Y de-

notes the recursive Cartesian product, via an effective pairing function (x, y)

whose inverses are denoted by 77,, 77  • thus  z = (77.(z), 77 ..(z)) .ID   !      „   is the'      l       ¿ 1       '     2 n n ¿ U
canonical indexing of finite subsets of N, with Dn = 0. For X, Y C N, X < Y

means X  is one-one reducible to Y. If X < Y  and  Y < X, we invoke Myhill's iso-

morphism theorem [5] and write  X S? Y.  X <T Y  means X  is Turing reducible to

Y. X I Y  means X and Y  are 1-1 incomparable.

0. Required previous results. We list here for more convenient reference some

results of [3l which will be needed. The proofs can be found in [3J. In that paper,

for each m > 0, f   : Nm —• N denotes a recursive one-one onto map with recursive
1 ' m

inverses denoted by xm, 0 < i < m; i.e., x = fm(xm,... , x™_A. For m = 1, /j   is

the identity and xQ = x.

Lemma 0.1 (Lemma 10 of [3]). // A  is nonempty, then

(a) N £ A— K <8A,
(b)0eA ^K<8A.

Definition 0.2 (Definitions 1, 2 of [3]). For each x, let

k   ix) = cardinality \i \ xm+    £ K\.
m ' 1

For each 72 > 0, let

Z.,    = ixl k.  ix) is even!,       Z,        = |x| k       Ax) is odd!.2n 2n ¿n+l '      ¿n+l

Note that since x = /j(x), x £ ZQ +-* x i K, so that  ZQ = K.

Lemma 0.3 (Theorem 2 of [3]). For all n > 0,

W f 2„+1 * « x Z2n,
WZ2„+2=^Z2n + r

Lemma 0.4 (Theorem 3(a), (b), (c) of [3]). For all m > 0,

(a) Z    <Z      ,, Z    <Z     .,m m +1' _m m+l'

(b) Z      < Z       , , Z      < Z       . ,v m m+l'     m m + l'

(c)Z_|Z_.
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DISCRETE «-SEQUENCES OF INDEX SETS 295

Lemma 0.5 (From Theorem 5 of [3]). Por all n > 0,
(a) if 8A at Zn then N4A,

(b) if 8A «Z2n then 04A,
(c) if 8A atZ.     ,   then0£ A.' 2m + 1 ^

Lemma 0.6 (Theorem 3(d), (e) of [3]). For all m>0,
(a) there is no A  satisfying Z    < 8A < Z      ,   or Z    < 8A < Z     ,,

:J        °    _m 77!+ 1 77! _772 +1 '

(b) there  is no A  satisfying Z    < 8A < Z      ,   or Z    < 8A < Z
''        ° 77! 777+1 77! 77! +1

Lemma 0.7 (Lemma 13 of [3]). If 8A < K x 8B  and 0£ A, then  8A <8B.

Lemma 0.8 (Lemma 14 of [3]). If 8A <K X8B and N £ A, then 8A < 8B.

Lemma 0.9 (Lemma 15 of [3]). If 8A < 8B < K x 8A, then dB Ot 8A or dB SK
Kx8A.

Lemma 0.10 (Lemma 16 of [3]). If 8A <8B <Kx 8A, then 8B at 8A or 8B Si
KxdA.

Lemma 0.11 (Lemma 9 of [3]). For all A, 8A £ 8A.

1. Index sequences.

Definition 1.1. Let ¡n = {0, 1, ..., «}, 72 > 0, / = {0, Ü, 1, T, 2, 2\ where Ô,
1, 2 are formal symbols introduced for notational purposes. An index sequence a

is any function a : I   —> /   such that

(a) a(0) £ |0, 0|,"

(b)o-(z)e{l,ï, 2, 2\ tot 0< z<72.

If a is an index sequence and domain a = /  , a has length 72 + 1, denoted by

/cr. In the following, o will be freely identified with the concatenation cr(0) * ct(1)

* ... *ff(/cr_ l) and c* z will be abbreviated to ai, i = 1, 1, 2, 2. In this nota-

tion, it is clear that 0, 0 are index sequences, and that ai is an index sequence

*-* a is an index sequence and  z = 1, 1, 2, 2.

Definition 1.2. If a is an index sequence, its complementary sequence ä is
defined inductively as follows:

(a) 0, 0 are complementary,

(b) crl and crl  are complementary,

(c) o2 and o2 ate complementary.

It is easily seen by induction on Ia that â = a tot all index sequences a.

Definition 1.3. Suppose S is an infinite subset of N, S = \s0, s . ■ . \ in

any order, s . 4 s . fot i 4 j- For each index sequence a, define a corresponding

class Aa of r.e. sets inductively on length a, as follows:
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296 L. HAY

(a)A^ = ÍH^| WxCS¡,

<b)4 = 4.
(c) if a has length i' + 1,  z> O,

A*   =\W  \ s. £W    and W    e A*!,

A*    ={W  | s.¿ W    and W    £ ASA.CT2 x'      i x x o-

Note that A^j, A*2 C A^ for all a, S.

Remark. The classes A a ate defined relative to a given enumeration of S.

The notation makes no explicit reference to the enumeration, since it will shortly

be shown that the index sets 8A a corresponding to a given a are unique up to

recursive isomorphism.

Lemma 1.4. Let  A  be any class of r.e. sets, and let s £ N. Then

(a) if A j = {x| s £ Wx  and W % £ A\ then 8A^<Kx8A,

(b) if A2 = [x| se'Wx and VI xe A\ then 8A2<KxdA.

Proof. Let g{x) be a recursive function which computes the index of an r.e.

set generated according to the following instructions:

Wg(x) = 0     iis</Wx,

= N     ii s £W  .
X

Then g(x) e K <-> s e Wx. Let h(x) = (g(x), x). Then

x £ 8A j  «-» s 6 Wx and  U^ £ A

«-» g(x) £ K and x 6 0A

<-*bix)   £ Kx8A,
and

x e 8A , +-+ s ¿ W    and W    e A2 x x

«-> g(x) e K and x £ 8A

«-» Mx) e K x 9A.

So 0A , < K x 0A  and ÖA 2 < K x ÖA, both via h. (As usual, we need not bother
to make h  one-one, since all sets in question are index sets and thus cylinders

[6].)
Lemma 1.5. Let S be any infinite subset of N, S = [sQ, s p • • • ¡. Let SQ =

0, S. = \s0, s ,.. .s . \ for i >1. If o is an index sequence, la= i + 1, i > 0

ízrzti T  z's aray finite subset of S - S., then
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W    eA^++W    UTeA^4--W   - T £ AS.x cr x cr x a

Proof. By induction on z. It suffices to prove the result for the cases when

a = 0, 7l or r2. The complementary cases follow by symmetry since, e.g., W   £

AS- <-> W   4 AS- = A-  .If i = 0 then /_ = 1, so a = 0 and T is any finite sub-
ri *       r l        n " '

set of 5 - SQ = S. Since ASQ = \W% \ W% C S\, it is clear that

W   eAsn-*W   C5*-»W   UTCS->»   -TC5.x 0 x— x — x —

Now assume the lemma holds for all r of length i + 1  and let la- i' + 2, T C

S - S.    ; then a = rl  or 72 where r has length z + 1. But S. C S.  , implies T C
S - S.   . C S - S. so, by the induction hypothesis,

W    £AST<^W    uTeAf<-»"/   -T£AS.x T x T x cr

Also, s  £ S.   , implies s . 4- T, so
'      ! ! +i r ! '

s. £W   MS.eif    u T «-+ s . e W   -T.
! X ! X ! X

These two sets of equivalences imply

st£W    and W    £AS *->s. £W    U T and W   - T £ AS

Hs-elf   - T and W   -Te A5
! X XT

and

s.¿W    and W    £AST<-*s.4W    U T and W   uTeAS¡x x T i x x T

*->s.4 W   - T and W   -T £ AS.
IX X T

Now if ct = rl, A* = jxl s.e "/    and W   £ ASA while if a = r2, A* = Sx I s. 4 W»      er     '    i     j x x 7' '      & '     t        x
and W   6 Ar¡. In either case, it follows that

Wx eAí~Wx UT £ASa~Wx-T £ASa.

Lemma 1.6. // S  is any infinite set and a any index sequence of length  i >

0, then

Kx8ASa<8Alv

Proof. A „, - \W   I self    and W   £ A A. Let i be a recursive functionor x '     z x x cr
which computes the index of an r.e. set generated according to the following in-

structions:

Let
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Then

Wh{x)-0 iVnxix)/K,

hix) £ 8AÍ, ♦-» s.eW..  , and  W,.  , e A*tri z o(x) o(x) cr

77,(x) £ K and WLI  , = W„  ,  . u is.i £ AÍ.V h(x) 772(x)

Since  s . £ S — S     Lemma 1.5 implies thatz z ' r

W„ , , u \s.\ eAt +->W„ , , £/!„;772(x)   ^ z cr 77   (x) cr'

so hix) £ 8ASal -* rr^ix) e K  and  W     (x) £ <4^> and  K x ö/1a< OAÍi via ¿-

Lemma 1.7. // S  z's öTzy infinite set and a any index sequence of length  i >

0, then  K x9ASa<8ASa2.

Proof. A   ~ = \W   I s . 4 W    and VI   £ A A. Let h  be a recursive function which<T2 x '      z x .     x cr'

computes the index of an r.e. set generated according to the following instruc-

tions:

W<,Z    , = »'„,    ,-is.l      if   77 Ax)   /   K,h(x) 772(x) i I

= N ii  772(x)   £  K.

Then

hix) £8AS(T2~st/WhM and Wh(x) £ ASa

»Tt^tK and Wh(x) = Wn2M-\sUASa

„tt^x) i K and V/n (x) eA*,

using Lemma 1.5 as in the previous lemma. So  K x 8A a < 6A a2 via h.

Definition 1.8. If S is any infinite set and a any index sequence, let

xsa =öa£,     x*=öa* =öa* = x*.

Lemma 1.9. For all infinite sets  S and all index sequences a,

(&)Xsal ^KxXSa,

(b)XSa2^ KxXSa,

(c)X^<X^., i»l,ï,2,2.
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Proof. By the definitions of A al  and Acr2, Lemma 1.4 implies Xal < K x Xa

and Xa2 < K x X^ That  K x XCT< Xa.   and  K x XCT< X       is given by Lemmas 1.6

and 1.7. It follows immediately that Xa< Xai if i = 1, 2. For i = 1, 2, X     = X^-,

where ¿   -1,2 so X- < X-— which implies  XCT= X- < X^-.

Remark. Lemma 1.9 justifies the claim made after Definition 1.3 that the sets

8Aa obtained from different enumerations of the set 5 are recursively isomorphic.

For la~ 1  the sets 8Aa depend only on S, and for la> 1, the isomorphism is

easily obtained by induction, using Lemma 1.9 (a) and (b).

Lemma 1.10. Let S be any infinite set C N. If a is any index sequence, then

Xa is in the bounded truth-table degree of XQ = 8AQ.

Proof. By induction on  la. If a = 0  or  0,  Xa= XQ  or X^, so  X a =     X  .

Assume la= n + I  and that the result holds for all r such that ¡T < n. Then by

Definition 1.1, a = ri  for some  1 = 1,  1, 2 or 2  and  r such that  X„ =       X„. So it' '      btt      u
c Ç

suffices to show that X    =      X    .r    btt    7¡

Case 1. i = 1  or  2. By Lemma 1.9, XTi ~ K x Xf  or K x Xf. In either case,

X   < X      so X    <      X    . To show X     <      X     it suffices to have  K, K <      X7—7! 7  —btt       '! 7i   —btt        ' '        —btt       r

But by Lemma 0.1, since S and thus each A^  is nontrivial, K < Xf   or K <Xf. In

either case,  K, K <u    X^  and X^. <      xf.'      '      —btt     r Ti —btt     r
Case 2. z = T or 2. Then xf. = Xs-  where F = 1  or 2, so by Case 1, Xs—

= ,   . X_ = X     So by complementation, XT. =,      Xbtt     r ' y r '7¡    btt     '

Delinition 1.11. Let  R  be any (fixed) nonempty r.e. set such that  R  is in-

finite. The sets  X^   will be denoted by  Ya.

Lemma 1.12. YQ <K.

Proof. K0 = {x| Wx C R\, so YQ = \x \ W% O R / 0\ which is r.e., since R  is

assumed to be r.e. So   V"0 < K and   YQ < K.

Lemma 1.13. Let S  be any infinite set ÇZ N. Then
(a) K < Xs

(b) for all index sequences a,  Ya<X

Proof, (a) AS0 = \Wx \ ^ C S\ so0e ASQ and N £ ASQ, so by Lemma 0.1, K <

(b) By induction on Ia. By Lemma 1-12 and part (a), YQ < XQ and, comple-

menting, Y - = Yq < X-. Now assume the lemma holds for all t of length k > 0

and let lT = k + 1. Then a = rl, r2, rl  or 72 for some  r with lT = k. By the in-
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s s — —       sduction hypothesis, Y r < X f which implies  K x YT<KxXT  and  K x YT<Kx Xf.

If a= ri, then by Lemma 1.9(a), Ya St K x Yr < K x X* C* x£; if a = r2, then by

Lemma 1.9(b), Ya S K x Kr < K x x\ = X*. So if o = ri  or r2,  VCT<X*. If cr = rï

or r2, the result follows by complementation, since ä = TI  or T2 where  /_ = k, so

that  Y- < Xa which implies  Ya<Xa.
Remark. Lemma 1.13 justifies the lack of reference to R  in the notation Y

since if R   is any other nonempty r.e. set with R   infinite, it follows that  Y    <

Xa  = Ya   and  Ya < Xa = Ya . Thus for every index sequence a,  Ya = Ya , so

Ya is independent of the choice of R.

2. Acceptable index sequences.

Definition 2.1. The subset Cl of acceptable  index sequences is defined in-

ductively as follows.

(a) 0, ffefi.
(b) if la is odd,

al eCt<-><7=0 or a

a2 £ â <-» a = 0 or a

al £ Q *-+ a = 0 ot a

a2  eo<-»a=0 or o

(c) if Ia is even,

al £ U «-» a = rl or r2

o2 £ Ct *-» a = rl or r2

al £ Ö <-> a = rl or r2

a2 e a <-► a = rl or r2

It is clear that if <J £ Û,

/CT odd —. one of a, ä must have form

0, rïl, r21, rÎ2  or r22    for some r e (3,

la even —► one of a, â must have form

01, 02, rïl, r21, rl2  or r22     for some r e (3.

We note for later use that for each a £ Ct, there are exactly two ways to extend

cr to a sequence cri £ (l.

Lemma 2.2. Let  S be any infinite set C N  and let a £ Cf. Then
(a) if I a z's ozizi,

= rl or r2    for some r £ d,

= rl or r2  for some  r e Cl,

= rl or  r2   for some r £ Cl,

= rl or r2  for some  r £ (j,

for some r e Cl,

for some r e Cl,

for some r e Cl,

for some  r £ Cf.
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a = 0  or rl   or r2  —» 0 £ Aa and N 4 ASa,

a = 0  or rl  or rl  —> 0 4 A    and N £ A   .

(b) if la is even,

or = rl   or rl   — 0 4 A$a and N 4 ASa,

a = rl   or r2  -> 0eASa and N £ASa.

Proof. If a = 0, A* = \Wx | M^ C S\, so clearly 0 6 A*  and N ̂  A* . If cr = Ö,

A(7 = A0, so 04 Aa and N £ Aa. Now assume the lemma holds for all r such that

1 <L<1„.—    7 cr

Case 1. /   = 2z + 2.
Subcase 1.1. a = rl  for some  r e u. Then by Definition 2.1,  7=0 or À1  or

À2 for some Àe Cf. By the induction hypothesis, since  I  = 2z + 1, N 4Af. By
Definition 1.3, A^.= {Wx | s2.e Wx  and Wx e A*j. Clearly 0¿ A^, and N^A*  im-

plies zV 4 ASa, since A^ = An C A^ .

Subcase 1.2. a = 72 for some  r£ Cf. Then by Definition 2.1, r = 0 or À1  or
À2 for some Àe Cf. By the induction hypothesis, since ¡T = 2z + 1, 0 4 Af. By

Definition 1.3, A* = {Wx | s^W x and Wx e A*!. Clearly zV¿A*, and 0 4 AST -»
0¿A*, since A* = A[2 Ç A*.

Subcase 1.3. cr = rl  or r2 for some  7 6 Ct. The result follows by complemen-

tation from the other subcases since ä = TI or r"2 and  0,/VeAa.<-»0,/V^'A-.

Case 2. I   = 2i + 3.
Subcase 2.1. a = rl for some Àeu. Then by Definition 2.1, r- XI  or À2 for

for some  X £ (l, and by the induction hypothesis, since  /. = 2z: + 2, N £ A   . By

Definition 1.3, A^.= iWx | s2. + 1e Wx  and Wx e A *|. Clearly 0 4 ASa  and, since

N £ AST  and s,.  ,£N,N£ASrT.7 2z +1 ' <T

Subcase 2.2. a = r2 tot some   rell. Then by Definition 2.1, r = À2  for some

X £ Cf, and by the induction hypothesis, since  L = 2z + 2, 0 £ A   . By Definition

1.3, A* = \Wx\ s2. + l4Wx  and ^eA^I. Clearly N 4 Asf   and, since 0e A^  and
s2i+]4 0,0eAsa.

Subcase 2.3. cr = rl  or 72 for some  re Cf. By complementation from Subcases

2.2 and 2.3.

Lemma 2.3. Let a£ Ct. T/jerc

a = ô-ya-z0.
(b) // /„= 2r2 + 2, then
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a=rl orr2_->yCT*Z2B + 1,

a = rl   orr2-VCT-Z2n + 1.

(c) // la=2n + 3, then

a = rï  or r2 -— Y^ S Z.     -,cr 2n + 2'

CT = ri   or  r2   —> Y„ S Z.,      ,.cr 2n+2

Proof. By induction on la. If 1^=1 then a = 0 or 0. By Lemma 1.12, YQ <

K and by Lemma 1.13(a), K < XR = YQ. So YQ = K = Zn, by Definition 0.2, and

Y- = YQ = ZQ. Now assume the results hold for all  re (3  such that 1 < ly < la.

Case 1. I   = 2n + 2.
Subcase 1.1. a = rl  or rl  for some  reu. By Definition 2.1,rleu«-*r=0

or À1  or À2 for some AeCf. By the induction hypothesis, since  lT= 2n + 1,  Yr S

Z,  . Then by Lemmas 1.9 and 0.3 L^ Kx K S/txZ.   S Z,     ,. Replacing2n ' TIT 2n 2n + l r &

r by T in this argument gives   Y -, SZ,     ,, so  Y - = Y-, = Z.     . .; o o r i 2n + l' n ri 2n + l

Subcase 1.2. a = r2 or r2  for some  re (î. By Definition 2.1, r2 e ff «-» r = 0 or

Àl   or À2  for some  X e Cf. By the induction hypothesis,   YT= Z_,   , so by Lemmas

1.9 and 0.3, Y„ » K x Y.Si K x Z,   as Z,        Similarly, V>, » Z,    ,, so V - =_ '     TL t ¿n 2n + I r>       7 2 2rz + l' 72
Y-   — Z

Case 2. la = 2r2 + 3.
Subcase 2.1. a = rl  or rï for some   re Ct. By Definition 2.1, rl e â «-» r = AÏ

or À2 for some Àe Cf. By the induction hypothesis,  Yr = Z2     j. Then by Lemmas

1.9and_0.3, rria<  Kx YrSKxZ2r2 + 1 S Z2||+2< Similarly,  Yfl S Z2n+2, so
Y - = Y,. S Z,     ,.71 r 1 2n+2

Subcase 2.2. a = r2 or r2 for some re Cf. By Definition 2.1, r2 e Q «-» r = AÏ

or À2  for some  X e Ct. By the induction hypothesis, YT ̂  Z , so by Lemmas

1.9 and 0.3, YT2~KxYT^Kx Z2n + 1 Sé Z2n+r Similarly,   Y fj ^ Z2„+2, so

V _ = Y_   S* Z,     ,.
72 72 2"+2

Lemma 2.4. (a)// a £ 0. then  Ya^Zla_L or Z,^.
(b) // ct, reCf ztW /r< Zct, ZÄe72  Yr< YCT.

Proof, (a) follows from Lemma 2.3, since the various cases exhaust Cf. For

(b), assume  lf = 772 + 1  and la = n + 1  for m <n. Then by (a), Y? S Z^ or Z^  and

Y   S Z    or Z  . Then by Lemma 0.4, Y<Z < Z    and  Y < Z     . < Z . ThusQ n n *     1 m+l —     n < rzz + i n

in any case   Yf < Ya.

Lemma 2.5. For 0// ttz, 72,

(b)  772  ^ 72   -.  Z      9É   Z    .^ m  '       n
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Proof. Bv Lemma 0.4. m < n —> Z    < Z      . < Z     and m = n —> Z    \ Z  . Thus
> ' 77! 77! +1 72' 772  '       7!

in either case (a) holds. Lemma 0.4 also implies (b), since, e.g., 772 < n —> Z   <

Z     , <Z .
77! +1   —        7!

Lemma 2.6. Let cr e Cf. Then

(a) Ya at Z0 - a = 0,
(b) Ya ~Z2     j —> /a= 2t2 + 2 and a = rl  or r2 for some  re (3,
(c) Y„ = Z-     ., —► /    = 2n + 3  arzfi? cr = rî or  r2 /or some   7 e (3.Cf ¿72 +¿ cr >

Proof, (a) Assume a 4 0- Then a = 0  or  ri for some r e Cf, i =1,2, 1  or 2.

By Lemma 2.3, this implies  Ya = Z     or  Ya= Z^  or Z     for some 772 > 0. In any

case, by Lemma 2.5, YaT ^o"

(b) Let m = la- 1. If la4 2« + 2, then 772 ¡¿ 2tz + 1  and, by Lemma 2.4(a),
Y„=Z     or Z   . By Lemma 2.5, this implies  Y„mZ . If /   = 2n + 2 but cr ¡¿

<7 77! 77! ' ' r CT    ' ¿72+1 "

rl or r2 for some r e Cf, then a = rl or r2. Then by Lemma 2.3(b), V   = Z.     , ï Z.     ,.' y'     cr 2tz + 1 7        2t! + 1

(c) Let m = la- 1. If la42n + 3, then  m 4 2n + 2 and, by Lemma 2.4(a),
7^^ Z     orZ      So by Lemma 2.5,  Y^ÚZ If Z   = 2w + 3 but ct ¿ rï or r2a 77! 77! 7 '       cr   r        2n+2 a _

for some  re Cf then ct = rl  or 72, so by Lemma 2.3(c), VCT = Z2n     ^ Z .

Theorem 2.7. Let a e Cf. T¿erz

(a)yCT^z0~cr = o,

(b)ya = z0^a = o,
(c) Y„ = Z,     , <-> /   = 2« + 2 aW cr = rl  or 72 for some  r£ (3,

CT _2t¡ f 1 CT ' '
(d) y^ = Z «-» la = 2n + 2 and a = rl  or 72 for some  r £ Cf,
(e) yff = Z2        «-» /CT = 2t2 + 3  ««<i cr = rl or r2 for some   T£ (3,
(f) y   Ä Z,     ,«-»/   = 2t2 + 3 a72a" a = rl   or  72 /or soTrze  re Cf.cf ¿n + 2 c

Proof, (a), (c) and (e) follow from Lemmas 2.3 and 2.6. The other parts are

obtained by complementation, since  la = l^,  ri = Ti    and   Ya ^ Z   «-» y_ S Z   .

Lemma 2.8. // ai, aj e (3 (z, / = 1, 2, T or 2) then i 4 j -. y^ at Y^..

Proof. Assume  z ^ ; and ai, aj £ Cf.

Case 1. /   = 2z2 + 1. If a = 0 or zT  or  r2 for some  7 6 Cf, then, by Definition

2.1, ai, aj eu *-* z, /' = 1  or 2, say i = 1  and j = 2. Since /a¿ = /   ■ = 2t2 + 2, it
follows by Theorem 2.7 that  Y„, * Z,     .   and V  - ^ Z_ so Y_. « ?_.. If7 crl 2t! + 1 ct2 'n + 1' cri cr;
ct = 0 or rl  or r2, the result follows by consideration of complements.

Case 2. I   = 2« + 2. If a = rl  or 72 for some  re Cf then, by Definition 2.1,
ai, aj £ Cf «-» i, 7 = 1  or 2, say z = 1  and j = 2. Since Ioi = /   ■ = 2n + 3, it follows
by Theorem 2.7 that  Y -  atZ.     , and  V - ^ Z,     ,, so  YM = ~Y~~.'. If ct = rT or' crl 2.7Í + 2 ct2 2t! + 2' cri cr;
r2, the result again follows by considering complements.
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Lemma 2.9. Let S be any infinite set c N. Then for all o£ Cf, if i = 1, 1, 2,

2 and cz e Q, X^ÚY ..'      cr  i       ai

Proof. Case 1. la = 2n + 1, a = 0 or rl  or r2 for some  re Cf. Then by Lemma

2.2, 0£ASa and N 4 A*. By Definition 2.1, ai £ 8. — i = 1  or 2.
Subcase 1.1. z = 1. Then by Theorem 2.7, since  lai = 2rz + 2,  Yai = Z2     ,.

It follows by Lemma 0.5 that 8A Si Yai —> ÖA S z2„ + i —' 0 e A- But this impies

Xsct=OAsct^Yct¿ since 0eA*.
Subcase 1.2. z = 2. Then by Theorem 2.7, Yai = Z2     ,, so by Lemma 0.5, ÖA =

Y^— 8A = Z2n + 1-> A/e A. But this implies  X* = <9A* gÉ Ya¿, since N ¿ Asa.

Case 2. la= 2n + 1, a = 0  or rl  or r2 for some  re Cf. Then ct = 0 or Tl  or

r2 so, by Case 1, XS- é Y— = Y'— . But this implies X* = X% £ Y— = Y'     J *       cr   i.        Q-j ai r cr cr    i        cri cri

Case 3. la = 2rz + 2, a = rl  or r2 for some  re Cf. Then by Lemma 2.2, 0 4 A a

and N 4 Asa. By Definition 2.1, aie Ö —» i = T or 2.
Subcase 3-1. z = 1. Then by Theorem 2.7, Y    ~ Z2 so by Lemma 0.5,

8A = Ya. — 8A = Z2     2   -. 0 e A. It follows that X* = 0A* ^ Yai, since    0 ^

Subcase 3-2. z = 2. Then by Theorem 2.7, YCT¿ Sí Z2 so by Lemma 0.5,
8A Si Y .— ÖÄ = Z,     . -. Ne A. If follows that X* = 8Asa sk Y ■, since N 4 A*Ul ¿n + 2 cr u    f        ljx ' u

Case 4. la = 2rz + 2, a = rl  or r2 for some  re Cf. Then ct = T1  or r2, so by

Case 3, x| d Y- = Y--.   It follows that X* = x|  à Y- = Y    .'      cr   I       Crl crt u cr    I        ^ cri

Lemma 2.10. For all S, S < XQ.

Proof. Recall that Xg = jx | VI    C S}, and let g  be a recursive function such

that Í72| = W      ., for all n. Then n £ S <-> \n\ C S <-> g(n) e XSQ.

Lemma 2.11. Let S be any set such that S   is not r.e. Then for all a e Cf,

Ycr<XS0-

Proof. By Lemma 1.13, La < Xa, so it suffices to prove Xa¿ Ya, by induc-

tion on lp.
Case 1. la = 1. Then a = 0  or 5. If ct = Ô,  Ya Si Z    = K, by Lemma 2.3; also

S <X* = X*, by Lemma 2.10. Then X* < Y^ — S < X*  < K which implies S   is

r.e., contrary to hypothesis. The result for o = 0 follows by symmetry.

Case 2. la = k + 2, k > 0. Assume the result holds for all r e Cf such that

lT <la, but that Xl<Ya.
Since la> 1, ct = r¿ for some  rea. By Lemmas 1.13 and 1.9(c), Yf < XT <

XST. < YT.. Since lr= k+ l,it follows by Lemma 2.4(a) that  YT Si Zfe  or Zfe and

Yfi Si Zk+1 or Zfc+1. Then by Lemma 0.6, Yf < Xf = 0A* < Yn implies  Yr s; X*
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or Y . at X*. But the first of these contradicts the induction hypothesis and the

latter contradicts Lemma 2.9.

Theorem 2.. 12. Let S be any infinite set C¿ N and let a £ a. Then

(a) Z0 < X0S;

(b)Z0<X^;

(c) if la= 2n + 2 and a = rl or t2 for some  re Cf, then Z2     , < Xa;

(d) if I   = 2n + 2 and a = rl  or rl for some  re Cf, then Z       j < X^

(e) if la- 2n + 3 and a = rl   or t2 for some   re Cf,  then Z2     , < X^

(f) if I„ = 2w + 3 arW cr = rl  or r2 /or some  re Cf, rèera Z.     , < X„.
1     u ' * ¿n + ¿ —     u

//, in addition, S   is not r.e., all the inequalities are strict.

Proof. By Lemma 1.13, Theorem 2.7 and Lemma 2.11.

Lemma 2.13. Let S be any infinite set such that  K ¿_ S. Then for all ere Cf,

cr I—YsÉV
Proof. By induction on la. For a = 0,  yQ = K by Lemma 2.3. That  K ^ XQ =

\x | W    n S 4 0 I if K £T S was proved in [l, Theorem 3.5], by observing that

X_   is r.e. in S, so that K < XQ —> K r.e. in S —> K <_. S, contrary to hypothesis.

By symmetry, Y- ¿ XQ. Now assume the result for all re Cf such that lT < la.

Case 1. ct = rl  or rl  for some  re (3. If a = rl  then, by Lemma 1.9, Xsa = K x

XST   and, by Lemma 2.2, 0e A% = A* . So  y^ < X^ ~^Y-=8A§<Kx X* which

by Lemma 0.7 implies  Y- < Xf. It follows by Lemma 2.4(b), since  lT< la, that
c _

Y- <Y~ < X^, which contradicts the induction hypothesis. If a = rl  the result

follows by complementation.

Case 2. a = r2 or r2 for some  re Cf. If a = r2, then by Lemma 1.9, Xff = K x

XST  and, by Lemma 2.2, N e A§ = A^ . So  y^ < X* — y_ = 8Aa < K x X* which
by Lemma 0.8 implies  Y- < X* . It follows by Lemma 2.4(b) that  y- < Y-< X*,
which contradicts the induction hypothesis. The result for a = r2  follows by com-

plementation.

Lemma 2.14. Let  S be any infinite set g¡ N such that  K ^_ S. Then for any

index sequence a and i = 1, 1, 2 or 2, a £ Ct and ai e (3 —* Xs < Xs ..

Proof. By Lemma 1.9, X^ < Xai so it suffices to prove Xff. ¿ X   . Now by

Lemma 2.4(b), Y- < Y^ and, by Lemma 1.13, Yai < X* .. Then X* . < X*  implies
y^ £ Y ai S ^ai S Xa, which contradicts Lemma 2.13.

Lemma 2.15. Let S be any infinite set ^ N such that  K ¿_ S, and let a £

Cf. If for i, j =1,1,2 or 2, ai e Cf and aj £ Cf, then i4j — X* . | X*  .
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Proof. By Lemma 1.13, Y    < X^., so to show X     / X    it suffices to prove

Ycri É X% for / ¿ '• But» by Lemma 2.8, Y^ = Y    = Y— , and by Lemma 2.13,
Y—  ¿ Xcr., which implies Xff. ¿ Xff.. The other half follows by symmetry.

3. Acceptable index functions.

Definition 3.1. Let / be a function, /: N —> [0, Ö, 1, Ï, 2, 2\. For each z e/V,
let ct(z, /) be defined inductively as follows:

(a)ff(0,/) = /(0),
ib)aii + l,f)=aii,f)*fii+ 1).
If ct(z, /) = ct then ct(z, /) denotes ct.

Definition 3.2. Let / be a function, /: N —* [0, 0, 1, 1, 2, 2j. / is an accept-
able index function (a.i.f.) if, for every i £ N, cr(z, /) £ Ct.

Note that by this definition / is an a.i.f. only if /(0) e ¡0, 0! and /(z) £
Î1.Ï, 2, 2j for all z > 0.

Remark 1. There exist continuum—many acceptable index functions such that

/(0) = 0  and continuum—many such that /(0) = 0. This is easily seen as follows:

By Definition 2.1, 0 and 0 are both in Cf, and as noted after Definition 2.1, for

each ct e Cf there are exactly two ways to extend ct to a sequence ctz e Cf ; and

there are c paths through an infinite tree which branches twice at each node.

Lemma 3.3. Let f be defined by /(0) = 0, /(2rz + l) = 1, f(2n + 2) = Ï. Then
i is an acceptable index ¡unction and, lor each m, Z    Sí Y' r ' ' ' '      m cr(nz,/)

Proof. We show by induction on ttz that ct(t?2, /) e Cf and Z    = Y . For' ' m cr \rn,/)

m = 0, the result holds  since ct(0, /) = 0 e U  and ZQ Si YQ  by Theorem 2.7. Now

assume the result holds for m.

Case 1. m + 1  is odd. Then aim + 1, /) = aim, f) * f(m + l) = aim, f) * 1, and
Y   .     .. S Z     implies ct(77z, /) = 0 or rl  or r2 for some r e Cf   by Theorem 2.7(a)

o"(nz,/) m        r ' ' '
and (e). Since Ia,     .. = m + 1  is odd, it follows by Definition 2.1 that ff(7rz + 1, /)

= ct(ttz, /) * 1 e Ct, and by Theorem 2.7 (c) that  Y.      . „ ~ Z' ' ' ' cr'nz + l,/) m + l

Case 2. m + 1   is even. Then cr(rrz + 1, /) = ct(t7z, /) */(tt2 + l) = ct(t7z, /) * 1,

and  Y  ,     ., S Z     implies ct(t72, /) = rl  or  r2 for some re Cf   by Theorem 2.7(c).
cr(m,f) m       * ' '    '

Since  I   ,     ,. = rrz + 1  is even, it follows by Definition 2.1 that aim + 1, /) =

aim, f) *l£ Ct, and by Theorem 2.7(e) that  Y Si ZJ c>\.m +1,/ ; rn +1

4. Discrete co -sequences.
Definition 4.1. Let \A   \      _   be a sequence of classes of r.e. sets. The se-

quence \8A   \ is a discrete oj-sequence of index sets iff

(a) 8A   <8A        for each 72;n n + l
(b) for any class B  of r.e. sets and each 72, ÖA^ <8B< 8An   l  implies

8B Si 8A    or 8B s 8An n + l
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Definition 4.2. A discrete (¡¡-sequence of 1-degrées denotes the sequence of 1-de-

grees of a discrete co-sequence of index sets.

Evidently two different sequences of sets may determine the same sequence

of 1-degrees.
Definition 4.3. If S is a set and / an acceptable index function, the se-

quence \8Aa(    .A      .   is the S-sequence of index sets determined by f. The cor-

responding sequence of 1-degrees is the S-sequence of 1-degrees determined by f.

Lemma 4.4. The 1-degrees of Z    and Z    are each at the bottom of c dis-

crete oj-sequences of 1-degrees, each contained in the bounded truth-table degree

ofZQ.

Proof. Let  )X   ¡       n  be any sequence such that X    = Z  , X    = Z     or Z
'    m 77! > 0 71 OO'ttitt! m

for each m > 0. Then by Lemmas 0.4 and 0.6, each such sequence is a discrete

oj-sequence. Since Z    a\ Z      it follows as in Remark 1 that there are c such
^ 77!   ' 77!'

sequences and that distinct sequences determine distinct sequences of degrees;

similarly if X   = Z . That the sequences are contained in the btt-degree of Z

follows from Lemma 0.3 and the fact that ZQ = K, as in the proof of Lemma 1.10.

Lemma 4.5. Let X = Z    or Z  . Then

0K-7^

N
Zo

is an initial segment of the partial ordering of index sets under one-one reduci-

bility.

Proof. Let B  be any class of r.e. sets. It is well known that 0, N < K, K,

which together with Lemma 0.4, implies 0, N < Z  , Z   < X. Assume  B  is a class

of r.e. sets such that 8B < X. We will show that 8B Si 0, N, ZQ   or ZQ.
Case 1. B = 0or B = 0. Then 8B = 0 or 8B = N, respectively.
Case 2. B 4 0 and B 4 0. If 0£ B, then by Lemma 0.1, K = ZQ < 8B < X.

So by Lemma 0.6, 8B S ZQ  or 8B S X. If 0 4 B, then by Lemma 0.1, K = ZQ <

8B < X  so, by Lemma 0.6, 8B S ZQ  or 8~B at X. It follows that 8B ai Z^ or
8B = X, which completes the proof.

Remark 2. Lemma 4.5 cannot be strengthened by replacing Z    by Z     for

m > 1; i.e., we can prove that, for all m > 1, Z     has a predecessor 8B such that

8B ^fe Zk  or Zk fot any k < m. The proof will appear elsewhere [7].

Theorem 4.6. // S is co-r.e., then the 1-degrees of 8A    and 8A    are at the

bottom of c discrete co-sequences of 1-degrees. If S 4 N, these sequences are all

contained in the bounded truth-table degree of 8A   .
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Proof. Case 1. S 4 N. Then 8ASQ = \x \ Wx n S 4 0\ is r.e. and N £ 8ASQ, so

8AS0 < K and, by Lemma 0.1, K < 0Ä*. So 8ÄSQ 3i K = ZQ  and 8ASQ ai ZQ. The
conclusion then follows from Lemma A.A.

Case 2. S = N. Then 8ASQ = N and ÖÄ* = 0. Let \xm\m^0  be any sequence
such that X   = N, X        = Z     or Z     for all rzz. As in the proof of Lemma A.A,0 '        77! + l 77! 77! r '

there are c such sequences, and similarly if X. = 0. These sequences are dis-

crete, by Lemmas A.A and 4.5, and determine distinct sequences of degrees since

X   ai X   , for all 772.
77! 771

Theorem 4.7. Let S be any infinite set Ç^ N such that  K ¿_ S. If f is any
acceptable index function, the S-sequence of index sets determined by f is a dis-

crete co-sequence of index sets, all contained in the bounded truth-table degree

of 8A¡.

Proof. Let 8A    denote 0A    ,    .,. By Lemma 1.10, each 8A    is in the btt-de-
72 o-'nj)   s  ' ' 71

gree of 8A.. By Lemma 2.14, 8A    = X        .. < X .. = 8A       , since6 0        ' '        n a(n,f) crin + lj) ti + 1'
a(n + 1, f) = ct(>7, /) * z and a(n, f), a(n + 1, f) £ Cf. It remains to show the se-

quence is discrete. Assume 8A    <8B< 8A^     .

Case 1. /(t2 + l) = 1. Then ct(t2 + 1, /) = ct(tz, /) * 1, so by Lemma 1.9, 0An + , =

Xs,     ,t,aiKxXSr    .. = K x 8A   . But by Lemma 0.9, 8A    <8B<8A     . &i K x
C(7!+l,/) Cr(71,/) 72 ' ' tl ■» — 72+1

8A implies 8B ai 8A    or 8B ai 8A    ,.72        r 71 71+1

Case 2. fin + l) = 2. Then ain + 1, f) = ct(tz, /) * 2 so by Lemma 1.9, 8An     =
Xs,     ,,,aiKxXS.    .. =X x8A   . Then by Lemma 0.10, 8A    < 8B < 8A     .at

c(« + l,/) cr{n,f) 71 ' ti — —        Ti + 1

Kx8A    implies 8B ai &A    or 0B S QA     ,.
Case 3. /(« + l) = Î or 2. Then a(n + 1, /) = a(n, /) * z where z = 1  or 2, and

ÖAn < rJB < 8An+l implies 0An < 8B < 8A^X where ÖÄ„ = *_(>j>/) and 0Ä„ + 1 =
X-,     .  .. = X-(n ..    ., where  z = 1 or 2. By Cases 1 and 2, replacing ct by ct

(since ct' e Cf «-► ct e Ct), 6A   <8B<8A    , implies 0B at 8A   ot 8B ai 8A    ,. The result' 71— — 7! + l r 71 71+1

follows by complementation.

Lemma 4.8. Let S be any infinite set Ç^ N such that K <   S. If f and g are
acceptable index functions which determine the same S-sequence of 1-aegrees,

then f = g.

Proof. Assume f 4 g. Then fik) 4 gik)  for some k £ N. Let 72 be the least
such k. It will suffice to show that 8AS ,    .. st 8AS ,cr(n,f) t= <7(7i,g)

Case 1. 72 = 0. Since /, g are a.i.f.'s, /(0) e ¡0, Ô! and g(0) £ JO, Ö!; since

/(0) ^ g(0), assume /(0) = 0 and g(0) = Ô.   Then, 6A*     n = X* and 0A*        . =

X| = X*, and, by Lemma 1.11, X* ai xl.
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Case 2. 72 = m + 1 for some m > 0. Then since 72 is the least k such that

fik) / gik), a(m, f) = aim, g); let  r denote this common index sequence. Then

ct(t2, /) = ff(rzz, /) *f(m + l) = ri and ct(tz, g) = ct(tt2, g) *gim + l) = rj where  i / j

by hypothesis. Since /, g ate a.i.f.'s, rz e (2 and r; e fl. Then by Lemma 2.15,

8A   ,    n = XST. éxl^SAÍ,     ,.^(nj) Ti  7^     r7 cr(n,g)

Theorem 4.9. Let S be any set such that  K /_ S. Then the 1-degrees of

8A-  and 8A    are at the bottom of c discrete co-sequences of 1-degrees. If S /

N, these sequences are contained in the bounded truth-table degree of 8A~.

Proof. Case 1. S is finite or S = N. Then S is co-r.e., so the result follows

from Theorem 4.6.

Case 2. S is infinite, S C¿ N. By Remark 1, there are c acceptable index

functions such that /(0) = 0, and c  such that /(0) = 0. By Lemma 4.8, these

functions determine different S-sequences of 1-degrees. By Theorem 4.7, these

sequences are discrete are contained in the btt-degree of 8AQ.

Definition 4.10. For any set P, let
(a)P'=ix|xeU^¡,

(b)PQ = {(u,v)\DuÇP  and D„CP¡,

(c)P*=Xp=\x\Wx  OP    ¿0|.
0 XV

Lemma 4.11. For all sets  P, P < Pn  and P. <    P.'      —    0 0 —tt

ProoL Let D    =0and let gin) be a recursive function such that D   .  .= \n]

for each 72. Then P <P0 via h(n) = (g(r2), 0). It is easily seen that PQ <    P via

(unbounded) truth-tables.

Lemma 4.12. F07 all sets P, P' Si P*.

Proof. P    is r.e. in P, which implies P   <P . Let g(x) be a recursive func-

tion defined by  VI = \(u, v)\ ( 3 y) ((x, y, u, v) £ W      A\ where  p(x)  is as in

[6, p. I32]. It is easily verified that P   < P   via g.

Lemma 4.13. Let  a be any Turing degree such that 0 < a. Then there exists

a set  P  such that

(a) P  z's not r.e,

(b) K ¿T P,
(c)P'ea.

Proof. Assume 0   < a.
Case 1. 0'<a. By Friedberg's Theorem [6, Corollary 13-IX(a)], there exists

b such that b'= b U 0'= a. Clearly 0' /. b, while  b < 0'  implies a = 0'. So b | 0 ,
and any P £ b will satisfy the conditions of the lemma.
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Case 2. 0 = a. It is a well-known fact (proved by Friedberg) that there exists

d such that 0 < d and d = 0 ; any such d contains a non-r.e. set P, and for such

a P, K/TP.

Lemma 4.14. Let S be any infinite set such that S   is not r.e. and K ATS,

and let f be any acceptable index function. Then the S-sequence of 1-degrees

determined by f does not contain the 1-degree of Z    or Z     for any m > 0.

Proof. It must be shown that for all m, n, X   .    .. Se Z     or Z   . Since by'     '       o-(n,j)   'mm '

Theorem 2.7, each Z      Z    Sä Y   for some  r e fl   it suffices to show that X     Sim       m T ' a   '
Y   fot any a, reu.

Case 1. la<lT. Then by Lemma 2.4, Y- < Yf, so X* Sä Yf implies  Y- < XSq,
contradicting Lemma 2.13-

Case 2. Ia> lf. Then by Lemma 2.4, YT<Ya, and by Lemma 2.11, Ya<XSa.
So YT < X* which implies X* á Y.

Case 3- I   = L. Assume Xs Sä YT. By Lemma 2.4(a), Yr Sä Z.     ,    or
Z,     ., so X   S Z.     .   or Z Also by Lemma 2.4(a), V    ~ Z. or Z.      .

/f—1 ^ / 7*— 1 tcr—1 CT * cr—1 ¿cr~l

and, since Z£r= z^, Zx  _^ = Z^ It follows that X^ S Y^ or Y^. But, by

Lemma 2.11, Y    < X^ and, by Lemma 2.13, ^ = Y - /. X o.. Thus either way we
get a contradiction.

Theorem 4.15. Let a &e any Turing degree such that 0   < a. Then a contains

c discrete oj-sequence of 1-degrees, none of whose elements are l-degrees of

Z     or Z     for any m.
m m   ' J

Proof. Assume a > 0'. By Lemma 4.13, there is a set P  such that P  is not

r.e., K<T P  and P'e a. Now by Lemma 4.12, P*= xí0 Sí P', so X-° ea. By-' 0 0
Lemma 4.11, P < P0  a"d PQ <T P. It follows that P  not r.e. —» PQ  not r.e.,

and that  K ¿„ P —► f< <r PQ. The bounded truth-table degree of 8AQ      is then

contained in a, so that by Theorem 4.9, a contains  c discrete co-sequences of 1-

degrees and by Lemma 4.14, these co-sequences do not contain the 1-degree of

Z     or Z     for any 772.
77Z 771 J

In [3] it was conjectured that for each 722 > 0, there exists a class A  with

Z    < 8A  and Z    /. 8A. The present technique yields the following stronger re-

sult:

Theorem 4.16. Every Turing degree  a >0   contains a discrete cj-sequence

\8A   \        „   of index sets such that, for each m, Z    < 8A     and Z    /. 8A   .m   m > 0      ' ' ' 'm m m —        m

Proof. Assume a >0', and let PQ  be as in Theorem 4.15, i.e., PQ   is not

r.e., K ¿_ P     and X_° e a. By Lemma 3-4, there exists an acceptable index
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function / such that, for all m> 0, Z    ai y . Let A    = A . Then by
' ' —       ' 772 Cr(7í¡,/) 771 Cr(77!,/) '

Theorem 4.7, \8A    J is a discrete co-sequence of index sets contained in a;
m m ti i) _ l

p _
for each m, Z    St Yrr.     ,, < 8A   °    ,. = 0A   , by Lemma 2.11; and Z     S'    _m CT(77i,/) cr(m,f) m'     ' 'm

Y-,     ., A 8APJ    „ = 8A   , by Lemma 2.13-
cr'm,!)—        cr(m,f) m '     '
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