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DISCRETE «»-SEQUENCES OF INDEX SETS(1)
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LOUISE HAY

ABSTRACT. We define a discrete w-sequence of index sets to be a sequence
{GAn}n =0 of index sets of classes of recursively enumerable sets, such that for
each n, 6An+l is an immediate successor of 9An in the partial order of degrees
of index sets under one-one reducibility. The main result of this paper is that if
S is any set to which the complete set K is not Turing-reducible, and A5 is the
class of recursively enumerable subsets of 5, then 645 is ac the bottom of ¢ dis-
crete w-sequences. It follows that every complete Turing degree contains ¢ dis-

crete w-sequences.

Introduction. Let {W 1, ,; be a standard enumeration of all recursively enu-
merable (r.e.) sets. If A is any collection of r.e. sets, the index set of A is
{x W e A} and is denoted by 0A. If {An§n20 is a sequence of classes of r.e.
sets, call the sequence {OAn}n >0 2 discrete w-sequence of index sets if

(a) GAn < 0An+1 for each 7, and

(b) for every class B of r.e. sets, 6A < 6B < 04 1 implies 0B & GAn or
0B = 0An+1.

That discrete w-sequences exist was proved in [3]; it was shown there that
if {Z } o is the sequence of index sets of nonempty finite classes of finite

m m=
sets (classified in [4] and, independently, in [2]), then {Zm}m >0 1s a discrete
w-sequence of index sets. Moreover, it easily follows from the results in [3] that
the ¢ nonisomorphic sequences {Ym}m >0 Satisfying Y = Z or Zm for each m
are discrete w-sequences of index sets. In this paper it is shown that discrete
w-sequences of index sets occur in great profusion. The fact that the sets Z  are
index sets of finite classes of finite sets appears not to be relevant; what gener-
alizes is the fact that Z = T} = x| W _C S}, where § is any co-r.e. set. The
main results are as follows: (1) if K _;é,c S (where K denotes Post’s complete set)

and AS = {le Wx C §4, then 0AS and OAS are at the bottom of ¢ discrete w-se-
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294 L. HAY

. . ] . .

quences of index sets; (2) every Turing degree a > 0’ contains ¢ discrete w-se-
4 . . o . .

quences; (3) 0’ contains ¢ discrete w-sequences containing no sets recursively

isomorphic to Z_ or Z  for any m. We also prove a conjecture made in [3] thae

there exist sequences {GAm}m o Satisfying Z < 0A  and Zm £ 0A_, for each
m>0.

Notation. The terminology and notation is that of [6]. K denotes the complete
set = {x| x € Wx}. N denotes the set of natural numbers. For X, Y CN, X x Y de-
notes the recursive Cartesian product, via an effective pairing function(x, y)
whose inverses are denoted by 7, 7,; thus z =<7r1(z), nz(z)) . {Dn}n 50 is the
canonical indexing of finite subsets of N, with Dj =¢g. For X, Y CN, X <Y
means X is one-one reducible to Y. If X <Y and Y < X, we invoke Myhill’s iso-

morphism theorem [5] and write X = Y. X <, Y means X is Turing reducible to

Y.X|Y means X and Y are 1-1 incomparable.

0. Required previous resulis. We list here for more convenient reference some
results of 3] which will be needed. The proofs can be found in [3]. In that paper,
for each m >0, f : N™ — N denotes a recursive one-one onto map with recursive
inverses denoted by x;.", 0 <i<m;ie., x= /m(xg‘,. . xz_l). For m =1, /1 is

. . 1
the identity and x; = x.

Lemma 0.1 (Lemma 10 of [3]). If A is nonempty, then
(a) Ne A— K<OA,
(b)Pe A — K < 0A.

Definition 0.2 (Definitions 1, 2 of [3]). For each x, let

k_(x) = cardinality {7] PUALIES ¢2
m 1

For each n > 0, let
zZ,, = {x| kzn(x) is evenl, Z, . = {x| k2n+l(x) is odd}.
Note that since x =/ ,(x), x € Z;«» x ¢ K, so that Z = K.

Lemma 0.3 (Theorem 2 of [3]). For all n >0,
(a) Zﬂ+1 >~ K x Zn’
b) Z,,, KxZ,y,

() ZZn+2 =Kx ZZn+l'

Lemma 0.4 (Theorem 3(a), (b), (c) of [3]). For all m >0,
@z <z ,Z <Z

+1? m<Zm+1’

bz <Z Z <Z
m

m+l? Tm m+1?

(c) zm|2 .

m
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DISCRETE «-SEQUENCES OF INDEX SETS 295

Lemma 0.5 (From Theorem 5 of [3]). For all n >0,
(a) if A = Z_then N¢A,
(b) if 0A = 2271 then 3d A,

() if 0A=Z, | thenge A.

Lemma 0.6 (Theorem 3(d), (e) of [3]). For all m > 0,
(a) there is no A satisfying Z_ <0A <Z L or Z <PA<Z
m m+ m m

= _m+l?
(b) there is no A satisfying Z <0A< Z, qgorZ <OALZ_

+1°
Lemma 0.7 (Lemma 13 of [3]). If 6A <K x 0B and @ A, then 0A < 6B.

Lemma 0.8 (Lemma 14 of [3]). If 0A <K x 0B and Ne€ A, then 6A < 6B.

Lemma 0.9 (Lemma 15 of [3]). If 6A <OB <K x0A, then 0B = 0A or 0B =
K x0A.

Lemma 0.10 (Lemma 16 of [3]). If 0A < 0B <K x 04, then 0B = A or OB =
K x 64.

Lemma 0.11 (Lemma 9 of [3]). For all A, A % 6A.

1. Index sequences.

Definition 1.1. Let I = 0,1, ...,n}, n>0, ] =10,0, 1, 1, 2, 2} where O,
1, 2 are formal symbols introduced for notational purposes. An index sequence o
is any function o: I — ] such that

(a) 0(0) € {0, O,

B o(Nefl, T, 2,2} for 0<; <n.
If 0 is an index sequence and domain o = I, 0 has length n + 1, denoted by
I,. In the following, 0 will be freely identified with the concatenation o(0) * (1)

#...%0(_ ~1) and 0 * i will be abbreviated to 07, i = 1, 1, 2, 2. In this nota-

tion, it is clear that 0, 0 are index sequences, and that 0i is an index sequence

<> 0 is an index sequence and 7 =1, 1, 2, 2.

Definition 1.2. If 0 is an index sequence, its complementary sequence T is

defined inductively as follows:
(a) 0, 0 are complementary,
(b) 01 and 61 are complementary,
(c) 02 and 52 are complementary.

It is easily seen by induction on / that @ = o for all index sequences o.
Definition 1.3. Suppose § is an infinite subset of N, S = {sg,5;,--+ 1 in
any order, s, # s, for i £ j. For each index sequence 0, define a corresponding

class Afr of r.e. sets inductively on length 0, as follows:
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296 L. HAY

s
(a) A 2{1{| W_Csy,
s 3
(b) Az = A,
(c) if o has length i + 1, i >0,

Agl = {Wx| s, € Wx and W, GA?;},

AS, =W |s £W_ and W_eAlL
Note that A‘fﬂ, Afrz C Af; for all o, S.

s . . . .
Remark. The classes A7 are defined relative to a given enumeration of .
The notation makes no explicit reference to the enumeration, since it will shortly
. s . . .
be shown that the index sets §A; corresponding to a given 0 are unique up to

recursive isomorphism.

Lemma 1.4. Let A be any class of r.e. sets, and let s € N. Then
(a) if A, ={x|se Wx and erA} then 0A1 <K x0A,
(b) if A, = {x]| sg{Wx and erA} then 0A, SI_< x OA.

Proof. Let g(x) be a recursive function which computes the index of an r.e.

set generated according to the following instructions:
Woy =92 i sdWw,

=N if seW_.
Then gx)e Ke>seW . Let h(x) = {g(x), x). Then

x€0A1 —s €W _and W €A
e glx) € K and x € 6A

— b(x) € Kx0A,
and
x€6A2<—>s¢Wx and WxEA

o glx) €K and x €04

o hlx) € K x 0A.
So 0A; <K x 0A and 04, < K x 0A, both via . (As usual, we need not bother

to make b one-one, since all sets in question are index sets and thus cylinders

(6l

Lemma 1.5. Let S be any infinite subset of N, S =1{s,,s ,-+-} Let S, =
B, S, = {sg» sl,...si_li for i > 1. 1f o is an index sequence,l, =i+ 1,i>0

and T is any [inite subset of S - S, then
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DISCRETE «-SEQUENCES OF INDEX SETS 297
) ) s
Wx EAO_HWX uT eAU«-»Wx—T eAcr.

Proof. By induction on i. It suffices to prove the result for the cases when
0 =0, 71 or 72. The complementary cases follow by symmetry since, e.g., W _¢€
s S s . . -
ArT oW, ¢Arf =AT-1 .If i=0then [ ,=1,s0 0=0 and T is any finite sub-
set of § -5, =§. Since Ag = {le Wx C 8}, it is clear that

W eAS oW CSeoW UTCSeoW _TCS.
x 0 x - X -_— x -

Now assume the lemma holds for all 7 of length i + 1 and let [ =i+ 2, TC

$-S.0

§-5,.¢€ § - §, so, by the induction hypothesis,

then 0 = 7l or 72 where 7 has length i + 1. But §,CS_ , implies T C

W_ €A oW _UTEeA oW _-TecA,.
X T x T x o
Also, s; €S, | implies s ¢T,so
siEqu—-»siéwx UTHsiEWx—T.
These two sets of equivalences imply
s, €W _and W €Asti€Wx U T and Wx—TEAf
s, €W ~Tand W _-TeA]
and
s, W, and W €A rs, ¢ W _UTand W U TEeA;
HSi‘¢Wx—T and Wx—TGAf.

Now if 0 =71, AS = {x| s, €W _and W_e A7} while if o = 12, AS = x| ¢ W

and W _e Af}. In either case, it follows that

s s s
W, €A, oW, UT €A, < W, ~TEeA,.

Lemma 1.6. If S is any infinite set and o any index sequence of length i >
0, then

K x 045 <0A,.
Proof. A‘S,l ={W_|s,eW, and W e Afri. Let b be a recursive function

which computes the index of an r.e. set generated according to the following in-

structions:
Let
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298 L. HAY
Woixy = & if’ﬂl(x) ¢ K,

= an(x) ulst if 7 (%) € K.

Then
S S
b(x) 66A01 s, EWb(x) and Wb(x) €Ao—
> S
ﬂl(x) € K and Wh(x) = W"z(") U {si} €A,

Since s, €5 - S, Lemma 1.5 implies that

s S,
Wt U Isheay W0 €45

o

so h(x) e OA“EI — 7(x) €K and Vo) € Af,, and K x GA“ETS 9Asl via b.

Lemma 1.7. If S is any infinite set and o any index sequence of length i >
0, then K x 0A<ST§ OASaz.

Proof. Aiz = {Wx| s, ¢ W and.W’c € Af,}. Let » be a recursive function which
computes the index of an r.e. set generated according to the following instruc-

tions:

W”z(") - {si} if ﬂl(x) £ K,

=N if rrz(x) € K.
Then

S S
hlx) €0A0,2 s, ¢ Wb(x) and Wb(x) €Acr

Hﬂl(x) ¢ K and Woix =W

s
) 772(x) - {si} €AU‘

o 7,(x) ¢ K and an(x) €A§,

using Lemma 1.5 as in the previous lemma. So K x GA“;S 6A‘22 via b.

Definition 1.8. If S is any infinite set and ¢ any index sequence, lct

Xy =045, X3 =043 =047 =X,.
Lemma 1.9. For all infinite sets § and all index sequences o,
(a) an =K x X(S,,
S ~ % S
(b)xo,2= KXXO"
xS<x5,i=1,1,2,2

o R
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Proof. By the definitions of Afﬂ and Agp Lemma 1.4 implies X‘fﬂ <K x X“Z

and Xiz < K x X'i. That K x Xif Xi,l and K x Xer X‘;z is given by Lemmas_l.G
siif i=1,2.Fori=T1,2, X_ =X,

where 7 =1, 2 so X‘E-T < X‘Z—i-»which implies X‘E,: ng < Xfri'

and 1.7. It follows immediately that Xf;f X

Remark. Lemma 1.9 justifies the claim made after Definition 1.3 that the sets
OA‘E. obtained from different enumerations of the set § are recursively isomorphic.

For I =1 the sets GAS; depend only on §, and for [ > 1, the isomorphism is

easily obtained by induction, using Lemma 1.9 (a) and (b).

Lemma 1.10. Let S be any infinite set G N.If o is any index sequence, then
X3 is in the bounded truth-table degree of X3 = OAg.

o
Proof. By induction on I_. If 0 =0 or O, Xf,: Xg or X%, so Xf, =i Xg.
Assume [ =7+ 1 and that the result holds for all 7 such that lr < n. Then by

Definition 1.1, 0 = 7i for some i =1, 1,2 or 2 and 7 such that Xf = Xg. So it

S S
L XTz' : _
Case 1. i=1 or 2. By Lemma 1.9, Xf.l- > K x Xf or K x Xf.. In either case,

S S S S S
XrSXn. so X3 < Xri.Toshow X5

bt
suffices to show that X

< X3 it suffices to have K, K Spee Xf.

btt i =btt T

But by Lemma 0.1, since § and thus each A‘: is nontrivial, K < Xf or K < X‘;. In

either case, K, K o Xf and Xfi ot Xf.

Case 2.i=1 or 2. Then Xfi = X3~ where 7 =1 or 2, so by Case 1, X3
T T

_ s __S_ . s _ s
b X'r‘ = X7. So by complementation, X7 =i o

Definition 1.11. Let R be any (fixed) nonempty r.e. set such that R is in-

finite. The sets Xg will be denoted by Y_.
Lemma 1.12, Y, < K.

Proof. Y, = {x| W C ﬁ}, so Y = {x | W NR # &} which is r.e., since R is
assumed to be r.e. So ?0 <K and Y, < K.

Lemma 1.13. Let S be any infinite set G N. Then

(a) K < Xg,

(b) for all index sequences o, Y_ < X‘;.

Proof. (a) AS - {Wx[ Wx C S} soge Ag and N ¢ Ag, so by Lemma 0.1, K <
043 = X5.

(b) By induction on /. By Lemma 1.12 and part (a), Y, < X‘g and, comple-
menting, YO— =Y, < X‘?—;—. Now assume the lemma holds for all 7 of length £ >0

and let I, =k + 1. Then 0 =71, 72,71 or 72 for some 7 with I, = k. By the in-
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300 L. HAY

duction hypothesis, Y < X‘E which implies K x Y, <K x X;.q and K x Y. < K x Xf.
If 0 =rl, then by Lemma 1.9(a), Y, = K x Y, <Kx Xf e~ Xi; if 0 = 72, then by
Lemma 1.9(b), Y, ® Kx Y, <Kx XS =X5.Soif o=7l or 72, Y, <X5. H G171

or 72, the result follows by complementation, since @ =71 or 72 where l? =k, so
that Y5 < X3 which implies Y, <X3.

Remark. Lemma 1.13 justifies the lack of reference to R in the notation Y,

since if R''is any other nonempty r.e. set with R’ infinite, it follows that Yg <

g J ! 1 g . !
X’; = Yg and Y§ < X§ = Y‘; . Thus for every index sequence 0, YI; o Yﬁ , SO
Y, is independent of the choice of R.

2. Acceptable index sequences.

Definition 2.1. The subset @ of acceptable index sequences is defined in-
ductively as follows.

(a) 0,0¢ Q.

(b) if [, is odd,
ol e @ e 0=0o0r0=r1 or 72 for some TEG,
02 €@ 0=0 or 6=r1 or 72 for some ré@,

ol €@ 0=0 or 0=rl1 or 72 for some rea,

02 €e@e0=0 or =11 or r2 for some 76&,

(c) if 1, is even,
ole@ o= o 12 forsomeré@,
062 €@ e o=11 or 72 for some 7 € @,
ol e@e—o=11 or 12 for some r e,
02 €@ oo=r1or 72 for some 7 € (.

It is clear that if o€ @,

I, odd — one of 0, & must have form
0, 11, 721, 712 or 722 for some r € (1,
I, even —one of 0, ¢ must have form

01, 02, r11, 21,712 or 722 for some r € (1,

We note for later use that for each o € (, there are exactly two ways to extend
O to a sequence 0i € Q.

Lemma 2.2. Let S be any infinite set G N and let o€ Q. Then
(@) if 1, is odd,
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=0 or 71 or 72 ——~>¢€A§ andNéACSr,

0=0orrl or12 — & ¢ AS and N € AS.
(b) if 1, is even,
S A
o=110or12 > B¢ A, and N ¢ A_,

ag=r11 or rf—'ﬂeAfr andNeAg.

Proof. If 0= 0, AS = {W_| W_C S}, so clearly @ e AS and N¢ AS. If 0 =10,

Ai:Ag ,s0 B¢ A‘?; and N¢€ A‘Er. Now assume the lemma holds for all 7 such that
1< <1,

Case 1.1 =12 + 2.

Subcase 1.1. o = 7l for some 7€ (I. Then by Definition 2.1, 7=0 or AT or
A2 for some A€ (. By the induction hypothesis, since l,=2i+1, N dAf By
Definition 1.3, A‘Erz {Wx[ 5,;€ W and W ¢ Af} Clearly &¢ Ai_, and N ¢Af im-
plies N ¢ A3, since AS = A, CAS.

Subcase 1.2. 0 = 12 for some 7€ (1. Then by Definition 2.1, 7=0 or Al or
A2 for some A€ (. By the induction hypothesis, since l,b=2i+1, ¢¢Af. By
Definition 1.3, A‘Z: w1 s, #W_and W_e Af} Clearly N Q!A“;, and @ ¢A‘§ —
[7.] ¢A‘2, since Afrz AST2 - Af.

Subcase 1.3. 0 = 71 or 72 for some 7¢ ({. The result follows by complemen-
tation from the other subcases since 6 =7l or72and &, N€ A‘S‘ — g N ¢A‘; .

Case 2.1,=2i + 3.

Subcase 2.1. 0 = 7l for some A€ (. Then by Definition 2.1, 7= AT or AZ for
for some A€ {, and by the induction hypothesis, since /,=2i + 2, N¢€ Ai. By
Definition 1.3, A3 = (W _|s,. €W _and W_cA}}. Clearly ¢ AS and, since
Ne A‘E and s

2i+l
S
2i41 EN,NeA,.

Subcase 2.2. 0 = 12 for some 7€ (. Then by Definition 2.1, 7 = A2 for some
Ae@, and by the induction hypothesis, since [, =2i+ 2, g€ Af. By Definition
1.3, A5 =W _|'s,; \#W_and W_e A7} Clearly N¢ A7 and, since ge A} and

s
S9i4l £, BeA,.

Subcase 2.3. 0 =11 or .Tf for some 7€ (. By complementation from Subcases

2.2 and 2.3.

Lemma 2.3. Let o€ (. Then

(a)o:O —*Yogzo,
o=0—Y =Z.

(b) If l,=2n+ 2, then
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o=1l or 2 Y =2
o=11 or 12 — YogZ
() If I =2n+3, then
g=r1 or 12 —Y =
o=r1l or 2 — Y =
Proof. By induction on I .1f /_=1 then 0 =0 or 0. By Lemma 1.12, Y, <
K and by Lemma 1.13(a), K< X¥ = ¥ . So Y, = K = Z, by Definition 0.2, and

Y. = Hg 2~0 Now assume the results hold for all 7€ & such that 1 < L, <l,.

Case 1.1 _=2n+ 2.
Subcase 1.1. 0 = 71 or 71 for some 7€ (. By Definition 2.1, 71 € @er=0

or AT or A2 for some Ae (. By the induction hypothesis, since [, =2n +1, Y, &

[

Z,, Then by Lemmas 1.9and 0.3 Y, & Kx Y, K x Z, = Z, . Replacing

7 by T in this argument gives Yz < Zan, s0 Yrr = ?ﬂ = er2+1 .

Subcase 1.2. 0 = 12 or 12 for some 7€ (. By Definition 2.1, 712 € @eor=0or
Al or AZ for some Ae(f. By the induction hypothesis, Y, = 22", so by Lemmas
1.9and 0.3, Y,, X Kx ¥, =KxZ, =Z, . Sinmilacly, ¥
Yry) = 22n+1.

Case 2.1 =2n+ 3.

Subcase 2.1. o = 71 or 11 for some 7€ (. By Definition 2.1, 11 € @ o7 = AT

2= 22n+1’ so er -

or A2 for some A€ (. By the induction hypothesis, Y, = 22n+]. Then by Lemmas

1.9and 0.3, Y, = Kx Y, ®*KxZ, ,=Z, .. Similarly, Yp =Z, . so
YTi- =Yy = 22n+2'

Subcase 2.2. 6 = 12 or 12 for some 7€ (. By Definition 2.1, 2€ @ > 7= AT
or A2 for some Ae (. By the induction hypothesis, Y, & z
1.9 and 0.3, Yr2 > K x Y, = K x fzn

Y ~7 .
Y(i - Y?Z - 2271+2

2n+1» SO by Lemmas

~ - e
1= 2,5, ,, Similarly, Yz, Z 542> SO

Lemma 2.4. (a) If o€ ( then Y, =Z, _, or zZ
b) If 0,7 @ and [.<I,,then Y, <Y,.

lo-1"

Proof. (a) follows from Lemma 2.3, since the various cases exhaust @. For
(b), assume /,=m+ 1 and I, =n+1 for m <n. Then by (a), Y, ®Z or Z and
Y, Z or Z . Then by Lemma 0.4, Y,<Z  <Z and Y,<Z . <Z . Thus
in any case Y, <Y.

Lemma 2.5. For all m, n,

@z #Z,

W min—2Z #Z.
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Proof.ByLemma0.4,m<n—+Z <Z <z,andm=n—’z ]Z.Thus
m m+l n m' n
in either case (a) holds. Lemma 0.4 also implies (b), since, e.g., m<n —Z_<

VA <Z.
m+l - n

Lemma 2.6. Let o€ @, Then

(a) YU%ZO —o0=0,
b Y, =z
Dy, =z

el " lo=2n+2 and 0 = 11 or 72 for some 7€ @,

1ns2 lo=2m+3 and 0= 1 or 72 for some re Q.

Proof. (a) Assume 0 £0. Then 0 =0 or 7i for some 7e®, i=1,2,T or 2.
By Lemma 2.3, this implies Y_ = ZU or Yo=2 orZ forsome m>0.Inany
case, by Lemma 2.5, Ygié Zy.

(b)) Let m=1,—-1.1f I # 2n + 2, then m# 2n + 1 and, by Lemma 2.4(a),
Y,=Z or Z .ByLemma 2.5, this implies Y, $¥Z, . 1f [ =2n+2 but 0 4

71 or 72 for some 7 € &, then 0 = 71 or 72. Then by Lemma 2.3(b), Y = 22n+1 % ZZn+1'

C et m = - 1. n + then m 7 + £ an emma <Z.4\aj,
()L I,-1.1f 1 #2n+3,th #2n+2 and, by L 2.4(a)
Yo=Z orZ_ SobyLemma2.5, Y,¥Z, .11 =27+3butosrl or 12

for some 7€ (@ then o0 =71 or 72, so by Lemma 2.3(c), Y, = 22’”2 * ZZn+2'

Theorem 2.7. Let o€ Q. Then

(@) Y, =Z e0=0
(b) Yggzoc—»o=6
(c) YUQZ2

’

3

we1 T lo=2n+ 2 and 0 =71 or 72 for some re @,
(d) Yozzzw o1 =2n+2 and 0 =11 or 12 for some re(,
(e) Y, g_22n+2H10‘= 2n +3 and 0 =11 or 12 for some T€ @,
Oy, =z,

20 le=m43 and 0 = 11 or 12 for some re€ (.

Proof. (a), (c) and (e) follow from Lemmas 2.3 and 2.6. The other parts are

obtained by complementation, since I =[5, i =Ti and Y = Z oY= Zm,

Lemma 2.8. If 0i,0j€ @ (i, j=1,2,T or 2) then i ] >Y, =Y

oj*

Proof. Assume i £ j and o1, oj € (.

Case 1.l =2n+1.1f 0=0 or 1 or 72 for some T€ &, then, by Definition
2.1,0i,0ie @i, j=1 or 2, say i =1 and j = 2. Since lyij=lgj=2n4+ 2,0t
follc_).ws by Theoiem 2.7 that Y, & Zzn+l and Yaf = ZZn+1’ so Y, = Yoj. If
0 =0 or 71 or 72, the result follows by consideration of complements.

Case 2. [, =2n + 2. If 0 =11 or 72 for some 7€ (@ then, by Definition 2.1,
oi,0je i, j=T or 2, say i=1 and j = 2. Since lo;=1g;=2n+3, it follows
by Theorem 2.7 that YOI- =t Z2.n+2 and YUE = ZZn+2’

so Y, = Yoj. If 0=11 or
72, the result again follows by considering complements.
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Lemma 2.9. Let S be any infinite set G N. Then for all o€ @, ifi=1,1,2,
2 and gie 4, X(T% Y ..

Proof. Case 1.1, =2n+1, 0 =0 or 1 or 72 for some 7€ (. Then by Lemma
2.2, #eAS and N ¢ AS. By Definition 2.1, 0ie @ —i=1 or 2.
Subcase 1.1. i = 1. Then by Theorem 2.7, since I,;=2n+2, Y, =X Z, ..
It follows by Lemma 0.5 that 6A & Y. — 0A =Z, = — @eA. But this implies
=0ASG¢Y since zfeAf,. B
Subcase 1.2. i = 2. Then by Theorem 2.7, Y, = ZZn+1’ so by Lemma 0.5, A =
Y,,—0A =2,  — NecA. Butthis implies X5 = 047 #Y,,, since N £ A7,
Case 2.1 _=2n + 1,9=0 or 71 or 72 for some T€ (. Then =0 or 71 or
=5 S T . AT v
72 so, by Case 1, X3 # YE:’_ = Y——. But this implies X = X% # Y— =Y.
Case 3.1,=2n+2,0=rl or 72 for some 7€ (. Then by Lemma 2.2, ¢¢A§T
and N¢‘A‘ff. By Definition 2.1, oi € @—i-Tor 2.

oi

Subcase 3.1. = 1. Then by Theorem 2.7, Y 22 2, so by Lemma 0.5,

i/; =Y, 0A = 2n+2 — @FeA. It follows that X - 0AS # s Since B¢
o
Subcase 3.2. i = 2. Then by Theorem 2.7, Y, = 22n+2, so by Lemma 0.5,
0A =Y, — 6K -2, ,— NeA.If follows that X, = 043 Y ,, since N ¢ A3,

Case 4.1 =2n+2,0= T or 72 for some 7€ (&. Then =71 or 72, so by

s S S A Y
Case 3, X5 3 Y— = Y. It follows thac X5 = X5 # V=Y.

Lemma 2.10. For all §, § < Xg.

Proof Recall that X} = {x | W_C S}, and let g be a recursive function such
that {r} = en)? for all n. Then néSH{n}CSHg(n)e XS

Lemma 2.11. Let S be any set such that S is not r.e. Then for all o€ q,
Y, < X5.

Proof. By Lemma 1.13, Y _< X‘?;, so it suffices to prove Xfr{_ Y_, by induc-
tion on /.

Case 1.1, =1. Then 0 =0 or 0. If 0=0, Y, ®Z; =K, by Lemma 2.3; also

_..

s <Xs = XS , by Lemma 2.10. Then XS < Y — S < X% <K which implies § is

r.e., contrary to hypothesis. The reSult for 0 = 0 follows by symmetry.

Case 2. 1=k + 2, k> 0. Assume the result holds for all 7€ @ such that
I, <1, but that XS<Y

Since [ > 1, 0 =1i for some re (1. By Lemmas 1.13 and 1.9(c), Y, _<_XS
XS, <Y,.Since I, =k + 1, it follows by Lemma 2.4(a) that Y, XZ, or Z, and

Y., Zk L of Zk+1' Then by Lemma 0.6, Y, < XS GAS <Y, 1mp11es Y, = X‘:
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or Yr' = Xf. But the first of these contradicts the induction hypothesis and the
1

latter contradicts Lemma 2.9.

Theorem 2.12. Let S be any infinite set g N and let o€ Q. Then
(@) Z, < X35

(b) Z, < X35
(c)if I=2n+2 and o =1l or 72 for some 1€ Q, then Z,. . SX(ST;

(@ if I,=2n+2 and 0 =11 or 11 for some re @, then 72’”1 <x3;
(e)if I,=2n+3 and 0 =11 or 12 for some re {, then Z, 25 Xg;
() if I,=2n+3 and 0 =711 or 12 for some 7€ Q, then 22n+2 _<_X‘§.

If, in addition, S is not r.e., all the inequalities are strict.
Proof. By Lemma 1.13, Theorem 2.7 and Lemma 2.11.

Lemma 2.13. Let S be any infinite set such that K £, S. Then for all g€ Q,
Y5 £ X3,

Proof. By induction on /. For 0 =0, Y, 2 K by Lemma 2.3. That K £ X3 =
fx|w_n S 4 @}if K £y S was proved in [1, Theorem 3.5], by observing that
X% is r.e. in S, so that K < Xg — Kre.in S =K <; S, contrary to hypothesis.
By symmetry, Yo £ X‘g. Now assume the result for all 7€ ( such that 1.<l,.

Case 1.0 =71 or 11 for some_re &. If o= 11 then, by Lemma 1.9, X§ =K x
X3 and, by Lemma 2.2, g e AR = AR . S0 v5 < X5 v, =048 <Kk x X5 which
by Lemma 0.7 implies Yz < X}. It follows by Lemma 2.4(b), since I.<l,, that
Y;- <Yz < Xf, which contradicts the induction hypothesis. If 0 = 71 the result
follows by complementation.

Case 2.0 =12 or 72 for some 7€ Q. 1f o= 72, then by Lemma 1.9, Xfr =K x
XS and, by Lemma 2.2, Ne AR _ AR | So v, < X5 — vy - 0AR <R x X3 which
by Lemma 0.8 implies Yz < Xf . It follows by Lemma 2.4(b) that Yr_ <Yz< X‘:,

which contradicts the induction hypothesis. The result for 0 = 72 follows by com-
plementation.

Lemma 2.14. Let S be any infinite set G N such that K £r S. Then for any
index sequence 0 and i=1,1,2 or 2,0 ({ and oiec @ —’X§'< Xf,i.

Proof. By Lemma 1.9, X‘ZS Xsm. so it suffices to prove Xii £ xfr. Now by
Lemma 2.4(b)§ Y5 <Y_, and, by Lemma 1.13, Y_. < Xii. Then X‘fﬁ < X‘g implies
Yp <Y, <X, < X“;, which contradicts Lemma 2.13.

Lemma 2.15. Let S be any infinite set G N such that K £rS,andlet o€
Q.1 for i,j=1,T,2 or 2, 0ic @ and gj €@, then i 4 —’X‘fﬁ|X‘;j.
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Proof. By Lemma 1.13, Y . < xS i SO to show XS £ X‘;. it suffices to prove
Y. ;(X for j # i. But, by Lemma 2.8, Y .= Y = Y_, and by Lemma 2.13,
Y_ £ XOr , which implies X £ XS The other half follows by symmetry.

3. Acceptable index functions.

Definition 3.1. Let / be a function, /: N — {0, 0, 1, 1, 2, 2}. For each i €N,
let o(i, f) be defined inductively as follows:

(a) a(0, N) = £(0),

Woli+1,N=0, ) xfG+1).

If 6(i, ) =0 then (i, /) denotes &.

Definition 3.2. Let / be a function, /: N — {0, 0, 1, 1, 2, 2}. f is an accept-
able index function (a.i.f.) if, for every i € N, o(i, f) € a.

Note that by this definition { is an a.i.f. only if f(0) €0, 0} and f(i) €
{1,1, 2,2} forall i>0.

Remark 1. There exist continuum—many acceptable index functions such that
f(0) =0 and continuum—many such that f(0) = 0. This is easily seen as follows:
By Definition 2.1, 0 and 0 are both in @, and as noted after Definition 2.1, for
each o € @ there are exactly two ways to extend o to a sequence i € @; and

there are ¢ paths through an infinite tree which branches twice at each node.

Lemma 3.3. Let [ be defined by {(0) =0, f(2n+ 1) =1, f(2n + 2) = 1. Then

{ is an acceptable index function and, for each m, Z = Yo(m,/).

Proof. We show by induction on m that o(m, )¢ { and zZ, =Y, - For
m = 0, the result holds since o(0, N=0¢ @ and Z0 '~ YO by Theorem 2.7. Now
assume the result holds for m.

Case 1.m + 1 is odd. Then o(m + 1, () =olm, f) *f(m + 1) = o(m, /) 1, and
YU(m,/) o~ Zm implies o(m, f) =0 or 71 or 2 for some TE€ C'f, by Theorem 2.7(a)
and (e). Since I, )
= o(m, f) *166 and by Theorem 2.7 (c) that Yo mar iy = Zm+1.

Case 2. m+ 1 is even. Theno{(m + 1, /) —o(m, Nxflm+ 1) =olm,f) *1,

=m + 1 is odd, it follows by Definition 2.1 that o(m + 1, f

and Y mp) = Zm implies o(m, /) =11 or 2 for some 7€ (f, by Theorem 2.7(c).
Since Za(m p=m+ 1 is even, it follows by Definition 2.1 that a(m + 1, ) =
olm, ) *T € @, and by Theorem 2.7(e) that YU(m+1 n = Zm+1-

4, Discrete o -sequences.

Definition 4.1. Let {A_} _ be a sequence of classes of r.e. sets. The se-
quence {04 } . is a discrete w-sequence of index sets iff

(a) 6An < 6An+l for each n;

(b) for any class B of r.e. sets and each n, 0A < 6B <A | implies

6B zeAn or 6B = 9An+1'
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Definition 4.2, A discrete w-sequence of 1-degrees denotes the sequence of 1-de-
grees of a discrete w-sequence of index sets.

Evidently two different sequences of sets may determine the same sequence
of 1-degrees.

Definition 4.3. If S is a set and / an acceptable index function, the se-
quence {GAU(",/)}'2 >0 is the S-sequence of index sets determined by {, The cor-
responding sequence of 1-degrees is the S-sequence of 1-degrees determined by |,

Lemma 4.4. The 1-degrees of Z, and Z)— are each at the bottom of ¢ dis-
crete w-sequences of 1-degrees, each contained in the bounded truth-table degree

of Zy-

Proof. Let {X 1 ., be any sequence such that X =Z, X =Z o Z
for each m > 0. Then by Lemmas 0.4 and 0.6, each such sequence is a discrete
w-sequence. Since Z % zm, it follows as in Remark 1 that there are ¢ such
sequences and that distinct sequences determine distinct sequences of degrees;
similarly if X, = 20. That the sequences are contained in the btt-degree of Z

follows from Lemma 0.3 and the fact that Z, = K, as in the proof of Lemma 1.10.

Lemma 4.5. Let X = Z, or 21. Then
& 0
DX
N
is an initial segment of the partial ordering of index sets under one-one reduci-

bility.

Proof. Let B be any class of r.e. sets. It is well known that &, N < K, K,
which together with Lemma 0.4, implies g, N < Zo, 20 < X. Assume B is a class
of r.e. sets such that 0B < X. We will show that B = &, N, Zy or Z,.

Case 1. B =Jor B=¢&. Then 6B = Bor OB = N, respectively.

Case 2. B £ @and B £ @.1f @B, then by Lemma 0.1, K= Z < 6B <X
So by Lemma 0.6, 0B = Z, or OB = X. If & ¢ B, then by Lemma 0.1, Z,
6B <X so, by Lemma 0.6, 6B = Z, or 6B = X. It follows that 6B = ZO or
0B = X, which completes the proof.

<6B
R-

Remark 2. Lemma 4.5 cannot be strengthened by replacing Z by Z_ for
m > 1; i.e., we can prove that, forall m> 1, Z hasa predecessot 0B such that
6B $ Z, or Z for any & < m. The proof will appear elsewhere [7].

Theorem 4.6. If S is co-r.e., then the 1-degrees of 0A0 and 020 are at the
bottom of ¢ discrete w-sequences of 1-degrees.If S £ N, these sequences are all
contained in the bounded truth-table degree of OAg.
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Proof. Case 1. S £ N. Then 0?{3 = {x| W, N S #@}isre.and N€ GZ‘;, so
Ozg <K and, by Lemma 0.1, K < Ozg. So GZg =K-= 20 and GA‘; >~ Z,. The
conclusion then follows from Lemma 4.4.

Case 2. S = N. Then 0A‘g = N_and GZg = &. Let {Xm}mzo be any sequence
such that X, =N, Xm+1 =Z ~or Z (forall m. As in the proof of Lemma 4.4,
there are ¢ such sequences, and similarly if X = &. These sequences are dis-

crete, by Lemmas 4.4 and 4.5, and determine distinct sequences of degrees since
Xmg Ym, for all m.

Theorem 4.7. Let S be any infinite set G N such that K £ S.If [ is any
acceptable index function, the S-sequence of index sets determined by [ is a dis-

crete w-sequence of index sets, all contained in the bounded truth-table degree

of GAS.

Proof. Let 6A  denote 0AS By Lemma 1.10, each OAn is in the btt-de-

o(n,f)°
gree of 0A By Lemma 2.14, 04 = XU( < XS o(ne1.y = 04,1 Since
oln+1, /) =of{n, f) *i and o(n, /), o(n + 1, f) € A. It remains to show the se-
quence is discrete. Assume 04 < OB <60A .
Case 1. f(n+1)=1. Then o{n + 1, /) =o(n, {) *x1, so by Lemma 1.9, GA"+l =
s s ~
X o (ns1 n = =~ K x Xo(n'/) =K x0A . But by Lemma 0.9, 04 < 6B < 0An+1 ~ K x

0A"1mp11es 6B ’;‘GA" or 6B z@AnH.

Case 2. [(n + 1) =2.Then g(n+1, ) =c(n, /) *2 so by Lemma 1.9, 0A

S
Xotmsr = K x X n,0)

K x 6A  implies OB g 6A  or 6B geAn+1.
Case 3. f(n +1) =1 or 2. Then o(n + 1, f) =o(n, f) i where i =1 or 2, and
0A,< 6B <6A  implies 6A_ <6B <A ny1 Where 0A = Xy 2nd 0A_ | =

n+l
X&'(n“,/) = xo'(n i where i =1 or 2. By Cases 1 and 2, replacmg oby o
(since OEGHG‘E&), 6A_<6B<6A , implies 0B ~0A or GB=PA__ .. The result
n- - n+ n n+l
follows by complementation.

n4l

=K x 0A . Then by Lemma 0.10, 64, <6B <6A =

Lemma 4.8. Let S be any infinite set G N such that K <p S A [ and g are
acceptable index functions which determine the same S-sequence of 1-degrees,
then [=g.

Proof. Assume f £ g. Then f(k) £ g(k) for some k € N. Let n be the least
. . S
such k. It will suffice to show that 9AC . & OAU(n,g)
Case 1. n = 0. Since f, g are a.i.f.’s, f(O)E{O 0} and g(0) € {0, 0}; since
f(0) # 8(0), assume [(0) = 0 and g(0) = 0. Then, 0AS y = XS and 0AS

s {0,/ o(0,8) ~
X5 = Xo, and, by Lemma 1.11, Xg "Té Xg-.
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Case 2.n =m + 1 for some m > 0. Then since 7 is the least & such that
[(&) £ g(&), o(m, f) = a(m, g); let 7 denote this common index sequence. Then
oln, ) =alm, ) *f(m + 1) = and o(n,g)=a(m, g) xglm + 1) =1 where i £]
by hypothesis. Since f, g are a.i.f.’s, ri € @ and rj € @. Then by Lemma 2.15,
aAo(n,/) = Xfi ;# ij = eAfv(n,g)'

Theorem 4.9. Let S be any set such that K £, S. Then the 1-degrees of
0Ag and _674-3: are at the bottom of ¢ discrete w-sequences of 1-degrees. If S £

N, these sequences are contained in the bounded truth-table degree of OAg.

Proof. Case 1. S is finite or S = N. Then § is co-r.e., so the result follows
from Theorem 4.6.

Case 2. § is infinite, § & N. By Remark 1, there are ¢ acceptable index
functions such that f(0) = 0, and ¢ such that f(0) = 0. By Lemma 4.8, these
functions determine different S-sequences of 1-degrees. By Theorem 4.7, these
sequences are discrete are contained in the btt-degree of OAg.

Definition 4.10. For any set P, let

(a) P'= {x| xe WE,

(b) P, = Ku, v) lDu CPand D C Pi,

(c) P*= Xgo ={x| W NP, £ ot

Lemma 4.11. For all sets P, P <P and P < P.

Proof. Let D, =@ and let g(n) be a recursive function such that Dg(n) = {n}
for each n. Thea P <P via b(n) = (g(n), 0). It is easily seen that P, <, P via
(unbounded) truth-tables.

Lemma 4.12. For all sets P, P' = P*,

Proof. P* is r.e. in P, which implies P*<P’. Let g(x) be a recursive func-
tion defined by W, = {u, V)| (3y) (x, y,*u, v)e Wp(x))* where p(x) is as in
{6, p. 132). It is easily verified that P’ < P™ via g.

Lemma 4.13. Let a be any Turing degree such that 0' <a. Then there exists
a set P such that

(a) P is not r.e,

(b) K £, P,

(c) P'e a.

Proof. Assume 0’ < a.
Case 1.0'< a. By Friedberg’s Theorem [6, Corollary 13-IX(a)}, there exists
b such that b'=b U 0'= a. Clearly 0' £ b, while b <0’ implies a=0". Sob|0’,

and any P € b will satisfy the conditions of the lemma.
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Case 2.0'= a, It is a well-known fact (proved by Friedberg) that there exists

d such that 0 <d and d'=0'; any such d contains a non-r.e. set P, and for such
a P K L(TP.

Lemma 4.14. Let S be any infinite set such that S is not r.e. and K £..S,
and let { be any acceptable index function. Then the S-sequence of 1-degrees
determined by [ does not contain the 1-degree of Z  or Zm for any m > 0.

Proof. It must be shown that for all m, n, Xfr(n’/) Q# Zm or zm. Since by

Theorem 2.7, each Z_, zm > Y,_ for some 7€ @, it suffices to show that Xfr #
Yr for any 0, 7€ Q.

Case 1.1_<I,. Then by Lemma 2.4, Y5 <Y_, so X} &Y _implies Y; <X},
contradicting Lemma 2.13.

Case 52 I,>1, . Then bySLemma 2.4, Y <Y_,and by Lemma 2.11, Y _< Xfr.
So Y, <X, which implies X' "Té Y.
~ Case 3.Slo_= l,. Assum—e Xfy =Y, . By Lemma 2.4(a), Y, = Zl,—l or
er-l’ so X = er_l or Zlo-l' Also by Lemma 2.4(a), Y = Zlo—l
and, since / = lr’ Zlg—l = Zlf—l' It follows that Xff ~Y orY_.Butby
Lemma 2.11, Y _< Xff and, by Lemma 2.13, Y =Y £ XSU. Thus either way we

get a contradiction.

or Zlo'—l

Theorem 4.15. Let a be any Turing degree such that 0' <a. Then a contains
¢ discrete wy-sequence of 1-degrees, none of whose elements are 1-degrees of

Z orZ_ for any m.

Proof. Assume a > 0’. By Lemma 4.13, there is a set P such that P is not

o —
re., K< P and P'€ a. Now by Lemma 4.12,P*=X-0 >~ P’ so .X[:O €a. B
=T y 0 0 Y

Lemma 4.11, P <P and P <, P. It follows that P not r.e. — P, not r.e.,

—
and that K éT P — K <, P,. The bounded truth-table degree of 64, 0 is then
contained in a, so that by Theorem 4.9, a contains ¢ discrete w-sequences of 1-
degrees and by Lemma 4.14, these w-sequences do not contain the 1-degree of
Z_or Z_ for any m.
m m

In [3] it was conjectured that for each m > 0, there exists a class A with

Z <0A and zm £ 6A. The present technique yields the following stronger re-

sult:

Theorem 4.16. Every Turing degree a >0’ contains a discrete w-sequence
{0A_3} ., of index sets such that, for each m, Z < 0A and Z £oA_.

Proof. Assume a > 0’, and let P, be as in Theorem 4.15, i.e., PO is not

r.e., K 57‘ PO and Xgo € a. By Lemma 3.4, there exists an acceptable index
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P
function { such that, for all m >0, zZ = YU(m’/). Let Am = AO’?m,/)' Then by
Theorem 4.7, {OAm}m .o is adiscrete w-sequence of index sets contained in a;

P -
for each m, Z_mz Y 5 < OAU(()”“/) = 0A , by Lemma 2.11; and Zm o~

o(m

Py
Y& im.h) évo(m,/) = 60A_, by Lemma 2.13.
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