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Much recent research has aimed to establish whether visual working memory (WM) is better

characterized by a limited number of discrete all-or-none slots or by a continuous sharing of memory

resources. To date, however, researchers have not considered the response-time (RT) predictions of

discrete-slots versus shared-resources models. To complement the past research in this field, we

formalize a family of mixed-state, discrete-slots models for explaining choice and RTs in tasks of

visual WM change detection. In the tasks under investigation, a small set of visual items is

presented, followed by a test item in 1 of the studied positions for which a change judgment must

be made. According to the models, if the studied item in that position is retained in 1 of the discrete

slots, then a memory-based evidence-accumulation process determines the choice and the RT; if the

studied item in that position is missing, then a guessing-based accumulation process operates.

Observed RT distributions are therefore theorized to arise as probabilistic mixtures of the memory-

based and guessing distributions. We formalize an analogous set of continuous shared-resources

models. The model classes are tested on individual subjects with both qualitative contrasts and

quantitative fits to RT-distribution data. The discrete-slots models provide much better qualitative

and quantitative accounts of the RT and choice data than do the shared-resources models, although

there is some evidence for “slots plus resources” when memory set size is very small.
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Visual working memory (WM) is the short-term memory sys-

tem that maintains visual representations of stimulus inputs. It

serves as a foundation for numerous cognitive processes and tasks,

including the ability to locate targets embedded in distractors, to

comprehend and reason about visual displays, and to detect

changes in visual scenes.

An ongoing theoretical debate concerns decision making in

visual WM: Is it best characterized in terms of discrete “slots,”

each with all-or-none properties, or in terms of resources shared in

a more continuous fashion across a set of to-be-remembered items

(e.g., Alvarez & Cavanaugh, 2004; Awh, Barton, & Vogel, 2007;

Barton, Ester, & Awh, 2009; Bays, Catalao, & Husain, 2009; Bays,

Gorgoraptis, Wee, Marshall, & Husain, 2011; Bays & Husain,

2008; Cowan, 2001; Cowan & Rouder, 2009; Luck & Vogel,

1997; Pashler, 1988; Rouder et al., 2008; van den Berg, Shin,

Chou, & George, 2012; Vogel, Woodman, & Luck, 2001; Wilken

& Ma, 2004; Zhang & Luck, 2008)?

According to the discrete-slots view, visual WM makes avail-

able some number of slots for storing to-be-remembered items.

The slot-based memories are conceptualized as being all-or-

none: When memory is probed, if the test item occupies one of

the discrete slots, then the observer can judge its presence with

no loss in resolution, regardless of the number of other items in

the set of to-be-remembered objects. By contrast, if the object

has not been stored in one of the discrete slots, then there is a

complete loss of resolution, that is, no information about the

presented object remains. Specific members of the family of

discrete-slots models differ according to whether the number of

slots is presumed to be fixed or variable across trials and/or

conditions. The central focus of the present investigation, how-

ever, will be on the mixed-state, all-or-none aspect of these

models. Thus, we use the term “discrete-slots” models, rather

than the more common term “fixed-slots” models, to refer to

members of this family.

An alternative view proposes that visual WM consists of a pool

of resources that is allocated in continuous fashion through sharing

of the resources. Thus, if the number of memory items is small,

then the observer can maintain high-resolution representations of

all of them. By contrast, if a large number of items must be
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maintained, then the continuous sharing of resources leads the

observer to have lower-resolution representations of the individual

items when memory is probed.

Hybrid models have also been proposed in which there is

sharing of resources up to a fixed-number limit, but then complete

loss of resolution for any item that is not stored in one of the

discrete slots (e.g., Cowan & Rouder, 2009; Zhang & Luck, 2008).

These competing views of visual WM have led to an extensive

debate in the field. However, the extant research has contrasted the

models only on their predictions of various forms of accuracy data.

Among the major types of accuracy data are receiver operating

characteristic (ROC) curves, which plot hit rates against false

alarm rates as a function of experimental conditions, and which

will continue to play a fundamental role in our present investiga-

tions.

The key approach in the present work is the development and

testing of formal computational models that account jointly for

choice probabilities and complete distributions of response times

(RTs) in visual WM tasks. To date, researchers in this field have

not considered the RT predictions of discrete-slots versus shared-

resource models. By collecting and modeling RT data in visual

WM tasks, we may open new windows into the underlying pro-

cesses that are not revealed by accuracy data alone.

Specifically, we develop and evaluate two families of models of

visual WM that predict both accuracy and RT. One family formal-

izes the idea that responding in visual WM tasks emerges from the

mixture of cognitive states posited by the discrete-slots view. The

second family is based on the assumption of a sharing of contin-

uous resources. Before describing these models, we provide some

background on the manner in which discrete-slots models have

been applied to the prediction of ROC data.

Formal Modeling of ROC Curves in Visual WM

The starting point for the present investigation is a study by

Rouder et al. (2008), who provided intriguing support for the

discrete-slots view of visual WM. These researchers used a well-

known version of a visual WM task involving change detection

(Luck & Vogel, 1997)—see Figure 1A. At study, subjects were

presented with an array of colored squares. At test, a single

“probe” square was presented at one of the study locations. The

observer’s task was to decide whether the color of the probed study

square changed or stayed the same. The independent variables that

were manipulated were the set size of the study array (2, 5, or 8

study squares) and the a priori probability that a “change” oc-

curred in each block of trials (.3, .5, or .7).

Rouder et al. (2008) developed a class of discrete-slots models

for predicting performance in the task. In the following, we pro-

vide a brief sketch of a representative example from the class. The

model assumes that with some probability mi (which is a function

only of set-size i), the observer maintains the relevant study square

in WM. If the observer enters this “memory” state, then he or she

can judge “change” or “no change” with perfect accuracy (because

the colored squares were easily discriminable in Rouder et al.’s,

2008, paradigm). Alternatively, with probability (1 � mi), the

observer fails to maintain the studied square in WM, in which case

she is forced to guess whether a change has occurred. The prob-

ability that the observer guesses “change,” gj, is assumed to

depend only on the change-probability level (j) on that block of

trials. Presumably, the observer tends to guess “change” with

higher probability as the a priori probability of “change” trials

increases.

In the following, a “hit” refers to a case in which an observer

correctly detects a change when it occurs, whereas a “false alarm”
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Figure 1. A: Illustration of the procedure in the visual WM change-detection task. B: The form of the

isosensitivity and isobias curves predicted by the Equation-1 discrete-slots model. From “An Assessment of

Fixed-Capacity Models of Visual Working Memory,” by J. N. Rouder, R. D. Morey, N. Cowan, C. E. Zwilling,

C. C. Morey, and M. S. Pratte, 2008, Proceedings of the National Academy of Sciences of the United States of

America, 105, p. 5976. Copyright 2008 by National Academy of Sciences. WM � working memory.
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refers to a case in which an observer guesses “change” when the

color of the square remained the same. Let hij and fij denote the

“hit” and “false alarm” probabilities for trials in which set-size had

level i and change-probability had level j. Then according to the

representative model sketched above, the hit and false alarm prob-

abilities are given by

hij � mi � (1 � mi)gj (1A)

f ij � (1 � mi)gj (1B)

For example, a “hit” occurs either if the probed study-square

location occupies one of the discrete slots of WM (which occurs

with probability mi), or if that study-square has been lost from WM

but the observer guesses correctly (with probability gj) that a

change occurred. False alarms arise only if the observer fails to

maintain the probed study square in one of the discrete slots and

then guesses “change.”1

Plotting hits against false alarms, it is straightforward to see that

the Equation-1 model predicts linear ROC (isosensitivity) curves

with slope � 1 and y-intercept mi (see Figure 1B). As illustrated in

the figure, the y-intercept (mi) of each isosensitivity curve will

presumably decrease with increases in memory set size (M). That

is, assuming that set sizes are used such that larger sizes increas-

ingly exceed the average number of discrete slots, then the prob-

ability that a test item will occupy one of the slots will decrease

with the increases in set size. As noted by Rouder et al. (2008, p.

5976), the model also predicts linear isobias curves (i.e., the

dashed lines in Figure 1B). Rouder et al.’s (2008) empirical data

were well described by these linear ROC curves. Furthermore,

specific members from this class of discrete-slots models provided

more parsimonious accounts of the data than did alternative signal-

detection models based on sharing of continuous resources, and the

discrete-slots models were favored by a variety of model-selection

statistics.

Outline of New Theoretical Development

Although Rouder et al.’s (2008) results are intriguing, the sup-

port for the discrete-slots model was based on limited data. For

example, the ROC curve for each memory-set size i was based on

only three data points. Although one approach to developing more

exacting tests is simply to extend the number and the range of the

set-size and change-probability conditions, we propose here in-

stead to test the alternative theoretical views in a fundamentally

new way, namely, through the joint prediction of choice probabil-

ity and RT data.

In this research, we develop two families of models. The first

formalizes discrete-slot assumptions, and the second formalizes

sharing of continuous resources. We then use the models to predict

detailed RT distributions and choice probabilities in a set of visual

change-detection tasks. To illustrate, we start by describing a very

strong special-case member from the discrete-slots family as ap-

plied to Rouder et al.’s (2008) task, and we then outline some

natural generalizations.

The basic idea underlying the discrete-slots models is repre-

sented schematically in Figure 2. We presume that when a location

from the study array is probed, there is an initial “gating” process

that allows the system to determine whether memory-based infor-

mation has been retained at that location (i.e., whether the study

square is still in WM). Because the central goal of our research is

only to determine whether the data are better characterized by

discrete-slots or shared-resources views, we do not model the

detailed mechanisms that determine the outcome of the gating

process. (However, we consider issues related to the gating process

in greater detail in our General Discussion.) If the gating process

reveals that information has been retained at the probed location,

then a memory-based evidence-accumulation process operates that

allows the observer to make a “change” or “no-change” decision.

Furthermore, for the present version of the paradigm, in which the

targets and lures are highly discriminable, the memory-based ac-

cumulation process is presumed to operate with extremely high

accuracy. Alternatively, if the probed location is no longer in WM,

then a “guessing”-accumulation process operates. As indicated in

Figure 2, following Rouder et al. (2008), according to this discrete-

slots model, the memory-based process operates with probability

mi, which is a function only of set-size i, whereas the guessing

process operates with probability 1 � mi. To maintain generality,

in the present research, the probability mi is allowed to be a free

parameter for each individual set size. In our General Discussion,

we sketch approaches to developing more constrained versions

from this class of models.

Consider first the case involving change trials. According to a

very strong, special-case version of this model, on change trials

there is some single RT distribution associated with being in

the “memory” state, independent of the set size on that trial. The

intuition is that the observer either does or does not remember the

color of the individually probed square. If she does remember, and

a change has occurred, then the memory-based process yields a

“change” response in accord with that memory-based RT distri-

bution (left branch of Figure 2). Alternatively, the observer may

instead enter into the “guess” state (right branch of Figure 2)

because the probed location is no longer in WM. Again, following

the intuition outlined above, we imagine that there is some single

RT distribution associated with guessing “change,” which is inde-

pendent of study-set size. However, the guessing RT distribution

would almost certainly vary with change probability because ob-

servers would presumably be more willing to guess “change” on

blocks with increased change probability.

1 The Equation-1 change-detection model is closely related to the well-
known single high-threshold model of signal detection but is not formally
identical to that model—for example, see Macmillan and Creelman (1991,
pp. 89–90).

Figure 2. Schematic illustration of the mixed memory-based and

guessing-based accumulation processes that underlie the discrete-slots

models of visual WM choice and response time. WM � working memory;

mi � memory-state probability at set-size i.
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According to this strong version of the model, the conditional

probability distribution of “hit” RTs as a function of set-size i and

change-probability j would be given by

fH(t�i, j) � [mi · fMC(t) � (1 � mi) · gj · fGC(t�j)] ⁄ [mi � (1 � mi) · gj]

(2)

where fMC(t) is the “memory-based” RT distribution associated

with correct change responses, and fGC(t|j) is the “guess-change”

RT distribution at change-probability level j.2

As described in more detail below, in the family of proposed

formal models, the memory-state and guessing-state RT distribu-

tions will be generated from explicit evidence-accumulation pro-

cesses. For now, however, it is useful to consider the descriptive

form of Equation 2. In particular, this strong version of the

discrete-slots model states that, across the set-size conditions i, the

“hit” RT distribution is a probabilistic mixture of basis distribu-

tions fMC(t) and fGC(t|j), with (normalized) mixing parameters mi

and (1 � mi)· gj. Thus, in addition to quantitative fitting of the

detailed RT distributions, we can take advantage of well-known

results involving mixture distributions to test fundamental predic-

tions from the model (e.g., Meyer, Yantis, Osman, & Smith, 1985).

A simple example is that the mean RT for hits will be a

weighted mixture of the means of the component memory and

guessing RT distributions,

�H�i,j� � [mi · �MC � (1 � mi) · gj · �GC�j�] ⁄ [mi � (1 � mi) · gj]

(3)

where �H(i,j) is the mean of the hit RT distribution, �MC is the

mean of the memory-based change RT distribution, and �GC(j) is

the mean of the guess-change RT distribution at change-

probability level j. A plausible result that one might observe in the

RT data is that mean hit RTs will get slower as memory set-size

increases. Although such a result is compatible with the

Equation-3 model, note that it would not be predicted because of

changes in the speed of the memory-based accumulation process—

the speed of that process is invariant with set size. Instead, such a

pattern would arise if the guessing-based accumulation process

operates more slowly than the memory-based one: As set size

increases, the mixing probability (1 � mi) · gj increases, so there

is a greater relative proportion of trials in which the slower

guessing process produces the response.

An example of a strong qualitative prediction from the model

involves the false-alarm RT distributions. In particular, assuming

that the memory-based accumulation process operates with perfect

accuracy,3 this strong model predicts that the conditionalized

“false-alarm” RT distributions are given by

fFA(t�i, j) � fGC(t�j) (4)

That is, the observer produces a false-alarm only if she guesses

“change” while in the guess state. Thus, from Equation 4, one can

see that the conditionalized false-alarm RT distributions are pre-

dicted to be invariant with memory set size i. Further, because the

entire distribution is invariant with set size, the model obviously

also predicts that derived summary statistics such as the mean and

variance of the false-alarm RTs are invariant with set size.

Although the above reasoning pertained to the patterns of “hit”

and “false alarm” RTs, it is straightforward to see that a directly

analogous line of reasoning applies to the RTs for correct rejec-

tions and misses. In particular, across the different set sizes, the

correct-rejection RT distribution will be a probabilistic mixture of

a memory-based no-change distribution and a guessing-based no-

change distribution. Furthermore, analogous to the false alarms,

the conditionalized “miss” RT distributions will be invariant with

set size.

To the extent that such properties are observed in the empirical

data, it would constitute strong evidence in favor of the mixture-

of-discrete-states view. Continuous shared-resource models have

no natural basis for making such a priori predictions and will tend

to provide poor quantitative fits to RT distributions that satisfy

these properties.

The family of mixed-state models that we develop uses

evidence-accumulation models to generate the fM(t) and fG(t|j)
basis distributions. As described below, special cases of these

evidence-accumulation models yield fM(t) and fG(t|j) distributions

that are invariant with memory set size, thereby producing strong

models of the form summarized in Equation 2. However, natural

generalizations will relax the strong assumption that the “memory-

based” RT distribution fM(t) is completely invariant with set size.

For example, in one generalization “drift rate” in the memory-

based accumulation process is invariant with set size, but other

parameters, such as response thresholds, vary. In these generaliza-

tions, the basic spirit of the discrete-slots models is left intact. That

is, there are still two basic cognitive states, a memory state and a

guessing state. Furthermore, within the memory state, resolution is

presumed to be fixed across conditions, as formalized by an

invariant drift rate parameter. However, decision processes that

operate upon those states may vary with experimental conditions.

As will be seen, these generalizations grant the discrete-slots

models more flexibility, but their predictions can still be sharply

contrasted with those from continuous shared-resource models.

Linear-Ballistic Accumulator Approach

In the following, we outline the general approach to implement-

ing both the discrete-slots models and the continuous shared-

resource alternatives. We provide further details regarding specific

members of the two families in the Modeling Analyses section.

Following recent approaches to modeling short-term memory-

scanning phenomena (Donkin & Nosofsky, 2012a, 2012b; see also

Nosofsky, Little, Donkin, & Fific, 2011), we implement the visual

change-detection models by using a linear ballistic accumulator

(LBA) approach (Brown & Heathcote, 2008). The LBA model is

computationally simple and allows analytic computation of trial-

by-trial likelihoods. Furthermore, recent research indicates that the

LBA and the extremely influential diffusion model (e.g., Ratcliff,

Van Zandt, & McKoon, 1999) are able to mimic one another’s

predictions closely and that parameters that share common psy-

2 The numerator of Equation 2 gives the unconditional probability den-
sity that, on a change trial, the observer correctly responds “change” at time
t. The conditional probability density for the “hit” RTs is then found by
dividing this unconditional probability density by the overall probability of
a hit.

3 As will be seen, for the best-fitting parameters of the models, this
perfect-accuracy condition is a close approximation for most but not all
subjects.
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chological interpretation map closely onto each other (Donkin,

Brown, Heathcote, & Wagenmakers, 2011).

To illustrate our LBA-based modeling approach, first consider

the memory-based accumulation process. According to the LBA

model, there are two accumulators, one for change responses and

the second for no-change responses (Figure 3). Evidence accumu-

lates in linear and ballistic fashion (i.e., with no within-trial vari-

ability in evidence accumulation) until a response threshold is

reached on either accumulator. Evidence accumulates with mean

drift rate vC on the change accumulator and with mean drift rate

vNC on the no-change accumulator. (If a stimulus change actually

occurred, then vC would tend to be large in magnitude and vNC

would tend to be small; and vice-versa if no stimulus change

occurred.) If the accumulating evidence first reaches the “change”

response threshold (RC), then the observer responds “change”;

whereas if the evidence first reaches the “no change” response

threshold (RNC) then the observer responds “no change.” The

decision time is determined by the time that it takes the accumu-

lating evidence to reach either threshold. Different versions of the

model arise by varying assumptions about how drift rates and

response thresholds may vary with experimental conditions (see

Modeling Analyses section).

An analogous scheme operates for the guessing-based accumu-

lation process, except here drift rates are not stimulus-dependent.

Instead, we assume some constant mean drift rate vG in both a

guess-change and guess-no-change accumulator. (Because the

guessing drift rate is not stimulus-driven, we refer to it generically

as an “accumulation” process rather than as an “evidence”-

accumulation process.) The observer is presumed to vary the

response thresholds on these guessing accumulators in accord with

experimental conditions. For example, in conditions in which

change-probability is high, the observer would presumably set a

low threshold on the “guess-change” accumulator, and a higher

threshold on the “guess-no-change” accumulator, leading to more

probable and faster “guess-change” responses.

In all of the discrete-slots models, under the present experimen-

tal conditions, a fundamental assumption is that the mean drift

rates vC and vNC on the memory-based accumulators are indepen-

dent of memory set size and change probability. This assumption

formalizes the “all-or-none” conception that is integral to the

discrete-slots view. In other words, because drift rate in the model

is determined by memory resolution, and resolution is presumed to

be invariant with set size in the discrete-slots models, then drift

rate is invariant with set size. The key parameters that vary across

the different memory-set size conditions (for all versions of the

discrete-slots models) are the memory-state probability parame-

ters, mi (Figure 2). As explained in detail in the Modeling Analyses

section, different versions of the discrete-slots models are pro-

duced by making alternative assumptions about how response

thresholds on the memory-based accumulators vary with experi-

mental conditions.

Finally, it is straightforward to use this LBA framework to

develop competing models that formalize the continuous shared-

resource view of visual WM. Instead of assuming that there is a

mixture of cognitive states (memory plus guessing), there is now

only a memory-based evidence-accumulation process (i.e., the left

branch of Figure 2). However, recall that for the discrete-slots

models this memory-based accumulation process is highly con-

strained: Regardless of memory-set size and change probability,

the mean drift rate on the change accumulator is given by an

invariant vC. By contrast, for the continuous shared-resource mod-

els, the drift rates vC are allowed to vary with experimental

conditions. Presumably, for example, as memory set-size in-

creases, mean correct drift rates on the change accumulator will

decrease because the observer has stored lower-resolution repre-

sentations of the to-be-remembered items. (In Experiment 2, we

will also consider hybrid models of visual WM change detection,

which assume both a mixture of cognitive states involving memory

and guessing, in addition to memory-based drift rates that vary

with set size.) Analogous to the discrete-slots models, a variety of

versions of the continuous shared-resource models can be formal-

ized, depending on precise assumptions that are made about how

drift rates and response thresholds vary with experimental condi-

tions (see Modeling Analyses section for details).

It is important to note that there is a sharp conceptual and

mathematical contrast between the discrete-slots and continuous

shared-resource families. It is true that, at a gross level of analysis,

both models predict that performance will tend to decline as set

size increases. In the discrete-slots models, the main reason for the

decline is that the probability of entering the memory state (mi)

decreases as set size increases. In the continuous models, the main

reason for the decline is that correct drift rates (v) decrease as set

size increases. But the two families of models are not simply

exchanging one parameter for another. The discrete-slots models

posit that performance arises from a probabilistic mixture of

memory-based and guessing-based processes, whereas the shared-

resource models posit continuous variation in a single memory-

based evidence-accumulation process. The types of RT distribu-

tions and ROC curves that are produced by the mixture process can

be very different in form from those produced by the continuous

models. Furthermore, as we described earlier, only the discrete-

slots models make the a priori qualitative prediction that the error

RT distributions should be nearly invariant with set size. As will be

seen, in many cases, these contrasts are sufficient to sharply

discriminate between the quantitative predictions from the two

competing families.

Figure 3. Schematic illustration of the LBA model of the memory-based

accumulation process for the change-detection task. LBA � linear ballistic

accumulator; Rc � response-threshold parameter on memory-based change

accumulator; RNC� response-threshold parameter on memory-based no-

change accumulator; VNC � mean correct drift rate on memory-based

no-change accumulator; VC � mean correct drift rate on memory-based

change accumulator.
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Experiment 1

The purpose of this experiment was to collect choice-probability

and RT data in a visual WM change-detection task suitable for

contrasting models from the discrete-slots and shared-resources

families. To achieve this goal, we conducted a partial replication

and extension of the paradigm reported by Rouder et al. (2008).

The design was essentially the same as the one reported by Rouder

et al. (2008). However, because the goal was to model detailed

RT-distribution data at the individual-subject level, each observer

contributed more trials of data than in the original experiment.

Method

Participants. Eight participants from the Indiana University

community were paid $12 per session (which included a $3 bonus

for good performance) to complete 10 sessions of the task. All

participants reported having normal color vision, and none was

aware of the issues under investigation in the study.

Stimuli. Stimuli were chosen from a set of 10 dissimilar color

squares (white, black, red, blue, green, yellow, orange, cyan, purple,

and dark-blue-green). Stimuli were presented in the same way as was

described by Cowan et al. (2005): Items were presented within an

array whose visual angle was within a 9.8 � 7.3 degree rectangle.

Each color square was 0.75 � 0.75 degrees in size. Items were

presented in randomly chosen locations with the constraint that they

had to be at least 2° away from any other item and from the center of

the viewing area. The cue indicating the position of the probe color

square was a black, 1 pixel thick, 1.5 degree diameter circle that

surrounded the probe color square. Stimuli were presented on a grey

background on 17== cathode ray tube monitors.

Procedure. The structure of trials is outlined in Figure 1A. A

fixation cross was presented for 1,000 ms to begin the trial. A

study array of N color squares was then presented for 500 ms.

After a 500 ms pause, a multicolored pattern mask was presented

for 500 ms. Following the mask, a single test color was presented

in one of the locations of the study array. The test color was either

the same as the item in that location of the study array (a “no-

change” trial) or was different from the item in that particular

location of the study array (a “change” trial). The participant was

asked to indicate whether the test item was the same as the study

item or had changed, by pressing “F” or “J” on the keyboard,

respectively. After a 1,000 ms break, the next trial began.

For purposes of generality, we decided to test both an “internal”-

change and an “external”-change condition, with four of the eight

subjects participating in each condition. In the internal condition, the

test item on change trials was an item from the study array not in the

test location. That is, the test item changed into another item that had

previously been presented in the study array. In the external condition,

the test item on change trials was not an item presented in the study

array. As it turned out, the internal versus external manipulation had

little effect on the main pattern of results in this experiment, so we

collapse across this variable in our ensuing presentation. As described

in some detail in our General Discussion, however, the internal versus

external distinction is still of potential importance in understanding

the details of human performance in this task.

In the external condition, the number of items in the study array,

that is, the set size N, was 2, 5, or 8. In the internal condition, N was

3, 5, or 8.4 Set size varied randomly from trial-to-trial, with the

constraint that each N was presented 20 times in each block of 60

trials. The proportion of change trials was also manipulated: In a

given block, the test item differed from the study item on either 30%,

50%, or 70% of trials. The number of change (and no-change) trials

was equal across all values of N within each block. In each session,

participants completed three blocks of each change probability con-

dition, for a total of nine blocks (or 540 total trials). Every three blocks

of trials, each of the change-probability conditions was tested once.

The order of testing within each of the three blocks was randomized.

Following Rouder et al. (2008), we informed participants of the

change-probability manipulation at the start of each block of trials.

This information was provided by both telling the participant the

percentage of upcoming trials on which the test item would change

and by using a pie chart to illustrate the manipulation.

Results

We deleted from the analysis any trial in which the RT was less

than 180 ms or greater than 2,500 ms. In addition, for each combi-

nation of set size, change probability, and response type (i.e., hit, miss,

false alarm, and correct rejection), we deleted from the analysis any

trial in which the RT was greater than three standard deviations above

the mean RT for that combination. These procedures led to deleting at

most 3.4% of the trials for any subject. In these trimmed data,

summary results based on medians were qualitatively similar to those

based on means, so only the means are displayed.

Although our main goal involves formal modeling of the

individual-subject data, we start by providing a brief description of

the general pattern of results. The choice-probability and mean RT

data, averaged across the eight subjects, are displayed in Figure 4.

The patterns of averaged data displayed in the figure are reason-

ably representative of the patterns that we observed at the

individual-subject level. We will describe some individual differ-

ences, however, in the Modeling Analyses section below.

As can be seen in the top-left panel of Figure 4, as set size

increased, hit rates decreased while false-alarm rates increased.

That is, performance grew less accurate with increases in memory

set size. The decrease in hit rates across set-size conditions was

statistically significant [F(2, 14) � 45.9, p � .001], as was the

increase in false-alarm rates [F(2, 14) � 38, p � .001]. In addition,

as shown in the top-right panel, mean hit rates and mean false

alarm rates both increased with increases in change probability.

That is, subjects tended to guess “change” more often as change-

probability increased. These increases were statistically significant

for both hits [F(2, 14) � 12.4, p � .001] and false alarms

[F(2, 14) � 18.6, p � .001]. These qualitative effects of set size

and change probability on the hit and false-alarm probabilities are

naturally predicted by all of the models.

To investigate the joint effects of change probability and set size

on the choice probabilities, we inspected the ROC curves of the

individual subjects. At the individual-subject level, the ROC plots

tended to be noisy. Furthermore, although the effect of change

probability on the hit and false-alarm rates was statistically signif-

icant, the magnitude of the effect tended to be small, so the three

points that defined each curve tended to be close together. Taken

4 We conducted the internal condition after the completion of the exter-
nal condition. Inspection of the external-condition data revealed essentially
no errors for N � 2, so we decided to increase the smallest set size to N �
3 in the internal condition.
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Figure 4. Experiment 1: Averaged observed and predicted choice-probability and mean response time (RT)

data. Observed data are shown by different symbol types. Predictions from the discrete-slots-3 (DS3) model are

shown by different line types. The error bars that are illustrated are within-subjects error bars following the

methods of Loftus and Masson (1994). (To reduce clutter, error bars are not shown for the correct RT data.) RTs

are measured in seconds.
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together, these factors made it difficult to determine whether the

individual-subject ROC plots were straight lines (as predicted by

the discrete-slots models) or curved (as predicted by the continu-

ous models). The averaged ROC data appeared to be curved, but

the three points that defined each curve were again close together.

(Rouder et al., 2008, observed a similar result, despite the fact that

their individual-subject modeling tended to favor the assumption

of straight-line ROCs.) However, the shape of averaged ROC

curves needs to be interpreted with a good deal of caution. For

example, if the performance of most observers follows the

discrete-slots models, but a subset obeys the continuous models,

then the averaged plot would be curved. Because the present

models are required to simultaneously fit both the RT-distribution

and choice-probability data of the individual subjects, the structure

of the individual-subject ROCs places important constraints on the

competing models.

The mean RT data are displayed in Rows 2–4 of Figure 4.

Consider first the correct RTs (i.e., the hit and correct-rejection

RTs), which are displayed as a joint function of set size and change

probability in Row 2. First, both hit and correction-rejection RTs

got slower as set size increased. Second, as change probability

increased, hit RTs got faster, whereas correct-rejection RTs got

slower. To confirm these observations, we conducted a two-way

ANOVA on the mean RT data using set size (2/3, 5, 8) and change

probability (.3, .5, .7) as factors. For hit RTs, there was a main

effect of set size [F(2, 14) � 27.3, p � .001], a main effect of

change probability [F(2, 14) � 11.4, p � .001], and no interaction

(p � .22). Likewise, for correct rejections, there was a main effect

of set size [F(2, 14) � 62.1, p � .001], a main effect of change

probability [F(2, 14) � 58.2, p � .001], and no interaction (p �

.90).

The pattern of results for set size is naturally accounted for by

continuous shared-resource models, assuming that correct drift

rates get slower with increases in set size. However, the pattern is

also accounted for by discrete-slots models for a variety of reasons.

For example, if the guessing process tends to be slower than the

memory-based process, then there will be a slow-down with set

size because a greater proportion of the responses will be based on

guessing as set size increases. As will be seen, however, the

magnitude of the set-size effects will place important constraints

on specific models from the two main families. Likewise, assum-

ing that observers adjust their response thresholds to guess

“change” more readily under conditions in which change proba-

bility increases, then the effects that change-probability has on the

hit and correct-rejection RTs are also naturally predicted by both

families of models. Once again, however, it is an open question

whether specific members of the two families of models can

predict the magnitude of the effects.

The corresponding mean RTs for false alarms and misses are

displayed in Figure 4 as a function of change-probability (Row 3)

and set size (Row 4). Because these error RTs are based on much

smaller sample sizes compared to the hit and correct-rejection RTs,

we display the results separately for each independent variable. As

expected, miss RTs got slower and false-alarm RTs got faster with

increases in change probability (Row 3), reflecting subjects’ in-

creased tendency to respond “change.” Because of the increased

variability in the data, these effects failed to reach statistical

significance in the group averages (ps � .24); however, as will be

seen, some individual subjects showed pronounced effects of

change-probability on the error RTs.

The set-size effects on the error RTs are shown in Row 4. The

results for the smallest set size need to be interpreted with a

good deal of caution because they are based on very low

frequencies. (Subjects rarely made errors for the smallest set

size—see top-left panel of Figure 4.) To emphasize this fact, we

have plotted the error RTs for the smallest set size with open

rather than solid symbols. Nevertheless, the right panel of Row

4 shows that set size had virtually no effect on miss RTs. This

interesting result is in accord with the a priori predictions from

the discrete-slots models. For the miss RTs, the effect of set size

did not approach statistical significance (F � 1, p � .98). The

results for the false-alarm RTs are less clear. On the one hand,

the mean RTs for set-size 5 and set-size 8 were nearly equal,

and the difference was not statistically significant (p � .11).

(The small apparent difference between set sizes 5 and 8 was

due to the behavior of one or two subjects.) On the other hand,

despite the very small sample sizes that are involved, the mean

false-alarm RT for the smallest set size was significantly faster

than for sizes 5 and 8 [F(2, 14) � 13.5, p � .001], and the

magnitude of the effect was large. Moreover, our examination

of the individual-subject data revealed that this pattern was

quite consistent across almost all of the subjects. We discuss the

result in more detail after presentation of the formal-modeling

analyses and suggest in our General Discussion that it may arise

from rare trials in which the observer fails to attend or in which

feature migrations occur. Crucially, because error RTs at the

smallest set size are based on an extremely small number of

observations, even rare contaminating events can have an ex-

tremely large influence on the computed mean RT.

Modeling Analyses

Parameterizations of the formal models. In this section, we

describe the parameterizations that instantiate specific members of

each family of visual WM models. We provide a glossary of the

parameters of the alternative models in Table 1.

Discrete-slots models. We start by describing the parameters

that are common to all of the discrete-slots models. All models

from the discrete-slots family estimate three memory-state

probabilities, mi (i � 1�3), representing the probability that the

item in the probed location is stored in one of the discrete slots

when set size is at level i (left panel of Figure 2). (The

probability that the observer instead needs to guess is given by

1� mi.) All models from the discrete-slots family also estimate

a single mean correct drift-rate parameter vC for change trials

and a single mean correct drift-rate parameter vNC for no-

change trials (Figure 3). (Following past applications of LBA

approaches, the mean incorrect drift rates on the competing

accumulator on these types of trials are given by 1 � vC and

1 � vNC, respectively.) All discrete-slots models incorporate a

single mean drift rate vG on the guess-change and guess-no-

change accumulators. Differential guessing tendencies are mod-

eled across conditions by allowing the response thresholds on

the guess-change and guess-no-change accumulators to vary as

a function of response type and change probability. Thus, there

are six guessing-related response-threshold parameters, GC(j)

and GNC(j) [j � 1�3], where the index j denotes level of change
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probability. In LBA modeling, the start-point of the evidence

accumulation process varies randomly across trials in accord

with a uniform distribution (see Figure 3). For the memory-

based accumulators, the range of the uniform distribution is

[0,AM], and for the guessing accumulators, the range is [0,AG].

Other parameters that are common to all the discrete-slots

models are the between-trial (normally distributed) standard

deviation of drift rate on the memory accumulators (�M) and the

guessing accumulators (�G) as well as a residual base time t0
that is not associated with change-detection decision making.

(The standard deviation of the guessing drift rate, �G, scales the

values of the other LBA-related parameters, and without loss of

generality we hold it fixed at �G � .10.)

The strongest (i.e., most constrained) model from the discrete-

slots family estimates a single response-threshold parameter for

the memory-based change accumulator (RC) and a single response-

threshold parameter for the memory-based no-change accumulator

(RNC). This strong version (denoted model DS1) incorporates a

total of 18 free parameters (see Table 1 for a listing). Assuming

that the memory-based accumulation process yields perfectly ac-

curate responding (which, for most subjects, turns out to be a fairly

close approximation for the best-fitting parameters from the

model), then this strong version yields predictions that are captured

by the descriptive Equation 2.

In the first generalization (denoted model DS2), the response

thresholds on each of the memory-based accumulators are allowed

to vary as a function of memory set size, thereby adding four free

parameters to the strong model (for a total of 22 free parameters).

In modeling short-term memory-scanning data, various researchers

have obtained evidence that observers adjust response thresholds

with changes in set size (e.g., Donkin & Nosofsky, 2012b; Mc-

Elree & Dosher, 1989; Nosofsky et al., 2011; Ratcliff, 1978). To

the extent that similar principles operate in this domain of visual

change detection, this generalization of the model is likely to be an

Table 1

Glossary of Parameters for the Discrete-Slots and Shared-Resources Models

Parameter symbol Parameter description

Discrete-slots (DS) models
Parameters common to all DS models

mi memory-state probability at set-size i
vC mean correct drift rate on memory-based change accumulator
vNC mean correct drift rate on memory-based no-change accumulator
vG mean drift rate on guessing accumulators
GC(j) response-threshold parameter on guess-change accumulator at change-probability level j

GNC(j) response-threshold parameter on guess-no-change accumulator at change-probability level j

AM start-point variability on memory-based accumulators
AG start-point variability on guessing-based accumulators
�M between-trial standard deviation of memory-based drift rate
�G between-trial standard deviation of guessing-based drift rate
t0 base time

DS1
RC response-threshold parameter on memory-based change accumulator
RNC response-threshold parameter on memory-based no-change accumulator

DS2
RC(i) response-threshold parameter on memory-based change accumulator at set-size level i

RNC(i) response-threshold parameter on memory-based no-change accumulator at set-size level i

DS3
ssC(i) � cpC(j) additive response threshold parameters on memory-based change accumulator at set-size level i and change-

probability level j

ssNC(i) � cpNC(j) additive response threshold parameters on memory-based no-change accumulator at set-size level i and
change-probability level j

Continuous (C) models
Parameters common to all C models

vC(i) mean correct drift rate on change accumulator at set-size level i
vNC(i) mean correct drift rate on no-change accumulator at set-size level i
A start-point variability parameter
� between-trial standard deviation of drift rate
t0 base time

Model C1
RC(j) response-threshold parameter on change accumulator at change-probability level j

RNC(j) response-threshold parameter on no-change accumulator at change-probability level j

Model C2
ssC(i) � cpC(j) additive response threshold parameters on change accumulator at set-size level i and change-probability

level j

ssNC(i) � cpNC(j) additive response threshold parameters on no-change accumulator at set-size level i and change-probability
level j

Model C3
vC’(i) mean error drift rate on change accumulator at set-size level i
vNC’(i) mean error drift rate on no-change accumulator at set-size level i
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important one. Note that the predictions from this generalized

model are no longer captured by Equation 2 because the fM(t)

distribution is no longer invariant across the different set-size

conditions. Interestingly, however, this generalized model still

predicts that the conditionalized false-alarm RT distributions (as

well as conditionalized miss RT distributions) should be nearly

invariant with set size (see Equation 3). The reason is that false

alarms and misses are almost always generated via the guessing

accumulators.

A further generalization (DS3) allows the response thresholds to

vary jointly as a function of set size and change probability. For

simplicity, we assumed that the contributions of set size and

change probability to the response-threshold settings were addi-

tive. So, for example, the response threshold setting on the

memory-based change accumulator at set-size (ss) level i and

change-probability (cp) level j would be given by RC(i,j) �

ssC(i) � cpC(j) and analogously for the response-threshold setting

on the no-change accumulator. Generalizing the model in this

manner adds another 4 free parameters, yielding a total of 26 free

parameters in the DS3 model.

Continuous shared-resource models. For the continuous

shared-resource models, there is only a single pair of memory-

based accumulators, one that accumulates evidence toward a

“change” response and the other toward a “no-change” response.

However, in accord with the shared-resources idea, drift rates on

these accumulators are presumed to vary continuously with mem-

ory set size. The baseline version of the continuous model defines

three separate mean correct drift rates on the change accumulator

and three separate mean correct drift rates on the no-change

accumulator. We denote the drift rates vC(i) and vNC(i), where, for

example, vC(i) denotes the mean correct “change” drift rate at

set-size-level i (i � 1�3). (Again, following previous LBA appli-

cations, the mean drift rates on the incorrect accumulators are

given by one minus the mean correct drift rates.) In addition, the

baseline model defines three separate response-threshold parame-

ters on the change accumulator [RC(j), j � 1�3] and three separate

response-threshold parameters on the no-change accumulator

[RNC(j), j � 1�3], where “j” refers to the different levels of change

probability. Finally, analogous to the discrete-slots models, there is

a start-point variability parameter A, a drift-rate variability param-

eter �, and a residual base-time parameter t0. This baseline model

from the continuous family (denoted model C1) uses 15 free

parameters.

The first generalization (model C2) of the baseline model allows

the response thresholds to vary as a function of set size as well as

change probability. As is the case for the most general of the

discrete-slots models, the response-threshold setting on the change

accumulator at set-size level i and change-probability level j is

given by RC(i,j) � ssC(i) � cpC(j) and likewise for the response-

threshold setting on the no-change accumulator. This generaliza-

tion adds 4 free parameters to the baseline model, yielding a total

of 19 free parameters. Finally, for reasons that are made clear

below, the most general of the continuous shared-resource models

estimates mean error drift rates on each accumulator separately

from the correct drift rates. That is, this most general model does

not obey the constraint that the error drift rate is given by one

minus the correct drift rate. With an additional six mean error

drift-rate parameters [vC’(i) and vNC’(i), i � 1,3], this generaliza-

tion of the continuous model (C3) uses a total of 24 free param-

eters. (In model C3, the drift-rate variability parameter � can be set

at arbitrary positive value without loss of generality.)

Model-fitting method. We fitted the models to the individual-

subject data by conducting computer searches for the values of the

free parameters that yielded maximum likelihood fits to the

individual-trials choices and RTs. In other words, in this model-

fitting method, the likelihood of the choice and RT on each

individual trial is assessed, and the overall likelihood is the joint

likelihood of all of the individual-trial likelihoods. The analytic

equations for expressing these likelihood-based fits of the standard

LBA model are presented by Brown and Heathcote (2008, Equa-

tions 1–3), and it is straightforward to extend those equations for

fitting the mixed-state (i.e., discrete-slots) LBA models. The fit of

each model was then assessed by using the Bayesian information

criterion (BIC; Schwarz, 1978),

BIC � �2ln(L) � pln(n),

where L is the (maximum) likelihood, p is the number of free

parameters in the model, and n is the total number of trials on

which the fit is based. (Averaged across subjects, the number of

data points, n, was equal to 5,180.) The term pln(n) is a penalty

term that penalizes a model for its number of free parameters. The

model that yields the smallest BIC is considered to provide the

most parsimonious account of the data. In an attempt to avoid local

minima, we used 40 different random starting configurations of the

parameters in conducting the computer searches.

We should emphasize that the goals for the modeling are

quite ambitious: There are 9 conditions (3 set-size by 3 change-

probability conditions, fully crossed), and for each condition we

are attempting to predict RT distributions associated with hits,

misses, false alarms, and correct rejections (as well as the

probability of each of those responses). Thus, the models are

required to fit, at the level of individual subjects, individual-

trials data that compose 36 distinct unconditional RT distribu-

tions.

Model-fitting results. The model-fitting results are reported

in Table 2. The fits are reported in terms of 	BIC values, which

are calculated by taking the difference between each model’s BIC

and the model with the smallest BIC value for that subject.

Table 2

	BIC Fits of the Models to the Individual-Subject Data of

Experiment 1

Subject

Model

DS1 DS2 DS3 C1 C2 C3

1 424 139 0 134 162 177
2 410 120 0 240 245 207
3 484 0 10 137 99 12
4 930 43 0 111 119 124
5 0 28 51 71 79 77
6 405 82 0 255 237 121
7 240 25 17 155 0 20
8 24 0 13 55 64 96

Note. For Subjects 1–8, the absolute BIC values of the best-fitting model
were �5732, �4228, �4336, �3381, 1513, �7780, �1507, and �1319,
respectively. Minimum 	BIC value for each subject is indicated in bold-
face. DS � discrete-slots; C � continuous; BIC � Bayesian information
criterion.
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Therefore, a 	BIC value of 0 represents the best-fitting model for

that subject. The greater the 	BIC value, the worse is the fit of the

model for that subject.

Inspection of Table 2 reveals that for seven of the eight

subjects, a member from the class of discrete-slots models

provided the best BIC fit. In most cases, the improvement in

BIC yielded by a member of the discrete-slots family (com-

pared to the continuous family) was quite dramatic. Further, in

the single case in which the continuous family achieved a better

fit (Subject 7), the improvement in BIC was relatively small.

Although the model that yielded the best BIC was usually the

one with the greatest number of free parameters (i.e., model

DS3), the intermediate discrete-slots model (DS2) also tended

to perform quite well. For example, for six of the eight subjects,

model DS2 yielded a better BIC fit than did any member of the

continuous family.

To confirm the diagnosticity of these model-fitting results, we

conducted a series of model-recovery analyses. For each individual

subject, we used continuous-model 2 (C2) to generate 20 sets of

simulated data. The parameters used to generate the simulated data

were those that had provided the best fit of model C2 to that

subject’s actual data. Each simulated data set was based on the

same number of observations in each condition as occurred in

the actual experiment. We then fitted model C2 and each of the

discrete-state models to each simulated data set, using BIC as the

criterion of fit. The results of this model-recovery analysis were

overwhelming: In all 160 cases (eight subjects by 20 simulated

data sets), model C2 yielded a better BIC fit than did any of models

DS1, DS2, or DS3. Thus, it appears that if model C2 were the

generating model of the actual data, then use of the BIC statistic

would have led to its recovery.

Within the discrete-slots family, there was some variability

across individual subjects in the best-fitting model. For five of the

eight subjects, the most general version (DS3) provided the best

BIC fit, suggesting that those observers adjusted their response

thresholds on the memory-based accumulators in accord with both

set size and change probability. However, the data for three sub-

jects were better fit by stronger (more constrained) versions of the

model. Interestingly, although the strongest member of the family

(i.e., DS1, which assumes invariant memory-based RT distribu-

tions across all conditions) generally yielded poor fits, a single

subject (S5) did appear to behave in accord with its predictions.

To gain insights into these patterns of results, we now consider

the model predictions for two individual subjects in some detail.

These in-depth inspections are intended to provide deeper insights

into the operating principles of the models and to explain the

reason why the discrete-slots models tend to be favored. At the

same time, in view of the important individual differences revealed

by inspection of Table 2, we chose one subject to be representative

of model DS2 and a second to be representative of model DS3.

Representative individual-subject predictions. Although

the models were evaluated in terms of their fits to 36 sets of RT

distributions, our initial focus in this section will be on the patterns

of mean RTs and choice probabilities. Recall that subjects rarely

made errors at the smallest set size. Thus, the mean error RTs at

the smallest set size were based on extremely limited sample sizes

and tended to show great variability across individual subjects.

Also, because of the extremely small sample sizes, the BIC com-

parisons were minimally affected by the error RTs in those con-

ditions. Therefore, we do not display those results in the

individual-subject figures. We will suggest in our General Discus-

sion that the error responses at the smallest set size likely reflect

special processes that go outside the scope of the present models.

Subject 3. The results for Subject 3 are displayed in Figures 5

and 6. Figure 5 shows the predictions from the intermediate

discrete-slots model (DS2), which yielded the best BIC fit for this

subject. For purposes of comparison, we display the results from

the intermediate continuous model (C2) in Figure 6. To understand

more fully the basis for the predictions, in Table 3 we report the

best-fitting parameters from the favored model (DS2).

As shown in Figure 5, model DS2 appears to do a reasonably

good job of predicting almost all of the major trends for Subject 3.

First, consider the accuracy data plotted in Row 1. The model

predicts the decrease in accuracy (decrease in hits and increase in

false alarms) as a function of set size (top left panel) and the

increase in probability of responding change (both hits and false

alarms) as a function of change probability (top right panel). It

predicts the set-size effects on accuracy because, as set size in-

creases, the probability of entering the memory state (mi) de-

creases, so the observer must rely on the guessing process. It

predicts the effects of change-probability on hits and false alarms

because, as change probability increases, the observer adjusts the

response thresholds on the guessing accumulators to yield more

“change” responses. In particular, the observer sets a more lenient

response threshold on the guess-change accumulator and a stricter

response threshold on the guess-no-change one (see Table 3).

Next, consider the RT data, plotted in Rows 2–4. The model

accurately predicts the slow-down in mean correct RTs (hits and

correct rejections) with increases in set size (Row 2). It predicts

these results because, as set size increases, there is an increased

probability of entering the guessing state, and the guessing process

operates more slowly than does the memory-accumulation process

for Subject 3. In addition, the subject sets more conservative

response thresholds on the memory-based accumulators as set size

increases (Table 3). The model also predicts that, in general, as

change probability increases, hits get faster and correct rejections

get slower (Row 2). It predicts these results because, as discussed

above, the observer sets a more lenient threshold on the guess-

change accumulator (and a stricter threshold on the guess-no-

change accumulator) as change probability increases. However,

the model underestimates the magnitude of the change-probability

effects for correct rejections, especially at the largest set size.5

Finally, with the exception of false alarms at the smallest set size

(not shown), the model also does a good job of predicting the mean

error RTs. False-alarm and miss RTs are predicted to vary with

change probability (Figure 5, Row 3) because of the adjustments to

the guessing response thresholds described above. And, as ex-

plained in the introduction, the model predicts correctly the nearly

flat set-size effects (Row 4) on the miss RTs and the false-alarm

RTs (for set sizes 5 and 8). These error responses are generated

almost entirely via the guessing accumulators, whose parameters

are invariant with set size.

Recall that the highly constrained discrete-slots model (DS1)

performed poorly for almost all subjects. Although not illustrated

5 This type of misprediction was even more pronounced for some of the
other subjects, which necessitated the use of model DS3.
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graphically, the main reason for the poor fits of model DS1 is that

it failed to predict the magnitude of the slow-down in the hit and

correct-rejection RTs as set size increased. Recall that the baseline

DS1 model can predict slower RTs for correct responses with

increases in set size only because of an increased proportion of

guessing responses (see mixture- Equation 3). Thus, the degree of

predicted slow-down for the mean correct RTs is tightly con-

strained by the mean RT for the guesses that result in error

responses (i.e., the false alarms and misses). The observed mag-

nitude of the slow-down, however, was greater than predicted by

Figure 5. Choice probability and mean response time (RT) data for Subject 3 (S3) of Experiment 1 plotted as

a function of set size and change probability. Predictions from discrete-slots model 2 (DS2).
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this mechanism alone. This same failing of the strong version of

the discrete-slots model held for seven of the eight subjects (the

one exception was Subject 5).

For purposes of comparison, the predictions from the continuous

model (C2) are displayed in Figure 6. Perhaps the main limitation

of that model is that it appears to mispredict many of the error RTs.

Because the correct RTs are based on much larger sample sizes,

the fit routine probably settles on parameter values that allow the

continuous model to accurately predict that subset of the data. But

the model cannot simultaneously handle both correct and error

Figure 6. Choice probability and mean response time (RT) data for Subject 3 (S3) of Experiment 1 plotted as

a function of set size and change probability. Predictions from continuous model 2 (C2).
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RTs. One reason why the model has trouble involves assumptions

about how error drift rates are related to correct drift rates. Recall

that in standard LBA applications, the mean drift rate on the error

accumulator is set at one minus the mean drift rate on the correct

accumulator. The main mechanism by which the continuous model

predicts a slowing of RTs for correct responses with increases in

set size is to assume that mean correct drift rates decrease with set

size (due to the storage of lower-resolution memory traces). A

consequence of this assumption is that incorrect drift rates increase

with set size, leading to the prediction of faster errors as set size

increases. The continuous model attempts to “undo” this incorrect

prediction by increasing the magnitude of the response thresholds

as set size increases. But it is only partially successful in remedy-

ing the difficulty. For example, for Subject 3, the model predicts

that false-alarms will get slightly faster as one moves from set-size

5 to set-size 8 (Figure 6, lower-left panel). It is because of this

difficulty that we tested the more elaborate version of the contin-

uous model in which error drift rates were allowed to vary freely

as a function of set size. However, the continuous model with

freely estimated error drift rates still failed to yield BIC fits that

were as good as those yielded by members from the discrete-slots

family. Perhaps the reason is that the model has no natural basis for

predicting a priori that the distribution of error RTs will be nearly

invariant across the different set-size conditions.

Subject 1. In our second example, we consider results from

Subject 1, whose data were best fit by the most complex of the

discrete-slots models (DS3). Figures 7 and 8 show the predictions

from models DS3 and C2, respectively.

As can be seen in Figure 7, model DS3 accounts well for almost

all of the effects of set size and change probability on the choice

probabilities and mean RTs. (Although not shown in the figure, it

failed to predict a fast false-alarm mean RT at set-size 2.) The

reason why model DS3 provided such a better fit compared to

model DS2 involved the patterns of correct RTs. In particular,

model DS2 failed to capture the extent to which mean hit RTs were

slowed in the lowest change-probability condition, as well as the

extent to which mean correct-rejection RTs were slowed in the

highest change-probability condition. According to model DS2,

any effects of change probability on the speed of correct responses

are due solely to changes in the speed of the guessing process.

Subject 1, however, showed extremely accurate responding in all

conditions, so the guessing process does not make a large contri-

bution to the subject’s correct RTs. Instead, by also allowing

adjustments in response thresholds on the memory-based accumu-

lators with manipulations of change probability, model DS3 ac-

counts for these effects in a natural fashion. The limitations of the

continuous model (C2) are evident from inspection of Figure 8.

Among the main limitations is that it badly mispredicts the speed

of the false-alarm RTs at almost all levels of set size and change

probability.

RT-distribution predictions. To provide further documenta-

tion of the ability of the discrete-slots models to account for the

individual-subject data, we provide displays of the observed and

predicted RT distributions in Figures 9 and 10. In these figures, the

histograms show the empirical RT distributions, whereas the

smoothed curves are the predicted distributions from the discrete-

slots models. Figure 9 displays the results for Subject 1 (using

model DS3), and Figure 10 displays the results for Subject 3 (using

model DS2). Each row of these figures shows the RT distributions

for a different combination of change probability and set size. The

top three rows correspond to change-probability .3; the middle

three rows correspond to change-probability .5; and the bottom

three rows correspond to change-probability .7. Within each set

of three rows, set size increases from 2 to 5 to 8. Note that the area

underneath each histogram is proportional to the absolute fre-

quency with which that response type occurred at each change-

probability/set-size combination. For example, hits were far more

common under high change-probability conditions, whereas cor-

rect rejections were far more common under low change-

probability conditions.

Inspection of Figures 9 and 10 indicates that it is not only the

central tendencies of the RT distributions that change across ex-

perimental conditions. Instead, there are also systematic changes in

the spreads, shapes, and leading edges of the distributions. For

example, consider the hit RT distributions for Subject 1 (left

column of Figure 9). Within each change-probability condition, as

set-size increases, the distributions change from being narrow and

peaked to wider and more positively skewed. Furthermore, the

leading edge of each distribution shifts slightly to the right. In

addition, as change probability increases (i.e., as one moves from

Table 3

Best-Fitting Parameters From the Discrete-Slots Models for

Subjects 3 and 1 of Experiment 1

Parameter

Subject, model

S3, DS2 S1, DS3

m1, m2, m3 .960, .684, .431 .968, .860, .707
vC, vNC 1.306, 1.207 1.036, .828
vG .371 .509
GC(1), GC(2), GC(3) .142, .142, .096 .153, .127, .125
GNC(1), GNC(2), GNC(3) .083, .126, .150 .131, .155, .191
AM, AG .263, .192 .062, .317
�M, �G .222, [.100] .225, [.100]
t0 .100 .100
RC(1), RC(2), RC(3) .336, .456, .519
RNC(1), RNC(2), RNC(3) .257, .319, .323
ssC(1), ssC(2), ssC(3) [.000], .045, .065
cpC(1), cpC(2), cpC(3) .357, .322, .311
ssNC(1), ssNC(2), ssNC(3) [.000], .035, .051
cpNC(1), cpNC(2), cpNC(3) .220, .232, .267

Note. The R, ss, and cp parameters denote the extent to which the
memory-based response thresholds are incremented beyond the value of
the AM start-point parameter. The G parameters denote the extent to which
the guessing-based response thresholds are incremented beyond the value
of the AG start-point parameter. Parameters in brackets are held fixed at
default values for scaling convenience. S � subject; DS � discrete-slots
model; m � memory-state probability; vC � mean correct drift rate on
memory-based change accumulator; vNC � mean correct drift rate on
memory-based no-change accumulator; vG � mean drift rate on guessing
accumulators; GC � response-threshold parameter on guess-change accu-
mulator; GNC � response-threshold parameter on guess-no-change accu-
mulator; AM � start-point variability on memory-based accumulators;
AG � start-point variability on guessing-based accumulators; �M �
between-trial standard deviation of memory-based drift rate; �G �
between-trial standard deviation of guessing-based drift rate; t0 � base
time; RC � response-threshold parameter on memory-based change accu-
mulator; RNC � response-threshold parameter on memory-based no-
change accumulator; ssC � set-size threshold parameters on change accu-
mulator; ssNC � set-size threshold parameters on no-change accumulator;
cpC � change-probability threshold parameters on change accumulator;
cpNC � change-probability threshold parameters on no-change accumulator.
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Rows 1–3 to Rows 4–6 to Rows 7–9), the leading edges of the hit

RT distributions shift further to the left. The discrete-slots model

does a good job of capturing all of these patterns. Analogous

patterns are observed for the correct-rejection RT distributions,

and these are also well captured by the model. The patterns of

observed data for Subject 3 are similar to those of Subject 1.

Although the restricted version of the discrete-slots model does

not appear to capture the RT distributions with the same pre-

cision as those of Subject 1, the overall fits still seem reason-

ably good.

Figure 7. Choice probability and mean response time (RT) data for Subject 1 (S1) of Experiment 1 plotted as

a function of set size and change probability. Predictions from discrete-slots model 3 (DS3).
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As noted in our introduction, the discrete-slots models predict

that the conditional RT distributions for false alarms and misses

should be invariant across the different set size conditions. We

have already acknowledged that this strong prediction is discon-

firmed for the smallest set size, even at the level of mean RTs.

However, it is of interest to test the prediction at the larger set sizes

(5 and 8). To do so, we conducted Kolmogorov-Smirnov (K-S)

tests for the equality of the RT distributions at set sizes 5 and 8 for

each of the individual subjects. In one set of tests, we compared

these RT distributions separately at each individual change-

Figure 8. Choice probability and mean response time (RT) data for Subject 1 (S1) of Experiment 1 plotted as

a function of set size and change probability. Predictions from continuous model 2 (C2).
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Figure 9. Experiment 1: Observed (histograms) and predicted (smooth curves) response time (RT) distribution

data for each combination of change probability, set size, and response type (hits, misses, false alarms, correct

rejections). Results for Subject 1 (S1) and discrete-slots model 3 (DS3). Prob � probability; Cor. � correct.
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Figure 10. Experiment 1: Observed (histograms) and predicted (smooth curves) response time (RT) distribu-

tion data for each combination of change probability, set size, and response type (hits, misses, false alarms,

correct rejections). Results for Subject 3 (S3) and discrete-slots model 2 (DS2). Prob � probability; Cor. �

correct.
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probability condition. In the second set, we compared the RT

distributions pooled across the change-probability conditions. For

completeness, in addition to comparing the error RT distributions

(i.e., false alarms and misses), we compared the correct RT dis-

tributions (i.e., hits and correct rejections) as well. The p values

associated with these tests are reported in Table 4. Even without

correcting for multiple tests, it can be seen that the null hypothesis

of no difference between the size-5 and size-8 RT distributions is

rarely rejected for the false-alarms and misses (see top panel of

Table 4). This null result is obtained regardless of whether the

analysis is conducted separately at each individual change-

probability condition or pooled across conditions. The main ex-

ception is for Subject 7, who was also the single subject whose

data were better fit by the continuous models than by the discrete-

slots models. By comparison, when applied to the hits and correct

rejections (bottom panel of Table 4), the K-S tests lead one to

reject the null hypothesis of no difference between the size-5 and

size-8 RT distributions. The vast majority of tests conducted at the

level of individual change-probability conditions are statistically

significant, and the results from the pooled analyses are over-

whelming. Taken together, the results tend to support the discrete-

slots models’ predictions that hit and correct-rejection RT distri-

butions will differ across the set-size conditions but that the

false-alarm and miss RT distributions will be nearly invariant.

Averaged-subject predictions. In the previous section, we

examined the modeling results from only two of the subjects, albeit

in considerable detail. However, the modeling results from those

two subjects are representative of the larger group. To provide

some documentation of this claim, in Figure 4 we display, along

with the observed averaged data, the averaged predictions from

model DS3. As is apparent from inspection, the model captures in

quantitative detail the manner in which the averaged hit and false

alarm rates vary with set size and change probability (see Row 1

of Figure 4). It also accounts accurately for how the mean hit and

correct-rejection RTs change with these variables (Row 2 of Fig-

ure 4). The model captures as well the manner in which false-alarm

and miss RTs vary with change probability (Row 3) and captures

the flat set-size function associated with miss RTs (Row 4, right

panel). Its main limitation, as we acknowledged earlier, is that it

fails to capture the fast false-alarm RT at the smallest set size. We

consider these results more fully in the General Discussion. Before

turning to that broader discussion, however, we first provide

further tests of the competing models in an extended version of the

change-detection experiment.

Experiment 2

A limitation of Experiment 1 is that the task required the

observer to detect only big, easily discriminable changes. In Ex-

periment 2, we extend the design by also including small-change

trials. This extension is important for several reasons. First, it is

possible that observers have flexible modes of responding in these

tasks and that they go into something akin to a “low-resolution

mode” when the changes always cross major category boundaries.

Will evidence for a mixture of discrete states still be obtained

under conditions in which observers must detect small changes as

well? Second, one’s ability to measure any fine-grained changes in

resolution may be limited when only big-change trials are included

in the design. By including small-change trials as well, we may

find evidence for hybrid accounts involving both discrete-state

processing (i.e., memory-based and guessing-based responding)

and continuous changes in resolution as memory set-size in-

creases.

To investigate these possibilities and provide further theoretical

tests, we expanded the stimulus set that had been used in Exper-

iment 1. For each of the original colors in the stimulus set, we

included a new color from the same hue category, but that differed

slightly from the original in its brightness and saturation. Thus,

across hues, color changes were big, but within hues, color

changes were small. The design was the same as in Experiment 1,

except that on change trials, half the changes were big and half the

changes were small.

It should be noted that some of the qualitative predictions that

helped distinguish model classes in Experiment 1 are missing in

Experiment 2. In particular, although the discrete-slots models still

predict that the distribution of miss RTs on big-change trials

should be nearly invariant with set size, they no longer predict

invariant false-alarm RT distributions on same trials. The reason is

that because of the difficulty involved in discriminating between

Table 4

p Values Associated With Kolmogorov-Smirnov Tests of

Differences Between the RT Distributions at Set Sizes 5 and 8

Subject
Response

type

Change-probability condition

.3 .5 .7 Pooled

False alarms (FAs) and misses
1 FA 0.202 0.581 0.676 0.152

Miss 0.531 0.630 0.602 0.573
2 FA 0.007 0.380 0.141 0.041

Miss 0.032 0.854 0.368 0.161
3 FA 0.372 0.329 0.498 0.960

Miss 0.570 0.248 0.328 0.855
4 FA 0.014 0.378 0.062 0.392

Miss 0.218 0.055 0.389 0.146
5 FA 0.704 0.224 0.946 0.203

Miss 0.336 0.975 0.292 0.137
6 FA 0.317 0.267 0.056 0.167

Miss 0.452 0.402 0.094 0.993
7 FA 0.144 0.023 0.018 0.047

Miss 0.160 0.622 0.136 0.031
8 FA 0.087 0.205 0.396 0.123

Miss 0.815 0.856 0.370 0.720

Hits and correct rejections (CRs)
1 Hit 0.058 0.002 0.001 0.000

CR 0.042 0.001 0.219 0.000
2 Hit 0.007 0.031 0.001 0.000

CR 0.028 0.033 0.463 0.029
3 Hit 0.009 0.000 0.000 0.000

CR 0.629 0.380 0.005 0.130
4 Hit 0.001 0.000 0.000 0.000

CR 0.006 0.000 0.000 0.000
5 Hit 0.037 0.731 0.051 0.004

CR 0.000 0.225 0.696 0.000
6 Hit 0.031 0.048 0.012 0.000

CR 0.000 0.000 0.019 0.000
7 Hit 0.000 0.001 0.000 0.000

CR 0.000 0.006 0.000 0.000
8 Hit 0.886 0.473 0.044 0.032

CR 0.064 0.034 0.955 0.021

Note. RT � response time.
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same and small-change trials, false alarms on same trials will not

arise solely from the guessing process but from the memory-based

accumulation process as well.

As already noted, the design of Experiment 2 should be helpful

in estimating any fine-grained changes in memory resolution with

changes in set size and allows one to investigate the utility of

hybrid models of visual change detection. Another advantage of

the new design is that it allowed us to explore the counterintuitive

prediction from the discrete-slots models that certain types of

responding might get faster as memory set size increases. In

Experiment 1, the main reason why the discrete-slots models

predicted slower hit and correct-rejection RTs with increases in set

size is that there would be a greater proportion of guessing trials,

and the guessing process was slower than the memory-based

process. However, in the current experiment, discriminating be-

tween same versus small-change trials is difficult, so the memory-

based accumulation process related to such decisions may be slow.

Under such conditions, responses based on guessing may be faster

than responses based on memory, leading to the possibility that

certain types of RTs may get faster as set size increases.

Method

Participants. Five new participants from the Indiana Univer-

sity community were paid $12 per session (which included a $3

bonus for good performance) to complete 10 sessions of the task.

All participants reported having normal color vision, and none was

aware of the issues under investigation in the study.

Stimuli. The same 10 color squares were used as in Experi-

ment 1. In addition, a new set of 10 color squares was used. For

each of the original color squares, there was a new color square

from the same hue region as the original but that differed slightly

in its brightness and saturation. A listing of the red–green–blue

(RGB) values for the 20 colors in the full set of stimuli is provided

in Table 5. All other aspects of the stimuli were the same as in

Experiment 1.

Procedure. The experimental design and the structure of trials

was the same as in Experiment 1, with the following extensions.

First, only a single color from each main hue region could appear

in the memory set on each trial. The color from each hue region

that appeared in the memory set on each trial was chosen at

random. On big-change trials, the probe was a randomly chosen

color from a new hue region. Only the external condition was

tested. In other words, on the big-change trials, the probe was a

color from a separate hue region than any of the colors that had

appeared in the memory set. On small-change trials, the probe was

a new color from the same hue region as the original. In each

change-probability block, half the change trials were big-change

trials and half were small-change trials. The ordering of same,

small-change and big-change trials was randomized within each

block.

The memory-set sizes were 2, 5, and 8, and the change-

probability conditions tested on each block were again .3, .5,

and .7.

Results

We deleted from the analysis any trial in which the RT was less

than 180 ms or greater than 2,500 ms. In addition, for each

combination of set size, change probability, stimulus type (same,

small-change, big-change), and response type (change vs. no-

change), we deleted from the analysis any trial in which the RT

was greater than three standard deviations above the mean RT for

that combination. These procedures led to deleting at most 2.9% of

the trials for any subject.

Before turning to the formal modeling of the individual-subject

data, we first provide an overview of the general pattern of results.

In particular, in Figure 11 we display the choice-probability and

mean RT data averaged across the five subjects. (Symbols show

the averaged data, whereas line types show averaged predictions

from a to-be-described model.) As can be seen in the top panels,

the patterns of choice-probability data on big-change trials and

same trials replicate the patterns from Experiment 1: Increases in

set size led to lowered accuracy on these trials, whereas increases

in change probability led to both increased hit rates and increased

false-alarm rates. The effects of set size on small-change trials,

however, were smaller than for the big-change and same trials. In

addition, subjects were less accurate on the small-change trials

than on the big-change trials.

The mean correct RT data are displayed as a function of set size

and change probability in the middle panels of the figure. As was

the case in Experiment 1, as set size increased, mean correct RTs

for big-change and same trials got slower (middle-left panel). The

effects of set size on mean correct RTs were smaller for the

small-change trials. (Indeed, for small-change trials, average hit

RTs were slightly faster for set-size 8 than for set-size 5; however,

individual subjects differed in whether they showed the latter

pattern.) As shown in the middle-right panel, as change probability

increased, hit RTs for both big-change and small-change trials

tended to get faster, whereas correct-rejection RTs for same trials

got slower. Such results are expected if subjects are more prone to

make “change” responses with increasing change-probability. This

tendency can also be seen for the mean error RTs shown in the

bottom-right panel: As change probability increased, false-alarm

Table 5

RGB-Values for the Stimuli Used in Experiment 2

Stimulus Red Green Blue

black-1 0 0 0
black-2 55 55 55
white-1 243 243 243
white-2 200 200 200
red-1 254 0 0
red-2 170 0 0
blue-1 0 0 132
blue-2 68 110 255
green-1 0 255 0
green-2 0 193 0
yellow-1 250 255 67
yellow-2 255 211 0
orange-1 255 109 0
orange-2 255 151 0
cyan-1 0 255 255
cyan-2 0 190 232
purple-1 135 0 128
purple-2 107 0 54
dark-blue-green-1 0 89 100
dark-blue-green-2 66 134 133

Note. RGB � red–green–blue.
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RTs for same trials got faster, whereas miss RTs for big-change

and small-change trials got slower.

The mean error RT data are shown as a function of set size in the

lower-left panel of the figure. For these data, the most important

result is that, as predicted by the discrete-slots models, the mean

miss RTs on big-change trials are again flat. Note that this pattern

was displayed by all five subjects. (The miss RT at set-size-2 is not

shown because it is based on an average of only 2.2 observations

Figure 11. Experiment 2: Averaged observed and predicted choice-probability and mean response time (RT)

data. Observed data are shown by different symbol types. Predictions from hybrid-model 2 (H2) are shown by

different line types. RTs are measured in seconds. P � probability.
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per subject. Subjects virtually never missed on the big-change

trials at the smallest set size.) As described in the introduction to

this experiment, the discrete-slots models no longer predict that

false-alarm RTs for the same trials should be a flat function of set

size, nor that miss RTs for the small-change trials should be flat.

The tendency was for the false-alarm RTs on same trials to get

faster with increases in set size, and for the miss RTs on small-

change trials to get slower. (The very slow mean false-alarm RT at

set size 2 was due mainly to a single subject.)

Modeling Analyses

The formal models. We fitted straightforward extensions of

discrete-slots model 3 (DS3) and continuous-model 2 (C2) to the

individual-subject data, using the same methods as already de-

scribed in Experiment 1. (We focus on these representatives from

the discrete-slots and continuous classes because they performed

best in Experiment 1. Special cases of the models from each class

that did not allow the response thresholds on the memory-based

accumulators to vary with set size or change probability again

tended to perform worse than did models DS3 or C2.) Applying

model DS3 to the present design required the addition of one new

free parameter, namely, the mean correct drift rate on the memory-

based accumulator on small-change trials. Applying model C2 to

the present design required the addition of three new free param-

eters, namely, the mean correct drift rate on small-change trials at

each of the three set-size levels. In all other respects, models DS3

and C2 were the same as applied in Experiment 1.

We also fitted two hybrid models to the data. In hybrid-model

H1, we extended discrete-slots model DS3 by assuming that mean

correct drift rates on the small-change and same trials varied with

set size. In particular, separate small-change and same drift-rate

parameters were allowed for each individual set size (the drift-rate

parameter on big-change trials, however, was presumed to be

invariant with set size, as in Experiment 1.) This hybrid model

continues to assume that responding is based on a mixture of

cognitive states, namely, memory and guessing. However, the

model allows for the possibility that resolution in the memory state

changes as memory set-size increases.

The second hybrid model (H2) was a special case of the first

and, as explained below, was motivated by the “slots plus aver-

aging” model of Zhang and Luck (2008) and Cowan and Rouder

(2009). In particular, model H2 was the same as model H1, except

that the mean correct drift rates on small-change and same trials

were presumed to be invariant across set sizes 5 and 8. Unique

small-change and same drift rates were allowed only for set-size 2.

According to the slots-plus-averaging model (e.g., Zhang & Luck,

2008), visual working memory is composed of roughly 3–4 slots,

and a set of total resources available to working memory is shared

equally among the items that occupy those slots. Note therefore

that once the number of to-be-remembered items exceeds the

number of slots, then resolution of the items that are stored in

the slots will remain fixed as set size increases. However, if the

number of to-be-remembered items is smaller than the number of

discrete slots, then greater resources can be devoted to each indi-

vidual item. Thus, the slots-plus-averaging model would predict

that memory-based drift rates are greater for set-size 2 than for

set-sizes 5 and 8 but that the drift rates are invariant across set sizes

5 and 8.

BIC fits. The 	BIC fits of the models to the five subjects are

reported in Table 6. Among the models that presume the operation

of mixed states (DS3, H1 and H2), model H2 provides the best

BIC fit for all five subjects. In addition, it provides a dramatically

better fit than does model C2 for Subjects 1, 2, and 5; essentially

the same BIC fit for Subject 3; but a worse BIC fit for Subject 4.

The dramatically better fits of model H2 compared to model C2

for Subjects 1, 2, and 5 provide very clear evidence for the

operation of a mixture of memory and guessing states. However,

the consistent advantage of model H2 compared to the pure

discrete-slots model DS3 provides evidence for a role of continu-

ous changes in resolution as well, at least when memory set size

gets very small. Such results are anticipated by the slots-plus-

averaging model of Zhang and Luck (2008) and Cowan and

Rouder (2009). Although model C2 fares better than does model

H2 for Subject 4, we will suggest later that the reasons do not

necessarily imply that model C2 is a more appropriate model.

Predictions of averaged data. The predictions from model

H2, averaged across all five individual subjects, are displayed

along with the observed averaged data in Figure 11. With the

exception of the very slow false-alarm RT at the smallest set

size (lower left panel), which was due almost entirely to a single

subject (S5), model H2 captures all of the summary trends quite

well. The explanations for most of its main predictions involving

the big-change and same trials are essentially the same as we have

already described for the results in Experiment 1. Most important,

the model accurately predicts that mean miss RTs for the big-

change trials are virtually a flat function of set size because those

errors arise solely from guessing.

Regarding the small-change trials, the model predicts worse

performance on those trials than on the big-change trials (higher

error rates and slower RTs) because small-change drift-rate pa-

rameters are much smaller than big-change drift-rate parameters.

Interestingly, the model also predicts correctly that mean RTs for

small-change hits get slightly faster at set-size 8. The explanation

is as follows. Recall that in the present design, because of the

difficulty in discriminating same from small-change trials,

memory-based decisions on such trials may be slow. Indeed, for

the present parameter settings, guessing-based hits on small-

change trials are faster than are memory-based hits. As set size

increases, there is an increased proportion of guessing, so mean hit

RTs on the small-change trials get faster.

ROC analyses. As it turned out, model C2 yielded roughly

the same predictions of the Figure-8 summary data as did model

Table 6

	BIC Fits of the Models to the Individual-Subject Data of

Experiment 2

Subject DS3 C2 H1 H2

1 26 107 16 0

2 27 65 16 0

3 19 0 11 1
4 31 0 41 27
5 20 297 12 0

Note. Minimum 	BIC value for each subject is indicated in boldface. For
Subjects 1–5, the absolute BIC values of the best-fitting model were
�342.5, �3,438.3, �1,971.6, 664.3, and 1,087.3, respectively. DS3 �
Discrete-Slots 3; C2 � Continuous 2; H1 � Hybrid 1; H2 � Hybrid 2;
BIC � Bayesian information criterion.
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H2. The reason why model C2 yielded much worse fits to the

individual-trials data of some of the individual subjects involved

its predictions of their detailed ROC curves.

An example is provided in Figure 12, which shows the observed

and predicted ROC curves for Subject 5 (S5). The left panels show

the results for the big-change trials and the right panels show the

results for the small-change trials. The top panels plot the predic-

tions from model H2, whereas the bottom panels plot the predic-

tions from model C2. Whereas model H2 accounts well for the full

set of ROC data, model C2 has some dramatic shortcomings. In

particular, at the largest set size, the predicted ROCs from model

C2 fail to come close to the full span of choice probabilities in both

the big-change and small-change data.

Why do the models differ in this way? Note that on the big-

change trials, in the high change-probability condition, S5’s hit

rates were nearly unity at every set size. Of course, on trials in

which the memory-based accumulation process operated, hit prob-

abilities would be at unity, because of the ease with which the big

changes are detected. However, there will also be a substantial

proportion of guessing trials that contribute to the hit rates. Thus,

because the overall hit probabilities were near unity in the blocks

in which change probability was high, S5 apparently adopted an

extreme response policy of nearly always guessing “change” if the

probed stimulus did not occupy one of the slots. (Note that if

responses are based on guessing, then this response policy is the

ideal-observer strategy for this design.) Moreover, the subject

appears to have also adopted a complementary extreme response

policy for guessing “no change” on blocks in which change prob-

ability was low.6

Taken in combination, these extreme guessing policies lead to

ROCs with a large span in the probability space. And although the

observed ROCs have slightly more curvature than is predicted by

model H2, these large-span ROCs are apparently far closer to

linear than continuous model C2 can accommodate, particularly

when it is required to simultaneously fit the RT data observed in

the task.7,8 Subject 1 showed very similar patterns of ROC results,

which explains why model C2 fared extremely poorly for that

subject as well. Subject 2 (S2) did not show this extreme ROC

pattern, and Model C2 can predict S2’s ROCs quite well. Thus it

is likely that Model H2 is favored for S2 for more subtle reasons

involving RTs or the interaction of RTs and accuracy.

Evidence for changes in resolution with set size. As noted

earlier, hybrid-model 2 (H2) yielded a better BIC fit than did

model DS3 or H1 for all five subjects. This result provides evi-

dence in favor of the idea that, although performance may have

involved a mixture of memory-based responding and guessing,

resolution within the memory state was different at set-size 2 than

at set sizes 5 and 8 (and there was no difference in resolution at the

larger set sizes). Indeed, examination of the best-fitting drift-rate

parameters from model H2 for each of the individual subjects

revealed a highly interpretable pattern. First, as expected, for all

subjects the estimated mean correct drift rate on big-change trials

was always far greater in magnitude than the drift rates on small-

change and same trials. Second, for all subjects, the magnitudes of

the small-change and same drift rates at set-size 2 were always

greater than or equal to those at the larger set sizes, indicating

greater memory resolution at set-size 2. This pattern of results is

precisely as predicted by the slots-plus-averaging model (Cowan

& Rouder, 2009; Zhang & Luck, 2008).

Continuous subjects. As we noted earlier, model C2 yielded

a better BIC fit than did model H2 for Subject 4 (and the models

yielded roughly equivalent BIC fits for Subject 3). However, our

detailed examinations indicated that both models appeared to yield

very good accounts of the mean correct and error RT data as well

as the ROC data of these individual subjects. The main reason why

Subject 3 (S3) and Subject 4 (S4) differed from Subject 1 (S1) and

S5 is that S3 and S4 produced very small changes in hit and

6 Recall that in the present design, false alarm rates on same trials would
not be near zero even if the subject always responded “no-change” when in
the guessing state. False alarms will also be generated from the memory-
based process, because of the difficulty of discriminating same from
small-change trials. For the same reason, in the present design, the discrete-
slots models can predict slight departures from linear ROCs.

7 Because memory-based decisions are not made with perfect accuracy
in this experiment that includes small-change trials, the DS models no
longer predict perfectly linear ROC curves. The degree of predicted de-
parture from linearity will depend on parameter settings from the model.

8 We conducted numerous additional analyses to investigate the con-
straints that S5’s ROC data imposed on model C2. For example, in one set
of analyses, we tested model C2’s ability to fit only the ROC data, without
requiring it to also fit the RTs. However, we imposed the reasonable
constraints that (a) the mean correct drift rates in the model would be
nonincreasing with set size, that is, memory resolution would not improve
as set size increased, and (b) response thresholds would be nondecreasing
with increases in set size, that is, the system would not require less
evidence for responding at large set sizes compared to small set sizes.
Under these constraints, model C2 failed dramatically to fit the ROC data,
even in isolation. In another set of analyses, we allowed all of model C2’s
parameters to vary freely in fitting the ROC data, without imposing the
above-stated constraints. Although it could then fit the ROC data, with
those parameter settings, it made bizarre predictions of the patterns of RT
data.

Figure 12. Observed and predicted receiver operating characteristic

curves for Subject 5 of Experiment 2. Top: Predictions from hybrid-model

2 (H2). Bottom: Predictions from continuous-model 2 (C2). Left: Big-

change trials. Right: Small-change trials. Open symbols � observed data;

solid dots with connecting lines � predictions.
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false-alarm rates as a function of the manipulations in change

probability across blocks. Thus, the three points that defined each

ROC curve tended to lie close together (especially those of S4),

making it difficult to discriminate between the predictions and the

models. The BIC advantage for model C2 for these subjects thus

arises because it uses fewer free parameters, not because it pro-

vides a better absolute fit to their data.9 In our view, the results

from these subjects are relatively nondiagnostic with respect to

choosing between members of the continuous and discrete-slots

families, rather than posing major challenges to the discrete-slots

family. A simplicity bias in model selection is an excellent policy

and should apply if considering S4 in isolation. However, model

H2 provides a good and coherent account of the data from the full

set of subjects, so that model is strongly favored when considering

the group as a whole (cf. Jang, Wixted, & Huber, 2011).

Summary

Overall, models that make allowance for the mixture of states

(memory plus guessing) assumed by the discrete-slots models

provide better accounts of the Experiment-2 data than does a

model based solely on continuous sharing of resources among all

items of the memory set. Thus, the requirement that subjects make

fine-grained discriminations between study items and similar lures

does not seem to have led to a major change in processing modes

across the two experiments. However, the present design also

provided evidence for a hybrid account of performance in the task,

in which resolution for items stored in the discrete slots improved

when memory set size grew very small. Such results are antici-

pated by the “slots-plus-averaging” models of Zhang and Luck

(2008) and Cowan and Rouder (2009).

General Discussion

Summary

In sum, in this research we developed two families of models to

account for both accuracies and RTs in tasks of visual WM change

detection. The main variables manipulated in the tasks included

memory set size, change probability, and whether changes were

big or small in magnitude. One family of models formalized the

discrete-slots view, which holds that an object either does or does

not occupy a slot in visual WM. Objects that occupy one of the

slots are stored with constant resolution. For objects that do not

occupy one of the slots, there is a complete loss of resolution, and

observers are forced to guess. The second family formalized the

continuous shared-resources view, which holds that as memory set

size increases, the observer stores lower resolution memories of all

of the members from the memory set. Hybrid models that com-

bined assumptions from the two families were also examined.

The key new idea from the discrete-slots family is that RTs are

presumed to arise from a mixture of basis distributions, one that

reflects memory-based evidence accumulation, and a second that

reflects guessing-based accumulation. Different versions of the

discrete-slots models varied the detailed assumptions by which the

two types of accumulation processes operated across conditions.

Under the present experimental conditions, the data pointed

decidedly in favor of the discrete-slots view, although with the

refinement at very small set sizes, there is increased resolution for

items in the memory state. In general, the continuous shared-

resource models had difficulty accounting jointly for the correct

and error RTs (Experiment 1) or else failed to account for the

detailed structure of ROC curves in cases in which subjects ap-

peared to adopt extreme guessing policies (Experiment 2). The

discrete-slots models did a better job by producing better quanti-

tative accounts of the choice probability and RT data, including

detailed accounts of the distributions of RTs, and by also matching

certain key qualitative predictions. For example, the discrete-slots

models predicted correctly that certain types of error RTs would be

nearly invariant with set size. It remains an open question whether

evidence favoring discrete-slots processing will continue to be

observed under alternative experimental conditions. For example,

the conclusions we have reached are of course limited to tasks

using masks. Our tasks and others investigating the present issues

use form and color masking to eliminate very short-term visual

memory representations such as the iconic memory first studied by

Sperling (1960). It remains an open question what the results

would be if alternative masking procedures were used.

Inattention, Fast Guessing, and Error RTs

Although the discrete-slots models performed well overall, per-

haps their main limitation is that they failed to account for the fast

false-alarm RTs observed at the smallest set size in Experiment 1.

Although those results were based on very small sample sizes

(because observers almost never erred at the smallest set size), the

pattern was consistent across almost all of the subjects.

We think it is likely that these low-frequency events reflect

additional processes that go beyond all of the models as they are

presently formalized. We should note that even when restricted to

predicting choice-probability data, Rouder et al. (2008) argued for

the importance of extending certain versions of discrete-slots mod-

els by incorporating an “inattention” parameter (see also Rouder,

Morey, Morey, & Cowan, 2011). In these extended models, the

observer is presumed to attend to the stimulus display with prob-

ability a and thus fails to attend with probability 1-a. On those

(rare) trials in which the observer fails to attend, she is forced to

guess. Following Rouder et al. (2008), a straightforward extension

of the present discrete-slots RT models would be to include an

analogous inattention process, while making the further assump-

tion that the time-course of processing on such trials differs from

those on attended trials. In a nutshell, we could posit a fast

“guess-change” process, analogous to hypotheses involving fast-

guess processes that have been considered by other researchers

(e.g., Link, 1982; Ollman, 1966; Yellott, 1971). Importantly, be-

cause the fast-guess process occurs rarely, it would have a minus-

cule influence on the pattern of RTs associated with the larger set

sizes, where the standard guess-accumulation process (right branch

of Figure 2) would dominate guessing behavior. However, on trials

involving the very small set sizes, observers virtually always enter

the memory state, so the standard guess-accumulation process

9 Using the alternative Akaike information criterion (AIC) statistic as a
criterion of fit, which places a smaller penalty on number of free param-
eters than does the BIC statistic, model H2 yields a much better fit than
does model C2 for all five subjects. Indeed, even model DS3 produces a
better AIC fit than does model C2 for all five subjects, although its
advantage for Subject 4 is minuscule.
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rarely operates. On these trials, the special fast-guess process

would contribute a substantial proportion of the total guessing

observations, thereby having a big influence on the pattern of error

RTs.

We conducted exploratory analyses of such extended fast-guess

models for the present data. Because so few total observations

were involved, it is perhaps not surprising that these extensions did

not improve the models’ BIC fits to the data. However, we have

verified that including such a process allows the models to capture

the very fast mean false-alarm RTs at the smallest set size, while

leaving predictions for all of the other data points virtually un-

changed.

Illusory Conjunctions, Feature Migrations,

and Error RTs

The possibility of inattention and fast-guessing does not explain,

however, why faster-than-expected RTs at the smallest set size

tended to occur for false alarms but not misses (in Experiment 1).

An explanation for this more nuanced result may reside in the

extensive literature that deals with the phenomenon of “illusory

conjunctions” (e.g., Prinzmetal, Diedrichsen, & Ivry, 2001; Treis-

man & Schmidt, 1982; Wolford & Shum, 1980).

The basic idea is that, on some small proportion of trials, a

feature from one object or location may migrate to another object

or location in the visual display. Suppose that this type of feature

migration took place in our design. The process would cause errors

not because the subject is guessing due to an empty slot but

because the feature stored in the slot is incorrect (cf. Bays et al.,

2009). Furthermore, because the memory-based accumulation pro-

cess operates faster than the guessing process when changes are

big, those types of errors would tend to be fast. Because there are

hardly any true guesses at the small set sizes, the feature-migration

trials would contribute a large proportion of the errors in those

conditions, thereby explaining the fast false-alarm RTs. Moreover,

as we explain in Appendix A, such a process would also predict an

asymmetry in results for false alarms versus misses because misses

would tend not to arise from feature migrations. We present

preliminary empirical evidence in Appendix A that such a feature-

migration process may indeed be part of a complete explanation of

performance in these tasks. Again, however, we decided not to

append such a process to the formalized models in the present

article because it would have added a great deal of complexity to

handle data with very few observations.

Extensions to Continuous Shared-Resources Models

In very recent work, van den Berg et al. (2012) introduced a new

type of continuous shared-resource model of visual WM that

captures what appears to be “guessing” in human responses. The

key idea is that continuous resources are not only variable across

trials but are also variable across the items within a given memory

set. If an observer devotes minimal resources to one of the

memory-set items and that item is probed, it will appear as if the

subject is guessing.

There are a wide variety of ways in which one might formalize

variable resource allocation across the items of a memory set in the

present LBA-based RT models. Borrowing from findings of

Donkin and Nosofsky (2012a), we implemented and tested one

particular version of such a model. In particular, Donkin and

Nosofsky (2012a) conducted a short-term probe-recognition ex-

periment involving the sequential presentation of memory-set

items. In modeling the choice and RT data from that experiment,

Donkin and Nosofsky (2012a) obtained evidence that the “memory

strength” of the items decreased as a power function of their lag of

presentation (see also Anderson & Schooler, 1991; Wickelgren,

1974; Wixted & Ebbesen, 1991). In the context of the present

types of visual WM tasks, one might imagine an analogous process

in which the observer shifts covert visual attention across the

memory-set items, with more recently attended items having

greater memory strength. To approximate the idea, we assumed

that mean correct drift rates associated with the items in a set

varied according to a power function of their “covert lag” (see

Appendix B for details). Thus, analogous to the ideas from van den

Berg et al. (2012), the drift rates in the change and no-changes

accumulators were assumed to be doubly stochastic. There was

variability in mean drift rates across the items within a given set

(that followed a power-function distribution) but also momentary

variability around those mean drift rates as in standard LBA

modeling (captured by the standard-deviation-of-drift-rate param-

eter �).

Note that this variable-resource model is a mixture model. For

any given set size, the predicted RT arises from a probabilistic

mixture of component RTs associated with each of the mean drift

rates. Also note that with appropriate choice of the power-function

free parameters, the magnitude of many of the mean drift rates can

be set such that mean drift rate on the correct accumulator is

virtually identical to mean drift rate on the incorrect accumulator,

that is, what is essentially guessing behavior. Thus, just as is the

case for the discrete-slots models, this variable-resources model

both is a mixture model and can incorporate guessing. Despite this

flexibility, we found that this variable-resources model continued

to provide substantially worse fits to our RT-distribution data than

did the two best-fitting discrete-slots models (DS2 and DS3; see

Appendix B for details).

Perhaps the main conceptual difference between the discrete-

slots models and this variable-resources model is that memory-

based responding and “guessing-based” responding are governed

by separate sets of accumulators in the former, but by a common

set of accumulators in the latter. Thus, the parameters that influ-

ence the evidence-accumulation process, such as start-point vari-

ability and response-threshold settings, must be common for all

items in the variable-resources model. By contrast, separate sets of

parameters are presumed to govern memory-based accumulation

and guessing-based accumulation according to the discrete-slots

models. These separate forms of evidence accumulation are ap-

parently reflected in the detailed RT-distribution data that served

as targets for the present modeling. These modeling results may

reflect that although accuracies associated with guessing can be

accounted for by assuming that an item has received minimal

resource allocation, the time course of guessing follows a different

path than does the time course of memory-based decision making.

Relations to Other Mixture Models

The present mixed-state (discrete-slots) models share certain

properties with mixture models for RT distributions developed by

Ratcliff and Tuerlinckx (2002). (Their mixture models were not
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intended to account specifically for performance in visual WM

change-detection tasks, but rather as a general approach to mod-

eling performance in a wide variety of experimental paradigms.) In

an attempt to account for “contaminant” RTs, these researchers

suggested that on some small proportion of trials, a response and

RT may be generated from a process that is separate from the main

evidence-accumulation process that governs behavior. For simplic-

ity, Ratcliff and Tuerlinckx (2002) assumed that this contaminant

process generates RTs that are uniformly distributed. There are

several differences between the mixed-state models developed

here and the contaminant approach from Ratcliff and Tuerlinckx.

First, the present modeling efforts build in a structure for how the

probability of entering into the guess state is expected to vary

across experimental conditions. By contrast, in Ratcliff and Tuer-

linckx’s modeling, there is no structure for how the probability of

the contaminant process is expected to vary across conditions.

Second, in the present approach, the guessing process is itself

modeled in terms of an accumulation process, rather than simply

being specified as obeying some descriptive distribution. Third,

the parameters of that accumulation process are posited to vary

systematically across experimental conditions. Thus, the forms of

the RT distributions that are generated from guessing vary sys-

tematically across conditions as well. In short, the present models

attempt to characterize the “cognitive psychology” of guessing in

a manner that goes well beyond the contaminant mechanism

developed by Ratcliff and Tuerlinckx.

Toward More Parsimonious Discrete-Slots Models

Our central goal in this initial theoretical inquiry was to develop

and contrast general versions of the discrete-slots and continuous

shared-resources models of visual working-memory RTs. To

achieve this goal of generality, we decided not to impose a variety

of parameter constraints that could lead to the development of

more parsimonious versions of each model class. In this section we

outline routes of future research aimed at achieving this latter goal.

First, in the discrete-slots models tested in this article, we

allowed the memory-state probabilities mi to vary as free param-

eters. An alternative approach is to constrain those parameters by

imposing assumptions involving fixed memory capacity across the

different set-size conditions. For example, in fitting their discrete-

slots models to ROC data, Rouder et al. (2008) denoted the number

of available slots by K and assumed that the value of K was

constant across the different memory set sizes N. Thus, across the

different set size conditions, they assumed that the probability that

any given study item would occupy one of the slots when memory

was probed would be given by m � min(K/N, 1). Because they

estimated fractional values of K in fitting the model, they were

clearly assuming that the number of available slots in visual WM

was variable across trials but that the mean of this variable number

of slots was fixed across set sizes. (Also, because they assumed

that the memory-state probability m was equal to one when K � N,

their implicit assumption was that the lower limit of the variable

distribution must be at least equal to N.) This approach to modeling

visual WM would allow a reduction in the number of free param-

eters that we used for fitting the present discrete-slots models to

our RT data. However, as we described earlier in our General

Discussion, Rouder et al. (2008, 2011) have emphasized an appar-

ent role of attention processes as well, which further modulate the

probabilities that items will reside in the memory state. In short, in

cases involving only three different memory set sizes, there is not

much difference in number of free parameters required by our

“free mi” approach versus the fixed-capacity approach applied by

Rouder et al. (2008). A greater savings in relative number of

memory-state parameters would be achieved, however, in designs

that tested a larger number of set sizes.

Another potential route to developing more parsimonious ver-

sions of the discrete-slots models is to take advantage of our

findings that the parameter estimates for almost all of our subjects

varied in highly systematic and psychologically meaningful ways

across conditions. For example, as change probability increased,

participants set more lenient thresholds on the guess-change accu-

mulator and stricter thresholds on the guess-no-change accumula-

tor. Thus, rather than estimating each threshold as a free parameter,

future research might impose functional constraints on how the

magnitudes of the thresholds vary with change probability. Still

another approach to achieving greater parsimony is to develop

deeper process-level accounts of how the drift rates in the

memory-based accumulators may vary with manipulations of

change magnitude (e.g., Fific, Little, & Nosofsky, 2010).10

Unpacking the Gating Process

To formalize the discrete-slots models in the present investiga-

tion, we assumed an initial gating process that informed the system

whether memory-based information was available in the probed

location of the visual display. We represented the probabilistic

outcome of the gating process by the free parameters mi but did not

provide a mechanistic account of the process. In our view, it would

be straightforward to append such a mechanism to the discrete-

slots models, but this approach would have little bearing on the

evaluation of the competing models under the current experimental

conditions. For example, it is easy to imagine an initial LBA

mechanism at the “gate” in Figure 2, which is responsible for

determining only whether memory-based information is or is not

present at the probed location of the visual display. Such a mech-

anism would not be responsible, however, for determining whether

the probed location changed from study to test. This type of

distinction dates back at least to Garner (1974), who distinguished

between state limitations versus process limitations in information

processing. State limitations are concerned only with whether

10 In addition, in recent work, Hyun, Woodman, Vogel, Hollingworth,
and Luck (2009) conducted initial empirical investigations of the time
course of processing in certain types of visual change-detection tasks. In
particular, they explored how the time course of manual RTs, saccades, and
event-related potential components varied with specific task goals and
set-size manipulations. There were many important differences between
the Hyun et al. tasks and the tasks reported in this article. For example,
because Hyun et al.’s goals did not involve testing for evidence of mixed-
state processing, the set sizes tested in their research were always less than
or equal to four. In addition, rather than testing memory with a probe in
only a single location, their test displays presented probes in all of the
locations that had appeared in the study displays, thereby requiring ob-
servers to engage in simultaneous memory and visual search processes to
perform the change-detection tasks. Hyun et al. found evidence for auto-
matic, unlimited capacity processing for some aspects of their change-
detection tasks, but for limited-capacity processing in other aspects. Their
findings could help constrain a fully developed theory of the memory-
accumulation processes that operate in the discrete-slots models developed
here.
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information is present or absent. By contrast, in process-based

limitations, information is present, but the system is limited in its

ability to discriminate which of two or more events has occurred.

Future research might be aimed at conducting manipulations to

unpack the mechanisms that underlie the “presence-absence” gat-

ing process. For example, one might vary the timing of the cue that

signals the observer regarding the location of the probe, or one

might vary the intensity of the probe itself.

Another interesting avenue for future research might involve

making direct queries to the subject about the outcome of the

gating process. If one makes the strong assumption that observers

have full conscious access to the outcome of the gating process,

then they should be able to report on each trial whether their

decisions were based on memory or guessing. This approach

would allow one to make extremely strong predictions regarding

the substructure of the data.11 For example, on trials in which

subjects report they were guessing, then not only should error-RT

distributions be invariant with set size, but correct-RT distributions

should be invariant with set size as well. It is a wide open question,

however, the extent to which observers do indeed have full con-

scious access to the outcome of the gating process.

Extensions to Other Perceptual and Cognitive Tasks

The focus of the present work was on visual WM change

detection, a domain where discrete-slots models that posit a mix-

ture of information-based and guessing-based cognitive states have

played a prominent role. The present mixed-state models of choice

and RT, however, have a potentially far wider range of applica-

bility. There are numerous types of perceptual and cognitive tasks

for which it seems plausible that a mixture of information-based

and guessing-based cognitive states might operate. Applications of

the present types of mixed-state RT models could yield greater

insights into the cognitive processes that operate in those domains

as well.

For example, consider a task of perceptual identification, in

which a single perceptual object is presented under degraded

conditions, and an observer is required to rapidly identify or

classify it. Common techniques for producing error-prone identi-

fication include using short display durations and/or masking. It

seems plausible that on some trials, the observer may be able to

extract at least partial information from the degraded object and

use that information as a basis for the classification decision. But

on other trials, there may be a failure to reach threshold, and the

system is forced to guess. Application of the present mixed-state

models of choice and RT may yield diagnostic information in

support of this hypothesis.

As a second example, consider the domain of long-term recog-

nition memory. A classic idea is that two distinct processes—

familiarity and recollection—contribute to recognition judgments.

Furthermore, according to certain versions of these dual-process

models, familiarity-based and recollection-based paths to recogni-

tion follow distinct mental routes. Many past efforts at evaluating

alternative types of single-process and dual-process models have

relied on detailed modeling of ROC curves (e.g., Dube & Rotello,

2012; Wixted, 2007; Yonelinas, 1994). However, in recent work,

researchers have developed and tested single-process models on

their ability to account jointly for choice probability, confidence,

and RT data in long-term recognition tasks (e.g., Dube, Starns,

Rotello, & Ratcliff, 2012; Ratcliff & Starns, 2009; Rotello & Zeng,

2008; Starns, Ratcliff, & McKoon, 2012). A theme that has

emerged from this recent literature is that ROC data and RT data

should be considered jointly when interpreting the underlying

memory processes that are involved. Another important approach

that would complement these recent efforts may be to formalize

dual-route models of choice and RT in such tasks. For example, in

such models, one process might involve accumulation of

familiarity-based information, whereas a second would involve

accumulation of recollection-based information. The question is

whether this alternative type of mixed state, dual-route model

might yield a better account of the complete set of recognition

choice probabilities and RTs than do members from the other

classes. If so, then such a result would provide an interesting form

of evidence in favor of the dual-route approaches.

11 We thank John Wixted for suggesting to us this insightful idea.
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Appendix A

Feature Migrations: Fast False Alarms Versus Fast Misses

Why would the feature-migration process lead to an asymmetry

in results for false alarms versus misses at the smallest set size?

First, consider the external condition at set-size 2. (Recall that in

the external condition, “change” probes were always colors from

outside the study display.) If a location is probed with a no-change

stimulus, but a feature-migration occurred, it will result in a fast

false-alarm RT (i.e., a “change” response) for the reason described

in the text. But if a location is probed with a change stimulus, there

will never be a case in which a miss (a “no-change” response) will

occur because of a feature migration. If a feature migration has

occurred, the observer will still respond “change,” because the

probe is different from any of the study colors. In sum, in the

external condition, feature migrations will cause fast false alarms

but will not cause fast misses.

The argument is more involved for the internal condition, in

which “change” probes are always colors from inside the study

display. In our internal condition, the smallest set size was equal to

3. Suppose that a feature migration occurs at the probed location.

If the probe is a no-change stimulus, then as already explained, that

feature migration would cause a fast false-alarm RT. However, if

the probe is a change stimulus, it could now cause a fast miss RT.

For example, suppose the probed study location was red but the

feature green migrated to that location. Suppose further that the

test probe was green. In this case, there would be a fast “no-

change” response (i.e., a miss). Even so, averaged across trials, the

effect would tend to be greater for false alarms than for misses.

The reason is that only a single type of feature migration can result

in a miss (i.e., one in which the migrating feature happens to be

identical to the probe). By contrast, feature migrations from any of

the locations in the display will result in false alarms. Thus, as long

as set size is 3 or greater, there are more opportunities for feature

migrations to result in false alarms than misses.

Prior to conducting Experiment 1, we tested a group of 96

subjects in a pilot study. The design was similar to Experiment 1,

with the main difference that each subject participated for only a

single session. Half participated in an external-change condition

and half in an internal-change condition. Averaged across subjects,

the mean RT data for false alarms and misses were very similar to

the pattern predicted above. Mean false-alarm and miss RTs were

nearly equal across set-size-5 and set-size-8 in both the external

and internal conditions. False-alarm RTs were faster for set-size-3

compared to the larger set sizes in both the external and internal

conditions. Interestingly, however, whereas miss RTs for set-

size-3 were somewhat faster than for the larger set sizes in the

internal condition, the miss RTs were nearly flat across all set sizes

in the external condition. However, this last fine-grained interac-

tion effect did not reach statistical significance.

In sum, the patterns of faster-than-expected error RTs observed

at the very small set sizes appear to be generally consistent with

the predictions from the discrete-slots models, assuming that there

is some small probability that feature migrations take place.

Appendix B

Variable Shared-Resources Model

The variable shared-resources model (VSRM) defines a distribu-

tion of mean correct drift rates, with a separate mean correct drift rate

associated with each item of a memory set with size m. In particular,

the mean correct “change” drift rate associated with an item that has

“covert lag” k in a memory set of size m is given by

vC(m, k) � .5 � �(C, m)k��(C,m), (B1)

where 
(C,m) [m � (2 or 3), 5, 8] and �(C,m) [m � (2 or 3), 5, 8] are

free parameters that define the power function that relates “change”

drift rate to set size and covert lag. Each item in the memory set is

presumed to have a unique covert lag k, where k ranges from 1 to m.

In the present application, the constant .5 was added to the power-

function computation so that the mean correct drift rate would always

be greater than or equal to the mean incorrect drift rate. (As is the case

in standard LBA modeling, the mean incorrect drift rate is given by

vC’ � 1 � vC). Analogously, the mean correct “no change” drift rate

on the no-change accumulator is given by

vNC(m, k) � .5 � �(NC, m)k��(NC,m), (B2)

where 
(NC,m) and �(NC,m) are the free parameters that define

the no-change power functions. Besides defining a variable distri-

bution of mean drift rates, the important conceptual point is that as

covert-lag k grows larger, the mean correct and incorrect drift rates

converge toward .5, so there is no differential memory-based

information for making change versus no-change responses. Anal-

ogous to the ideas advanced by van den Berg et al. (2012), this

mechanism can lead to apparent “guessing.”

In all other respects, the VSRM is the same as continuous

shared-resources model 2 (C2), defined in the main text. Note that

in the special case in which the � parameters are set equal to zero

for all set sizes m, there is no reduction in drift rate with covert lag,

and the VSRM reduces to model C2. Allowing the 
 and �

parameters to vary freely, the VSRM uses an additional six free

parameters compared to model C2.

(Appendices continue)
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The BIC scores yielded by fitting the VSRM to the data were

(for Subjects 1–8, respectively): �5,497.5, �4,090.6, �4,187.0,

�3,216.9, 1,617.7, �7,471.9, �1,451.3, and �1,213.4. The reader

may verify that, with the exception of Subject 2, the BIC fit for the

VSRM was always worse than for model C2 (compare to Table 2).

(In addition, the VSRM yielded a worse fit to S2’s data than did

discrete-slots models D2 and D3). Thus, this approach to formal-

izing variable shared resources within the framework of the con-

tinuous models was not successful in accounting for our data.

Undoubtedly, there are other approaches to formalizing continuous

models of visual WM response times that make allowance for

variable shared resources. The fits yielded by the discrete-slots

models should provide a challenging yardstick to gauge such

alternative approaches.

Received October 22, 2012

Revision received July 15, 2013

Accepted July 22, 2013 �

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

30 DONKIN, NOSOFSKY, GOLD, AND SHIFFRIN


