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Abstract—We propose a sampling theory for signals that are
supported on either directed or undirected graphs. The theory
follows the same paradigm as classical sampling theory. We
show that the perfect recovery is possible for graph signals
bandlimited under the graph Fourier transform, and the sampled
signal coefficients form a new graph signal, whose corresponding
graph structure is constructed from the original graph structure,
preserving frequency contents. By imposing a specific structure on
the graph, graph signals reduce to finite discrete-time signals and
the proposed sampling theory works reduces to classical signal
processing. We further establish the connection to frames with
maximal robustness to erasures as well as compressed sensing, and
show how to choose the optimal sampling operator, how random
sampling works on circulant graphs and Erdős-Rényi graphs,
and how to handle full-band graph signals by using graph filter
banks. We validate the proposed sampling theory on the simulated
datasets of Erdős-Rényi graphs and small-world graphs, and a
real-world dataset of online blogs. We show that for each case,
the proposed sampling theory achieves perfect recovery with high
probability. Finally, we apply the proposed sampling theory to
semi-supervised classification of online blogs and digit images,
where we achieve similar or better performance with fewer labeled
samples compared to the previous work.

Index Terms—Sampling theorem, discrete signal processing on
graphs, frames, compressed sensing

I. INTRODUCTION

With the explosive growth of information and communi-

cation, signals are generated at an unprecedented rate from

various sources, including social, citation, biological, and phys-

ical infrastructure [1], [2], among others. Unlike time-series

signals or images, these signals possess complex, irregular

structure, which requires novel processing techniques leading

to the emerging field of signal processing on graphs [3], [4].

Signal processing on graphs extends classical discrete signal

processing to signals with an underlying complex, irregular

structure. The framework models that underlying structure by

a graph and signals by graph signals, generalizing concepts and

tools from classical discrete signal processing to graph signal

processing. Recent work involves graph-based filtering [5],

[6], [7], graph-based transforms [5], [8], [9], sampling and

interpolation on graphs [10], [11], [12], uncertainty principle
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on graphs [13], semi-supervised classification on graphs [14],

[15], [16], graph dictionary learning [17], [18], denoising [6],

[19], community detection and clustering on graphs [20], [21],

[22], graphs signal recovery [23], [24], [25] and distributed

algorithm [26], [27].

Two basic approaches to signal processing on graphs have

been considered: The first is rooted in spectral graph theory and

builds upon the graph Laplacian matrix [3]. Since the graph

Laplacian matrix is restricted to be symmetric and positive

semi-definite,this approach is applicable only to undirected

graphs with real and nonnegative edge weights. The second

approach, discrete signal processing on graphs (DSPG) [5],

[28], is rooted in the algebraic signal processing theory [29],

[30] and builds on the graph shift operator, which works as

the elementary operator that generates all linear shift-invariant

filters for signals with a given structure. The graph shift

operator is the adjacency matrix and represents the relational

dependencies between each pair of nodes. Since the graph shift

is not restricted to be symmetric, the corresponding framework

is applicable to arbitrary graphs, those with undirected or

directed edges, with real or complex, nonnegative or negative

weights. Both frameworks analyze signals with complex, irreg-

ular structure, generalizing a series of concepts and tools from

classical signal processing, such as graph filters, graph Fourier

transform, to diverse graph based applications.

In this paper, we consider the classical signal processing

task of sampling within the framework of DSPG [31], [32].

As the bridge connecting sequences and functions, classical

sampling theory shows that a bandlimited function can be

perfectly recovered from its sampled sequence if the sampling

rate is high enough [33]. More generally, we can treat any

decrease in dimension via a linear operator as sampling, and,

conversely, any increase in dimension via a linear operator as

interpolation [31], [34]. Formulating a sampling theory in this

context is equivalent to moving between higher- and lower-

dimensional spaces.

A sampling theory for graphs has interesting implications

and applications. For example, given a graph representing

friendship connectivity in Facebook, we can sample a fraction

of users and query their hobbies; and then recover all users’

hobbies. The task of sampling on graphs is, however, not well

understood [11], [12], because graph signals lie on complex,

irregular structure. It is even more challenging to find a graph

structure that is associated with the sampled signal coefficients;

in the Facebook example, we sample a small fraction of users

and an associated graph structure would allow us to infer new

connectivity between those sampled users, even when they are

not directly connected in the original graph.
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Previous works on sampling theory [10], [12], [35] consider

graph signals that are uniquely sampled onto a given subset of

nodes. This approach is not consistent with classical sampling

theory and applies to undirected graphs only. It also does

not explain how a graph structure supports these sampled

coefficients.

In this paper, we propose a sampling theory for signals that

are supported on either directed or undirected graphs. Perfect

recovery is possible for graph signals bandlimited under the

graph Fourier transform. We also show that the sampled signal

coefficients form a new graph signal whose corresponding

graph structure is constructed from the original graph structure.

The proposed sampling theory follows Chapter 5 from [31] and

is consistent with classical sampling theory. We further estab-

lish the connection to frames with maximal robustness to era-

sures as well as compressed sensing, show how to choose the

optimal sampling operator, and how random sampling works on

circulant graphs and Erdős-Rényi graphs. To handle full-band

graphs signals, we propose graph filter banks to force graphs

signals to be bandlimited. We validate the proposed sampling

theory on the simulated datasets of Erdős-Rényi graphs, small-

world graphs, and a real-world dataset of online blogs. We

show that for each case, the proposed sampling theory achieves

perfect recovery with high probability. Finally, we apply the

proposed sampling theory to semi-supervised classification of

online blogs and digit images, where we achieve similar or

better performance with fewer labeled samples compared to

the previous work.

Contributions. The contributions of the paper are as follows:

• A novel sampling theory for graph signals, which follows

the same paradigm as classical sampling theory;

• A novel approach to construct a graph structure that

supports the sampled signal coefficients;

• A novel principle to choose the optimal sampling operator;

• A novel approach to construct graph filter banks to analyze

full-band graph signal;

• A novel framework to do semi-supervised learning.

Outline of the paper. Section II formulates the problem and

briefly reviews DSPG, which lays the foundation for this paper;

Section III describes the proposed sampling theory for graph

signals, and the proposed construction of graph structures for

the sampled signal coefficients. The proposed sampling theory

is evaluated in in Section V. Section VI concludes the paper

and provides pointers to future directions.

II. DISCRETE SIGNAL PROCESSING ON GRAPHS

In this section, we briefly review relevant concepts of

discrete signal processing on graphs; a thorough introduction

can be found in [4], [28]. It is a theoretical framework that

generalizes classical discrete signal processing from regular

domains, such as lines and rectangular lattices, to irregular

structures that are commonly described by graphs.

A. Graph Shift

Discrete signal processing on graphs studies signals with

complex, irregular structure represented by a graph G =
(V,A), where V = {v0, . . . , vN−1} is the set of nodes and

A ∈ C
N×N is the graph shift, or a weighted adjacency matrix.

It represents the connections of the graph G, which can be

either directed or undirected (note that the standard graph

Laplacian matrix can only represent undirected graphs [3]. The

edge weight An,m between nodes vn and vm is a quantitative

expression of the underlying relation between the nth and the

mth node, such as a similarity, a dependency, or a communi-

cation pattern.

B. Graph Signal

Given the graph representation G = (V,A), a graph signal

is defined as the map on the graph nodes that assigns the signal

coefficient xn ∈ C to the node vn. Once the node order is fixed,

the graph signal can be written as a vector

x =
[
x0 x1 . . . xN−1

]T
∈ C

N , (1)

where the nth signal coefficient corresponds to node vn.

C. Graph Fourier Transform

In general, a Fourier transform corresponds to the expansion

of a signal using basis functions that are invariant to filtering;

here, this basis is the eigenbasis of the graph shift A (or, if

the complete eigenbasis does not exist, the Jordan eigenbasis

of A). For simplicity, assume that A has a complete eigenbasis

and the spectral decomposition of A is [31]

A = VΛV−1, (2)

where the eigenvectors of A form the columns of matrix V,

and Λ ∈ C
N×N is the diagonal matrix of corresponding

eigenvalues λ0, . . . , λN−1 of A. These eigenvalues represent

frequencies on the graph [28]. We do not specify the ordering

of graph frequencies here and we will explain why later.

Definition 1. The graph Fourier transform of x ∈ C
N is

x̂ = V−1 x. (3)

The inverse graph Fourier transform is

x = V x̂.

The vector x̂ in (3) represents the signal’s expansion in the

eigenvector basis and describes the frequency content of the

graph signal x. The inverse graph Fourier transform recon-

structs the graph signal from its frequency content by combin-

ing graph frequency components weighted by the coefficients

of the signal’s graph Fourier transform.

III. SAMPLING ON GRAPHS

In this section, we propose a sampling theory for graph

signals. We show that perfect recovery is possible for graph

signals bandlimited under the graph Fourier transform, and

a new graph shift for the sampled signal coefficients is con-

structed from the original graph shift. Parts of this section have

appeared in [34].
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Symbol Description Dimension

A graph shift N ×N

x graph signal N

V−1 graph Fourier transform matrix N ×N

x̂ graph signal in the frequency domain N

Ψ sampling operator M ×N

Φ interpolation operator N ×M

M sampled indices
xM sampled signal coeffcients of x M

x̂(K) first K coeffcients of x̂ K

V(K) first K columns of V N ×K

TABLE I: Key notation used in the paper.

Fig. 1: Sampling followed by interpolation.

A. Sampling Theory for Graph Signals

Suppose that we want to sample M coefficients in a graph

signal x ∈ C
N to produce a sampled signal xM ∈ C

M

(M < N ), where M = (M0, · · · ,MM−1) denotes the

sequence of sampled indices, and Mi ∈ {0, 1, · · · , N − 1}.

We then interpolate xM to get x′ ∈ C
N , which recovers x

either exactly or approximately. The sampling operator Ψ is a

linear mapping from C
N to C

M , defined as

Ψi,j =

{
1, j = Mi;
0, otherwise,

(4)

and the interpolation operator Φ is a linear mapping from C
M

to C
N (see Figure 1),

sampling : xM = Ψx ∈ C
M ,

interpolation : x′ = ΦxM = ΦΨx ∈ C
N .

Perfect recovery happens for all x when ΦΨ is the identity

matrix. This is not possible in general because rank(ΦΨ) ≤
M < N ; it is, however, possible to do this for bandlimited

graph signals as in the classical sampling theory,

Definition 2. A graph signal is called bandlimited when there

exists a K ∈ {0, 1, · · · , N − 1} such that its graph Fourier

transform x̂ satisfies

x̂k = 0 for all k ≥ K.

The smallest such K is called the bandwidth of x. A graph

signal that is not bandlimited is called a full-band graph signal.

When defining the bandwidth, we focus on the number of

frequencies, while the previous work [12] focuses on the value

of frequencies.

Definition 3. The set of graph signals in C
N with bandwidth

of at most K is a closed subspace denoted BLK(V−1), with

V−1 as in (2).

In Theorem 5.2 in [31], the authors show the recovery for

vectors via projection, which lays the theoretical foundation

for the classical sampling theory. Following the theorem, we

obtain the following result, the proof of which can be found

in [34]. Denote V(K) ∈ R
N×K as the first K columns of V,

Ψ ∈ R
M×N as a sampling operator, and Φ ∈ R

N×M as an

interpolation operator.

Theorem 1. Let Ψ satisfy

rank(ΨV(K)) = K. (5)

For all x ∈ BLK(V−1), perfect recovery, x = ΦΨx, is

achieved by choosing

Φ = V(K) U,

with UΨV(K) a K ×K identity matrix.

Since we do not specify the ordering of frequencies, we can

reorder the eigenvalues and permute the corresponding eigen-

vectors in the graph Fourier transform matrix to choose any

band in the graph Fourier domain. The bandlimited restriction

is equivalent to limiting the number of nonzero elements in

the graph Fourier domain. Theorem 1 is thus applicable for all

graph signals that have a few nonzero elements in the graph

Fourier domain, that is, K < N .

Similarly to the classical sampling theory, the sampling rate

has a lower bound for graph signals as well, that is, the sample

size M should be no smaller than the bandwidth K. When

M < K, rank(UΨV(K)) ≤ rank(U) ≤ M < K, and thus,

UΨV(K) can never be an identity matrix. Since UΨV(K) is

an identity matrix, U is the inverse of ΨV(K) when M = K;

it is a pseudo-inverse of ΨV(K) when M > K, where the

redundancy can be useful for reducing the influence of noise.

For simplicity, we only consider M = K and U invertible.

When M > K, we simply select K out of M sampled signal

coefficients to ensure that the sample size and the bandwidth

are the same.

From Theorem 1, we see that an arbitrary sampling operator

may not lead to perfect recovery even for bandlimited graph

signals. When the sampling operator Ψ satisfies the full rank

assumption (5), we call it a qualified sampling operator. To

satisfy (5), the sampling operator should select at least one

set of K linearly-independent rows in V(K). Since V is

invertible, the column vectors in V are linearly independent and

rank(V(K)) = K always holds; in other words, at least one set

of K linearly-independent rows in V(K) always exists. Since

the graph shift A is given, one can find such a set independently

of the graph signal. Given such a set, Theorem 1 guarantees

perfect recovery of bandlimited graph signals. To find linearly-

independent rows in a matrix, fast algorithms exist, such as QR

decomposition; see [36], [31].

B. Sampled Coefficients as A New Graph Signal

We just showed that perfect recovery is possible when the

graph signal is bandlimited. We now show that the sampled sig-

nal coefficients form a new graph signal, whose corresponding

new graph shift can be constructed from the original graph

shift.

Although the following results can be generalized to M >
K easily, we only consider M = K for simplicity. Let the
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sampling operator Ψ and the interpolation operator Φ satisfy

the conditions in Theorem 1. For all x ∈ BLK(V−1), we have

x = ΦΨx = ΦxM
(a)
= V(K) UxM
(b)
= V(K) x̂(K).

where x̂(K) denotes the first K coefficients of x̂, (a) follows

from Theorem 1 and (b) from Definition 2. We thus get

x̂(K) = UxM.

and

xM = U−1 UxM = U−1 x̂(K).

From what we have seen, the sampled signal coefficients xM
and the frequency content x̂(K) are a Fourier pair because xM
can be constructed from x̂(K) through U−1 and x̂(K) can also

be constructed from xM through U. This implies that, accord-

ing to Definition 1 and the spectral decomposition (2), xM
is a graph signal associated with the graph Fourier transform

matrix U and a new graph shift

AM = U−1 Λ(K) U ∈ C
K×K ,

where Λ(K) ∈ C
K×K is a diagonal matrix that samples the

first K eigenvalues of Λ. This leads to the following theorem.

Theorem 2. Let x ∈ BLK(V−1) and let

xM = Ψx ∈ C
K

be its sampled version, where Ψ is a qualified sampling

operator. Then, the graph shift associated with the graph signal

xM is

AM = U−1 Λ(K) U ∈ C
K×K , (6)

where U be (ΨV(K))
−1. The graph Fourier transform of xM

is

x̂M = UxM ∈ C
K ,

and the inverse graph Fourier transform is

xM = U−1 x̂M ∈ C
K .

From Theorem 2, we see that the graph shift AM is

constructed by sampling the rows of the eigenvector matrix and

sampling the first K eigenvalues of the original graph shift A.

We simply say that AM is sampled from A, preserving certain

information in the graph Fourier domain.

Since the bandwidth of x is K, the first K coefficients in

the frequency domain are x̂(K) = x̂M, and the other N −
K coefficients are x̂(−K) = 0; in other words, the frequency

contents of the original graph signal x and the sampled graph

signal xM are equivalent after performing their corresponding

graph Fourier transforms.

Similarly to Theorem 1, by reordering the eigenvalues and

permuting the corresponding eigenvectors in the graph Fourier

transform matrix, Theorem 2 is applicable to all graph signals

that have limited support in the graph Fourier domain.

C. Example

We consider a five-node directed graph with graph shift

A =




0 2
5

2
5 0 1

5
2
3 0 1

3 0 0
1
2

1
4 0 1

4 0
0 0 1

2 0 1
2

1
2 0 0 1

2 0



.

The corresponding inverse graph Fourier transform matrix is

V =




0.45 0.19 0.25 0.35 −0.40
0.45 0.40 0.16 −0.74 0.18
0.45 0.08 −0.56 0.29 0.36
0.45 −0.66 −0.41 −0.47 −0.57
0.45 −0.60 0.66 0.13 0.59



,

and the frequencies are

Λ = diag
[
1 0.39 −0.12 −0.44 −0.83

]
.

Let K = 3; generate a bandlimited graph signal x ∈ BL3(V
−1)

as

x =
[
0.29 0.32 0.18 0.05 0.17

]T
,

and

x̂ =
[
0.5 0.2 0.1 0 0

]T
,

We can check the first three columns of V to see that all

sets of three rows are independent. According to the sampling

theorem, we can then recover x perfectly by sampling any

three of its coefficients; for example, sample the first, second

and the fourth coefficients. Then, M = (1, 2, 4), xM =[
0.29 0.32 0.05

]T
, and the sampling operator

Ψ =



1 0 0 0 0
0 1 0 0 0
0 0 0 1 0


 ,

is qualified. We recover x by using the following interpolation

operator (see Figure 2)

Φ = V(3)(ΨV(3))
−1 =




1 0 0
0 1 0

−2.7 2.87 0.83
0 0 1
5.04 −3.98 −0.05



.

The inverse graph Fourier transform matrix for the sampled

signal is

U−1 = ΨV(3) =




0.45 0.19 0.25
0.45 0.40 0.16
0.45 −0.66 −0.41


 ,

and the sampled frequencies are

Λ(3) =




1 0 0
0 0.39 0
0 0 −0.12


 .

The sampled graph shift is then constructed as

AM = U−1 Λ(3) U =




0.39 0.31 0.24
−0.62 −0.06 −0.49
1.56 0.26 0.95


 .
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Fig. 2: Sampling followed by interpolation. The arrows indicate that the edges are directed.

We see that while the sampled graph shift contains self-loops

and negative weights, which seems to be dissimilar to A, AM
preserves a part of the frequency content of A because both

U−1 is sampled from V and Λ(3) is sampled from Λ.

IV. RELATIONS & EXTENSIONS

We now discuss four topics: relation to the sampling theory

for finite discrete-time signals how to choose a sampling

operator, how random sampling works, and how to handle

graph filter banks.

A. Relation to Sampling Theory for Finite Discrete-Time Sig-

nals

We call the graph that supports a finite discrete-time signal

a finite discrete-time graph, which indicates the time-ordering

from the past to future. The finite discrete-time graph can be

represented by the cyclic permutation matrix [31], [28],

A =




0 0 · · · 1
1 0 · · · 0
...

. . .
. . . 0

0 · · · 1 0


 = VΛV−1, (7)

where the eigenvector matrix

V =
[
v0 v1 · · · vN−1

]
=
[

1√
N
(W jk)∗

]
j,k=0,···N−1

,

(8)

is the Hermitian transpose of the N -point discrete Fourier

transform matrix, V = F∗, V−1 is the N -point discrete Fourier

transform matrix (F), V−1 = F, and the eigenvalue matrix is

Λ = diag
[
W 0 W 1 · · · WN−1

]
, (9)

where W = e−2πj/N . We see that Definitions 2, 3 and

Theorem 1 are immediately applicable to finite discrete-time

signals and are consistent with sampling of such signals [31].

Definition 4. A discrete-time signal is called bandlimited when

there exists K ∈ {0, 1, · · · , N−1} such that its discrete Fourier

transform x̂ satisfies

x̂k = 0 for all k ≥ K.

The smallest such K is called the bandwidth of x. A discrete-

time signal that is not bandlimited is called a full-band discrete-

time signal.

Definition 5. The set of discrete-time signals in C
N with

bandwidth of at most K is a closed subspace denoted BLK(F),
with F as the discrete Fourier transform matrix.

With this definition of the discrete Fourier transform matrix,

the highest frequency is in the middle of the spectrum (although

this is just a matter of ordering). From Definitions 4 and 5,

we can permute the rows in the discrete Fourier transform

matrix to choose any frequency band. Since the discrete Fourier

transform matrix is a Vandermonde matrix, any K rows of F∗
(K)

are independent [36], [31]; in other words, rank(ΨF∗
(K)) = K

always holds when M ≥ K. We apply now Theorem 1 to

obtain the following result. Denote F∗
(K) be the first K columns

of F∗, Ψ ∈ R
M×N as a sampling operator, and Φ ∈ R

N×M

as an interpolation operator.

Theorem 3. Let Ψ satisfy that the sampling number is no less

than the bandwidth, M ≥ K. For all x ∈ BLK(F), perfect

recovery, x = ΦΨx, is achieved by choosing

Φ = F∗
(K) U,

with UΨF∗
(K) a K ×K identity matrix.

From Theorem 3, we can perfectly recover a discrete-time

signal when it is bandlimited.

Similarly to Theorem 2, we can show that a new graph shift

can be constructed from the finite discrete-time graph. Multiple

sampling mechanisms can be done to sample a new graph shift;

an intuitive one is as follows: let x ∈ C
N be a finite discrete-

time signal, where N is even. Reorder the frequencies in (9),

by putting the frequencies with even indices first,

Λ̃ = diag
[
λ0 λ2 · · · λN−2 λ1 λ3 · · · λN−1

]
.

Correspondingly, reorder the columns of V in (8) by putting

the columns with even indices first

Ṽ =
[
v0 v2 · · · vN−2 v1 v3 · · · vN−1

]
.

One can check that ṼΛ̃Ṽ
−1

is still the same cyclic permutation

matrix. Suppose we want to preserve the first N/2 frequency

components in Λ̃; the sampled frequencies are then

Λ̃(N/2) = diag
[
λ0 λ2 · · · λN−2

]
.

Let a sampling operator Ψ choose the first N/2 rows in Ṽ(N/2),

ΨṼ(N/2) =
[

1√
N
(W 2jk)∗

]
j,k=0,···N/2−1

,

which is the Hermitian transpose of the discrete Fourier

transform of size N/2 and satisfies rank(ΨṼ(N/2)) = N/2
in Theorem 2. The sampled graph Fourier transform matrix
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Fig. 3: Sampling a graph.

U = (ΨṼ(N/2)))
−1 is the discrete Fourier transform of size

N/2. The sampled graph shift is then constructed as

AM = U−1 Λ̃(N/2) U,

which is exactly the N/2 × N/2 cyclic permutation ma-

trix. Hence, we have shown that by choosing an appropriate

sampling mechanism, a smaller finite discrete-time graph is

obtained from a larger finite discrete-time graph by using

Theorem 2. We note that using a different ordering or sampling

operator would result in a graph shift that can be different

and non-intuitive. This is simply a matter of choosing different

frequency contents.

B. Relation to Graph Laplacian Based Sampling Theory

The authors in [12] consider a similar problem to ours,

that is, to recover bandlimited graph signals by sampling a

few signal coefficients in the vertex domain. The differences

are as follows: (1) when defining the bandwidth, we focus

on the number of frequencies, not the value of frequencies;

(2) the proposed sampling theory works for both directed and

undirected graphs and is consistent with the classical sampling

theory when handling finite discrete-time signals; (3) to find

a qualified sampling operator, we need independent rows in

a matrix, which can be solved by fast algorithms, such as

QR decomposition; in [12], a non-convex optimization problem

needs to be solved by using a greedy algorithm.

C. Relation to Frames with Maximal Robustness to Erasures

A frame {f0, f2, · · · , fN−1} is a generating system for CK ,

where N ≥ K, when there exist two constants a > 0 and

b < ∞, such that for all x ∈ C
N ,

a ‖x‖
2
≤
∑

k

|fT
k x|2 ≤ b ‖x‖

2
.

In finite dimensions, we represent the frame as an N × K
matrix with rows fT

k . The frame is maximally robust to erasures

when every K × K submatrix (obtained by deleting N − K
rows) is invertible [37]. In [37], the authors show that a

polynomial transform matrix is a frame maximally robust to

erasures; in [38], the authors show that many lapped orthogonal

transforms and lapped tight frame transforms are also maxi-

mally robust to erasures. It is clear that if the inverse graph

Fourier transform matrix V as in (2) is maximally robust to

erasures, any sampling operator that samples at least K signal

coefficients guarantees perfect recovery; in other words, when

a graph Fourier transform matrix happens to be a polynomial

transform matrix, sampling any K signal coefficients leads to

perfect recovery.

For example, a circulant graph is a graph whose adjacency

matrix is circulant [39]. The circulant graph shift, C, can be

represented as a polynomial of the cyclic permutation matrix,

A. The graph Fourier transform of the cyclic permutation

matrix is the discrete Fourier transform, which is again a

polynomial transform matrix. As described above, we have

C =
L−1∑

i=0

hi A
i =

L−1∑

i=0

hi(F
∗ ΛF)i

= F∗

(
L−1∑

i=0

hiΛ
i

)
F,

where L is the order of the polynomial, and hi is the coeffi-

cient corresponding to the ith order. Since the graph Fourier

transform matrix of a circulant graph is the discrete Fourier

transform matrix, we can perfectly recover a circulant-graph

signal with bandwidth K by sampling any M ≥ K signal

coefficients as shown in Theorem 3. In other words, perfect

recovery is guaranteed when we randomly sample a sufficient

number signal coefficients.

D. Relation to Compressed Sensing

Compressed sensing is a sampling framework to recover

sparse signals in a few measurements [40]. The theory asserts

that a few samples guarantee the recovery of the original signals

when the signals and the sampling approaches are well-defined

in some theoretical aspects. To be more specific, given the

sampling operator Ψ ∈ R
M×N ,M << N and the sampled

signal xM = Ψx, a sparse signal x ∈ R
N is recovered by

solving

min
x

||x||0, subject to xM = Ψx. (10)

Since the l0 norm is not convex, the optimization is a non-

deterministic polynomial-time hard problem. To obtain a com-

putationally efficient algorithm, the l1 norm based algorithm,

known as basis pursuit or basis pursuit with denoising, recovers

the sparse signal with small approximation error [41].

In the standard compressed sensing theory, the signals have

to be sparse or approximately sparse to gurantee accurate

recovery properties. In [42], the authors proposed a general way

to perform compressed sensing with non-sparse signals using

dictionaries. To be more specific, a general signal x ∈ R
N , is

recovered by

min
x

||Dx||0, subject to xM = Ψx, (11)

where D is a dictionary designed to make Dx sparse. When

specifying x to be a graph signal, and D to be the appropriate

graph Fourier transform of the graph on which the signal

resides, Dx represents the frequency content of x, which is

sparse when x is of limited bandwidth. Equation (11) recovers a

bandlimited graph signal from a few sampled signal coefficients

via an optimization approach. The proposed sampling theory

deals with the cases where the nonzero frequencies are known,

and can be reordered to form a bandlimited graph signal.

Compressed sensing deals with the cases where the nonzero
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frequencies are unknown, which is a more general and harder

problem. If we have access to the position of the nonzero

frequencies, the proposed sampling theory uses the smallest

number of samples to achieve perfect recovery.

E. Optimal Sampling Operator

As mentioned in Section III-A, at least one set of K
linearly-independent rows in V(K) always exists. When we

have multiple choices of K linearly-independent rows, we aim

to find an optimal one to minimize the effect of noise.

We consider a model where noise e is introduced during

sampling as follows,

xM = Ψx+ e,

where Ψ is a qualified sampling operator. The recovered graph

signal, x′
e, is then

x′
e = ΦxM = ΦΨx+Φe = x+Φe.

To bound the effect of noise, we have

||x′ − x||2

= ||Φe||2

= ||V(K) U e||2

≤ ||V(K) ||2||U ||2||e||2.

where the inequality follows from the definition of the spectral

norm. Since ||V(K) ||2 and ||e||2 are fixed, we want U to have

a small spectral norm. From this perspective, for each feasible

Ψ, we compute the inverse, or pseudo-inverse of ΨV(K) to

obtain U; the best choice comes from the U with smallest

spectral norm. This is equivalent to maximizing the smallest

singular value of ΨV(K),

Ψopt = argmax
Ψ

σmin(ΨV(K)), (12)

where σmin denotes the smallest singular value. Since we

restrict the form of Ψ in (4), (12) is non-deterministic

polynomial-time hard. To solve (12), we can use a greedy al-

gorithm as shown in Algorithm 1. Note that M is the sampling

sequence, indicating which row to select, and (V(K))M denotes

the sampled rows from V(K). When increasing the number of

samples, the smallest singular value of ΨV(K) is growing, and

thus, redundant samples make the algorithm robust to noise.

Algorithm 1 Optimal Sampling Operator via Greedy Algo-

rithm

Input V(K) the first K columns of V
M the number of samples

Output M sampling set

Function
while |M| < M

m = argmaxi σmin

(
(V(K))M+{i}

)

M←M+ {m}
end
return M

F. Random Sampling

In Section IV-A, we saw that when sampling enough signal

coefficients, any sampling operator leads to perfect recovery for

discrete-time signals. Here we show that similar results apply

to Erdős-Rényi random graphs.

An Erdős-Rényi graph is constructed by connecting nodes

randomly, where each edge is included in the graph with

probability p independent of any other edge [1], [2]. We aim

to show that by sampling K signal cofficients randomly, the

singular values of the corresponding ΨV(K) are bounded.

Lemma 1. Let a graph shift A ∈ C
N×N represent an Erdős-

Rényi graph, where each pair of vertices is connected randomly

and independently with probability p = g(N) log(N)/N , and

g(·) is some function. Let V be the eigenvector matrix of A.

Let the sampling number satisfy

M ≥ K ·
log2.2 g(N) log(N)

p
max(C1 logK,C2 log

3

δ
),

for some positive constants C1, C2. Then,

P

(∥∥∥∥
1

M
(ΨV(K))

T (ΨV(K))− I

∥∥∥∥
2

≤
1

2

)
≤ 1− δ, (13)

for all sampling operators Ψ that sample M signal coefficients.

Proof. Since the graph shift A is real and symmetric, the

eigenvector matrix V is unitary and satisfies

max
i,j

|Vi,j | = O

(√
log2.2 g(N) logN/(N2p)

)

for p = g(N) log(N)/N [43]. By substituting V into Theorem

1.2 in [44] and obtain (13).

Theorem 4. Let A,V,Ψ be defined as in Lemma 1. With

probability (1−δ), ΨV(K) is a frame in C
K with lower bound

M/2 and upper bound 3M/2.

Proof. Using Lemma 1, with probability (1− δ), we have

∥∥ 1
M (ΨV(K))

T (ΨV(K))− I
∥∥
2

≤
1

2
.

We thus obtain for all x ∈ C
K ,

−
1

2
xTx ≤ xT

(
1
M (ΨV(K))

T (ΨV(K))− I
)
x ≤

1

2
xTx,

M

2
xTx ≤ xT (ΨV(K))

T (ΨV(K))x ≤
3M

2
xTx.

From Theorem 4, we see that the singular values of ΨV(K)

are well bounded with high probability. It shows that ΨV(K)

has full rank with high probability; in other words, with high

probability, perfect recovery is achieved for Erdős-Rényi graph

signals when we randomly sample sufficient signal coefficients.

G. Graph Downsampling & Graph Filter Banks

In classical signal processing, sampling refers to sample

a continuous function and downsampling refers to sample a

sequence. Both concepts consider to use fewer samples to

represent the overall shape of the original signal. Since a graph

signal is discrete in nature, sampling and downsampling are
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actually the same thing. Previous works implemented graph

downsampling via graph coloring [6], or minimum spanning

tree [45]. Those algorithms, however, do not have solid justi-

fications from the perspective of signal processing.

The proposed sampling theory provides a family of qualified

sampling operators (5) with an optimal one (12). To do graph

downsampling by 2, one can set the bandwidth as a half of the

number of nodes, that is, K = N/2, and use (12) to obtain an

optimal sampling operator. An example for the finite discrete-

time signals has been shown in Section IV-A.

As shown in Theorem 1, perfect recovery is achieved when

graph signals are bandlimited. To handle full-band graph sig-

nals, we propose an approach based on graph filter banks,

where graph downsampling is a key component.

Let x be a full-band graph signal, which we can express as

the addition of two bandlimited signals supported on the same

graph, i. e., x = xl + xh, where

xl = V

[
IK 0

0 0

]
V−1 x,

and

xh = V

[
0 0

0 IN−K

]
V−1 x.

We see that xl contains the first K frequencies, xh contains

the other N − K frequencies, and each is bandlimited. We

do sampling and interpolation for xl and xh in two channels,

respectively. Take the first channel as an example. Following

the paradigm in Theorems 1 and 2, we use a feasible sampling

operator Ψl to sample xl, and obtain the sampled signal

coefficients as xl
Ml = Ψlxl, with the corresponding graph

as AMl . We can recover xl by using interpolation operator

Φl as xl = Φlxl
Ml . Finally, we add the results from both

channels to obtain the original full-band graph signal (also

illustrated in Figure 4). We do not restrict that the samples

from two bands, xl
Ml and xh

Mh , have the same size because we

can adaptively design the sampling and interpolation operators

based on the their own sizes. This is similar to the filter banks

in the classical literature that channels need not to evenly split

the spectrum [46].

We see that the above idea can easily be generalized to

multiple channels by splitting the original graphs signal into

multiple bandlimited graph signals; instead of dealing with a

huge graph, we work with multiple small graphs, which makes

computation easier.

V. EXPERIMENTS

In this section, we validate the proposed sampling theory on

two classical types of graphs, Erdős-Rényi graphs and small-

world graphs. We show that the perfect recovery is achieved

in each type of graph with high probability. We then validate

it on a real-world dataset of online blogs, where the perfect

recovery is achieved again with high probability. We also

apply the proposed sampling theory to the classification of

online blogs and digit images, where we achieve similar or

better performance with fewer labeled samples compared to

the previous work.

A. Simulations

We aim to validate the full-rank assumption (5) of the

proposed sampling theory on Erdős-Rényi graphs and small-

world graphs, investigating the probability of satisfying the

full-rank assumption by random sampling. Since once the full-

rank assumption is satisfied, we can find a qualified sampling

operator to achieve perfect recovery, we call this probability as

success rate of perfect recovery.

1) Experimental Setup: Suppose that for each graph, we

deal with the corresponding graph signals with fixed bandwidth

K = 10. Given a graph shift, we randomly sample 10 rows

from the first 10 columns of graph Fourier transform matrix,

and check if the 10 × 10 matrix is of full rank. Based on

Theorem 1, if the 10 × 10 matrix is of full rank, the perfect

recovery is guaranteed. For each given graph shift, we run the

random sampling for 100 graphs, and count the number of

successes to obtain the success rate.

Erdős-Rényi graphs. As shown in Section IV.C, with high

probability, perfect recovery is achieved for Erdős-Rényi graph

signals when we randomly sample a sufficient number of

signal coefficients. We verify this result experimentally by

randomly sampling Erdős-Rényi graphs with various sizes and

connection probabilities. We vary the size from 50 to 500; and

the connection probabilities with an interval of 0.01 from 0 to

0.5. For each given size and connection probability, we generate

100 graphs randomly.

Small-world graphs. A small-world graph is a graph where

any node can reach most other nodes within a small number

of steps [1], [2]. In the context of a social network, this results

in the small world phenomenon of people being linked by a

small number of mutual acquaintances or connections. Many

empirical graphs that we encounter in the real world show

this small-world phenomenon; online social networks and gene

networks are examples. We use the Watts-Strogatz model to

generate such graphs, which includes three variables, size,

connection probability, and rewiring probability [47]. We vary

the size from 50 to 500; the connection probabilities with an

interval of 0.01 from 0 to 0.5, and fix the rewiring probability

to be 0.1. For each given size and connection probability, we

generate 100 graphs randomly.

2) Results: Figure 5 shows success rates for size averaged

over 100 random tests for each of three types of graphs. When

we fix the size of graphs, in Erdős-Rényi graphs, the success

rates increase as the connection probability increases, i.e.,

more connections lead to higher probability to get a qualified

sampling operator; in small-worlds graphs, the success rates

increase as the connection probability increases, i.e., more con-

nections lead to higher probability to get a qualified sampling

operator. The simulation results suggest that the full-rank as-

sumption is easier to satisfy when there exist more connections

on graphs. There is no deep understanding of the eigenvectors

of random graphs, it is unclear how the connections on random

graphs influence the corresponding graph Fourier transform, the

intuition is that more connections leads to more information

in the graph Fourier transform matrix, making the rows less

dependent, and easier to satisfy the full-rank assumption.

When we compare the different sizes of the same type

of graph, the success rate increases as the size increases,
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Fig. 4: Graph filter bank that splits the graph signal into two bandlimited graph signals. In each channel, we perform sampling

and interpolation, following the paradigm in Theorem 1. Finally, we add the results from both channels to obtain the original

full-band graph signal.
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(a) Erdős-Rényi graphs of size 50. (b) Erdős-Rényi graphs of size 500.
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(e) Small-world graph of size 50. (f) Small-world graph of size 500.

Fig. 5: Success rates.

i.e., larger sizes of graphs lead to higher probabilities of

getting a qualified sampling operator. Overall, with sufficient

connections, the success rates are close to 100% for each type

of graphs. The intuition is that larger size of the graph leads to

more information in the graph Fourier transform matrix, which

makes the rows more independent. It is then easier to satisfy

the full-rank assumption.

B. Sampling Online Blogs

We aim to validate the full-rank assumption of the proposed

sampling theory on online blogs, investigating the success

rate of perfect recovery using random sampling, and further

classifying the labels of the online blogs.

1) Dataset: We consider a dataset of N = 1224 online po-

litical blogs as either conservative or liberal [49]. We represent

conservative labels as +1 and liberal ones as −1. The blogs

are represented by a graph in which nodes represent blogs,

and directed graph edges correspond to hyperlink references

between blogs. The graph signal here is the label assigned

to the blogs, called the labeling signal. We use the spectral

decomposition in (2) for this online-blog graph to get the graph

frequencies in a descending order and the corresponding graph

Fourier transform matrix. The labeling signal is a full-band

signal, but approximately bandlimited. The main information

is preserved in the low frequencies.

2) Experimental Setup & Results: To investigate the success

rate of perfect recovery using random sampling, we vary the

bandwidth K of the labeling signal with an interval of 1 from 1

to 20, randomly sample K rows from the first K columns of the

graph Fourier transform matrix, and check if the K×K matrix

has full rank. For each bandwidth, we randomly sample 10,000

times, and count the number of successes to obtain the success

rate. Figure 6 (a) shows the resulting success rate. We see that

the success rates decrease as we increase the bandwidth, but

the success rates are all above 90% when the bandwidth is no

greater than 20. As the bandwidth increases, even if we get

an equal number of samples, the success rate still decreases,

because more information is embedded in a graph signal with
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wider bandwidth, it is thus harder to find a qualified sampling

operator.

Since a qualified sampling operator is independent of graph

signals, we precompute the qualified sampling operator for

the online-blog graph, as discussed in Section III-A. When

the labeling signal is bandlimited, we can sample M labels

from it by using a qualified sampling operator, and recover

the labeling signal by using the corresponding interpolation

operator. In other words, we label all the blogs by actively

querying the labels of a few blogs, which is a task of semi-

supervised classification [50]. Note that, instead of updating the

next query based on previous responses, all the queries here are

designed in advance.

Most of the time, however, the labeling signal is not ban-

dlimited, and it is infeasible to achieve perfect recovery. Since

we only care about the sign of the labels, we use only the low

frequency content to approximate the labeling signal; after that,

we set a threshold to assign labels. To minimize the influence

from the high frequency content, we use the optimal sampling

operator in Algorithm 1, and solve the following optimization

problem to recover the low frequency content,

x̂opt
(K) = arg min

x̂(K)∈RK

∥∥sgn(ΨV(K) x̂(K))− xM
∥∥2
2
, (14)

where Ψ ∈ R
M×N is the optimal sampling operator, xM ∈

R
M is a vector of the sampled labels whose element is either

+1 or −1, and sgn(∗) sets all positive values to +1, and all

negative values to −1. Note that without sgn(∗), the solution

of (14) is (ΨV(K))
−1xM in Theorem 1, which perfectly recov-

ers the labeling signal when it is bandlimited. When the label-

ing signal is not bandlimited, the solution of (14) approximates

the low frequency content. The ℓ2 norm (14) can be relaxed by

the logit function and solved by logistic regression [51]. The

recovered labels are then xopt = sgn(V(K) x̂
opt
(K)).

Figure 6 (b) shows the classification accuracy by varying the

sample size with an interval of 1 from 1 to 20. We see that

the classification accuracy is as high as 94.44% by sampling

only two blogs. The classification accuracy gets slightly better

as we increases the number of samples. Compared to the

previous results [24], harmonic functions achieve 94.68% by

sampling 120 blogs, graph Laplacian regularization achieves

94.62% by sampling 120 blogs, graph total variation minimiza-

tion achieves 94.76% by sampling 10 blogs, and graph total

variation regularization achieves 94.68% by sampling 10 blogs.

The improvement is from that, instead of sampling randomly

as in [24], we use the optimal sampling operator to choose

samples based on the graph structure actively.

C. Semi-Supervised Classification for Handwritten Digits

We aim to use the proposed sampling theory to classify

the handwritten digits, and achieve high classification accuracy

with fewer samples.

1) Dataset: We work with two handwritten digit datasets,

the MNIST [52] and the USPS [53]. Each dataset includes

ten classes (0-9 digit characters). The MNIST dataset includes

60,000 samples in total. We randomly select 1000 samples for

each digit character, for a total of N = 10, 000 digit images;

each of image is normalized to the size of 28 × 28 = 784

pixels. The USPS dataset includes 11,000 samples in total. We

use all the images in the dataset; each image is normalized to

the size of 16× 16 = 256 pixels.

Since same digits produce similar images, it is intuitive to

build a graph to reflect the relational dependencies among

images. For each dataset, we construct a 12 nearest neighbor

graph to represent the digit images. The nodes represent digit

images, and each node is connected to 12 other nodes that

represent the most similar digit images. The similarity is mea-

sured by the Euclidean distance. The graph shift is constructed

as Ai,j = Pi,j /
∑

i Pi,j , with

Pi,j = exp

(
−N2 ‖fi − fj‖2∑

i,j ‖fi − fj‖2

)
,

and fi is a vector representation of the digit image. The graph

shift is asymmetric, representing a directed graph, which cannot

be handled by graph Laplacian based methods.

2) Experimental Setup & Results: Similarly to Section V-B,

we aim to label all the digit images by actively querying the

labels of a few images. To handle 10-class classification, we

form a ground-truth matrix X of size N×10. The element Xi,j

is +1, indicating the membership of the ith image in the jth

digit, and is −1 otherwise. We obtain the optimal sampling

operator Ψ as shown in Algorithm 1. The querying samples

are then XM = ΨX ∈ R
M×10. We recover the low frequency

content as

X̂
opt

(K) = arg min
X̂(K)∈RK×10

∥∥∥sgn(ΨV(K) X̂(K))−XM

∥∥∥
2

2
.

(15)

We solve (15) approximately by using logistic regression and

then obtain the estimated label matrix Xopt = V(K) X̂
opt

(K) ∈

R
N×10, whose element (Xopt)i,j shows a confidence of label-

ing the ith image as the jth digit. We finally label each digit

image by choosing the one with largest value in each row of

Xopt.

The graph representations of the MNIST and USPS datasets,

and the optimal sampling sets are shown in Figure 7. The

coordinates of nodes come from the corresponding rows of the

first three columns of the inverse graph Fourier transform. We

see that the images with the same digit characters form clusters,

and the the optimal sampling operator chooses representative

samples from different clusters.

Figure 8 shows the classification accuracy by varying the

sample size with an interval of 10 from 10 to 100 for both

datasets. For the MNIST dataset, we query 0.1%−1% images;

for the USPS dataset, we query 0.09% − 0.9% images. We

achieve around 90% classification accuracy by querying only

0.5% images for both datasets. Compared to the previous

results [35], in the USPS dataset, given 100 samples, the

accuracy of local linear reconstruction is around 65%, the

accuracy of METIS graph partitioning based heuristic is around

70%, and the accuracy of graph sampling based active semi-

supervised learning is around 85%, while the proposed method

achieves 91.69%.

VI. CONCLUSIONS

We propose a sampling theory for graph signals that fol-

lows the same paradigm as classical sampling theory. We
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Fig. 6: Online blogs When increasing the bandwidth, more information is embedded, it is thus harder to find a qualified

sampling operator, but we can use more frequencies to approximate the labeling signals by taking more samples, obtaining

higher classification accuracy.
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Algorithm 1.
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Fig. 8: Classification accuracy of the MNIST and USPS

datasets as a function of the number of querying samples.

showed that perfect recovery is possible when graph signals

are bandlimited. The sampled signal coefficients then form

a new graph signal, whose corresponding graph structure is

constructed from the original graph structure, preserving fre-

quency content. By imposing a specific structure on the graph,

graph signals reduce to finite discrete-time signals, effectively

ensuring that the proposed sampling theory is consistent with

existing theory. We also established the connection to the

theories of frames with maximal robustness to erasures and

compressed sensing. We showed a principle to choose the

optimal sampling operator, how random sampling works on

circulant graphs and Erdős-Rényi graphs, and how to handle

full-band graphs signals by using graph filter banks. We vali-

dated the proposed sampling theory on the simulated datasets

of Erdős-Rényi graphs, small-world graphs, and a real-world

dataset of online blogs. We showed that for each case, the

proposed sampling theory achieves the perfect recovery with

a high probability. Finally, we apply the proposed sampling

theory to semi-supervised classification of online blogs and

digit images. Compared to the previous work, we achieve

similar or better performance with fewer labeled samples. Some

open issues are to study the graph Fourier transform of various

graphs, design optimal sampling operators efficiently, and study

the recovery of noise graph signals.
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graph filtering: Multiresolution classification on graphs,” in IEEE

GlobalSIP, Austin, TX, Dec. 2013, pp. 427 – 430.

[16] V. N. Ekambaram, B. Ayazifar G. Fanti, and K. Ramchandran, “Wavelet-
regularized graph semi-supervised learning,” in Proc. IEEE Glob. Conf.

Signal Information Process., Austin, TX, Dec. 2013, pp. 423 – 426.

[17] X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst, “Learning graphs
from observations under signal smoothness prior,” IEEE Trans. Signal

Process., 2014, Submitted.

[18] D. Thanou, D. I. Shuman, and P. Frossard, “Learning parametric
dictionaries for signals on graphs,” IEEE Trans. Signal Process., vol.
62, pp. 3849–3862, June 2014.

[19] S. Chen, A. Sandryhaila, J. M. F. Moura, and J. Kovačević, “Signal
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J. Bielak, J. H. Garrett, and J. Kovačević, “Signal inpainting on graphs via
total variation minimization,” in Proc. IEEE Int. Conf. Acoust., Speech

Signal Process., Florence, May 2014, pp. 8267 – 8271.

[25] X. Wang, P. Liu, and Y. Gu, “Local-set-based graph signal reconstruc-
tion,” IEEE Trans. Signal Process., 2015, To appear.

[26] X. Wang, M. Wang, and Y. Gu, “A distributed tracking algorithm for
reconstruction of graph signals,” IEEE Journal of Selected Topics on

Signal Processing, 2015, To appear.

[27] S. Chen, A. Sandryhaila, J. M. F. Moura, and J. Kovačević, “Distributed
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theory for graph signals,” in Proc. IEEE Int. Conf. Acoust., Speech Signal

Process., Brisbane, Australia, Apr. 2015.
[35] A. Gadde, A. Anis, and A. Ortega, “Active semi-supervised learning

using sampling theory for graph signals,” in Proceedings of the 20th

ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, New York, New York, USA, 2014, KDD ’14, pp. 492–501.
[36] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University

Press, Cambridge, 1985.
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