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Discrete Sibson Interpolation
Sung W. Park, Lars Linsen, Oliver Kreylos, John D. Owens, and Bernd Hamann

Abstract—Natural-neighbor interpolation methods, such as Sibson’s method, are well-known schemes for multivariate data fitting and

reconstruction. Despite its many desirable properties, Sibson’s method is computationally expensive and difficult to implement,

especially when applied to higher-dimensional data. The main reason for both problems is the method’s implementation based on a

Voronoi diagram of all data points. We describe a discrete approach to evaluating Sibson’s interpolant on a regular grid, based solely

on finding nearest neighbors and rendering and blending d-dimensional spheres. Our approach does not require us to construct an

explicit Voronoi diagram, is easily implemented using commodity three-dimensional graphics hardware, leads to a significant speed

increase compared to traditional approaches, and generalizes easily to higher dimensions. For large scattered data sets, we achieve

two-dimensional (2D) interpolation at interactive rates and 3D interpolation (3D) with computation times of a few seconds.

Index Terms—Scattered data interpolation, natural-neighbor interpolation, graphics hardware.

�

1 INTRODUCTION

SCATTERED data visualization has been an area of interest
for several decades. Recently, it has been experiencing a

revival due to advances in distributed sensor networks,
where small, independent sensors are used to collect data at
random (scattered) locations in space and time. In order to
apply standard visualization techniques such as contouring,
slicing, and volume rendering to scattered data, it is
necessary to define a reconstruction function that can be
evaluated at arbitrary locations. A new challenge arises
with the decreasing manufacturing costs of the sensors,
which allows for many sensors to be deployed simulta-
neously. Highly efficient reconstruction methods are
needed to process large streams of time-varying data
originating from large sensor networks in real time.

A measured quantity, e.g., temperature or humidity,

varying over time, can be described as a mathematical

function fðx; y; z; tÞ. Each sensor i reports a stream of

samples fiðtÞ of that function, taken at the sensor’s position

ðxi; yi; ziÞ.
1 In order to analyze or visualize a measured data

set, one has to reconstruct the function f from the samples

reported by the sensor network. It is desirable to have

visualization tools with the capability to reconstruct and

visualize two and three-dimensional scattered data sets

with many data points in real time.
Most scientific visualization techniques require data to

include connectivity information. Scattered data in “raw

format” does not provide such information. A common

approach to deal with unconnected data is the use of field
reconstruction methods producing an analytical definition
that is later resampled to a grid format supported by
standard visualization methods such as contouring or
volume rendering. Existing scattered data techniques such
as radial basis function methods, Shepard’s method and its
variants, Hardy’s method, and triangulation-based methods
are based on using all samples or selected local subsets of
samples. Many of these techniques are computationally
expensive and do not scale well with the number of data
points; they are not geared toward real-time visualization.

Sibson’s natural-neighbor interpolation method is a
scattered data interpolation scheme based on a Voronoi
(Dirichlet, Thiessen) diagram of a data set’s sample
locations. We present the mathematical background of,
and definitions regarding, Voronoi diagrams and Sibson’s
method in Section 3. Sibson’s method is known to produce
good interpolation results and has desirable properties such
as linear precision, locality, and C1-continuity [1]. Similar to
many other schemes, however, Sibson’s method is compu-
tationally expensive and difficult to compute especially
when it is extended to higher dimensions. The high
computational cost is due to the fact that each evaluation
of the interpolant requires the insertion of a site into the
sample location’s Voronoi diagram to calculate the proper
interpolation weights of neighboring samples [2]. The
implementation difficulty is due to the difficulty of
explicitly representing higher-dimensional Voronoi dia-
grams, especially when facing limited numerical precision
and samples in degenerate positions.

We present a discretized approximation to Sibson’s
interpolation scheme. Instead of computing the interpola-
tion function using its traditional geometric definition, we
use a more efficient scheme operating on a discrete domain.
One straightforward way of discretizing Sibson’s method is
to use a discrete Voronoi diagram, which can be computed
efficiently using three-dimensional graphics hardware [3].
However, the algorithm described by Hoff et al. [3] does not
scale well to large data sets. We decided to use an
alternative approach exploiting geometrical properties of
Sibson’s method, which reduce the interpolation algorithm
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to rendering and blending d-dimensional spheres whose
radii are determined by the distance between an evaluation
location and its nearest neighbor in the data set. This
approach no longer requires us to use an explicit Voronoi
diagram; we use a kd-tree to efficiently find nearest
neighbors instead. Our approach described in detail in
Section 4 generalizes to higher dimensions.

Moreover, we show that our algorithm maps well to
modern programmable graphics hardware. In the past few
years, there has been an explosion in both the performance
and programmability of desktop graphics hardware. To-
day’s graphics processors offer the capability of running
user-specified programs on each vertex and fragment.
These capabilities are not only used in producing more
complex and detailed shaders for graphics applications [4],
but also for tasks diverging from traditional polygon-based
graphics, such as visual simulation [5], numerical computa-
tion [6], or more general-purpose computing [7]. The rapid
performance growth of these graphics processors coupled
with their ubiquity in modern computers make them
particularly interesting targets for visualization tasks such
as the one described in this paper.

With full optimization, we show that, in the two-
dimensional case, function/image reconstruction can be
done at interactive frame rates, e.g., we can reconstruct an
image at an output resolution of 512� 512 pixels from
50,000 scattered data points in 0.125 seconds. In the three-
dimensional case, the speed-up is also quite significant, e.g.,
we can reconstruct a volume field at an output resolution of
128� 128� 128 voxels from 100,000 scattered data points in
a few seconds. Implementation details and results are in

Section 5. Overall, our algorithm leads to a significant
increase in speed for large data sets, reduced storage space,
and simplicity in implementation compared to previous
methods.

2 RELATED WORK

Scattered data interpolation has been a research topic for
several decades and a large number of scattered data
interpolation techniques are well-understood today. Typi-
cally, scattered data methods are generalized into methods
based on inverse distances, radial basis functions, and
natural-neighbors. Many good surveys discuss and com-
pare extensively on different scattered data methods [8], [1],
[2], [9], [10], [11], [12], [13].

Inverse distance weighted methods are based on the
assumption that the interpolated value should be influ-
enced more by nearby points and less by more distant
points. The original work by Shepard [14] used a global
scheme, which tends to flatten the recontruction and whose
computational costs make it nonpractical for applications to
large data sets. Many local and modified schemes have been
introduced to address these issues. Using inverse distance
weighted methods, each point has a radially symmetric
influence. This isotropism can lead to undesired field
reconstruction artifacts when sampling rates differ signifi-
cantly in different directions.

Radial basis functionmethods is regarded as being among
the most elegant schemes from the mathematically point of
view [8]. Functions like Hardy’s multiquadrics, inverse
multiquadrics, and thin-plate spline (TPS) interpolants have
been applied to a large variety of scattered data problems.
They allow for anisotropic support, but require solving a
system ofN linear equations withN unknowns. Thus, many
methods cannot effectively handle large data sets due to
instability and computational costs associated with the
computation of radial interpolation that grows with increas-
ing distance from scattered data sites. Local versions of these
methods have been proposed to deal with larger data sets.

Natural-neighbor interpolation introduced by Sibson [15]
is a popular method used in many fields such as
environmental and geotechnical engineering and solid
mechanics [16], [17]. Natural-neighbor interpolation is
constructed on the basis of an underlying Voronoi diagram
of a data set’s sample locations. For natural-neighbor
interpolation, a sample’s weight is not dictated by the same
length measure in all dimensions, but by the appropriate
Lebesgue measure of the space directions [17]. This allows
for anisotropic support. Among other properties, natural-
neighbor interpolation methods are local, require local
neighbors only, has linear precision, and is C1 continuous
everywhere except at the data sites. Natural-neighbor
interpolation is superior to distance-based weights due to
its density variation in the area-based weights. Unlike the
radial basis function methods, it does not require solving a
linear system of equations. However, natural-neighbor
interpolation in its traditional implementation is computa-
tionally more intense than other approaches (especially in
higher dimensions) due the Voronoi diagram computation
and Voronoi insertion per interpolant.
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Fig. 1. Discrete Sibson interpolation and visualization of Bucky Ball data

set (data size: 1283) using (a) 100, (b) 1,000, and (c) 10,000 scattered

data points compared to visualization using (d) 1283 grid points.



Implementation of scattered data algorithms has been
traditionally done in the CPU. The Advances of GPUs in
recent years, however, have made it an attractive target for
computationally complex and demanding scientific and
visualization applications. Hoff et al. [3] have computed a
discrete Voronoi diagram taking advantage of the graphics
hardware. Since then, GPUs have been used in other
computational geometry problems, for example, for accel-
erating distance field computations [18]. GPUs have been
applied to scattered data interpolation methods as well.
Jang et al. [19] describe a method of accelerating radial basis
functions on GPUs. Applying-GPU assisted natural-neigh-
bor interpolation has also been described by Fan et al. for
2D data set. [20]. Their approach utilizes GPU to compute
areas of contribution and require a Delaunay triangulation
of a given data set.

3 DEFINITIONS AND BACKGROUND

3.1 Voronoi Diagram

A standard Voronoi diagram is a partitioning of a given
domain into cells (tiles) based on a finite set of given
scattered data points, called sites. Each cell contains of the
points closest to a particular site. More specifically, consider
a d-dimensional, convex domain � � Rd and a set N ¼
fp1;p2; . . . ;pmg of m scattered data points. The Voronoi
diagram VðNÞ of the set N over domain � is a domain
partitioning into regions V ðpiÞ � �, such that any point in
V ðpiÞ is closer to site pi than to any other site pj 2 N ðj 6¼ iÞ.
The region V ðpiÞ associated with site pi is called a Voronoi
cell and is defined as

V ðpiÞ ¼ fp 2 � : dðp;piÞ < dðp;pjÞ 8j 6¼ ig;

where d is a distance metric, usually the Euclidean one. The
Voronoi cells are convex polygons/polyhedra in Rd. Fig. 2a
shows the Voronoi diagram for an example with four sites
p1; . . . ;p4, where the colors of the four Voronoi cells
represent the function values at the sites.

A number of algorithms exist today for computing
Voronoi diagrams of points in two-dimensions, three-
dimensions, and higher-dimensional spaces. Efficient adap-
tive precision and exact arithmetics are active areas of
research. There are also many approximate versions of
Voronoi diagrams, and computations based on space
subdivision.

3.2 Sibson’s Interpolant

Sibson [15] introduced a natural-neighbor interpolation
scheme that uses a weighted average of surrounding or
neighboring data sites to compute the interpolated function.
The fundamental difference to Shepard’s method is the
assignment of the weights using natural-neighbors.

Fig. 2 illustrates how Sibson’s interpolant is computed
using an example with four sites. Given a set of sites, the
Voronoi diagramof the set of sites is computed first, as shown
in Fig. 2a. To interpolate the function value at a point p, p is
inserted into the Voronoi diagram, as shown in Fig. 2b. Its
Voronoi cell V ðpÞ has k neighboring cells V ðp1Þ; . . . ; V ðpkÞ.
The k sites p1; . . . ;pk are called the natural-neighbors of p. The
area/volume of V ðpÞ is the union of areas/volumes ui that

belonged to the Voronoi cells V ðpiÞ of the neighbors in the
original Voronoi diagram, as illustrated in Fig. 2c. Sibson’s
interpolant of a function f evaluated at p is defined as

fðpÞ ¼

Pk
i¼1 uifðpiÞPk

i¼1 ui
¼

Xk

i¼1

u0
ifðpiÞ;

where

u0i ¼
uiPk
i¼1 ui

:

The reconstructed function f for the given example is
shown in Fig. 2d. Sibson’s interpolation is a local scheme, as
only the values at the natural-neighbors of p influence the
interpolated value fðpÞ.

Typically, Sibson’s interpolation is implemented geome-
trically, i.e., one computes the weights for the interpolant by
determining the areas/volumes ui associated with pi upon
insertion of p. Another method, proposed by Yee [21], first
computes the Voronoi region V ðpÞ and then subdivides the
region into the natural-neighbors’ subregions. The dual
structure of the Voronoi diagram, known as Delaunay
triangulation, also has been used to calculate Sibson’s
interpolant. The Delaunay triangulation can be used directly
to calculate the weights of the neighboring regions for
interpolation [22]. Previous approaches to Sibson’s interpola-
tion are computationally expensive and difficult to imple-
ment. They do not fit the needs of real-time visualization.

4 DISCRETE SIBSON INTERPOLATION

WedescribehowSibson’s interpolation canbeperformed in a
discrete fashion. We start with the description of a discrete
Voronoi diagram computation, which leads to a straightfor-
ward approach to discrete Sibson interpolation. We improve
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Fig. 2. Sibson’s interpolation starts out with the Voronoi diagram (a) and

tentatively inserts the new site p (b) to compute areas ui (c), which are

used as weights for the interpolation (d).



this approach by exploiting the geometrical properties of
Sibson’s interpolant, which makes the computation much
more efficient, especially when dealing with many sites, and

makes unnecessary the requirement of computing an explicit
Voronoi diagram.

4.1 A Discrete Voronoi Diagram

Hoff et al. [3] presented a graph-based approach for the

computation of generalized Voronoi diagrams both in two-
dimensional and three-dimensional spaces. Their approach
is based on the observations that geometric shapes

representing distance fields can be rendered to generate
discrete Voronoi diagrams. For the two-dimensional case,
cones are rendered as distance functions for each site.

By drawing the sites’ distance fields and utilizing

graphics hardware’s depth buffer function to only render
parts of the geometry that are closest to each site, Hoff et al.
showed how Voronoi diagrams can be constructed. Their

approach even generalizes to scenes that contain data
primitives more general than points as sites. However, the
algorithm does not scale in the number of sites and

dimensions. The bottleneck is a result of each site having
to render a distance field that covers the entire domain, i.e.,
a distance cone that covers the entire Voronoi image in two-

dimensional space and a distance hyperboloid sheet that
covers the entire Voronoi volume in three-dimensional
space. For a Voronoi diagram with a large number of sites,

this approach is inefficient.
Although Hoff’s algorithm works well for constructing

generalized discrete Voronoi diagrams, for our purposes,
we only need a discrete Voronoi diagram of point sites that

scales well to many sites and to higher dimensions. Instead
of rendering distance fields, we present a more efficient
approach for generating Voronoi diagrams that scale well in

both number of sites and in dimensions by using a spatial
structure, i.e., a kd-tree. In a discrete Voronoi diagram, at
every position p, we store information about the nearest site

pi and the distance dðp;piÞ to that nearest site. Depending
on the desired precision/resolution of the discrete Voronoi
diagram, a grid size is determined. We can use a kd-tree to

query the desired information at each grid location.
Initially, the kd-tree is used to store all sites. The kd-tree is
queried at each grid location p to determine the site that is

closest to the grid location. This query returns the
associated Voronoi region. Then, the nearest site’s value
and the distance to this site can be stored in a grid, which

represents the discrete Voronoi diagram, after the kd-tree

has been queried for all grid locations.
This approach is efficient for constructing Voronoi

diagrams with large number of sites since a kd-tree can be

created in Oðn lognÞ time. Performing the nearest site search
is done in OðlognÞ time. In contrast to the discrete Voronoi
approach in [3], our method scales well in the number of

sites: Constructing the discrete Voronoi diagram solely
depends on the computational costs of inserting and
querying the kd-tree, as opposed to having to render

geometric shapes that cover the entire grid. Due to the
nature of a kd-tree, our approach also scales well in
dimension.

4.2 Discretizing Sibson’s Interpolation

In the discretized domain, Sibson’s interpolation can be
computed in a straightforward manner. Since calculating
Sibson’s interpolant at point p is equivalent to taking the
weighted average of values at the neighboring sites (see
Fig. 2), this value can be computed by averaging the
discrete elements. Accumulating all data values from the
original Voronoi diagram within the Voronoi region V ðpÞ
and dividing the accumulated value by the number of
elements accumulated, defines the average of the region.
This value is the discretized equivalent to Sibson’s inter-
polation value. Since discrete elements are accumulated at
one location, we call this interpolation scheme the “gather
approach.”

Given a discrete d-dimensional Voronoi diagram for a set
of m sites p1; . . . ;pm 2 � � Rd over a rasterized domain �,
one can access the following information for every raster
position i 2 �: the distance dv ¼ VdðiÞ to the site pj closest to
raster position i and the data value cv ¼ VcðiÞ at the site pj.
The d-dimensional fields Vd and Vc representing the Voronoi
diagram are precomputed as described in Section 4.1. To
reconstruct the function f over the entire domain � using a
discrete Sibson interpolant, we scan the rasterized domain
and compute an interpolated value fðpÞ for each raster
position p of the desired output region. To compute fðpÞ,
we accumulate all the values within the region V ðpÞ that we
would obtain by inserting p as a new site into the Voronoi
diagram. For the accumulation process, we initialize cðpÞ to
zero and scan all raster positions i of the discrete Voronoi
diagram. For each raster position i, we determine whether it
lies in V ðpÞ by comparing the distance VdðiÞ of raster
position i to its closest site with the distance from raster
position i to raster position p. If i 2 V ðpÞ, we add VcðiÞ to
cðpÞ. We then count the number nðpÞ of raster positions
i 2 V ðpÞ and assign fðpÞ ¼ cðpÞ=nðpÞ.

This approach can be implemented efficiently, without
explicitly inserting new sites into the existing Voronoi
diagram. Assuming that a discrete Voronoi diagram has
been computed, we perform a two-pass computation. In the
first pass, we accumulate all values contributing to each
cðpÞ. In the second pass, the accumulated values are
divided by the number of accumulations nðpÞ to obtain
the interpolated value fðpÞ. The gather approach can be
summarized in the following way:

. Compute the discrete Voronoi diagram for m sites.

. For every output raster position p, do

- Initialize cðpÞ ¼ 0 and nðpÞ ¼ 0.
- For every Voronoi raster position i, do

^ If i 2 V ðpÞ, add VcðiÞ to cðpÞ and increment
nðpÞ by 1.

- Set fðpÞ ¼ cðpÞ=nðpÞ.

4.3 Efficient Discrete Sibson Interpolation

The key idea to making Sibson’s interpolant more efficient
is to consider the problem in the “opposite” direction,
where values are “scattered” rather than gathered. Instead
of iterating over all positions p and gathering the values at
all raster positions i 2 V ðpÞ into cðpÞ, one can iterate over
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the raster positions i and determine which fðpÞ are
influenced by the value at i. This approach has two major
advantages: It allows us to utilize the efficient rasterization
units in modern graphics hardware, and it limits computa-
tions to only those values i that affect the final result.

In more detail, the scatter approach works as follows:
Consider one raster position i in the Voronoi diagram. We
want to determine to which positions p the data value VcðiÞ
contributes. This is easily achieved by rendering a
d-dimensional block over all positions p, and determining,
for each p, whether the distance between i and p is less than
the distance VdðiÞ between i and its closest site. If it is less,
then i 2 V ðpÞ, and we accumulate the value VcðiÞ into fðpÞ.

This approach can be summarized in the following way:

. Compute the discrete Voronoi diagram for m sites.

. For every output raster position p, do

- Initialize cðpÞ ¼ 0 and nðpÞ ¼ 0.
. For every Voronoi raster position i, do

- For every output raster position p, do

^ If i 2 V ðpÞ, add VcðiÞ to cðpÞ and increment
nðpÞ by 1.

. For every output raster position p, do

- Set fðpÞ ¼ cðpÞ=nðpÞ.

Moreover, we observe that in both the scatter and gather
approaches, particularly with dense samples, most VcðiÞ do
not contribute to any given fðpÞ. For the gather approach, it
would require us to determine a bounding box for V ðpÞ, for
each p, to optimize the procedure, but the computation of
the bounding boxes would be expensive. For the scatter
approach, we can take advantage of this observation. More
specifically, we can determine exactly the area to which a
value at raster position i contributes:

Theorem 1. In a discrete version of Sibson’s interpolant, the
value VcðiÞ at a raster position i influences exactly all those
output locations p that are within a d-dimensional sphere
around i, whose radius is the distance from i to the closest site.

Proof. Let p1; . . . ;pm be the sites to be interpolated, and p an

output location. In the discrete Sibson approach, we

accumulate and blend all the values that lie within the

Voronoi cell V ðpÞ to compute the interpolation result fðpÞ

at output locationp (see Fig. 2 andFig. 3).Wehave to show

that, for all raster positions i 2 V ðpÞ, a d-dimensional

sphere around i with radius r ¼ minmi¼1 dði;piÞ includes

output location p, and that such a sphere does not include

p, for all i 62 V ðpÞ. Let i 2 V ðpÞ. Then, by V ðp, dði;pÞ

< minmi¼1 dði;piÞ ¼ r, a d-dimensional sphere around iwith

radius r does include p (see Fig. 5a). Now, let i 62 V ðpÞ.

Then, dði;pÞ � minmi¼1 dði;piÞ ¼ r, and a d-dimensional

sphere around i with radius r does not include p (see

Fig. 5b). tu

The above theorem implies that in order to scatter the

value VcðiÞ at point i to all output raster positions p that are

influenced by it, we merely have to draw a d-dimensional

sphere of value VcðiÞ around i, where the radius of the

sphere is the distance from i to its closest site. Blending

these spheres results in a discrete equivalent of Sibson’s

interpolant, as shown in Fig. 6.
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Fig. 3. The gather approach: Values in Voronoi cell V ðpÞ are gathered

for Sibson’s interpolant fðpÞ.
Fig. 4. The scatter approach: Value at a location i contributes to Sibson’s

interpolant within a certain region and, thus, is scattered to all positions

in that region. The region is defined by all positions p with i 2 V ðpÞ.

Fig. 5. The value at Voronoi raster position i influences exactly all those

output locations p that are within a circle around i, whose radius is the

distance from i to the closest site p4.



This observation also allows us to eliminate discrete
Voronoi diagrams altogether. The only use for a Voronoi
diagram in the described algorithm is to find the closest site
of a point i, and this can easily and efficiently be achieved
by querying a kd-tree containing all sites directly.

The scatter approach thus simplifies to the following
algorithm:

. Construct a kd-tree for m sites.

. For every output raster position p, do

- Initialize cðpÞ ¼ 0 and nðpÞ ¼ 0.
. For every raster position i, do

- Find the closest site pn in the kd-tree.
- Calculate r ¼ dði;pnÞ.
- For each raster position p inside a d-dimensional

sphere of radius r around i do

^ Add VcðiÞ to cðpÞ and increment nðpÞ by
one.

. For every output raster position p, do

- Set fðpÞ ¼ cðpÞ=nðpÞ.

By rendering just these small regions, the implementa-
tion becomes considerably more efficient, especially when
dealing with a very large number of samples. Fig. 7 shows
how the scatter approach is implemented in a fragment
program.

4.4 Implementation

To take full advantage of the algorithm described, we utilize
the fast raster processing andprogrammability capabilities of

modern graphics hardware. For implementation purposes,
the following processing capabilities are desirable: floating-
point precision framebuffer and textures and floating-point
blending. Floating-point precision is desired for accuracy in
data accumulation becauseusingonly eight-bit precision, i.e.,
256 values, does not suffice to accurately accumulate data
values during interpolation.

In our implementation, we use OpenGL libraries and
NVIDIA’s Cg language for vertex and fragment program-
ming with an NVIDIA GeForce 6800GT card. For storing the
discrete Voronoi diagram and Sibson’s interpolation func-
tion, we use a four channel 32-bit floating-point textures.
The RGB channels are used for storing the nearest site’s
value, and the A channel is used for storing the distance to
the nearest site. Voronoi diagram generation using a kd-tree
is implemented on the CPU by querying the kd-tree at each
discrete location for the Voronoi region it is in. For
computing Sibson’s interpolant, the RGB channels are used
to accumulate data values, and the A channel is used for
counting the number of values accumulated in each pixel.

An efficient implementation would use hardware’s float-
ing-point blending to accumulate intermediate values. Float-
ing-point blending is available in the current generation of
cards; however, the precision it supports is only 16 bitswhich
for small data sets, especially for 3D applications is not
enough for proper interpolation. Using 16-bit blending can
produce incorrect visual results due to data overflow. To
approximate the performance on graphics hardware, we
measure our time using 16-bit floating point blending.
Although an interpolation using the 16-bit implementation
requires the same amount of computations, it requires less
memory transfer. For our time measurements, we assumed
that using the 16-bit implementation is a reasonably good
approximation as we expect the next generation of cards to
only get faster.

The gather approach accumulates data values at each
raster position. This can be implemented in a fragment
program, but certain inefficiencies must be considered.
First, in order to accumulate values at a single raster
position, points must be rendered instead of triangles or
quadrilaterals: Every fragment that is rendered must output
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Fig. 6. The gather approach iteratively draws disks of certain radii for

every raster position and blends the values of the disks. The approach is

illustrated for two, four, six, and 5122 disks.

Fig. 7. Scatter approach implementation: Value at each Voronoi raster
position i is scattered by rendering a quad of twice the length of the
distance r to the closest site pn. Illustrated are the fragment program
scattering values at one raster position. For efficient processing, raster
location i and value at site pn are stored using texture coordinates and
color attributes of each vertex.



to a single location, and this is only possible by rendering
points. Also, since the exact region that contributes to the
particular raster position is not known, regions that do not
contribute still must be examined. Although a bounding
region could be calculated by computing the convex hull, it
would require additional computations. In either case, the
additional computations make the gather approach less
efficient.

Implementing the fully optimized scatter approach is
simple and very efficient. In two dimensions, we first
construct a kd-tree of all sites. Sibson’s interpolant is then
computed by drawing circles at each given raster position,
while querying the kd-tree for data values and radii. The
data value is associated with function values of the circle
and the radius information is used to render a square,
centered at the raster position, with side length being twice
the radius. The circles within each square are drawn by
comparing distances in the fragment program. Once all
values are accumulated, we use a fragment program to
divide the total accumulated value by the number of
accumulated values to generate the final image.

For Sibson interpolation in three dimensions, spheres are
deposited at each raster position of the volume. This is
achieved by computing one slice at a time. For each slice,
cross section of the intersecting spheres are accumulated
and later normalized. Like in the two-dimensional case, a
kd-tree is queried for data values and radii.

5 RESULTS

Although our optimal Sibson’s interpolation algorithm no
longer requires knowledge of an explicit Voronoi diagram,
we still have compared our new approach for generating
discrete Voronoi diagrams with Hoff et al.’s method of
generating discrete Voronoi diagrams. We have compared
the computation time and the interpolation results for two-
dimensional Sibson’s interpolant using the traditional
geometric approach and our optimized hardware-acceler-
ated version. For comparison, we also have tested our
hardware-accelerated version with a software implementa-
tion of our discrete algorithm. We provide computation
times of our implementation for the three-dimensional case.
Our data were generated on a 3.2 GHz Pentium 4, equipped

with 2 GB of RAM and an NVIDIA GeForce 6800GT

graphics card running Windows XP.
For performance evaluation of the two discrete Voronoi

approaches, it is reasonable to compare computation times

of both algorithms while varying the number of input

values. The two-dimensional test case is based on a Voronoi

diagram on a 512� 512 pixel grid, and the three-dimen-

sional test case is based on a 128� 128� 128 voxel grid

using m randomly generated sites. In the two-dimensional

case, the results obtained with the geometric computation of

the Voronoi diagram are compared with those obtained

with the discrete approaches using distance field rendering

and kd-trees. The three-dimensional case comparison is

done only between the two discrete approaches. Fig. 9

shows a graph of computation times for different Voronoi

approaches. For a relatively smaller number of samples, the

kd-tree approach takes more time but as the number of

samples increases, the kd-tree approach exhibits only a slow

growth, while both the distance field rendering approach

and the geometrical approach exhibit much faster growth in

computation time.
To analyze the performance of the optimized version of

Sibson’s two-dimensional interpolation scheme versus an

optimized software implementation of the geometric

approach, we have choosen n randomly generated sites

on a 512� 512 pixel grid. Instead of just using uniformly

distributed random sites, we also have tested our algorithm

against adaptively sampled sites to more accurately

simulate “real” scattered data. We have used the adaptive

sampling as described by Kreylos et al. [23]. Fig. 8 shows an

example of 6,400 sites sampled with uniform distribution

and adaptively sampled sites. Fig. 10 shows the computa-

tional time required to perform interpolation. For a small

number of sites, the geometric approach of Sibson’s

interpolation exhibits a superior performance when com-

pared with the discrete algorithms. As the number of data

sites increases, the discrete version exhibits a significantly

better performance. To test the correctness of the discrete

approach, we have computed differences between the two

images. As shown in Fig. 12, slight differences can be seen

around sharp edges.
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Fig. 8. (a) 6,400 uniform random sampling of sites versus (b) nonuniform

sampling of sites of Lena image.
Fig. 9. Comparison of performance of Voronoi diagram computation

using a geometric approach versus discrete approaches using distance

fields and kd-trees.



Table 1 shows the performance of the discrete Sibson
algorithm in the three-dimensions based on a 128� 128�
128 voxel grid using m randomly generated sites from a CT
head data set. Only the optimized case has been tested. For
few sites, the discrete approach is slow. This is due to the
relatively large radii of spheres that have to be rendered for
each voxel. With more sites, however, the interpolation is
significantly faster. We have also reconstructed data from
adaptively sampled version of the CT head data set as
described by Co et al. in [24]. Due to adaptive sampling,
there are less points outside the head. As a result, the
overall speed is significantly slower than the randomly
sampled points. The performance trend as in the other case
increases with increasing number of sample points. Fig. 13
shows a visualization of the reconstruction.

6 DISCUSSION

Considering the two discrete Voronoi approaches pre-
sented, we observe that both methods have advantages
and disadvantages. Using the distance field rendering
approach yields very good performance, up to a certain
number of sites. Computational time increases drastically
with increasing number of additional sites. In the two-
dimensional case, as shown in Section 4.1, the computation

time for up to 1,000 sites is less than the time required by
the kd-tree method. For 1,000 points on a grid of 512� 512,
the rendering time increases linearly with additional sites:
The algorithm is a brute-force approach, where each
additional site rendered compares its distance to every
discrete point in the grid. The time complexity of this
approach is OðmP Þ, wherem is the number of sites and P is
the number of pixels in the grid. The kd-tree approach
exhibits slightly different behavior. Computation time when
dealing with a small number of sites is slow when
compared to the distance field approach. However, com-

putational time for a large number of sites is faster since the
computational time increases slower compared to the
distance approach with the increasing number of sites. This
behavior is expected since the Voronoi diagram is rendered
by querying the kd-tree at each grid location for its closest
neighbor, and a search in kd-trees requires OðlogmÞ leading
to a total time complexity of Oððmþ P Þ logmÞ. In the three-
dimensional case, the results show analogous behavior for
the two approaches.

When comparing the discrete approaches to the “exact”
geometrical approach, the kd-tree approach is significantly
faster when the number of sites increases. Compared to the
distance field approach, the geometrical approach exhibits
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Fig. 10. Comparison of performance of two-dimensional Sibson

interpolation using geometric versus discrete approach.

Fig. 11. Root-mean-square (RMS) of two-dimensional Sibson interpola-

tion resulting from geometric, discrete, and original approaches.

Fig. 12. Comparison of computational geometry-based and discrete Sibson interpolation using 6,400 data points. (a) Original image (512� 512 pixels).

(b) Result using geometric Sibson interpolation. (c) Result using discrete Sibson interpolation. (d) Difference image between (b) and (c).



better performance until the number of sites reaches 5,000.
Although the kd-tree approach shows better performance
for higher numbers of sites, the discrete approach suffers
from a few drawbacks. For Voronoi sites that lie within a
discrete element, it would require us to use a higher-
resolution grid to produce accurate results, in which case it
could take much longer than the geometric approach. Also,
the discrete approach would be less efficient in the case of a
small number of sites and a large grid, since the geometric
approach’s performance is less dependent on grid size.

Discrete Sibson interpolation is, considering a small
number of sites, computationally slow—significantly slower
than the geometrical approach. However, as the number of
sites increases, computation time decreases, and our ap-
proach shows a significant speedup over the software
implementation. In the two-dimensional case, for around
1,000 sites, the computational time required for constructing
Sibson’s interpolant is less than a second. Computing the
Voronoi diagram and Sibson’s interpolant can be done in
under a second.Wehavenot yet comparedourdiscrete three-
dimensional algorithm to a software implementation since
we do not have access to a fast and robust implementation.
We expect our three-dimensional method to perform well
since it uses the same simple algorithm underlying the two-
dimensional method. A three-dimensional geometrically
exact method would be much more complicated to imple-
ment, and much more difficult to optimize. Furthermore,
computation times for rendering a discrete three-dimen-
sional Sibson’s interpolant are very low, and computation
time, as in the two-dimensional case, decreases with an
increasing number of sites.

To investigate the approximation quality of our algo-
rithm, we compare images generated by discrete Sibson
interpolation with images generated using a computational
geometry-based algorithm. One test case is shown in Fig. 12:
The difference image (Fig. 12d) shows that the two images
are almost identical. However, differences can be noticed
around the edges of the image. (The resulting image was
generated from adaptively sampled data as shown in Fig. 8.)
The reason for such differences is due to aliasing errors:
There are more samples around the silhouette of the face,
which implies drawing of many small circles in that area.
Discrete Sibson interpolation is prone to aliasing, especially
as the number of data points increases and the radius of
rendered d-dimensional spheres decreases. One could
compute more accurate Sibson values by computing the
coverage area of the rendered spheres on partially covered
pixels. Such values for pixels could be used as weights

when accumulating data values to lead to accurate results.
Calculating the exact coverage area would be compute-
intensive. A good estimate, however, can be obtained by
simply increasing grid sizes or rendering antialiased
primitives.

To quantify the errors of our discrete approach, we have
computed root-mean-square (RMS) error values. Fig. 11
shows the results obtained with the exact geometric and
discrete approach are very similar, for small number of
sites. As the number of samples increases, however, the
geometric approach produces better approximations. Also,
when the discrete approach is compared against the
geometric approach, the RMS error increases in linear
fashion as the number of samples increases. The errors, in
both cases, are due to aliasing resulting from drawing
increasingly large numbers of increasingly smaller circles.

7 CONCLUSIONS AND FUTURE WORK

We have presented a method for rapid computation of
Sibson’s interpolant for two-dimensional and three-dimen-
sional scattered data using contemporary graphics hard-
ware. Our technique is based on discretization and takes
advantage of geometrical properties of Sibson’s interpola-
tion scheme, which reduces the d-dimensional interpolation
problem to rendering and blending d-dimensional spheres of
easily computable radii. The interpolation algorithm is
simple and can be accelerated by using modern program-
mable graphics hardware. Our approach is designed for
interpolation of scattered data sets with many sites, for
which it achieves a major improvement in performance
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TABLE 1
Performance Data for 3D Discrete Sibson Interpolation of

Uniform-Randomly Sampled CT Head Data Set
(Data Size: 1283)

Fig. 13. Discrete Sibson interpolation and visualization (data size: 1283)

using (a) 10,000, (b) 100,000, and (c) 500,000 scattered data points,

compared to visualization using (d) 1283 gridded points.



compared to classical approaches. We have analyzed and
compared the two-dimensional discrete approach with a
software implementation of the traditional geometric
approach and have tested it for the three-dimensional case.
Our discrete Sibson interpolation approach is fast, easy to
implement, and generalizes to higher dimension.

We plan to adapt the discrete approach to other distance-
based scattered data interpolation methods. Moreover, we
plan to investigate acceleration techniques for the three-
dimensional approach in support of interactive visualiza-
tion of volumetric scattered data applications.
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