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SUMMARY

Part 2 of this series of two papers presents the applications of the discrete singular convolution (DSC)
algorithm. The main purpose of this paper is to explore the utility, test the accuracy and examine
the convergence of the proposed approach for the vibration analysis of rectangular plates with internal
supports. Both partial internal line supports and complex internal supports are considered for 21 square
plates of various combinations of edge support conditions. The e�ects of di�erent size, shape and
topology of the internal supports and di�erent boundary conditions on the vibration response of plates
are investigated. The partial internal line supports may vary from a central point support to a full range
of cross or diagonal line supports. Several closed-loop supports, such as ring, square and rhombus,
and their combinations are studied for complex internal supports. Convergence and comparison studies
are carried out to establish the correctness and accuracy of the DSC algorithm. The DSC results are
compared with those in the available literature obtained by using other methods. Numerical results
indicate that the DSC algorithm exhibits controllable accuracy for plate analysis and shows excellent
�exibility in handling complex geometries, boundary conditions and support conditions. Copyright
? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In Part 2 of this series of two papers we explore the usefulness, test the accuracy, and examine
the convergence of the discrete singular convolution (DSC) algorithm [1–7] for the vibration
analysis of plates with internal supports. Part 2 is a natural extension of the preceding paper
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which formulates the theory and algorithm for the present applications. Particular consideration
is given to plates with both partial internal line supports and complex internal supports, which
appear frequently in modern engineering structures. For instance, bridge slabs or �oor systems
may be modelled as plates being not only supported along their edges but also supported by
load-bearing walls that can be treated as internal line supports. Other regular internal supports,
such as circular internal supports, square internal supports and their combinations, are of
practical importance to engineering designs of plates. There is an increasing demand for a
reliable theoretical analysis of these plates from engineers. However, it is very challenging
to provide a reliable theoretical analysis of plates with complex internal supports due to
possible numerical instability. What is required is a numerical method that combines the
global methods’ accuracy and the local methods’ �exibility for the implementation of complex
internal support conditions.
The vibration of plates with internal line supports has been investigated by many researchers

since the early work by Veletsos and Newmark [8]. By using the Holzer method, Veletsos and
Newmark [8] studied the vibration of a rectangular plate with one internal straight line support
perpendicular to the edges of the plate. Ungar [9] treated a similar problem by using a semi-
graphical approach. Using Bolotin’s edge e�ect approach, Bolotin [10], and later, Moskalenko
and Chen [11] analysed plates with two and three internal line supports in one direction.
Cheung and Cheung [12] studied multi-span plates with the �nite strip method. The modi�ed
Bolotin method was employed by Elishako� and Sternberg [13] to treat multi-span plates in
one direction. A similar problem was also studied by Azimi et al. [14] by the receptance
method. The B-spline functions in association with the Rayleigh–Ritz method were utilized
by Mizusawa and Kajita [15] to analyse the free vibration of one-direction continuous plates
with arbitrary boundary conditions.
The vibration of rectangular plates with internal line supports which are continuous in two

directions has also been studied by many researchers. For example, by using a sine series
analysis Takahashi and Chishaki [16] considered rectangular plates with a number of line
supports in two directions. In the framework of their �nite strip method, Wu and Cheung
[17] analysed the free vibration of continuous rectangular plates in one or two directions by
using the multi-span vibrating beam functions. In the framework of the Rayleigh–Ritz method,
Kim and Dickinson [18] used a set of one-dimensional orthogonal polynomial functions to
analyse the free vibration of plates with internal line supports. Liew and Lam [19] analysed
eigenmodes and eigenfrequencies of multi-span plates by using a set of two-dimensional
orthogonal polynomial functions. Using the pb-2 Ritz method, Liew et al. [20] studied the
vibration of rectangular Mindlin plates with internal line supports in one or two directions and
in the plate diagonal directions. Their method is able to analyse plates with internal straight
line supports in an arbitrary direction. Zhou [21–23] modi�ed vibrating beam functions by
appropriate polynomials to account for the internal line supports in one or two directions.
Cheung and co-workers [24, 25] advanced this approach by combining Zhou’s trial functions
with the �nite layer method to study the vibration of shear-deformable plates with intermediate
line supports.
The aforementioned studies are all concentrated on plates with continuous line supports.

There is, however, not much work available on the vibration of plates with partial internal
line supports. Liew and Wang [26] investigated the vibration of triangular plates with partial
internal curved line supports by the pb-2 Ritz method. The point simulation approach was
employed to treat the partial curved line supports in the plates which in turn damaged the
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completeness of the pb-2 Ritz method. Moreover, the analysis of plates with complex internal
supports has not received much attention, although there is a great deal of literature on the
analysis of plates with internal (full) line and ring supports [8–21, 24, 26]. It is relatively
easy for the pb-2 Ritz method [20, 27] to treat plate with complex ring supports and any
other internal support topology as long as it can be expressed as a continuous function.
However, the e�ciency of the Ritz method is dramatically reduced if the internal support
topology cannot be analytically expressed [20, 27]. In contrast, local methods, such as �nite
element approaches, are certainly �exible in imposing the complex internal support conditions.
However, the speed of convergence of conventional local methods is relatively low under
complex internal support conditions due to the low order approximations used. In this paper,
we demonstrate the e�ciency and robustness of the DSC algorithm for the treatment of this
class of problems.
This paper is organized as follows. In Section 2, we apply the DSC algorithm to the

analysis of plates with internal partial line supports, which may vary from a single cen-
tral point support to partial cross or diagonal line supports. The e�ectiveness and conve-
nience of the DSC method for treating internal supports are demonstrated. The validity and
accuracy of the DSC method for vibration analysis of plates are veri�ed by convergence
and comparison studies. Extensive frequency parameters are tabulated for square plates of
21 distinct combinations of edge support conditions with internal supports. Vibration char-
acteristics of square plates with internal supports are examined. Analysis results of plates
with complex internal supports are presented in Section 3. A few typical internal support
topologies, including ring, square, rhombus and their combinations are considered. Conver-
gence studies are performed to establish the number of DSC grid points required for con-
verged frequencies. The DSC results are compared with available solutions from open lit-
erature to validate the correctness of the DSC method. Extensive frequency parameters are
presented for square plates of various combination of edge support conditions and having
several closed-loop internal supports. These results may serve as useful references for engi-
neers when they design plate structures with complex internal supports. The paper ends with a
conclusion.

2. PARTIAL INTERNAL LINE SUPPORT

The application of the DSC algorithm is demonstrated in this section through extensive numer-
ical studies on vibration of square plates with partial internal line supports. Figure 1 depicts
21 distinct boundary conditions which are obtained by combinations of simply supported,
elastically supported and clamped edges. For brevity, we shall use the letters S for simply
supported edge, C for clamped edge and E for the elastically supported edge and a four-
letter designation to represent the edge conditions of the plate. For instance, an ESCS plate
will have an elastically supported edge along X =0, a simply supported edge along Y =0, a
clamped edge along X =1 and a simply supported edge along Y =1, respectively. As shown
in Figure 2. the partial internal line supports are arranged to be seven distinct types, i.e.
type I: full length diagonal line supports; type II: two-thirds diagonal line supports; type III:
one-third diagonal line supports; type IV: a central point support; type V: one-third cross line
supports; type VI: two-thirds cross line supports; and type VII: full length cross line supports.
Frequency parameters are computed for the combinations of all cases and types. The Poisson
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Figure 1. Twenty-one cases of boundary conditions studied in the paper.

ratio � is taken as 0.3 when needed and the vibration frequency is expressed in terms of a
non-dimensional frequency parameter given by (!a2=�2)

√
�h=D, where D=Eh3=[12(1 − �2)]

and !; a; �; h and E are circular frequency, length, mass density, thickness of the plate and
modulus of elasticity, respectively.

2.1. Convergence and comparison studies

To verify the validity and accuracy of the proposed DSC approach, convergence and com-
parison studies are �rst carried out for the vibration analysis of plates with internal line
supports.
Convergence study is performed on a simply supported square plate (Case 1) with full

length cross supports and a simply supported square plate with full length diagonal supports,
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Figure 2. The types and locations of internal point=line supports: (a) Type I; (b) Type II; (c) Type III;
(d) Type IV; (e) Type V; (f) Type VI; and (g) Type VII.

Table I. Convergence study of frequency parameters for simply supported square plates (Case 1) with
internal line supports (DSC parameters: M=16; �=2:5;M=32; �=4:0).

Support type Mesh size �1 �2 �3 �4 �5 �6 �7 �8

N =17 10.0000 12.2724 12.2724 14.8853 20.0000 23.2292 23.2292 26.0003
N =33 10.0000 12.2681 12.2681 14.8739 20.0000 23.2154 23.2154 26.0000
N =65 10.0000 12.2677 12.2677 14.8729 20.0000 23.2141 23.2141 26.0000

N =17 8.0000 9.5909 9.5909 10.9796 20.0000 20.0000 20.9592 20.9592
N =33 8.0000 9.5842 9.5842 10.9661 20.0000 20.0000 20.9445 20.9445
N =65 8.0000 9.5836 9.5836 10.9648 20.0000 20.0000 20.9430 20.9430

respectively. Frequency parameters for the two plates vibrating in the �rst eight modes are
presented in Table I. The number of DSC grid points used to generate the frequency parameters
are chosen as 172 (i.e. Nx=Ny=16), 332 (i.e. Nx=Ny=32) and 652 (i.e. Nx=Ny=64). It is
observed that the frequency parameters for the two plates decrease monotonically as the
number of grid points increases. It is noted that when the number of DSC grid points is 172,
the frequency parameters for the �rst eight modes in the two plates converge to a satisfactory
level. To ensure a certain level of reliability, all vibration frequencies presented in the rest
of the section are calculated based on the number of DSC grid points N 2 being 372. Their
DSC parameters are chosen as M=25 and �=�=2:8. Three sets of candidate DSC parameters
(�=�; M) are used in this section, i.e. (2:5; 16), (2:8; 25) and (4:0; 32), respectively [2]. The
non-dimensional spring coe�cient is set to K ′=100.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 55:947–971



952 Y. XIANG, Y. B. ZHAO AND G. W. WEI

Table II. Comparison studies of frequency parameter for square plate with internal diagonal line supports.

Mode sequences

1 2 3 4 5 6 7 8

[20] 9.9999 12.3400 12.3400 15.1034 19.9993 23.4199 23.4200 25.9988
Case 1

DSC 10.0000 12.2680 12.2680 14.8737 20.0000 23.2151 23.2151 26.0000

[20] 10.4253 12.4259 13.6231 17.0286 20.6182 23.6853 25.1234 26.7506
Case 4

DSC 10.4177 12.3434 13.5081 16.7925 20.5954 23.4331 24.8088 26.6964

[20] 10.8364 13.3212 15.0208 18.1296 21.2553 24.8655 26.9083 27.4347
Case 12

DSC 10.8201 13.2052 14.9380 17.8215 21.2046 24.5201 26.6987 27.3205

[20] 11.6383 14.7193 16.0052 18.6497 22.3918 26.6496 28.1759 28.7712
Case 6

DSC 11.6096 14.6380 15.8795 18.3899 22.3095 26.4075 27.8812 28.5836

[20] 13.3315 16.0837 16.0837 19.3171 24.5341 28.3772 28.3772 31.2966
Case 2

DSC 13.3335 15.9898 15.9898 19.0102 24.5411 28.1430 28.1430 31.3060

[20] 11.2186 12.5125 15.8942 17.6098 21.6951 23.9464 27.8807 28.1655
Case 10

DSC 11.1996 12.4222 15.7776 17.3232 21.6413 23.6518 27.6357 28.0273

A comprehensive comparison study is carried out for square plates with various edge support
conditions and internal line=point supports. Table II presents the frequency parameters of the
�rst eight modes for square plates of various edge support conditions (Cases 1, 4, 12, 6, 2,
10) and with full length diagonal supports. The results are compared with those reported by
Liew et al. [20] using the pb-2 Ritz method. It is seen from Table II that the DSC results
are in good agreement with the Ritz results. It is noted that the values of the DSC results are
slightly lower than the Ritz results for most cases.
Table III shows the vibration frequency parameters for square plates of various edge sup-

ports and with full length cross supports. For the simply supported square plate, the DSC re-
sults have been compared well with results from several other publications [17–21, 25, 28, 29].
For square plates with other edge supporting conditions (see Table III), the current results
are compared with those reported by Liew et al. [20] using the pb-2 Ritz method and those
of Cheung and Zhou [25]. All of these results are in close agreement in general. Particularly,
an excellent consistence is found between the present results and those of Cheung and Zhou
[25].
Table IV gives the vibration frequency parameters for square plates with a central point

support. Many solutions have been found in open literature for a simply supported square
plate with a central point support [29–36]. Except for the results reported by Nowacki [30]
and Johns and Nataraja [32], the DSC results are in excellent agreement with results from
the other researchers [29, 31, 33–36]. For square plates with other edge supporting conditions,
the DSC results show close agreement with those by Leissa [29], Kim and Dickinson [33]
and Liew et al. [36].
The convergence and comparison studies in this section have con�rmed the validity and

accuracy of the DSC method in dealing with square plates with internal line and point
supports.
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Table III. Comparison studies of frequency parameter for square plate with central transverse and
longitudinal line supports.

Mode sequences

1 2 3 4 5 6 7 8

[17] 8.00 9.59 9.60 10.99 20.00 20.16 — —
[18] 8.000 9.718 9.718 11.23 20.16 20.16 — —
[19] 8.000 9.608 9.608 10.98 20.01 20.01 — —
[20] 7.9999 9.6164 9.6164 11.0739 19.9993 19.9993 21.0557 21.0557

Case 1 [21] 8.000 9.669 9.669 11.14 20.00 20.00 — —
[25] 8.000 9.583 9.583 10.965 20.00 20.00 — —
[28] 8.000 9.584 9.584 10.97 20.00 20.00 — —
[29] 8.000 9.583 9.583 10.96 20.00 20.00 — —
DSC 8.0000 9.5841 9.5841 10.9658 20.0000 20.0000 20.9442 20.9442

[20] 8.4391 10.0137 11.0295 12.3498 20.2681 21.1911 21.8974 22.2687
Case 4

DSC 8.4354 9.9583 10.9928 12.2290 20.2560 21.1589 21.7779 22.0573

[20] 8.8634 11.3867 11.3898 13.5187 21.4671 21.4743 23.0003 23.1798
Case 12

DSC 8.8520 11.3246 11.3246 13.3801 21.4022 21.4022 22.8149 22.8924

[20] 9.9632 12.1056 12.2849 14.1348 22.1067 23.4675 24.0060 25.4872
Case 6

DSC 9.9583 12.0469 12.2290 13.9973 22.0573 23.2478 23.9937 25.3169

[20] 10.9644 12.9516 12.9516 14.7497 24.5340 24.6349 25.8056 25.8056
Case 2 [25] 10.967 12.902 12.902 14.589 24.548 24.646 — —

DSC 10.9658 12.9012 12.9012 14.5882 24.5411 24.6411 25.6751 25.6751

[20] 905833 11.0138 11.7868 13.0741 20.9423 22.3488 23.7672 24.7380
Case 10

DSC 9.5841 10.9658 11.7353 12.9012 20.9442 22.1905 23.7726 24.5411

2.2. Case studies

Having built our con�dence on the DSC approach for the internal line support, we present in
this section the case studies of square plates having the 21 prescribed boundary conditions as
shown in Figure 1. The elastic support edge is considered as a simply supported edge with
rotational spring constraint along the edge.
Tables V and VI present extensive frequency parameters of the �rst eight modes for the

fully simply supported square plates (i.e. Case 1) and the fundamental frequency parameters of
the rest 20 cases of square plates. The seven types of internal line=point supports are arranged
in the sequence as shown in Figure 2. The results presented in these tables are important for
studying the vibration characteristics of square plates with respect to plate boundary conditions
and internal line=point supports. These results may also be used by engineers in designing
plate structures with complex internal supports.
The vibration responses of a simply supported square plate are studied in more detail to

reveal the in�uence of internal supports on the plate. The frequency parameters and mode
contour shapes of the �rst eight modes are shown in Table V. For plate with a central point
support, it is observed that the plate is forced to vibrate in the (antisymmetric–symmetric (AS)
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Table IV. Comparison studies of frequency parameter for square plate with central point support.

Mode sequences

1 2 3 4 5 6 7 8

[29] 5.0000 5.0000 — 8.0000 — 13.0000 13.0000 —
[30] 5.3 5.3 — — — — — —
[31] 5.0 5.0 — — — — — —
[32] 5.4 5.4 — — — — — —

Case 1 [33] 5.0000 5.0000 5.3872 8.0000 10.0000 13.0000 13.0000 15.0159
[34] — — 5.33 — — — — —
[35] 5.000 — 5.332 — 10.000 13.00 — 14.86
[36] 5.00 5.00 5.48 8.00 10.00 13.00 13.00 15.28
DSC 5.0000 5.0000 5.3376 8.0000 10.0000 13.0000 13.0000 14.8781

[29] 5.2357 — — 8.7272 — — — —
Case 4 [33] 5.2357 5.2646 6.7922 8.7273 10.898 13.489 — —

DSC 5.1880 5.2357 6.6807 8.7275 10.8800 13.4771 14.2713 15.7634

[29] — 6.134 — — 11.61 — — —
Case 12 [33] 5.358 6.134 7.834 9.420 11.61 14.66 — —

DSC 5.2609 6.1340 7.5570 9.4179 11.6076 14.6027 14.7718 16.5028

[29] — 7.202 — 10.22 — — — —
Case 6 [33] 5.980 7.202 8.028 10.21 12.49 15.39 — —

DSC 5.9296 7.2019 7.7919 10.2132 12.4649 15.3916 16.0359 17.5893

[29] 7.438 7.438 — 10.97 13.34 — — —
[33] 7.436 7.436 8.136 10.96 13.33 16.72 16.72 19.25

Case 2
[36] 7.44 7.44 8.19 10.96 13.33 16.72 16.72 19.37
DSC 7.4368 7.4368 7.9729 10.9658 13.3335 16.7208 16.7208 18.8954

with respect to the x- and y-axis, respectively) and symmetric–antisymmetric (SA) modes as
shown by the contour shapes of the �rst two modes. The third mode is an axisymmetric
mode with respect the central point of the plate. There is no nodal line in this mode. A set of
cross nodal lines is evident in the fourth mode (AA mode). The �fth mode is an SS mode.
However, the nodal lines of the mode is a set of diagonal lines. The sixth and seventh modes
are SA and AS modes with three half waves in one direction and two half waves in the other
direction. The eighth mode is observed to be an axisymmetric mode with a close loop nodal
line.
Table V also shows that when the two-third diagonal line supports are imposed, the plate

is forced to vibrate in the same way as a plate with the full length diagonal line supports.
The plate behaves quite di�erently when the one-third diagonal line supports are placed on
the plate. Similar trends are also found in the plate with cross line supports.
The �fth frequency parameters for a plate with full length diagonal line supports and full

length cross line supports are both 20. However, the mode shapes in the two cases are
completely di�erent as evident in Table V.
Table V also shows that the frequency parameters are greater for plates with cross line

supports and diagonal line supports than those for plates with a central point support. The
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Table V. Frequency parameters and modal shapes for a square plate,
Case 1, with internal supports.

diagonal line supports provide the strongest supports among the three considered internal
support types.
Figures 3 and 4 present the variation of frequency parameters versus the support length

for a clamped square plate (Case 2) with cross line and diagonal line supports, respectively.
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Table VI. Fundamental frequency parameter for square plates with internal line supports (Types I–VII).

Support type

Case I II III IV V VI VII

2 13.3335 13.3335 13.3335 7.4368 10.9658 10.9658 10.9658
3 12.0829 12.0829 12.0829 6.6187 9.7441 9.7441 9.7441
4 10.4177 10.4174 10.2891 5.1880 8.2424 8.4330 8.4354
5 10.3248 10.3246 10.2292 5.1488 8.2071 8.3127 8.3137
6 11.6096 11.6085 11.0560 5.9296 9.9069 9.5883 9.9583
7 12.9059 12.9058 12.8295 7.0143 10.5962 10.6130 10.6130
8 11.2117 11.2114 10.8611 5.6347 9.1409 9.1828 9.1829
9 12.3157 12.3156 12.2844 6.7054 9.9631 9.9934 9.9935
10 10.8201 10.8197 10.5847 5.2609 8.4266 8.8473 8.8520
11 10.6522 10.6521 10.4785 5.2164 8.3850 8.6162 8.6181
12 11.1996 11.1984 10.7365 5.5468 9.5841 9.5841 9.5841
13 10.8489 10.8485 10.5573 5.3255 8.8908 8.8908 8.8908
14 12.5583 12.5583 12.5073 6.8207 10.1773 10.2362 10.2363
15 12.6368 12.6367 12.5569 6.8025 10.3820 10.3820 10.3820
16 10.7378 10.7375 10.5316 5.2395 8.4082 8.7318 8.7349
17 11.0108 11.0101 10.6439 5.4302 9.0641 9.1624 9.1632
18 11.4354 11.4348 10.9735 5.7838 9.3444 9.5493 9.5503
19 11.5538 11.5528 11.0352 5.8779 9.8337 9.8595 9.8596
20 11.3702 11.3697 10.9453 5.7416 9.2963 9.4473 9.4480
21 11.2839 11.2836 10.8918 5.6785 9.2061 9.2870 9.2873

Frequency parameters of several SS, AS and SA modes are depicted in Figures 3 and 4.
It is found that the frequency parameters increase with increasing support length in general.
The frequency parameters remain the same when the internal support reaches certain length
(e�ective length). The e�ective length is greater when the plate vibrates in higher modes.
There are several modes where the frequency parameters remain constant when the support
length increases. This is because the nodal lines of these modes coincide with the internal
support lines.
The e�ect of internal supports on the vibration characteristics of simply supported square

plates may also be observed for plates with other edge supporting conditions in
Table VI.
The e�ect of edge support conditions can be studied by examining the frequency parameters

in Tables V and VI. It is shown that the frequency parameters increase with the increasing
level of boundary constraints from simply supported to elastically supported to clamped. This
is because higher level boundary constraints increase the �exural rigidity of the plates, resulting
in a higher frequency response. This trend can be found again from the results in Table VI
for the other cases.

3. COMPLEX INTERNAL SUPPORT

In this section, the foregoing DSC formulation is used to investigate the in�uence of com-
plex internal supports and plate boundary conditions on the vibration behaviour of square
plates. Again, square plates of 21 combinations of simply supported, clamped and elastically
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Figure 3. Frequency parameter versus cross support length ratio for a clamped square plate (Case 2).
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Figure 4. Frequency parameter versus diagonal support length ratio for a clamped square plate (Case 2).
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supported edges are selected in this study as shown in Figure 1. The internal supports consid-
ered are square, rhombus and circular loops and three of their combinations (see Figure 5).
The size of the loop supports may be determined by a size parameter � (see Figure 5). The
DSC parameters and the non-dimensional spring coe�cient follow the choices mentioned in
Section 2.

3.1. Convergence and comparison studies

As the DSC algorithm for plate analysis is an approximate method, the validity and accu-
racy of the method need to be examined through convergence and comparison studies. The
convergence test is �rst carried out for three selected square plates, namely, SSSS (Case 1),
CCCC (Case 2) and ECCS (Case 18) plates as shown in Figure 1.
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Table VII. Convergence study of frequency parameters for SSSS square plates (Case 1)
with internal support of Types VIII, IX and XII [DSC parameters: (N;M; �) ∈

{(17; 16; 2:5); (33; 32; 4:0); (65; 32; 4:0)}].
Support type Mesh size �1 �2 �3 �4 �5 �6 �7 �8

N =17 10.2622 10.7291 10.7291 10.8759 18.7813 19.7418 19.7418 21.3115
VIII (�=a=4) N =33 10.2831 10.7971 10.7971 10.9747 18.7779 19.7941 19.7941 21.2284

N =65 10.3150 10.8300 10.8300 11.0090 18.8705 19.8852 19.8852 21.2324

N =17 10.8087 19.2271 19.2271 20.8514 21.5555 22.2161 23.0031 23.0031
IX (�=a=4) N =33 10.7874 19.1548 19.1548 20.7271 21.3826 22.2158 22.9062 22.9062

N =65 10.7865 19.1676 19.1676 20.7513 21.4126 22.2335 22.9291 22.9291

N =17 20.9371 21.3812 21.3812 21.7999 23.8838 23.9522 24.9874 24.9874
XII (�=a=4) N =33 20.8667 21.2677 21.2677 21.6341 23.8532 24.0455 25.1012 25.1012

N =65 20.9182 21.3115 21.3115 21.6652 23.8549 24.1524 25.1952 25.1952

Table VIII. Convergence study of frequency parameters for CCCC square plates (Case 2) with internal
supportof Types VIII, IX and XII [DSC parameters: (N;M; �) ∈ {(17; 16; 2:5); (33; 32; 4:0); (65; 32; 4:0)}].
Support type Mesh size �1 �2 �3 �4 �5 �6 �7 �8

N =17 14.4189 15.3680 15.3680 15.5231 22.9564 25.9082 26.4424 26.4424
VIII (�=a=4) N =33 14.4056 15.4150 15.4150 15.6081 22.8784 25.7846 26.4433 26.4433

N =65 14.4281 15.4447 15.4447 15.6445 22.8714 25.8768 26.5437 26.5437

N =17 11.3174 23.0111 23.0111 30.3086 31.1817 31.1916 32.2591 32.2591
IX (�=a=4) N =33 11.2910 22.9373 22.9373 29.9977 30.7605 31.0316 31.8219 31.8219

N =65 11.2887 22.9326 22.9326 30.0001 30.7667 31.0327 31.8329 31.8329

N =17 23.8514 31.7256 31.7893 31.7893 32.1633 34.2092 35.1113 35.1113
XII (�=a=4) N =33 23.7361 31.3267 31.3893 31.3893 31.6816 34.2027 35.0338 35.0338

N =65 23.7334 31.3580 31.4177 31.4177 31.6935 34.3249 35.1402 35.1402

Table IX. Convergence study of frequency parameters for ECCS square plates (Case 18)
with internal support of Types VIII, IX and XII [DSC parameters: (N;M; �) ∈

{(17; 16; 2:5); (33; 32; 4:0); (65; 32; 4:0)}].
Support type Mesh size �1 �2 �3 �4 �5 �6 �7 �8

N =17 11.7827 12.8260 14.1675 15.2327 21.0551 22.3651 23.4897 24.9743
VIII (�=a=4) N =33 11.7610 12.8890 14.1361 15.2787 21.0010 22.2538 23.4892 24.8660

N =65 11.7837 12.9228 14.1537 15.3089 21.0709 22.2500 23.5594 24.9298

N =17 11.1457 20.3178 22.2339 24.1709 25.0421 27.2484 28.2542 30.1451
IX (�=a=4) N =33 11.1172 20.2570 22.0501 23.9405 24.9224 26.9402 27.7768 29.6870

N =65 11.1147 20.2654 22.0346 23.9424 24.9325 26.9203 27.7412 29.6431

N =17 22.4598 23.9820 24.4134 27.7642 28.4099 30.8877 31.8720 33.1607
XII (�=a=4) N =33 22.3948 23.8106 24.2413 27.5040 27.9156 30.5392 31.4498 32.9400

N =65 22.4440 23.8101 24.2725 27.5178 27.9128 30.5508 31.4741 32.9647
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Table X. Comparison study of frequency parameters for simply supported square plates with an internal
ring support (Type X, �=a=4).

Case Method �1 �2 �3 �4 �5 �6 �7 �8

[38] 9.747 11.95 11.96 13.00 14.56 — — —
1 [27] 10.0236 12.8575 12.8575 13.4716 15.5596 19.7088 20.5990 20.5990

DSC 10.0138 12.7655 12.7655 13.3181 15.3122 19.1912 20.0491 20.0491

[38] 11.75 17.60 17.60 18.41 18.59 — — —
2 [27] 11.8380 18.6134 18.6134 19.4436 20.4630 26.7431 26.7431 27.6433

DSC 11.7506 18.5325 18.5325 19.2809 20.2246 26.2661 26.2661 26.9000

Table XI. Fundamental frequency parameters for square plates with internal supports (Cases 1–7).

Case
Support
type � 1 2 3 4 5 6 7

a=8 7.4733 11.1446 9.7356 7.6409 7.6261 8.9251 10.4698
a=4 10.2980 14.4161 12.6476 10.5123 10.4900 12.5060 13.7768

VIII
3a=8 9.2610 9.8640 9.6516 9.4412 9.3684 9.7509 9.8172
a=2 5.8668 6.0821 5.9817 5.9279 5.8973 6.0359 6.0589

a=8 9.1237 13.6253 11.7739 9.3185 9.2991 10.5992 12.6660
IX a=4 10.7876 11.2901 11.1209 10.9092 10.8690 11.1604 11.2474

3a=8 5.5554 5.7167 5.6375 5.5956 5.5759 5.6762 5.6968

X a=8 7.1195 10.7861 9.3941 7.4244 7.3773 8.7788 10.2495
a=4 10.0138 11.7506 11.2397 10.4019 10.2873 11.3338 11.6306

X
3a=8 5.9016 6.0582 5.9874 5.9450 5.9240 6.0235 6.0417
a=2 3.0601 3.8482 3.5815 3.2388 3.1814 3.6290 3.7797

a=8 8.0895 12.1113 10.5151 8.2457 8.2329 9.5512 11.2910
a=4 13.6848 20.0515 16.8889 13.7262 13.7255 16.1677 18.3700

XI
3a=8 10.9170 10.9357 10.9259 10.9224 10.9193 10.9317 10.9335
a=2 6.2098 6.2575 6.2302 6.2220 6.2149 6.2459 6.2508

a=8 9.4031 14.0580 12.1067 9.5556 9.5432 10.8716 12.9775
XII a=4 20.9064 23.7348 23.5645 21.0696 21.0591 22.8408 23.7026

3a=8 10.6347 10.6565 10.6447 10.6402 10.6372 10.6511 10.6535

a=4 11.3067 16.1795 13.8932 11.3187 11.3186 13.4902 15.0598
XIII

a=2 11.9502 11.9788 11.9644 11.9578 11.9539 11.9720 11.9752

Table VII shows the �rst eight frequency parameters for an SSSS square plate (Case 1)
with internal loop supports of Types VIII, IX and XII, respectively. The size parameter of
the internal loop support � is set to be a=4. The number of DSC grid points (Nx + 1) ×
(Ny + 1) varies from 172 to 652. Unlike the convergence pattern of the Ritz method [37],
where the frequency parameters decrease monotonically as the number of Ritz trial function
terms increases, the frequency parameters from the DSC method may increase or decrease
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Table XII. Fundamental frequency parameters for square plates with internal supports (Cases 8–14).

Case
Support
type � 8 9 10 11 12 13 14

a=8 8.4662 9.8554 7.8230 7.7818 8.9144 8.4260 9.9769
a=4 11.6023 12.8590 10.6805 10.6518 12.2664 11.4076 13.0460

VIII
3a=8 9.5657 9.7106 9.5890 9.4639 9.6443 9.4840 9.7632
a=2 5.9548 6.0086 5.9813 5.9258 5.9908 5.9282 6.0336

a=8 10.1670 11.9286 9.5223 9.4730 10.5539 10.1002 12.0821
IX a=4 11.0356 11.1628 11.0312 10.9506 11.0379 10.9537 11.2047

3a=8 5.6170 5.6573 5.6355 5.5963 5.6366 5.5966 5.6770

X a=8 8.2972 9.6007 7.7141 7.6221 8.5746 8.0870 9.8039
a=4 10.9142 11.3724 10.7682 10.5531 11.0190 10.6630 11.4956

X
3a=8 5.9669 6.0063 5.9839 5.9454 5.9892 5.9466 6.0239
a=2 3.4408 3.6464 3.4171 3.3037 3.4482 3.3166 3.7111

a=8 9.0868 10.6259 8.4232 8.3838 9.5409 9.0675 10.7440
a=4 15.0500 16.8965 13.7675 13.7660 16.1676 15.0475 16.8999

XI
3a=8 10.9238 10.9286 10.9270 10.9216 10.9278 10.9217 10.9310
a=2 6.2251 6.2371 6.2339 6.2200 6.2343 6.2200 6.2440

a=8 10.4127 12.2200 9.7306 9.6924 10.8666 10.3974 12.3427
XII a=4 22.2533 23.6160 21.2272 21.2060 22.6805 22.1385 23.6582

3a=8 10.6422 10.6476 10.6456 10.6397 10.6457 10.6397 10.6506

a=4 12.5053 13.9201 11.3293 11.3292 13.4747 12.4837 13.9447
XIII

a=2 11.9610 11.9681 11.9649 11.9574 11.9653 11.9576 11.9717

monotonically when the number of DSC grid points increases. There are also cases where
the frequency parameter oscillates with increasing DSC grid points. Nevertheless, the fre-
quency parameters show a satisfactory convergence even when the number of DSC grid points
is 172.
Tables VIII and IX present the frequency parameters against the number of DSC grid points

for a CCCC plate (Case 2) and an ECCS plate (Case 18), respectively. The convergence
patterns of the frequency parameters in these two cases show the same trends as for the
simply supported square plate (Case 1). The frequency parameters converge to an acceptable
level with the number of DSC grid points being 172. It is observed that even with 172 DSC
grid points, the frequency parameters for the three selected cases have well converged. To
ensure the accuracy and e�ciency of the solutions, 412 DSC grid points are used for all other
calculations in this section.
To verify the correctness of the DSC results, a comparison study is performed against

the existing results from the literature. Table X gives the vibration frequencies for a sim-
ply supported square plate (SSSS plate) and a clamped square plate (CCCC plate) with
a concentric internal ring support. The size parameter of the ring support �=a=4. We ob-
served that the frequency parameters generated by the DSC method are in good agreement
with those reported by Liew et al. [27] and Nagaya [38]. The convergence and comparison
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Table XIII. Fundamental frequency parameters for square plates with internal supports (Cases 15–21).

Case
Support
type � 15 16 17 18 19 20 21

a=8 10.3915 7.8015 8.5929 8.6308 8.9251 8.6302 8.4667
a=4 13.5477 10.6669 11.6148 11.7977 12.4829 11.7838 11.6213

VIII
3a=8 9.7715 9.5290 9.5624 9.6853 9.7068 9.6349 9.6218
a=2 6.0359 5.9545 5.9593 6.0085 6.0132 5.9838 5.9814

a=8 12.5592 9.4965 10.2709 10.3342 10.5988 10.3332 10.1682
IX a=4 11.2054 10.9909 10.9954 11.1178 11.1199 11.0774 11.0759

3a=8 5.6772 5.6159 5.6165 5.6562 5.6568 5.6368 5.6365

a=8 10.0424 7.6671 8.2797 8.4988 8.7666 8.4829 8.3149
a=4 11.5194 10.6220 10.8277 11.1637 11.2437 11.0678 11.0146

X
3a=8 6.0253 5.9652 5.9678 6.0045 6.0072 5.9870 5.9856
a=2 3.7153 3.3606 3.3807 3.5615 3.5729 3.5051 3.4977

a=8 11.2373 8.4026 9.2359 9.2538 9.5512 9.2536 9.0870
a=4 18.3676 13.7668 15.1367 15.1414 16.1677 15.1414 15.0500

XI
3a=8 10.9313 10.9244 10.9247 10.9291 10.9295 10.9267 10.9265
a=2 6.2441 6.2270 6.2271 6.2389 6.2392 6.2321 6.2320

a=8 12.9346 9.7106 10.5669 10.5812 10.8716 10.5811 10.4128
XII a=4 23.6714 21.2165 22.3285 22.4504 22.8361 22.4478 22.2556

3a=8 10.6506 10.6426 10.6427 10.6481 10.6481 10.6452 10.6451

a=4 15.0326 11.3293 12.5219 12.5460 13.4901 12.5458 12.5055
XIII

a=2 11.9717 11.9612 11.9614 11.9683 11.9685 11.9648 11.9646

studies in this subsection have con�rmed the validity and accuracy of the proposed DSC
method.

3.2. Case studies

Tables XI–XIII present the fundamental frequency parameter for square plates of 21 combina-
tions of edge support conditions (see Figure 1) with six types of internal complex supports (see
Figure 5). The size parameter of the internal supports is chosen to be �=a=8; 2a=8; 3a=8 and
4a=8 for types VIII, X and XI, �=a=8; 2a=8 and 3a=8 for types IX and XII, and �=2a=8; 4a=8
for type XIII, respectively. The e�ects of the edge support conditions, the types of internal
supports and the size parameter of the internal supports on the vibration frequencies may be
observed from the results in Tables XI–XIII.
The e�ect of edge support conditions on the frequency parameters can be examined from

results in Tables XI–XIII. It is seen that the frequency parameters for the SSSS plate (Case 1,
in Table XI) are smaller than those for the CCCC plate (Case 2, in Table XI). Higher
constraint at the edges (in the order from S to E to C) increases the �exural rigidity of the
plate, leading to a higher frequency response. Tables XI–XIII also provide information on
the e�ect of internal support type on the frequency parameters. For a given size parameter �,
a square plate with Type X internal support (the ring) has the lowest frequency parameters.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 55:947–971



DISCRETE SINGULAR CONVOLUTION ALGORITHM. PART 2 963

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5

10

15

20

25

30

35

40

45

50

SS-1
SA(AS)-1
AA-1
SS-2 
SA(SA)-2
AA-2

Figure 6. Variation of frequency parameters versus internal support size ratios for
SSSS square plates (Case 1).

Higher frequency parameters are found for plates with Type XII support—a combination of
a square and a rhombus. In general, for a given edge condition, the larger the unsupported
free section of a plate, the lower will be the �rst vibration mode. As a result, the lowest �rst
frequency parameter (3.0601) is observed for SSSS plate (Case 1) with Type X support and
the highest �rst frequency parameter (23.7348) occurs in the combination of Case 2 and Type
XII support.
Figure 6 shows the eight frequency parameters, corresponding to the �rst two SS (sym-

metric–symmetric), SA=AS type and AA (antisymmetric–antisymmetric) type modes, respec-
tively, against the support size ratio 2�=a for the SSSS square plate (Case 1) with a rhombus
internal support (Type VIII support). We can observe that all frequency parameters increase
when the value of 2�=a varies from 0 to about 0.2. The frequency parameter from the �rst
mode decreases as the value of 2�=a is greater than 0.2. The same trend occurs for the other
modes with a di�erent key value of 2�=a. It is evident from Figure 6 that this type of internal
support is most e�ective for the SSSS plate when the support size ratio 2�=a is in between
0.2 and 0.35. The variation of frequency parameters under other support types have a similar
tendency. In general, large frequency parameters occur at the internal support structure which
is about half of the size of the plate.
To have an insight view on the vibration behaviour of plates with complex internal sup-

ports, we present selected mode shapes for the SSSS square plate (Case 1). Figures 7–12
show the �rst six mode shapes of the simply supported SSSS plates (Case 1) having the
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Figure 7. The �rst six eigenmodes for SSSS square plates (Case 1) with
Type VIII internal support (�=a=4).

six types of internal supports. The support size ratio 2�=a is set to be 0.5 for all cases.
Due to the symmetrical characteristics of the edge constraints and the internal supports,
the SSSS plate always vibrates in one of its SS, SA, AS or AA modes with respect to
the x- and y-axis. Consequently, modes 2 (SA) and 3 (AS) are always degenerated. Two
other plates with the CCCC (Case 2) and EEEE (Case 3) edge conditions have very sim-
ilar mode shapes as those in Figures 7–12. Obviously, since the symmetry is broken fully
or partially in Cases 4–21, it is expected that the mode shapes behave di�erently in these
cases.
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Figure 8. The �rst six eigenmodes for SSSS square plates (Case 1) with
Type IX internal support (�=a=4).

4. CONCLUSIONS

This paper explores the utility, tests the accuracy and examines the convergence of the pro-
posed discrete singular convolution (DSC) algorithm for the free vibration analysis of rectan-
gular plates with internal supports. Two classes of internal supports, i.e. partial internal line
supports and complex internal supports, are treated in association with 21 combinations of
edge support conditions. Particular attention is paid to the e�ects of di�erent size, shape and
topology of the internal supports and di�erent boundary conditions on the vibration response
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Figure 9. The �rst six eigenmodes for SSSS square plates (Case 1) with
Type X internal support (�=a=4).

of plates. For example, the partial internal line supports vary from a central point support to a
full range of cross or diagonal line supports. Moreover, several closed-loop supports such as
ring, square and rhombus, and their combinations are investigated for complex internal sup-
ports. The DSC algorithm is validated by carefully designed convergence studies. Extensive
comparison is carried out between the DSC results and those in available literature.
For the partial line supports, the convergence studies have been carried out with two se-

lected square plates with internal cross and diagonal line supports. The correctness of the
frequency parameters has been checked against available solutions in the open literature. The
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Figure 10. The �rst six eigenmodes for SSSS square plates (Case 1) with
Type XI internal support (�=a=4).

DSC results are in good agreement with results produced by �nite element methods and Ritz
methods. The convergence study showed that the DSC method can produce highly converged
frequency parameters when the DSC grid points are doubled and quadrupled. In fact, con-
verged results can be attained with a small mesh size of 172 for all tested cases. To ensure
the correctness of the present results, a larger mesh size (372) is employed in the case study.
Extensive frequency parameters have been presented in this paper for square plates with di�er-
ent combinations of edge support conditions and partial internal cross line, diagonal line and
central point supports. The general trends of the frequency parameters with respect to the
internal supports and boundary conditions are discussed. It is found that partial internal
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Figure 11. The �rst six eigenmodes for SSSS square plates (Case 1) with
Type XII internal support (�=a=4).

cross and diagonal line supports in a plate may produce almost the same e�ect as for
the plate with full length internal cross and diagonal line supports. The diagonal supports
are more e�ective than the cross support in increasing the vibration frequencies of square
plates.
The problem of plates with complex internal supports is of great importance in engineer-

ing designs and has received little attention in the literature, partially due to the numerical
di�culty. The simplicity and �exibility of the DSC method for vibration analysis of rectan-
gular plates with complex internal supports have been demonstrated in this paper. The DSC
results are compared with available solutions for the internal ring support from the open
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Figure 12. The �rst six eigenmodes for SSSS square plates (Case 1) with
Type XIII internal support (�=a=4).

literature. The convergence and comparison studies show that the DSC method can generate
accurate vibration frequencies for plates with complex internal supports. Extensive frequency
parameters are presented for square plates of 21 combinations of edge support conditions and
with six di�erent types of internal supports. The e�ectiveness of the internal loop supports
in increasing vibration frequencies are discussed. It is found that internal supports are most
e�ective when their sizes are about half the size of the plate. The tabulated frequency param-
eters for square plates with complex internal supports may serve as valuable information for
engineers in designing plate structures and as benchmark solutions for researchers to check
their numerical methods.
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Numerical experiments indicate that the DSC algorithm exhibits controllable accuracy for
plate analysis and possesses excellent �exibility in treating complex boundary conditions and
support conditions. Although this paper only presents vibration results for square plates with
partial line supports and complex internal supports, the DSC method is readily applied to
rectangular plates with irregular supports and plates of other shapes.
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