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Abstract

Nowadays, the management of product geometrical variations during the whole product development process is an

important issue for companies’ competitiveness. During the design phase, geometric functional requirements and toler-

ances are derived from the design intent. Furthermore, the manufacturing and measurement stages are two main geo-
metric variations generators according to the two well-known axioms of manufacturing imprecision and measurement

uncertainty. GeoSpelling as the basis of the geometrical product specification standard enables a comprehensive model-

ing framework and an unambiguous language to describe geometric variations covering the overall product lifecycle
thanks to a set of concepts and operations based on the fundamental concept of the ‘‘Skin Model.’’ In contrast, only few

research studies have focused on the skin model representation and simulation. The skin model as a discrete shape

model is the main focus of this work. We investigate here discrete shape and variability modeling fundamentals, Markov
Chain Monte Carlo simulation techniques and statistical shape analysis methods to represent, simulate, and analyze skin

models. By means of a case study based on a cross-shaped sheet metal part, the results of the skin model simulations

are shown here, and the performances of the simulations are described.
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Introduction

In modern production engineering, new complex prod-

ucts with controlled tolerances are being increasingly

adopted to improve companies’ market position.

Geometric variations are inevitably generated during

the manufacturing stage due to the accuracy of manu-

facturing technologies.1 Geometric variations are also

generated during the measurement stage considering

measurement uncertainty.2

Within the context of product lifecycle management

(PLM), information communication and sharing

requires to manage the geometric variations along the

whole product lifecycle. The geometric variations

should be considered early in the tolerancing process in

the design stage.3 Many computer-aided tolerancing

(CAT) tools can help designers for functional tolerance

specification, but they are limited to control the geo-

metric variations when covering the whole product life-

cycle. Different modeling frameworks have been

proposed to build coherent and complete tolerancing

process along the whole product lifecycle.

Hillyard and Braid4 developed the concept of varia-

tional geometry that is a dimension-driven, constraint-

based technique. Another early example of previous

work of tolerance-modeling technique is the solids offset

approach proposed by Requicha,5 in which the toler-

ance zones of workpieces are obtained by ‘‘offsetting’’

the nominal boundaries. Bourdet6 developed the con-

cept of the small displacement torsor (SDT) to solve the

general problem of the fit of a geometric surface model
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to a set of points using rigid body movements. Based on

the solids offset approach, Jayaraman and Srinivasan

proposed virtual boundary requirement (VBRs) and

conditional tolerance (CTs) approach.7,8 Etesami9 for-

malizes the solids offset model and proposed using toler-

ance specification language (TSL) to describe tolerance

constraints. Shah et al.10 proposed a dimension and geo-

metric model, which is based on the relative degrees of

freedom of geometric entities: feature axes, edges, faces,

and features-of-size. Roy et al.11 presented a mathemati-

cal scheme for interpreting dimensional and geometric

tolerances for polyhedral parts in a solid modeler.

Among them, GeoSpelling proposed by Ballu and

Mathieu,12 as the basis of the geometrical product speci-

fication (GPS) standard, enables a comprehensive mod-

eling framework and an unambiguous language to

describe geometric variations covering the overall prod-

uct lifecycle thanks to a set of concepts and operations

based on the fundamental concept of the ‘‘Skin Model.’’

Different from the nominal model that is deemed as an

ideal representation, the skin model is a shape model to

represent non-perfect shapes.13 To the best knowledge

of the authors of this article, the operationalization of

GeoSpelling has not been successfully completed and

few research studies have focused on the skin model

representation and simulation.

In ISO 17450-1,13 a skin model is a shape model.

Early researches in tolerance-based modeling lead to the

development of attribute-based systems.14 These efforts

could be roughly classified either as point-based (e.g.

point cloud), surface/shell-based, or volume-based.15 A

shape representation scheme can be defined as a mapping

from a computer structure to a well-defined mathemati-

cal model that defines the notion of the physical object in

terms of computable mathematical properties and is

independent of any particular representation scheme.16

Johnson17 proposed a tolerance representation approach,

which integrates dimensioning and tolerancing modelers

with the geometric modelers. This B Rep–based model is

applicable only for location and size tolerances, and it is

limited to geometric entities such as planar faces, cylind-

rical faces, conical faces, and spherical faces. Requicha18

proposed a constructive solid geometry (CSG) -based tol-

erancing representation model, which is named as

PADL-I and PADL-II modeler. The limitation of this

CSG-based approach is that all of non-primitive faces

derived from the same primitive face receive the same

variations. Gossard et al.19 proposed a similar feature-

based design system, which combines B-Rep solid model

and GSG-representational scheme. This approach can be

employed on a polyhedral solid model, but it is limited to

the conventional tolerance representation.

Considering dense point data can be acquired by

scanning techniques and discrete shapes are commonly

used in production engineering, this research work

focuses on discrete skin representation and simulation.

It would also be efficient for the operationalization of

GeoSpelling based on discrete skin model representa-

tion. Based on discrete skin model, discrete geometry

processing techniques will enhance GeoSpelling-com-

puting capabilities and enable its operationalization.20

In order to enrich the skin model when considering

the deviations from the nominal or computer-aided

design (CAD) model, the authors have assessed the

geometric deviations at many different scales. Kurfess

and Banks21 modeled the manufacturing error using a

sequence of models based on statistical hypothesis test-

ing of the fitted residuals. Yang and Jackman22 evalu-

ated form error using statistical method without

independently analyzing the statistical properties of the

associated residuals. Samper and Formosa23 proposed

a way to define form error parameters based on the

eigenshapes of natural vibrations of surfaces. The ori-

ginality of this method is that the set of form para-

meters can be computed for any kind of shape.

In this article, the authors investigate Markov Chain

Monte Carlo (MCMC) simulation techniques and sta-

tistical shape analysis (SSA) methods to represent,

simulate, and analyze skin models. A global-modeling

approach based on principal component analysis (PCA)

and a local modeling approach based on augmented

Darboux frame is considered here. The local–global

modeling approach enables the simulation of both ran-

dom and systematic deviations when considering geo-

metric constraint requirements, tolerance specifications,

and manufacturing. In addition to discrete shape mod-

eling for skin model representation and simulation, the

concept of the mean skin model and its robust statistics

are also introduced in this work.

The remainder of this article is organized as follows:

first, the Monte Carlo simulation techniques and local/

global modeling approaches for discrete skin model

simulation will be introduced; second, the SSA for dis-

crete skin models will be addressed; and finally, a case

study to apply the proposed methods will be presented.

Skin model simulation

Skin model is a representation of real shapes. The geo-

metric characteristics of real shapes should be fully con-

sidered for skin model shaping. In Caskey et al.,24 the

geometric deviations of the real surface to the nominal

one are caused by two kinds of deviations: random

deviations and systematic deviations. In this article,

both are simulated to construct a complete skin model.

Considering a designed shape is specified with geo-

metric tolerances, the simulated skin models are located

within the specified tolerance zones, which can be

defined as constraints of skin model generation meth-

ods.25 In this research, the deviations caused by random

errors follow Gaussian (normal) distribution, which

has been proven to be reasonable for mechanical appli-

cations,26 while systematic deviations are reproducible

inaccuracies that follow recognizable signatures, which

can be calculated or simulated from target shapes.

Random deviation simulation based on MCMC

Random simulation techniques can be classified into

physical and computational methods. The computational

Zhang et al. 673
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random simulation numbers are obtained by computa-

tional algorithms, which produce long sequences of

apparently random results. Actually, the computational

random numbers are pseudorandom, and they are

determined by the initial value of the algorithm. Based

on the hypothesis that the random deviations follow

Gaussian distribution, three statistical methods have

been developed for random deviation simulation: one-

dimensional (1D) Gaussian, multi-Gaussian, and

Gibbs methods.25 The results of the Gaussian methods

are influenced by the selection of the initial seed value.

However, Gibbs methods are initial seed-independent.

In this section, the Gibbs method is discussed in detail.

Gibbs method defined here is used to simulate the

multi-Gaussian distribution of random numbers using

the MCMC methods. The MCMC method generates a

sequence of samples from the joint probability distribu-

tion of two or more random variables by iterative pro-

cess. These methods are based on constructing a

Markov chain that has the desired distribution and

only depends on current state instead of the entire past

data. Hence, Gibbs method provides reliable Gaussian

distribution results.

In Gibbs sampling, a vector of parameters of interest

C is required, and also a nuisance parameter L with

observed data B, from which a converging distribution

can be obtained. Suppose (C1(0),C2(0), . . . ,Cd(0)) is

an initial starting random value in Rd. Note that the

conditional density function of Cj

�

�C�j is f(Cj

�

�C�j),

from which the Gibbs sampler selects candidate points.

The initialization of the process is at t=0 and the ini-

tial vector value is then C(0). When t is increasing

(t=1, 2, . . . ,T), then C(t) follows the density func-

tion f(Cj

�

�C�j) and generates new point to replace the

old one, and an iterative calculation is performed until

it converges to the target value. The corresponding

pseudo-code is described as follows

(a) For t=1, 2, . . . ,T, let c1 =C1(t� 1).

(b) Let j be a variable between [1, d]. For

j=1, 2, . . . , d, using f(Cj

�

�c�j) to get candidate

point C
�
j (t), and then value cj =C

�
j (t) is

updated. During the sampling process, the varia-

tions of each vector are as follows.

Sample c1(t) is from f(c1 c2(t� 1), . . .j ,

cd(t� 1),L(t� 1), B);

Sample c2(t) is from f(c2 c1(t),c3(t� 1), . . .j ,

cd(t� 1),L(t� 1), B);

Thus, sample cd(t) is from f(cd c1(t), . . .j ,

cd�1(t),L(t� 1), B);

And then, sample L(t) is from f(L c1(t), . . .j ,

cd(t), B).

(c) Let C(t)� =(C�
1(t), . . . ,C�

d(t)), and increase t.

The vectors c(0), c(1),., c(t) represent the reali-

zation of a Markov chain, where the transition

probability from c( � ) to c is defined by

equation (1).

F(c( � ),c)= f(c1 c2( � )j , . . . ,cd( � ),L( � ), B)�
f(c2 c1,c3( � )j , . . . ,cd( � ),L( � ), B)
. . . � f(cd c1j , . . . ,cd�1,L( � ), B) ð1Þ

The joint distribution of (c1(i), . . . ,cd(i),L(i)) con-

verges to f(c1, . . . ,cd,L Bj ) when i ! ‘.

In this case, there are 273 points as input point set,

and the stationary objective function follows a

Gaussian distribution. Based on Gibbs method, 1000

times interactive process is adopted, and the sampling

random variables from Gaussian random numbers

simulated the skin model as Figure 1.

Global approach

The skin model should satisfy tolerance specifications

associated to the relevant nominal model. It means that

Figure 1. Skin model simulation by Gibbs method: (a) nominal

model; (b) skin model view 1; (c) skin model view 2; and (d) skin

model view 3.
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the simulated skin model should be within the corre-

sponding tolerance zone. Here, three types of geometric

tolerances are considered: form tolerance, orientation

tolerance, and position tolerance. After creating the ran-

dom point set to simulate the skin model, the authors

also intend to add geometric dimensioning and toleran-

cing constraints on it to satisfy the specification require-

ments. In order to simulate the skin model within a

given tolerance zone, the direction of the tolerance zone

should be determined first. For this purpose, a global

model approach based on PCA is developed here.

The PCA is a mathematical method used to convert

a set of correlated variables into a set of values of

uncorrelated variables called principal components.27 It

is usually used to evaluate the main element or struc-

ture of a set of data. Based on the covariance matrix,

the PCA method proceeds in such a way that the first

principal component has the highest variance (i.e.

accounts for all the variability in a data set), and each

succeeding component in turn has the highest possible

variance within the constraint.

Consider a discrete shape PN represented by an arbi-

trary set of points Pi = ½xi, yi, zi�T. The PCA method

computes the principal axes of the discrete shape using

the following three steps:

(a) The origin of the principal coordinate system is

determined as the centroid of PN that is calculated

by

OPCA=
1

N

X

N

i=1

pi (pi 2 PN) ð2Þ

(b) The covariance matrix is defined by the following

equation

Mcov=
X

N

i=1

(pi �OPCA)(pi �OPCA)
T (pi 2 PN) ð3Þ

(c) The eigenvalues and eigenvectors can be calcu-

lated. The first principal axis is the eigenvector

corresponding to the largest eigenvalue. The two

other principal axes are obtained from the remain-

ing eigenvectors.

In the following, a case study with flatness specifica-

tion (form tolerance) is discussed to illustrate the

method for skin model simulation considering the tol-

erance constraints.

In Figure 2(b), the point set is a skin model of a

plane that follows the Gaussian distribution. Using

PCA method, the principal axis in three-dimensional

space is evaluated. The direction of the third principal

axis ~n is deemed as the tolerance zone direction. The

skin model can be generated within the tolerance zone

according to the tolerance zone direction. The con-

straints of orientation and/or position tolerances can

be treated in a similar way.

Local approach

The ‘‘Global approach’’ section discussed the skin

model simulation considering random deviations from

a global perspective. Different from random errors that

are statistical fluctuations, systematic deviations are

reproducible. They usually follow recognizable signa-

tures that can be calculated or simulated. In skin model

shaping, it is thus reasonable to define some basic

shape models (e.g. second-order shapes) to simulate

those systematic errors.28

The augmented Darboux frame described the orien-

tation, principal curvatures, and directions at a point

on a surface29 can be used as a local representation for

a surface at each sample point. Let p be a sampled

point. The origin of a local frame is defined at p. One

of its axes is aligned with the surface normal at p. The

other two axes are aligned with the principal curvature

directions at p for which the normal curvature takes on

maximum and minimum values, kmax and kmin. The five

previous parameters when grouped as a system are

often referred to as the augmented Darboux frame at p.

The discrete surface can be studied locally as a Monge

Figure 2. Skin model simulation with flatness specification: (a) the case with flatness tolerance and (b) flatness constraint.
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patch, a height function z of two spatial variables x

and y defined using the augmented Darboux frame at

p. The local shapes for Monge patches are usually

approximated as quadric shapes.

Kurokawa and Ariura28 mathematically proved that

an arbitrary second-order surface can be transformed

into a fundamental form of the second order by the

combination of rotation, translation, and scaling trans-

formations. Based on this argument and augmented

Darboux frames, the authors propose to model here

the systematic deviations as one or a combination of

some basic second-order surfaces or quadric shapes.

Systematic deviations simulation

The authors propose here the use of second order–form

deviations to simulate the systematic deviations, since

the second order–form deviations can reflect the princi-

ple curvature and the anisotropy of complex shapes bet-

ter than the first-order and higher-order deviations.28

For a plane, the common possible shapes consider-

ing the systematic deviations include: paraboloid, cone,

sphere, cylinder, and ellipsoid. The morphing operation

is a combination of a pure morphing, translation, and

rotation of these basic shapes.

As an example, a paraboloid surface is simulated

from the discrete model of a plane. The principle of our

method can be explained by Figure 3, in which Sp

denotes the paraboloid point set and Ip denotes the ini-

tial planar point set. The PCA algorithm is used to

evaluate the principal axis to obtain the local coordi-

nate system. Suppose pi is a random point of Ip and qi
is its corresponding point of Sp.

The distance between these two points in pis vertex

normal direction is reflected using hi.

SSA

The SSA is commonly used for variability considera-

tions in computer graphics, image processing, and bioin-

formatics domains.30 The basic idea of this method is to

establish a training set. The pattern of product geometric

variation and the spatial relationships of structures are

in a given class of shapes. Statistical analysis is used to

give an efficient parameterization of this variability and

to provide a compact representation of shapes.

To establish a statistical shape model, the following

four steps are needed:31

(a) Acquiring a training set from observation shapes;

(b) Determining the correspondence of the observa-

tion shapes;

(c) Aligning the training set through registration

operations;

(d) Analyzing the principal components and estab-

lishing the statistical shape models.

Suppose that a collection of n discrete shapes (skin

models) noted as X1,X2, . . . ,Xn is available. Where Xi

is a d dimension vector, and d is equal to the number of

points composed the skin model. Since the skin model

is calculated in the vector space, one may compute

directly the empirical mean model using the method

presented in Durrleman et al.,31 as in equation (4)

X=
1

n

X

n

i=1

Xi ð4Þ

The covariance of this collection of skin models can

be calculated by the following equation

X

X
=

1

n

X

n

i=1

Xi � X
� �

Xi � X
� �T ð5Þ

The covariance matrix +
X

is a d3 d dimension

matrix. The eigenvalue (l0, l1, . . . , ln�1) and eigenvec-

tor (v0,v1, . . . ,vn�1) of the covariance matrix +
X
can

be calculated. The principal components can be

reflected by the eigenvector of covariance matrix +
X
.

Let W= v0,v1, . . . ,vn�1½ �, the equation +
X
W=WLX

can be calculated. The diagonal matrix LX can be

described as follows

LX =

l1 0

.

.

.

0 ld�1

0

B

@

1

C

A
ð6Þ

The eigenvalues reflect the variance of the principal

components. When the principal component has a big-

ger eigenvalue, it reserves more information of an ini-

tial sample. In our method, the principal components

with bigger eigenvalues are selected to simulate the ini-

tial sample vector. The first t (t\ d) maximal eigenva-

lue fulfills the following equation

X

t

k=0

lk

,

X

d�1

k=0

lk4e ð7Þ

Let WX = v0,v1, . . . ,vt�1½ �, then each vector of the

sample data can be described by the following equation

X’X+Wxbx ð8Þ

Figure 3. Paraboloid morphing method for planar shape.
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where X is the mean. The t-dimensional vector bx is the

shape coefficient that controls the models of variation.

The main function of statistical shape model is to

determine the mean model among numerous sampling

shape models and to predict new shape model belong-

ing to the same shape family. Since X andWx are invar-

iants in a training set, the various shape models are

obtained and determined by bx. Under Gaussian distri-

bution assumptions, it can be calculated using equation

(9)

bx =63
ffiffiffiffi

li
p

(i=0, 1, . . . , t� 1) ð9Þ

Case study

The case study is based on a sheet metal part manufac-

tured in a one-stage sheet metal forming process. The

manufacturing process is simulated using stochastic

finite element (FE) techniques. The tooling is modeled

as rigid parts and a process macro is used to define the

processes, such as stamping velocity, blank holder

force, and friction. An initial model of the stamping

process is served as a basis for the variation of process

parameters. The selected variables (e.g. blank thickness,

drawing depth, punch radius, die radius, and flange

width) are computed using Latin hypercube sampling

under the assumption of the independence of the vari-

ables and normal distributions.32 The manufactured

cross-shaped parts was measured using ATOS-Ifringe

projection system. Figure 4 shows the CAD model of

the cross-shaped part and its geometric specifications.

Skin model simulation

In this case, the simulation method of the skin model of

a bottom plane with flatness specification constraints

is considered. Based on the CAD model (Figure 5),

the bottom plane can be extracted using CATIA V5

generative shape design (GSD) utilities as illustrated in

Figure 6.

In order to discretize the bottom plane, a tessellation

operation is implemented using CATIA V5 software.

Figure 7 illustrates the tessellation result composed of

2392 points and 4550 facets.

Based on the tessellated CAD model and the geo-

metric specification of flatness, different skin models

can be generated using the methods discussed in the

‘‘Skin model simulation’’ section. In this case, we create

skin models of the bottom plane by Gibbs method with

flatness equals to 0.3mm.

However, based on the information from measure-

ment and simulation data, the skin model can be

improved considering both systematic and random

errors. The analysis of this measurement point set is

illustrated in Figure 8.

Figure 5. Segmentation of the computer-aided design model.

Figure 7. Tessellation of the bottom plane.

Figure 6. Bottom plane extraction.

Figure 4. The cross-shaped part.
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Based on the nominal discrete bottom plane model

(Figure 7), the skin model with ellipsoid systematic

deviations is simulated (see Figure 9). To visualize the

deviations clearly, the limited deviations are reflected

by red and blue colors.

Random errors are added to the skin model with

ellipsoid systematic errors. The Gibbs method is

adopted to simulate the random errors. The skin model

with both systematic errors (ellipsoid) and random

errors (Gaussian distribution) is created. The represen-

tation of the skin model is refined using a color-scale

technique (see Figure 10). It shows that the form devia-

tions consider both the ellipsoid shape variety and

Gaussian random noises.

Statistical shape modeling

To calculate the mean model considered in the manu-

facturing process, a training set is designed with 10

models obtained using FE analysis (FEA) method.32

The relationships among these 10 samples are estab-

lished by landmark techniques. In our case, each

landmark corresponds to a unique grid marked as (i, j).

The mean point p is served as a center of a correspond-

ing grid (see Figure 11).

Based on the dimensional scale and the coordinate

reference system of the FEA technique, all the samples

are aligned using the registration algorithm. Figure 12

shows the positions of all the samples reflected by a dif-

ferent color.

After aligning the samples, the mean model can be

calculated using equation (4). Using the same process,

the mean model of the training set can be obtained.

These samples are simulated by the approach proposed

in the ‘‘Skin model simulation’’ section.

Based on the PCA technique, the deviation between

the mean model and each sample can be calculated

using equation (5). The influence of each component

can be deduced. According to the different kinds of

mean models, the new skin models can be predicted

based on equation (9) (Figure 13). This process is able

to enrich the property of skin model, which can com-

bine information from different design means, even

manufacturing and inspection domains.

Figure 8. Analysis of measured point data of cross-shaped part.

Figure 9. Visualization of systematic deviations.

Figure 10. Color scale of skin model with both systematic and

random errors.
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Conclusion

Skin model simulation is one of the most critical issues

in GPS and GeoSpelling domain. This article proposed

to develop methods to shape the skin models with ran-

dom and systematic deviations. Based on the hypoth-

esis that the random deviations follow the normal

distribution, the MCMC method is developed to gener-

ate the skin models with discrete representations. A

new skin model simulation method combined both a

global-modeling approach based on PCA, and a local-

modeling approach based on augmented Darboux

frame is considered. The local–global modeling

approach enables the simulation of both random and

systematic deviations when considering geometric con-

straint requirements, tolerance specifications, and man-

ufacturing. In addition to discrete shape modeling for

skin model representation and simulation, the concept

of the mean skin model and its robust statistics are also

introduced in this work. A new method based on statis-

tic shape models is developed for skin model simulation

and analysis. The contribution of this study to the

industry is that it can enrich skin models with different

influencing factors (such as temperatures, materials,

stress, etc.).

Using a case study based on a cross-shaped sheet

metal part, the results of the skin model simulations

and statistical analysis are shown, and the performances

Figure 11. Landmarks arrangement.

Figure 12. Alignment of the training set.

Figure 13. Predicted skin model with b1 = � 2
ffiffiffiffiffi

l1
p

.
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of the simulations are discussed. The obtained results

show the performance of this new approach.
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