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We present a robust scheme for solving the electrokinetic equations. This goal is achieved by
combining the lattice-Boltzmann method with a discrete solution of the convection-diffusion
equation for the different charged and neutral species that compose the fluid. The method is based
on identifying the elementary fluxes between nodes, which ensures the absence of spurious fluxes
in equilibrium. We show how the model is suitable to study electro-osmotic flows. As an illustration,
we show that, by introducing appropriate dynamic rules in the presence of solid interfaces, we can
compute the sedimentation velocity~and hence the sedimentation potential! of a charged sphere.
Our approach does not assume linearization of the Poisson–Boltzmann equation and allows us for
a wide variation of the Peclet number. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1760739#

I. INTRODUCTION

The study of the dynamics of suspensions of charged
particles is interesting both because of the subtle physics
underlying many electrokinetic phenomena and because of
the practical relevance of such phenomena for the behavior
of many synthetic and biological complex fluids.1,2 In par-
ticular, electrokinetic effects can be used to control the trans-
port of charged and uncharged molecules and colloids, using
electrophoresis, electro-osmosis, and related phenomena.3 As
micro-fluidic devices become ever more prevalent, there are
an increasing number of applications of electro-viscous phe-
nomena that can be exploited to selectively transport mate-
rial in devices with mesoscopic dimensions.4

In virtually all cases of practical interest, electroviscous
phenomena occur in confined systems of a rather complex
geometry. This makes it virtually hopeless to apply purely
analytical modeling techniques. But also from a molecular-
simulation point of view electroviscous effects present a for-
midable challenge. First of all, the systems under consider-
ation always contain at least three components; namely a
solvent plus two~oppositely charged! species. Then, there is
the problem that the physical properties of the systems of
interest are determined by a number of potentially different
length scales~the ionic radius, the Bjerrum length, the
Debye–Hu¨ckel screening length and the characteristic size of
the channels in which transport takes place!. As a result,
fully atomistic modeling techniques become prohibitively
expensive for all but the simplest problems. Conversely,
standard discretizations of the macroscopic transport equa-

tions are ill-suited to deal with the statistical mechanics of
charge distributions in ionic liquids, even apart from the fact
that such techniques are often ill-equipped to deal with com-
plex boundary conditions.

In this context, the application of mesoscopic~‘‘coarse-
grained’’! models to the study of electrokinetic phenomena
in complex fluids seem to offer a powerful alternative ap-
proach. Such models can be formulated either by introducing
effective forces with dissipative and random components, as
in the case of dissipative particle dynamics~DPD!,5 or by
starting from simplified kinetic equations, as is the case with
the lattice-Boltzmann method~LB!.

The problem with the DPD approach is that it necessar-
ily introduces an additional length scale~the effective size of
the charged particles!. This size should be much smaller than
the Debye screening length, because otherwise real charge-
ordering effects are obscured by spurious structural correla-
tions; hence, a proper separation of length scales may be
difficult to achieve. A lattice-Boltzmann model for electro-
viscous effect was proposed by Warren.6 In this model, the
densities of the~charged! solutes are treated as passive scalar
fields. Forces on the fluid element are mediated by these
scalar fields. A different approach was followed in Ref. 7,
where solvent and solutes are treated on the same footing
~namely as separate species!. This method was then extended
to couple the dynamics of charged colloids to that of the
electrolyte solution. As we shall discuss below, both ap-
proaches have practical drawbacks that relate to the mixing
of discrete and continuum descriptions.

The LB model that we introduce below appears at first
sight rather similar to the model proposed by Warren. How-
ever, the underlying philosophy is rather different. We pro-

a!Electronic mail: capuani@amolf.nl, frenkel@amolf.nl
b!Electronic mail: ipagonabrraga@ub.edu

JOURNAL OF CHEMICAL PHYSICS VOLUME 121, NUMBER 2 8 JULY 2004

9730021-9606/2004/121(2)/973/14/$22.00 © 2004 American Institute of Physics

Downloaded 23 Aug 2007 to 145.18.109.185. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.1760739


pose to consider thefluxesbetween connected nodes as the
basic physical quantities that determine the evolution of local
densities. Such a formulation ensures local mass conserva-
tion, does not rely on fluxes or gradients computed at the
lattice nodes~which constitutes a source of error in other
models due to the need to approximate them on a lattice!,
and by choosing a symmetric formulation for the link fluxes
in terms of the nodes that are affected, we can recover the
proper equilibrium without spurious fluxes. Our model relies
on a LB formulation for mixtures. Hence, the improvements
of the formulation based on link fluxes will overcome some
of the limitation of previous LB models for mixtures based
on gradient expansions of a free energy.8

The method described is very flexible, and, in particular,
general boundary conditions are easily implemented. This
feature also makes the proposed formulation attractive, since
it avoids problems related to mass and charge conservation at
fluid–solid interfaces, an artifact that has plagued previous
LB implementations. It is then possible to model the dynam-
ics of colloidal particles and polyelectrolytes in solution. The
electrostatic interaction between them is derived from the
charge distribution in the fluid. Hence, we do not need to
assume any specific form for the interaction between charged
colloids, or between monomers in a polyelectrolyte. Electro-
osmosis, the sedimentation potential, electrophoresis, or
other electrokinetic phenomena can be easily treated within
the model. In this paper we consider the first two to illustrate
the capabilities of the method.

The electrolyte is treated at the Poisson–Boltzmann
level. We are not restricted to the linearized Debye–Hu¨ckel
regime and can study the electrokinetic effects at high charge
densities, being only limited by ionic condensation~as oc-
curs, for example, in cylinders!. The model we introduce will
miss effects due to charge correlations.

The remainder of this paper is organized as follows: In
Sec. II we describe the hydrodynamics of fluid mixtures to
set the general background. In Sec. III we describe the pro-
posed numerical method and, subsequently, in Sec. IV, we
discuss how to model general solid interfaces within this
lattice model. In Sec. V we focuses on the special case of
interest to treat electrokinetic phenomena. In Sec. VI we
validate the method by analyzing different situations of in-
terest, including electro-osmosis, and sedimentation.

II. HYDRODYNAMIC DESCRIPTION
OF NONIDEAL FLUID MIXTURES

In some respects, the dynamics of electrolytes at hydro-
dynamic scales is analogous to that of multicomponent mix-
tures. The simplest electrolyte model consists of two ionic
species and a neutral solvent. In order to provide the general
framework for the description of electrolyte dynamics, we
first briefly review the dynamics of mixtures on hydrody-
namic length and time scales. As in all hydrodynamic de-
scriptions, the starting point of any discussion are the laws of
conservation of mass and momentum.

A. Mass conservation

Every species of the fluid mixture satisfies the usual
mass conservation law:

]rk

]t
1“"rkvk50, ~1!

wherevk is the velocity andrk the density distribution of the
species labeled byk. The total density,r5(krk , is also
conserved, and satisfies an equation analogous to Eq.~1!
with respect to the barycentric velocityrv5(krkvk , which
describes the evolution of a fluid element. If we refer the
motion of all species to this common velocity, then Eq.~1!
can be expressed as

]rk

]t
1“"rkv52“"j k , ~2!

where we have introduced the relative current of speciesk,
j k5rk(vk2v), which accounts for all dynamical effects aris-
ing from the mismatch in velocities between the different
species. On very short time scales, such currents are con-
trolled by friction relaxation. However, for mixtures com-
posed of molecular constituents~as is usually the case in
electrolytes!, the inertial time scale is extremely small; hence
the relative current can be assumed proportional to a thermo-
dynamic driving force, which is proportional to the gradient
of the chemical potential. As a result, the relative current of
speciesi becomes diffusive and can be expressed as9

j k52(
k

Dikrk“bmk , ~3!

whereb is 1/kBT, with kB the Boltzmann constant and 1/T
the inverse temperature.bmk5 logrk1bmk

ex is the chemical
potential decomposed in an ideal and excess part, whileDik

corresponds to the diffusion coefficient that determines the
flux of speciesi induced by spatial variations in the chemical
potential of speciesk. For the sake of simplicity, we concen-
trate on the case where cross diffusion is neglected, and
henceDik5Did ik . By substituting the chemical potential in
Eq. ~3!, we can then express mass conservation in the form
of a set of convection-diffusion equations, expressing the
two mechanisms that control the density evolution for each
species,

]rk

]t
1“"rkv5“"Dk@“rk1rk“bmk

ex#. ~4!

B. Momentum conservation

Next, we consider momentum conservation. On the
same length and time scales, momentum conservation im-
plies that the barycentric velocity follows the Navier–Stokes
equation:

]

]t
rv1“"rvv5h¹2v1j“~“"v!2“p1Fext, ~5!

whereh and j are the shear and bulk fluid viscosities, re-
spectively, whileFext is the external force acting on a fluid
element. The effect of the interactions among the different
species enters as a net force expressed as the gradient of the
local pressure,p. In the presence of spatial gradients, the
pressure has, in general, a tensorial character, and can be
derived from the free energy of the system. However, for
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ideal electrolytes, the local pressure can always be expressed
as a scalar. Hence, for the sake of simplicity we will consider
this situation in what follows. As a result, we only need to
input the free energy of the mixture to determine both the
pressure and chemical potentials. Specifically, if we know
the free energy per unit volumeb f (r )5(krk@ log(L3rk)
21#1bfex, then

bmk55 logrk1bmex,
~6!

bp5(
k

rkbmk2b f 5(
k

~rk1rkmk
ex!2b f ex,

where the free energy, the chemical potential, and the pres-
sure are position dependent. The first term of the pressure
corresponds to the ideal-gas contribution,bpid5(krk while
the other two contain all the information of the interactions
among the fluid species. If there is one majority neutral com-
ponent, which only contributes to the ideal part of the pres-
sure, then the excess component of the pressure can be iden-
tified as the osmotic pressure of the mixture. In general, the
pressure gradient follows from Gibbs–Duhem:

b“p5(
k

rkb“mk5(
k

~“rk1rkb“mk
ex!, ~7!

and acts as a force. We will use this interpretation in the LB
implementation discussed in the next section.

Using the last expression for the pressure gradient, the
Navier–Stokes equation reads as

]

]t
rv1“"rvv5h¹2v1j““"v2“pid

2(
k

rk“bmex1Fext. ~8!

III. NUMERICAL LATTICE METHOD

We propose a model that combines a description of mo-
mentum dynamics based on lattice Boltzmann, with a nu-
merical description of the convection-diffusion equation.
Quantities are defined on the nodes of a lattice,r , and time
evolves in discrete time steps. The lattice is prescribed by
specifying its connectivity. The connections of each node are
determined by specifying the set of allowed velocities,ci ,
where the subindexi runs over all the allowed velocities.
Then, each noder is connected to the nodesr1ci .

A. Diffusion model

For convenience, let us rewrite the convection-diffusion
equation, Eq.~4!, in the form

]

]t
rk1“"rkv52“"j k , ~9!

where the diffusive flux is

j k52Dk~“rk1rk“bmk
ex!. ~10!

For the sake of clarity, we discuss separately the change in
density of the speciesk due to diffusion and to advection.
The total change in time of the density is simply the sum of
the two contributions.

1. Diffusion

Let us assume for the time being that the mixture dif-
fuses in a fluid at rest. Equation~9! then becomes

]

]t
rk52“"j k . ~11!

Integrating both sides of this equation over a volumeV0 and
using the Green’s formula*V0

“"j dV5rA0
j "n̂ dA, we obtain

]

]t EV0

rk dV52 R
A0

j k"n̂ dA, ~12!

where n̂ is the outward unity vector normal to the surface,
A0 , enclosing the volumeV0 .

As we have pointed out previously, we will consider
densities defined on nodes of a lattice and the time evolution
evolves at constant time steps. In this case, we can identify
the volumeV0 with the volume associated to that node, and
A0 is related to the connectivity of the lattice nodes. Then,
Eq. ~12! states that the change of the total number of par-
ticles enclosed in the volume corresponding to noder equals
the sum of the outward fluxes. Such fluxes can only take
place by mass transport to the neighboring nodes that are
connected to the central node, according to the structure of
the predetermined lattice connectivity. Hence,

nk~r ,t11!2nk~r ,t !52A0(
i

j ki~r !, ~13!

wherenk(r ) is the number of particles of speciesk at noder ,
while j ki(r ) accounts for the fraction of particles of speciesk
going to noder1ci . If we consider the velocity moving
opposite toi, i.e., ci 852ci , we havej ki(r )52 j ki8(r1ci)
because these fluxes are always defined considering that the
particles move away from the reference node. This unam-
biguously show that the fluxes are related to the links joining
the connected nodes, rather than being quantities defined on
the nodes.

It is worth noting that in the previous balance equation
the relevant quantity is the number of particles of speciesk at
node r , nk(r ), rather than its number density,rk(r ). If we
take the volume of a cell as our unit of volume, thenrk(r )
5nk(r ). However, in the presence of solid boundaries this
distinction may become relevant. The prefactorA0 in Eq.
~13! is related to the geometrical structure of the lattice.
Rather than connecting it directly with the area of the
Wigner–Seitz cell that can be associated to noder , we derive
its magnitude by computing how density diffuses to the
neighboring nodes. In Sec. VI A we will compute explicitly
this geometric prefactor for a particular lattice. In the follow-
ing, when referring to link mobility, we will use the symbol
dk5DkA0 .

Using link fluxes to compute the variation of the densi-
ties of the different species avoids approximating the diver-
gence on a lattice, a source of lattice artifacts, and the related
potential spurious fluxes that may appear. Moreover, the use
of these link fluxes also imposes locally mass conservation to
machine accuracy, avoiding the errors caused by the discreti-
zation of the spatial gradient operator. We must still provide
a prescription to implement the diffusive fluxes. These are, in
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principle, given by Eq.~10! and involve spatial gradients
between two neighboring lattice nodes. In equilibrium,nk

eq

;exp@2bmex# and, as a consequence, Eq.~10! predicts that
all diffusive fluxes vanish. However, the direct implementa-
tion of Eq. ~10! on a lattice will suffer from discretization
errors that will result in small but noticeable spurious fluxes.
To eliminate this effect, it is convenient to write the expres-
sion for the flux on a link as

j k~r ,t !52Dke
2bmk

ex
~r ,t !

“@rk~r ,t !ebmk
ex

~r ,t !#, ~14!

because, in this expression, the gradient becomes identically
zero when the density distribution corresponds to its equilib-
rium form. This also holds for the discretized form to be
discussed below. Consistent with the idea that the flux can be
expressed in terms of link mass fluxes, we propose a sym-
metrized implementation ofj ki involving magnitudes defined
in the two connected nodes,r and r1ci . In particular, we
write the flux of speciesk along the linkci as

j ki~r !52dk

e2bmk
ex

~r !1e2bmk
ex

~r1ci !

2

3Fnk~r1ci !e
bmk

ex
~r1ci !2nk~r !ebmk

ex
~r !

D i
G , ~15!

whereD i5uci u5uci 8u is the distance between the two neigh-
boring nodes. This symmetrized formulation ensures that, to
machine accuracy,j ki(r )52 j ki8(r1ci), and mass is con-
served for the model elementary dynamic processes. Note
that, based on the mass conservation expression, Eq.~13!,
the global mass change of noder is the sum of the link
fluxes, j ki . Mass evolution in the diffusive limit is described
only on the basis of mass flux divergence, as we have de-
scribed. In general, the procedure developed based on link
fluxes provides a consistent framework to obtain other gra-
dients if needed.

2. Advection

Local density can also be altered due to advection if
there is a local velocity of the fluid. If, for the time being, we
disregard diffusion, the advection mechanisms can be written
in the form

]

]t
rk52“•~rkv!, ~16!

where v is the barycentric fluid velocity. In principle, the
change in the number of particles could be computed on the
basis of the advection along each link, in a way similar to
Eq. ~13!. However, as we will describe in the next section,
the model we will introduce provides the velocity at each
node, rather than the link velocity. In order to avoid numeri-
cal artifacts and spurious diffusion due to the interpolation to
get such a link velocity, we propose an alternative implemen-
tation of the advection process. We still consider thatnk(r )
give us the number of particles in a volume element centered
around noder . Since we know the velocity of that node,
v~r !, in one step the node willvirtually displace tor1v~r !.
As a result, the volume associated to noder will intersect
some neighboring cells of the real lattice~see Fig. 1!. We

then distribute the amount of particlesnk into the intersected
volumes proportionally to the intersected region. In Fig. 1,
we depict in shadow the volumes that correspond to the frac-
tion of the density that is transported in the new cells. The
advantage of this approach is that it greatly reduces the spu-
rious diffusion that usually results during advection in lattice
models. To be more precise, even with the present method,
advection will cause some spurious diffusion~proportional to
the flow velocity!. However, in Sec. VI A we show that, in
practice, this effect is negligible.

B. Lattice Boltzmann method

In order to simulate the hydrodynamic flow of the fluid,
we make use of the lattice-Boltzmann approach. This tech-
nique has been used extensively to model hydrodynamic
flows in complex geometries.10 It is equivalent to solving a
discretized version of the Boltzmann equation with a linear-
ized collision operator. This method describes the dynamics
of a fluid in terms of the densities of particles that ‘‘live’’ on
the nodes of a cubic lattice and have discrete velocities$ci%,
where i labels the links between a lattice pointr and its
neighbors. The values of the velocities are chosen such that,
in one time step, a particle moves along a link from one
lattice node to its neighbor. In the lattice-Boltzmann model,
the unit of length is equal to the lattice spacing and the unit
of time is equal to the time step. In addition, the unit of mass
~or, equivalently, energy! is fixed by the requirement that, in
the continuum limit, the transport equations for the lattice
model approach the Navier–Stokes equation. This imposes a
relation between the temperature and the speed of sound@see

FIG. 1. Density redistribution due to advection. To advect the charge of a
given node~in this case, node number 5! in one time unit, we shift the whole
cell with the local velocity vector of that node (vx ,vy). Next, we displace a
fraction of density equal to the area of the cell that is now in the correspond-
ing site. In the graph a fraction of the density equal to the shadowed rect-
angle area (vxvy) goes from cell 5 to cell 3, a fraction (12vx)vy goes to
cell 2, (12vy)vx goes to cell 6, and (12vx)(12vy) stays at node 5. For the
sake of clarity, the figure shows a two-dimensional flow. In practice, the
analogous procedure is carried out in 3D.
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below Eq.~20!#. The central dynamic quantity in the lattice-
Boltzmann approach is the one-particle distribution function,
f i(r ,t), which describes the probability of having a particle
at siter at time t with velocity ci . The hydrodynamic vari-
ables are obtained as moments of this distribution function
over the lattice velocities,ci ; e.g., density and momentum
can be obtained as

r~r ,t !5(
i

f i~r ,t !,

~17!

j ~r ,t ![r~r ,t !v~r ,t !5(
i

ci f i~r ,t !,

respectively.
In the presence of external forces,F, the evolution equa-

tion can be expressed as

f i~r1ci ,t11!5 f i~r ,t !1Li j @ f j~r ,t !2 f j
eq~r ,t !#1c i ,

~18!

whereL@C# is a linear collision operator acting onC that
tends to relax the distribution function toward its equilibrium
limit. Hence, one needs to specify the equilibrium distribu-
tion as well as the collision operator. The collision operator
ensures mass and momentum conservation~i.e., ( iLi j

5( iciLi j 50). Its eigenvalues also determine the viscosity
of the fluid. The equilibrium distribution appearing in Eq.
~18! is that of an ideal gas. It can be shown that the Navier–
Stokes equations are recovered, keeping a low-velocity ex-
pansion of the Maxwellian,10 i.e.,

f i
eq5aiF r1

1

cs
2

ci "j1
1

2cs
4

rvv:~cici2cs
21!G , ~19!

where: is the double inner product, and the coefficientsai ,
depend on the geometry of the lattice, and are chosen to
ensure that the anisotropy of the lattice does not affect the
hydrodynamic behavior of the model, as well as ensuring
that all the distribution functions are non-negative. More-
over, cs is the speed of sound and its value depends on the
values of the coefficientsai , but it is always smaller than
unity ~in lattice units!. Finally, the termc i accounts for the
external force. It satisfies( ic i50 and ( icic i5F. For a
more detailed description of how to model the external force,
see, e.g., Refs. 11 and 12.

By means of a Chapman Enskog expansion, it can be
shown11 that in the hydrodynamic limit one recovers the
Navier–Stokes equation,

]

]t
rv1“•rvv5h¹2rv1j““"v2cs

2
“r1F. ~20!

Since the third term on the rhs is the pressure gradient for an
ideal gas, if we fix the temperature such thatkBT5cs

2, we
then recover Eq.~5! for an ideal mixture. For nonideal mix-
tures, we will introduce the missing contribution to the pres-
sure gradients as a local external force,F. Because the sol-
utes act onto the solvent exclusively by means of this
effective forceF, the hydrodynamic limit of the non-ideal-

mixture model is obtained by following the same procedure
as the one needed for the standard lattice Boltzmann method
for one phase flows.11

Introducing the mixture nonideality as a local effective
force implies that the fluid reacts with the appropriate sus-
ceptibility to applied external fields, although in the absence
of spatial gradients the equilibrium distribution corresponds
to that of an ideal gas. Since we are not concerned with local
structure, the model can be regarded as an effective kinetic
model, similar in structure to a linearized Vlasov equation.
Hence, this approach differs from previous proposals that try
to derive the hydrodynamics of nonideal mixtures from ki-
netic models of mixtures13 or from a modification of the
equilibrium distribution to recover the equilibrium pressure.8

For a particular choice of the shear viscosity,h51/6 in
lattice units,14 the general dynamic rule Eq.~18! simplifies to

f i~r ,t11!5aiF r~r ,t !1
1

cs
2

ci "~ j ~r ,t !1F!

1
1

2cs
4 rvv:~cici2cs

21!
G . ~21!

For the sake of convenience, we implement the model with
this simplified updating rule. However, it is straightforward
to implement the more general form that allows us to impose
other values of the viscosity.

The peculiarities of the nonideality of the mixture enters
through the forcing term~F! in Eq. ~21!. This forcing term
can be decomposed into an external field and a interaction
contributions,F5Fext1Fsol. This interaction force, as previ-
ously described in Eq.~7!, has the formFsol5(krk¹bmk

ex.
Using the same approach that we have used to model the
convection-diffusion equation, we can determine the force
acting on each link,Fi . Moreover, for the particular case
where the diffusion matrix is diagonal,

Fi~r !5(
k

F j ki

Dk
2

nk~r1ci !2nk~r !

D i
G . ~22!

The advantage of using the force exerted on the links is that,
again, we keep a symmetric dependence on the neighboring
nodes, and, moreover,Fi(r )52Fi 8(r1ci). Yet, in the
lattice-Boltzmann update rule, we need the force acting on
the node. This force can be obtained averaging the link
forces,

Fa
sol~r !5(

i
aiciaFi~r !, a5x,y,z. ~23!

Let us now introduce an alternative way of treating the
same systems. There are situations, as is the case in electro-
lytes, where one of the components of the mixture is domi-
nant, and plays the role of the solvent. In this case, we can
single out this component,rs , and treat it separately from
the rest. In particular, sincers@rk , we can approximate the
overall density by the solvent density (r.rs), and the over-
all momentum by the solvent momentum (rv5(krkvk

.rsvs). If we then relate the moments of the distribution
function f i to the solvent density, i.e.,( i f i5rs and ( ici f i

5rsvs instead of Eqs.~17!, we impose a constant solvent
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density in the incompressible regime. Hence, the rest of the
components will need to compensate their densities to avoid
any net local density variation. Although this incompressibil-
ity constraint is not exact, it may be a convenient approxi-
mation. From the point of view of the link force, Eq.~22!, it
has the computational advantage that one getsFi

5(kj ki /Dk and it reduces to the link diffusive flux previ-
ously computed, Eq.~15!. In this case the Navier–Stokes
equation becomes

]

]t
rsvs1“"rsvsvs5h¹2vs1j““"vs2cs

2
“rs

2kBT(
k

@“rk1“mk
ex#1Fext,

~24!

and by takingkBT5cs
2, we recover an appropriate behavior

whenrs@rk .
The advantage of this approach is that densities of dif-

ferent species are dealt with on different footing, which may
prove advantageous in certain applications, especially when
dealing with boundary conditions that act differently on the
solvent and solute, as it is the case if dealing with semiper-
meable membranes. Numerically, in this case there is a net
force only when the density distribution deviates from its
local equilibrium value, in contrast with the original method,
where the density coming from the advection contribution
balances the local force. This ensures an additional way to
avoid spurious artifacts from the underlying lattice.

IV. BOUNDARY CONDITIONS

If the fluid mixture is confined between walls, or if col-
loids are added to the mixture, we need to specify how the
densities and distribution function will interact with solid
interfaces. To account fully for such an interaction, we need
to describe in turn how the distribution function behaves,
how the particle number evolves, and how we estimate the
interacting force at the surface.

At a solid surface we expect hydrodynamic ‘‘stick’’
boundary conditions to apply. One way to impose these is to
apply the so-called ‘‘bounce-back rule’’ on the links. How-
ever, the standard version of this procedure~see, for ex-
ample, Ladd11! allows the fluid to leak into the solid. Al-
though this leakage is usually innocuous, there are cases~a
typical example being when electrostatics is part of the ex-
cess chemical potential! where this leakage may change the
density of the solvent inside the solid, leading to a corre-
sponding error in the pressure gradient. There exist alterna-
tive bounce-back rules that do not allow for any fluid
leakage.15

The formulation of our model in terms of link fluxes
simplifies the implementation of boundary conditions for the
fluxes of the different species densities,rk . Since the
convection-diffusion equation involves only mass conserva-
tion, it is enough to impose that there is no net flux on any
link that joins a fluid node and a solid node. We accomplish
this by imposing that the diffusive fluxj ki50 on such a link,
and that the flux due to advection also vanishes. This second

requirement is achieved by a kind of partial bounce-back
move: the number of particles that would have been assigned
to a solid node after advection is reflected back to its node of
origin.

The updating rule, both for the number densities of the
convection-diffusion equations and for the lattice Boltzmann
distribution function, requires the evaluation of gradients of
chemical potentials. To this end, we need to specify the val-
ues of the excess chemical potentials on neighboring nodes,
and those may involve the values of the fluid densities in
contact with the solid wall. We consider that the relevant
value of the density is that in contact with the wall, which is
somewhere in between the fluid and the solid node. Such
value can be obtained by requiring that it is consistent with
the no-flux condition for the link flux of that species. The no
flux condition is satisfied, requiring@see Eq.~15!#

nk~r1ci !5nk~r !eb@mk
ex

~r1ci !2mk
ex

~r !#, ~25!

which should be understood as the extrapolation of the fluid
density to ensure the absence of flux diffusion, and, in gen-
eral, it is an implicit equation to obtain an estimate of the
extrapolated number of particles,nk(r1ci). Note that this
fictitious extrapolated density is a property of the link, not of
the node.

As we have mentioned in Sec. III, the formulation based
on the fluxes is based on the evolution of the number of
particles contained in a given volume element. For the fluid
nodes in the absence of solid interfaces the particle number is
proportional to the number density. This is no longer the case
close to a solid wall. This difference is pertinent because the
excess chemical potential and the pressure are functions of
the number density,rk . While for a wall at rest, one can still
consider that the wall is equidistant from the nodes andnk

andrk coincide, for a moving solid surface, the position of
the solid boundary will change as it moves. In this case, a
coefficienta that establishes how close the solid boundary is
to the fluid node should be introduced. In the limiting case
that the solid boundary is reaching the neighboring fluid
node, the corresponding cell has a volume that is approxi-
mately half the volume of a usual cell, hencea51/2; in the
opposite case when the solid surface reaches the solid node
one gets accordinglya53/2. This coefficient then allows us
to relatenk5ark . Although there exist different ways in
which this coefficient may be computed, any smooth func-
tion that accounts for the volume change will be enough to
avoid abrupt changes in the density when a fluid nodes is
absorbed or created by the moving boundary.

V. ELECTROKINETIC EQUATIONS

In the previous sections we have developed a model to
simulate general nonideal fluid mixtures. We will now ana-
lyze the special case in which the fluid mixture is an electro-
lyte. The simplest electrolyte model corresponds to a three-
species mixture, two of them being the ionic species,r1 and
r2 with chargesz1e and z2e, and the third one being the
neutral solventrs . e is the elementary charge, andz1 andz2

are the valencies of the ions. The local charge can then be
expressed asq(r )5e@z1r1(r )1z2r2(r )#. The simplest

978 J. Chem. Phys., Vol. 121, No. 2, 8 July 2004 Capuani, Pagonabarraga, and Frenkel

Downloaded 23 Aug 2007 to 145.18.109.185. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



free-energy model corresponds to an ideal mixture in the
absence of any local electric field, where we can write

b f ~r !5 (
k56,s

rk@ log~Lk
3rk!21#1

1

2
bqF̂, ~26!

with F̂ being the electrostatic potential and the factor 1/2
avoids double counting. The chemical potential is then

bmk5 logrk1bzkF̂, k51,2,

bms5 logrs .

The hydrodynamic evolution equations for this free energy
model become

]

]t
rk1“"rkv5Dk“"@“rk1ezkrk“bF̂# ~27!

]

]t
rv1“"rvv5h¹2rv1j““"rv2cs

2
“r

1b(
k

ezkrk“F̂. ~28!

We still need an additional equation that prescribes how
the electrostatic potential is related to the local charge den-
sity. Since transport processes associated to mass and mo-
mentum transfer in fluid mixtures are much slower than the
propagation of electromagnetic waves, the electric field is
completely determined by the Poisson equation,

¹2F524p l BF (
k56

zkrk1rsG , ~29!

which has been expressed in terms of a dimensionless poten-
tial, F5ebF̂, while l B5be2/(4pe) is the Bjerrum length
~the distance at which the electrostatic and the thermal ener-
gies are equal!, with e the dielectric constant of the fluid. In
the previous equation,rs stands for the charge density of the
solid surfaces, if there are confining walls or moving sus-
pended particles in the electrolyte. Obviously,s will be non-
zero only on those solid surfaces. The equations~27!, ~28!,
and ~29! are commonly referred to as the Electrokinetic
equations.

The electrostatic potentialF can be computed using
standard techniques. Specifically, we have implemented a
successive over-relaxation scheme~SOR!,16 as described in
more detail in Ref. 7. The advantage of this model is that it
does not presume a specific type of boundary condition, and
can be easily generalized to deal with media of different
dielectric constants. Although not as fast as other methods
for solving the Poisson equation, it is adequate for our pur-
poses because, once the local equilibrium charge profiles are
achieved, the calculation of the disturbed electrostatic poten-
tial due to external forces is much less time consuming than
the iteration part related to lattice Boltzmann and convection
diffusion; alternative, more sophisticated, variants to solve
the Poisson equation numerically can be implemented wher-
ever the standard SOR routine proposed here becomes un-
practical.

VI. VALIDATION TESTS

In order to validate the model that we introduced in the
previous section, we compare its predictions against known
results. In particular, we verify that the equilibrium charge
distribution is properly recovered on the lattice, and that out
of equilibrium the different coupling mechanisms between
fluid flow and charge inhomogeneities are properly ac-
counted for.

A. Effective diffusion

As was pointed out below Eq.~13!, the diffusion coeffi-
cient characterizing the discrete version of the diffusion
equation is not the same as the link diffusion coefficient,dk ,
but is related to it through a simple geometrical factorA0

that depends on the type lattice used.A0 can be evaluated as
follows. Consider a situation where the transport of speciesk
is purely diffusive. A density perturbationr0 , initially local-
ized at noder0 , will spread in one time step to the connected
neighboring nodes. If the process is purely diffusive, we
know the amplitude of the second moment of the density
variation during this time step and( iD i

2r(r01ci ,t011)
56Dkr056A0dkr0 in a three-dimensional cubic lattice. Let
us consider for concreteness the D3Q18 lattice,19 which is
the lattice we used in our LB simulation. Since the link
fluxes j i5dkr0 /D i , after one time step the density in each
of the six nearest neighbors isdkr0 , while the density in
each of the other 12 connected nodes isdkr0 /A2. As a re-
sult, ( iD i

2r(r01ci ,t011)5dk(6112A2)r0 , which implies
thatA05112A2 @or Dk5dk(112A(2)#. Depending on the
value ofdk , it might happen that the total density transferred
to the neighbors is larger than the initial density. For D3Q18
this gives us an upper bound for the input diffusion coeffi-
cient that ensures absolute stability,dk<1/(6(112A2))
50.044. In practice, we find that for all cases that we have
analyzed, numerical instabilities related to diffusion become
relevant for values of the input diffusion coefficientdk

>0.05. In order to perform simulations at higher diffusivi-
ties, we need to modify the numerical scheme to simulate the
diffusion equation. This instability can be overcome by in-
troducing a multiple-time step technique. To this end, we
introduce a smaller diffusion coefficientdit5dk /Nit and it-
erateNit times the discrete diffusion equation, Eq.~13!, to
advance the densities one time step.

When applying this multiple time step method to solve
the lattice diffusion equation, one must compute carefully the
force that should be applied to the distribution functionf i at
the end of the time step. In fact,Fsol should be computed at
all the intermediate steps. All these contributions should then
be added to obtain the total force at the end of the iteration.
With this technique we can vary the diffusion coefficient
over several orders of magnitude. For example, in our simu-
lations we could varyDk from Dk51023 to Dk56 ~all in
lattice units!.

On top of the lattice effects on diffusion itself, advection
can also induce spurious diffusion, because the lattice veloci-
ties do not coincide, in general, with the local velocity. As a
consequence, a concentrated set of particles will spread over
the lattice nodes, even if subject to a pure translational mo-
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tion. Hence, only when the velocity is commensurate with
the lattice spacing, both in direction and magnitude, will spu-
rious diffusion be exactly zero. We must then quantify the
amount of spurious diffusion. To this end, we consider an
ideal binary mixture composed of a solvent with initial uni-
form density,rs , and a solute with initial densityr t . The
mixture is contained between two parallel walls that are per-
meable to the solvent but impermeable to the solute. The
fluid is moving with a uniform velocityv perpendicular to
the walls. As a result of the impermeability of the walls to
the solute, a steady state is reached, determined by the sol-
vent density profile,r t(x), which satisfies

r t~x!5r0 expF2
v

D* ~x2x0!G , ~30!

wherev is the fluid velocity,D* the effective diffusion co-
efficient, andr0 the solvent distribution at contact with the
wall located atx0 .

In Fig. 2 we show the effective diffusion coefficient
measured by using Eq.~30! as a function of the fluid velocity
for a range of values of the diffusion coefficient. We plot
D* /D0 ~whereD0 is the diffusion coefficient for a quiescent
fluid!. In order to show that there exists an intrinsic
advection-induced spurious diffusion, we plot in the inset of
the same figure the difference between the effective and the
input diffusion coefficient for many values of the input dif-
fusion coefficient as a function of the fluid velocity. Because
all curves collapse, this graph shows that the diffusion coef-
ficient induced by the advection depends only on the fluid
velocity. We observe that the dependence on the~absolute
value of! flow velocity is linear with slope 1/2. Following the
procedure that we used above to compute the factorA0 , we
can derive an expression for the advection-induced diffusion
coefficient. In one dimension, a fractionvDt of the density
r(x) is displaced to the next node, while a fraction (12v)Dt
remains at the original node. The center of mass of the den-
sity is displaced by a factorvDt. Simple algebra then shows
that the second moment of the density variation during a
time step is ^D i

2&5v(12v). The flow-induced diffusion

coefficient in one dimension is thereforeD* 5(1/2)v
2(1/2)v2. In three dimensions this expression is readily
generalized to yield

D* 5
1

2
@vx~12vx!1vy~12vy!1vz~12vz!#. ~31!

By choosing a sufficiently low value of the flow velocity, and
a sufficiently large value ofD0 , we can largely suppress the
effect of this advective diffusion.

If, on the other hand, one is interested in large values of
the Peclet number (Pe5v l /D, wherev and l are, respec-
tively, a typical velocity and length of the system andD the
diffusion coefficient of the solutes!, Eq. ~31! sets an upper
limit. The smallest diffusion coefficient achievable is given
by the spurious diffusion~we put the proper diffusion coef-
ficient to zero!. Then, by substituting the expression for the
spurious diffusion into the definition of the Peclet number,
we obtain

Pe5
v l

D
.

v l
1
2 v2 1

2 v2
5

2l

12v
. ~32!

For reasons of flow stability, the quantity 12v will always
be of order 1. Therefore the maximum Peclet number achiev-
able will be Pe.2l . In other words, a tracer will be able to
travel a distance twice the obstacle size without feeling any
diffusion.

B. Electrolyte in a slit

Next, we consider a fluid confined between two parallel
solid walls at rest, with a constant surface charge. The slit
has a widthL and the surface density charge is fixed to
r(2L/2)5r(L/2)5s/2.

The space between the two slits is occupied by a solvent
and counterions. In order to achieve global neutrality, the
density of the counterion is initially set to be uniformly dis-
tributed,r(x)52s/L, xP$2L/2,L/2%.

FIG. 2. In the lattice-Boltzmann model, advection
causes some spurious diffusion. The figure shows the
computed effective diffusion,D* /D0 , as a function of
the fluid velocity for the steady state described in Sec.
III A 1. The curves are drawn for different diffusion co-
efficients at zero velocity:D050.38 ~circles!, D0

50.57 ~squares!, D050.76 ~diamonds!, andD051.34
~triangles!. In the inset we show that the amount of
diffusion induced by the flow does not depend on the
equilibrium coefficient and has, for small velocities, a
linear velocity dependence. Symbols are the simulation
result and the dashed line corresponds to the theoretical
expression described in the text.
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The actual position of the hydrodynamic and electro-
static solid boundary cannot be resolved within a lattice
spacing. In the neutral case, for the viscosity and geometry
considered the wall can be assumed to be halfway between
two consecutive lattice nodes, as dictated by the bounce-back
rule.14 We will use this position as a reasonable approxima-
tion. In fact, the results we describe for a planar slit indicate
that for a planar wall the electrostatic position of the wall can
be taken as being midway between the boundary nodes. For
a nonplanar interface a separate calibration will be required.

1. Equilibrium distribution of the counterion density

In equilibrium, a uniform charge density on a flat wall
will induce an inhomogeneous equilibrium density profile of
the counterions. For this simple geometry, the charge-density
profile of the counter ions is analytically known~at least, at
the Poisson–Boltzmann level!6,17 for an arbitrary surface
charge density:

r~x!5
r0

cos2~Kx!
, ~33!

wherer05K2/2p l B , K is the solution of the transcendental
equation,

KL

2
tanS KL

2 D5p l BLs, ~34!

which involves the wall charge density. Since we have an
exact solution for the full Poisson–Boltzmann equation for
arbitrary values of the wall charge, this geometry is a good
case to analyze the limitations of the model dealing with
large charges, i.e., beyond the linear Poisson–Boltzmann

limit. For low surface charge densities, the linear regime is
recovered by linearizing Eq.~34!, and the parameterK be-
comesK linL5A4p l Bs.

In the opposite limit of high surface-charge density,K
saturates atKsatL5p. We can then quantify the deviation of
the fluid from the linearized regime, where the electrostatic
interactions are small by analyzing the departure ofKL from
K linL.

In Fig. 3~a! we show the equilibrium counterion distri-
butions in both limits. In our simulations we fixed the Bjer-
rum length to be 0.4, the channel width to 20 lattice nodes,
and we have varied the surface-charge density. In the plot we
show the profiles forK/K lin51.01, 1.13, and 2.01, which
correspond tos50.003 125, 0.031 25, and 0.3125 in dimen-
sionless lattice units, respectively. The highest value ofK is
not far from the saturation value. The figure shows that, with
the present method, we can indeed reproduce the correct
counterion distribution, both in the linear and in the nonlin-
ear regime. In Fig. 3~b! we compare the density profiles close
to the wall in the nonlinear regime for two different slit
widths. The larger the surface charge the more localized the
charge profile will be. The figure shows that increasing the
resolution of the lattice does result in a small but significant
improvement in the calculation of the charge distribution. Of
course, the discrepancy would be greater for a more localized
charge profile. In practice, only the computer resources
~memory! will set an upper limit for the surface charge den-
sity that can be modeled reliably with the present scheme.

2. Electro-osmotic flow

Having verified that the model correctly reproduces the
equilibrium behavior, we next turn to the calculation of flow

FIG. 3. Equilibrium distribution of the charge density of counterions~no added salt! in the slit between two charged walls at a distanceL. The abscissa
measures the distance from the wall in units ofL. The local density is expressed in units of the average charge density in the bulk:r05s/L. ~a! charge
distributions for three values of the dimensionless parameterKL ~see the text!: KL50.553~circles!, KL51.57 ~squares!, andKL52.77 ~diamonds!. In the
same figure, we have indicated the corresponding analytical results@Eq. ~33!# ~dashed curves! for a slit of width L520 lattice spacings. Circles and squares
correspond to the linear regime (K/K lin51.01 and 1.13, respectively!, while diamonds are close to the saturation limit (K/K lin52.01). ~b! The accuracy of the
numerical solution for the charge profile can be improved by increasing the spatial resolution of the lattice, in this case fromL520 ~diamonds! to L540
~circles!. Again, the analytical result is shown as a dashed curve. The curves in~b! correspond to the result for a highly charged surface,KL52.77 (K/K lin

52.01).
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caused by an external electric field. We apply a constant
external electric field that is parallel to the slit,Ei. This field
causes hydrodynamic flow as it exerts a force on those fluid
elements that carry a net charge. If we takey as the compo-
nent along the walls and refer tox as the coordinate perpen-
dicular to the walls, then, at the Poisson–Boltzmann level,
the exact solution for the fluid flow in the steady state can be
written as6

vy~x!5
eEir0

hK2
logF cos~Kx!

cosS KL

2 D G , ~35!

whereh is the shear viscosity of the fluid. In our simulations,
we model the constant electric field by taking into account
the potential difference that it causes between neighboring
lattice nodes@i.e., DF̂ext(y)5EiDy].

Figure 4 shows the computed electro-osmotic flow pro-
file in a slit confined by hard walls with a charge density
s50.003 125~in units of the elementary charge per square
lattice unit!. In the same figure, we also show the analytical
solution @Eq. ~35!, with K/K lin51.01] that is exact in the
Debye–Hu¨ckel limit. Again, there is good agreement be-
tween theory and simulation. This suggests that the effect of
electrostatic forces on the hydrodynamic flow is correctly
taken into account in the simulations.

C. Sedimentation velocity

In the previous sections we have seen that the appropri-
ate equilibrium charge distribution is reproduced both in the
linear and nonlinear regimes of the Poisson–Boltzmann
equation, and that also a charge distribution induces the cor-
rect fluid profiles. We must still show that the opposite cou-
pling works correctly, i.e., we must compute the hydrody-
namic drag on a charged object, in the absence of external
electrical fields.

To this end, we compute the sedimentation velocity of an
array of charged spheres immersed in an electrolyte solution.
In this case, the velocity of the colloidal particle induces a
fluid flow that determines the steady charge distribution

around the sphere. This charge distribution, in turn, affects
the sedimentation velocity of the particle. Hence, all the dif-
ferent couplings between charge, electrostatic potential, and
fluid flow are present. Such a scenario has been analyzed
previously with a different model7 and analytically at infinite
dilution.18 As a consequence, we can again check our simu-
lations against known results.

The system that we consider consists of a charged sphere
of radiusa in a three-dimensional box of sizeL. Because of
periodic boundary conditions, this corresponds to a periodic
array of spheres with volume fractionw5(4pa3/L3). In the
simulation, we first allow the electrolyte to equilibrate with
the particle at rest in the absence of external forces; hence
the system develops its equilibrium double layer. Then, we
apply the gravity as an external body force applied to the
fluid, i.e., we move in the system of reference of the colloid.
In this way we avoid the problem of updating the particle’s
position due to its motion.19 By forcing the colloid to be at
rest, we will not conserve momentum, but by computing the
mean fluid velocity in the steady state~which is reached on a
time scale of orderL2r/h), we can obtain the sedimentation
velocity.

We have fixed the Bjerrum length tol B50.4 and the
radius of the sphere toa54.5 in lattice units. We performed
calculations for two different values of the solvent fluid den-
sity, rs51, andrs520, while the density of the added saltrk

was varied between 1.831022 and 431024. As we vary the
salt concentration, we also change the Debye length from 3.3
to 21. In order to be sure that the equilibrium properties were
correct, we have computed the co- and counterion equilib-
rium density distributions and found very good agreement
with the ones predicted by the Debye–Hu¨ckel theory for all
the Debye lengths considered. In particular, spheres with ra-
dius 4.5 lattice units are well described by their approximate
lattice representation. Sincers@rk , we have performed
most calculations using the second version of our simulation
scheme, as described at the end of Sec. III B. However, we
also performed some simulations using the original model
~taking the solvent density as the overall density!. The only
difference that we observe between the two implementations

FIG. 4. Electro-osmotic flow profile in a slit of width
L520 lattice spacings. The surface charge density,
s50.003 125 (K/K lin51.01), corresponds to the linear
regime. The fluid in between the slit contains only
counterions. The electric field is along they direction. It
has a strength of 0.1 in unitskBT/(D le), whereD l is
the lattice spacing ande is the elementary charge. The
simulation results are compared to the theoretical pre-
diction, Eq.~35!, shown as a dashed curve.
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is a small variation in the numerical value of the sedimenta-
tion velocity. However, this difference already shows up for
sedimentation of a neutral sphere. It is due to a small change
in the fluid viscosity that is caused by a small difference in
the overall fluid density in the two implementations. The
valency of the macro-ion was chosen to beZ510, which
corresponds to the small charge limit. Although our compu-
tational scheme should also work outside the Debye–Hu¨ckel
limit, we restrict ourselves to this regime, because it is only
in this limit that we can compare with existing analytical
results. Specifically, Booth predicted that the sedimentation
velocity, U0(Z), of a weakly charged sphere of valencyZ in
the dilute limit can be expressed as18

U0~Z!

U0
512c2Z2, ~36!

whereU0 is the sedimentation velocity of a neutral sphere,
andc2 is a constant that can be computed analytically in the
Debye Hückel limit. For the simplified situation of monova-
lent co- and counterions,z152z251, which have the same
diffusivity, D15D25D, the expression forc2 simplifies to

c25
kBTlB

72pa2hD
f ~ka!, ~37!

where f (ka) is a linear combination of exponential integral
functions7 and is a function of the inverse Debye length,k
5lD

215A4p l B(kzk
2rk. We have checked that the sedimen-

tation velocity scales as predicted with the viscosity. We
have also verified that we are indeed in the linear regime
where the sedimentation velocity is proportional to the ap-
plied gravitational field. In particular, for the two values of
the density considered,rs , the linear regime was obtained
for forces per unit of volume such that the flow velocity
never exceeded 0.1 in lattice units.

Figure 5 shows the sedimentation velocity of a weakly
charged sphere (Z510) as a function of the inverse Debye

screening length. As can be seen from the figure, the sedi-
mentation velocities scales with the ionic diffusivity in the
way predicted by Eq.~37!. The inset in the same figure
shows that this scaling breaks down at higher colloidal
charges (Z5100), i.e., outside the range of validity of the
linearized Poisson–Boltzmann description.

Figure 6 shows the reduced sedimentation velocity
@Uw(Z)/Uw(Z50)# as a function ofka for a range of vol-
ume fractions. As the volume fraction decreases, the curves
approach Booth’s infinite-dilution result, while the minimum
sedimentation velocity moves toward the minimum value
predicted by theory. In order to compare quantitatively the
simulation results with Booth’s theory, Eq.~36!, we must
extrapolate the computed values forUw(Z)/Uw(Z50) from
the finitew values of the simulations to the infinite-dilution
limit, U0(Z)/U0(Z50). For neutral spheres Hashimoto has
shown that that the sedimentation velocity converges very
slowly to its infinite-dilution value, namely, as20

Uw~Z50!

U0~Z50!
5121.7601w1/31w1O~w2!, ~38!

Ladd has numerically verified this dependence.21 For
charged spheres, due to the electrostatic screening, we still
expect that the dominantw dependence comes from excluded
volume; previous results indicate that this is indeed the case7.
When performing the dilute limit expansion, we therefore
decided to single out the major volume fraction dependence
by normalizing the simulation results with the Stokes drag
coefficient, i.e., computing the low-density limit of
Uw(Z)/U0(0). As aresult, it is reasonable to obtain the same
functional dependence onw as Hashimoto with a slightly
different amplitude. Specifically, we expect

Uw~Z!

U0~0!
512~1.76011e!w1/31O~w2/3!, ~39!

FIG. 5. Reduced sedimentation velocity of a periodic
array of colloids of valencyZ510 in an electrolyte as a
function of ka. The figure shows the results for two
different values of the ionic diffusion coefficients. The
curve forD0

(1)50.95 ~circles! has been rescaled to the
curve for D050.19 ~3! according to Eq.~37!, i.e.,
U(D)5U(D0

(1))* (D0
(1)/D0). The superposition of the

two curves shows that the scaling is obeyed. In the inset
we also show the results for a colloid of valency
Z5100. However, in this high-charge regime the sedi-
mentation velocity does not scale with the diffusion co-
efficient in the way predicted by the linearized theory.
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wheree is much less than one. Eventually, the dilute limit is
obtained by extrapolating Eq.~39! to w50.

In Fig. 6 we show the extrapolated sedimentation veloci-
ties for a particular value ofka. The estimated error in the
limiting sedimentation velocity is rather large. It could have
been reduced by computing more values of the sedimenta-
tion velocity at low volume fractions. In addition, there is
some uncertainty in the value of the effective sphere radius.
In light of these uncertainties, the agreement with the Booth
limit in Fig. 6 is gratifying.

D. Absence of spurious fluxes

We pointed out in Sec. III that one of the incentives for
developing the present model was to eliminate any mixing of
continuous-space gradients and discretized gradient opera-
tors. The reason is that the inevitable approximations associ-
ated with the discretization of gradient operators usually lead
to the appearance of spurious mass and momentum fluxes,
even in equilibrium. Such spurious fluxes are present, in par-
ticular, whenever there exist spatial inhomogeneities related,
for example, to the presence of liquid interfaces. In the
present approach, we only use lattice-gradient operators that
have been constructed such that, in equilibrium, no flow can
result. To demonstrate the effect that this has, we compare
the present method with an existing ‘‘mixed’’ method. In
particular, we consider a spherical colloid of radiusa54.5,
at rest in an electrolyte in a cubic box of diameterL520.
The valency of the sphere isZ510 and the system as a
whole is electrically neutral. In Fig. 7 we show the projection
of the momentum flux in the equatorial plane of the sphere
and compare these residual fluxes both for the model intro-
duced in this paper and the model of Ref. 7. Figure 7~a!
shows that spurious currents, although small, are certainly
not negligible in this case. Moreover, their magnitude is
clearly correlated with the distance to the colloidal particle:
the largest currents appear in the region where the spatial
gradients are largest. For highly charged spheres~i.e., outside
the linear Debye–Hu¨ckel regime! these spurious fluxes will
become larger. In contrast, in Fig. 7~b! ~the present model!,

the spurious fluxes are at the level of machine precision. In
fact, to make them visible at all, we had to multiply the
momentum fluxes by a factor 1013 relative to the old model.
In other words, the residual fluxes are controlled by machine
accuracy. Even at this level one cannot detect a correlation
between the fluxes and the position of the sphere. We can
conclude that the proposed model eliminates the appearance
of spurious equilibrium fluxes.

VII. CONCLUSIONS AND DISCUSSION

We have introduced a new model to simulate the collec-
tive dynamics of nonideal fluid mixtures, with a special em-
phasis on its use to study electrokinetic phenomena. The
method relies on a lattice-Boltzmann model, where the inter-
actions are introduced as effective forces. In this respect, our
model resembles a Vlasov kinetic model, as opposed to pre-
vious kinetic lattice models. In our approach the fluxes be-
tween neighboring lattice nodes are the fundamental dynami-
cal objects that couple external fields to both electrical
conduction and hydrodynamic flow.

As a result of the symmetric formulation of the flux be-
tween neighboring nodes we can impose strict local mass
conservation. As a consequence, the present model is free of
spurious boundary fluxes that plague all other lattice-
Boltzmann models of fluid mixtures. Moreover, a link-based
description has the additional advantage that boundary con-
ditions are easily implemented.

Second, by using a multistep approach, we can vary
ionic mobilities over many orders of magnitude. This feature
of our model allows us to explore electroviscous effects over
a wide range of Peclet numbers. We have shown that flow
causes spurious advection diffusion. However, this effect is
well understood and can be made negligible in most practical
cases.

We have checked the performance of the model by
studying equilibrium diffuse layers, showing that it is pos-
sible to recover both low- and high-charge density regimes.
In the latter, the only limitation is related to computational
resources, because a finer grid is required to resolve the nar-

FIG. 6. Sedimentation velocity of a periodic array of
spheres of valencyZ510 and hydrodynamic radiusa
54.3. The Bjerrum lengthl B50.4 ~in lattice units!. The
diffusion coefficient of both positive and negative ions
is set toD50.19. We compare simulation results for
finite volume fractions, namely 0.0416~squares!,
0.0123 ~diamonds!, 0.005 21~triangles!, and 0.002 67
~circles! against the Booth theory, which is valid at in-
finite dilution ~dashed curve!. For ka50.5 we also
show the estimated value of the sedimentation velocity
at infinite dilution~see the text!. The point corresponds
to the extrapolation of the law, Eq.~39!. Within the
estimated error, the extrapolated simulation results
agree with the predictions of Ref. 18.
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rower charge profiles that develop nearly highly charged
walls. To test the coupling of electrostatics and fluid flow, we
have computed the sedimentation velocity of a charged
sphere. These simulations indicate that the existing theoreti-
cal predictions are reproduced in the low-charge, low-density
limit. As the charge of the colloid is increased, the simulation
results start to deviate from the theoretical predictions that
apply in the linearized Poisson–Boltzmann regime.

Even though in the present paper we have focused on
electrostatic interactions and, in particular, we have not dis-
cussed molecular interactions that favor demixing, such in-
teractions could also be incorporated in the present model.
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