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We present a robust scheme for solving the electrokinetic equations. This goal is achieved by
combining the lattice-Boltzmann method with a discrete solution of the convection-diffusion
equation for the different charged and neutral species that compose the fluid. The method is based
on identifying the elementary fluxes between nodes, which ensures the absence of spurious fluxes
in equilibrium. We show how the model is suitable to study electro-osmotic flows. As an illustration,
we show that, by introducing appropriate dynamic rules in the presence of solid interfaces, we can
compute the sedimentation velocitgnd hence the sedimentation potentiafl a charged sphere.

Our approach does not assume linearization of the Poisson—Boltzmann equation and allows us for
a wide variation of the Peclet number. ZD04 American Institute of Physics.

[DOI: 10.1063/1.1760739

I. INTRODUCTION tions are ill-suited to deal with the statistical mechanics of
charge distributions in ionic liquids, even apart from the fact
The study of the dynamics of suspensions of chargeghat such techniques are often ill-equipped to deal with com-
particles is interesting both because of the subtle physicaex boundary conditions.
underlying many electrokinetic phenomena and because of | this context, the application of mesoscogicoarse-

tr}e practical rhele_vancg gf Tuc_h |C|)hen0n"||ena]1c| f(,)é%t?e thaV"Hrained") models to the study of electrokinetic phenomena
of many synthetic and biological complex fluidsIn par- . complex fluids seem to offer a powerful alternative ap-

ticular, electrokinetic effects can be used to control the trans- oach. Such models can be formulated either by introducing

) pr
port of charged and uncharged molecules and colloids, usm@ﬂ . L
electrophoresis, electro-osmosis, and related phenofesa ective forces with dissipative and random components, as
' ’ "_in the case of dissipative particle dynami@PD),® or by

micro-fluidic devices become ever more prevalent, there argtartin from simplified kinetic equations, as is the case with
an increasing number of applications of electro-viscous phet-h | t?' Bolt P th Bq '
nomena that can be exploited to selectively transport mate- € laftice-bollzmann me odB). , .

The problem with the DPD approach is that it necessar-

rial in devices with mesoscopic dimensidhs. o . . .
In virtually all cases of practical interest, electroviscous! Introduces an additional length scdlée effective size of

phenomena occur in confined systems of a rather comple'® charged particlgsThis size should be much smaller than
geometry. This makes it virtually hopeless to apply purelythe erye screening length, because. otherwise real charge-
analytical modeling techniques. But also from a molecularordering effects are obscured by spurious structural correla-
simulation point of view electroviscous effects present a forlions; hence, a proper separation of length scales may be
m|dab|e Cha”enge_ First Of a”, the Systems under Considerdifficult to aChieVe. A Iattice-BOIthann model f0r electro-
ation always contain at least three components; namely ¥iscous effect was proposed by Warfem this model, the
solvent plus twooppositely chargedspecies. Then, there is densities of thécharged solutes are treated as passive scalar
the problem that the physical properties of the systems ofields. Forces on the fluid element are mediated by these
interest are determined by a number of potentially differenscalar fields. A different approach was followed in Ref. 7,
length scales(the ionic radius, the Bjerrum length, the where solvent and solutes are treated on the same footing
Debye—Huwkel screening length and the characteristic size ofnamely as separate spegieghis method was then extended
the channels in which transport takes placks a result, to couple the dynamics of charged colloids to that of the
fully atomistic modeling techniques become prohibitively electrolyte solution. As we shall discuss below, both ap-
expensive for all but the simplest problems. Converselyproaches have practical drawbacks that relate to the mixing
standard discretizations of the macroscopic transport equaf discrete and continuum descriptions.

The LB model that we introduce below appears at first
3Electronic mail: capuani@amolf.nl, frenkel@amolf.nl sight rather similar to the model proposed by Warren. How-
PElectronic mail: ipagonabrraga@ub.edu ever, the underlying philosophy is rather different. We pro-
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pose to consider thBuxesbetween connected nodes as the  p,

basic physical quantities that determine the evolution of local ~ —;~ + V-pkvi=0, 1)
densities. Such a formulation ensures local mass conserva-

tion, does not rely on fluxes or gradients computed at thavherev, is the velocity ang the density distribution of the
lattice nodes(which constitutes a source of error in other species labeled bk. The total densityp=Z,py, is also
models due to the need to approximate them on a latticeconserved, and satisfies an equation analogous to(Eqg.
and by choosing a symmetric formulation for the link fluxeswith respect to the barycentric velocipw= 2 pyvy, which
in terms of the nodes that are affected, we can recover théescribes the evolution of a fluid element. If we refer the
proper equilibrium without spurious fluxes. Our model reliesmotion of all species to this common velocity, then Ed).
on a LB formulation for mixtures. Hence, the improvementscan be expressed as

of the formulation based on link fluxes will overcome some

of the Iimitation of previous LB models for mixtures based ﬂ+v.pk\,: ~ Vi, )
on gradient expansions of a free enefgy. Jt

The method described is very flexible, and, in particularyhere we have introduced the relative current of spekjes
general boundary conditions are easily implemented. Thi§k=pk(vk—v), which accounts for all dynamical effects aris-
feature also makes the proposed formulation attractive, SiHQﬁg from the mismatch in velocities between the different
it avoids problems related to mass and charge conservation 8becies. On very short time scales, such currents are con-
fluid—solid interfaces, an artifact that has plagued previougrolled by friction relaxation. However, for mixtures com-
LB implementations. It is then possible to model the dynamyosed of molecular constituentas is usually the case in
ics of colloidal particles and polyelectrolytes in solution. Thegjectrolytes, the inertial time scale is extremely small; hence
electrostatic interaction between them is derived from thene relative current can be assumed proportional to a thermo-
charge distribution in the fluid. Hence, we do not need togynamic driving force, which is proportional to the gradient
assume any specific form for the interaction between chargegk the chemical potential. As a result, the relative current of

colloids, or between monomers in a polyelectrolyte. Electrospecies becomes diffusive and can be expresséd as
osmosis, the sedimentation potential, electrophoresis, or

other electrokinetic phenomena can be easily treated within
the model. In this paper we consider the first two to illustrate
the capabilities of the method.

The electrolyte is treated at the Poisson—Boltzman
level. We are not restricted to the linearized Debyéekél
regime and can study the electrokinetic effects at high charg
densities, being only limited by ionic condensati@s oc-
curs, for example, in cylindersThe model we introduce will
miss effects due to charge correlations.

jk=—2k DikpiV B, ©)

Iﬁlvhere,fg’ is 1kgT, with kg the Boltzmann constant andTl/
the inverse temperatur@u, = log p+Bug: is the chemical
gotential decomposed in an ideal and excess part, ihile
corresponds to the diffusion coefficient that determines the
flux of species induced by spatial variations in the chemical
potential of speciek. For the sake of simplicity, we concen-
The remainder of this paper is organized as follows: intrate on the case where cross diffusion is neglected, and

Sec. Il we describe the hydrodynamics of fluid mixtures tohenceDik: Diéi« . By substituting the chemica] po.tential in
set the general background. In Sec. Ill we describe the prdEd- (3), We can then express mass conservation in the form

posed numerical method and, subsequently, in Sec. IV, waf a set of _convection-diffusion equat_ions, expressing the
discuss how to model general solid interfaces within thistwo mechanisms that control the density evolution for each

lattice model. In Sec. V we focuses on the special case ofP€C€S;

interest to treat electrokinetic phenomena. In Sec. VI we

validate the method by analyzing different situations of in- WﬂLV'ka=V°Dk[Vkar PV Byl (4)
terest, including electro-osmosis, and sedimentation.

IIl. HYDRODYNAMIC DESCRIPTION B. Momentum conservation

OF NONIDEAL FLUID MIXTURES Next, we consider momentum conservation. On the

In some respects, the dynamics of electrolytes at hydro§ame length and time scales, momentum conservation im-

dynamic scales is analogous to that of multicomponent miXplies that the barycentric velocity follows the Navier—Stokes

tures. The simplest electrolyte model consists of two ionicequat'on:

species and a neutral solvent. In order to provide the general

framework for the description of electrolyte dynamics, we — ZrpV+V-pw= PVAV+EV(V-v) = Vp+F*, )

first briefly review the dynamics of mixtures on hydrody-

namic length and time scales. As in all hydrodynamic dewhere » and ¢ are the shear and bulk fluid viscosities, re-

scriptions, the starting point of any discussion are the laws o$pectively, whileF*' is the external force acting on a fluid

conservation of mass and momentum. element. The effect of the interactions among the different

species enters as a net force expressed as the gradient of the

local pressurep. In the presence of spatial gradients, the
Every species of the fluid mixture satisfies the usualpressure has, in general, a tensorial character, and can be

mass conservation law: derived from the free energy of the system. However, for

A. Mass conservation
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ideal electrolytes, the local pressure can always be expresséd Diffusion

asa ;calqr. Hgnce, for the sake of simplicity we will consider Let us assume for the time being that the mixture dif-
this situation in what follows. As a result, we only need to fuses in a fluid at rest. Equatia®) then becomes

input the free energy of the mixture to determine both the ’
pressure and chemical potentials. Specifically, if we know ¢ .
the free energy per unit volumgf(r)=3p.[log(A%p) ﬁpk:_v'lk-
—1]+Bf% then

11)

Integrating both sides of this equation over a voluvieand

Bu==log p+ Bu using the Green’s formulfy V-j dV=§, j -ndA, we obtain
(6)
_ _ J R
Bp—; PkIBMk_IBf_Ek (Pt pi) — BT il prdV=— fﬁA jirn dA, (12)
0 0

where the free energy, the chemical potential, and the pregyhere i is the outward unity vector normal to the surface,
sure are position dependent. The first term of the pressur, 5, enclosing the volum¥/,.

corresponds to the ideal-gas contributigip’= X while As we have pointed out previously, we will consider

the other two contain all the information of the interactions yosities defined on nodes of a lattice and the time evolution
among the fluid species. If there is one majority neutral COMyolves at constant time steps. In this case, we can identify
ponent, which only contributes to the ideal part of the presy,q olumev, with the volume associated to that node, and
sfu're, then the exce;s component of thg pressure can be |deA:10- is related to the connectivity of the lattice nodes. Then,
tified as the ogmotlc pressure of Fhe mixture. In general, th%q. (12) states that the change of the total number of par-
pressure gradient follows from Gibbs—Duhem: ticles enclosed in the volume corresponding to noéeuals
the sum of the outward fluxes. Such fluxes can only take
BVp=; PkBVMF; (Yot puBY 1), (7)  place by mass transport to the neighboring nodes that are

connected to the central node, according to the structure of
and acts as a force. We will use this interpretation in the LBthe predetermined lattice connectivity. Hence,

implementation discussed in the next section.
Using the last expression for the pressure gradient, the n(rt+1)—ng(r,t) = _AOZ i(r) (13)
Navier—Stokes equation reads as i

d ) ” wheren,(r) is the number of particles of specikeat noder,
Epv-l- V.pw=5VVv+£EVVev—Vp while j;(r) accounts for the fraction of particles of spedies
going to noder+c¢;. If we consider the velocity moving
B ex . ext opposite toi, i.e., ¢;=—¢;, we havej,;(r)=—j.(r+¢)
; PV B F ®) because these fluxes are always defined considering that the

particles move away from the reference node. This unam-
Il. NUMERICAL LATTICE METHOD biguously show that the fluxes are related to the links joining

the connected nodes, rather than being quantities defined on

We propose a model that combines a description of mothe nodes.

mentum dynamics based on lattice Boltzmann, with a nu- |t is worth noting that in the previous balance equation
merical description of the convection-diffusion equation.the relevant quantity is the number of particles of spekiais
Quantities are defined on the nodes of a latticegnd time  noder, n,(r), rather than its number density,(r). If we
evolves in discrete time steps. The lattice is prescribed byake the volume of a cell as our unit of volume, thesr)
specifying its connectivity. The connections of each node are=n,(r). However, in the presence of solid boundaries this
determined by specifying the set of allowed velocities,  distinction may become relevant. The prefacty in Eq.
where the subindex runs over all the allowed velocities. (13) is related to the geometrical structure of the lattice.
Then, each node is connected to the nodes-c; . Rather than connecting it directly with the area of the
Wigner—Seitz cell that can be associated to ngdee derive
its magnitude by computing how density diffuses to the
For convenience, let us rewrite the convection-diffusionneighboring nodes. In Sec. VI A we will compute explicitly

A. Diffusion model

equation, Eq(4), in the form this geometric prefactor for a particular lattice. In the follow-
P ing, when referring to link mobility, we will use the symbol
1 PR Vepv=— Ve, (9 d=DyAo. o _
Using link fluxes to compute the variation of the densi-
where the diffusive flux is ties of the different species avoids approximating the diver-

. ex gence on a lattice, a source of lattice artifacts, and the related
= =DVt pV Biic). (10 potential spurious fluxes that may appear. Moreover, the use
For the sake of clarity, we discuss separately the change iof these link fluxes also imposes locally mass conservation to
density of the speciek due to diffusion and to advection. machine accuracy, avoiding the errors caused by the discreti-
The total change in time of the density is simply the sum ofzation of the spatial gradient operator. We must still provide
the two contributions. a prescription to implement the diffusive fluxes. These are, in
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principle, given by Eq.(10) and involve spatial gradients 1
between two neighboring lattice nodes. In equilibrium§? o
~exd —Bu®] and, as a consequence, Etj0) predicts that
all diffusive fluxes vanish. However, the direct implementa-
tion of Eqg. (10) on a lattice will suffer from discretization
errors that will result in small but noticeable spurious fluxes.
To eliminate this effect, it is convenient to write the expres-
sion for the flux on a link as

4
ji(r,t) = —Dye PH OV p (1 t) @Bl (r], (14) °

because, in this expression, the gradient becomes identically

zero when the density distribution corresponds to its equilib-

rium form. This also holds for the discretized form to be
discussed below. Consistent with the idea that the flux can be
expressed in terms of link mass fluxes, we propose a sym-
metrized implementation gf; involving magnitudes defined

in the two connected nodes,andr+c;. In particular, we 7

1
I
|

8 I 9
1
i

write the flux of specie& along the linkc; as i o o
e*ﬂﬂ-ﬁx(f)_F e*,BMEX(HCi)

jk'(r) - _ dk FIG. 1. Density redistribution due to advection. To advect the charge of a

: 2 given nodd(in this case, node numbey i one time unit, we shift the whole

cell with the local velocity vector of that node (,v,). Next, we displace a
ne(r+ Ci)eﬁ,uﬁx(HCi) — nk(r)eB“Ex(r) fraction of density equal to the area of the cell that is now in the correspond-
, (15 ing site. In the graph a fraction of the density equal to the shadowed rect-

Ai angle aread,v,) goes from cell 5 to cell 3, a fraction (lv,)v, goes to

_ _ . . . cell 2, (1-v,)v, goes to cell 6, and (*v,)(1—-v,) stays at node 5. For the
whereA;=|c|=|c;| is the distance between the two neigh- sake of clarity, the figure shows a two-dimensional flow. In practice, the

boring nodes. This symmetrized formulation ensures that, t@nalogous procedure is carried out in 3D.

machine accuracyjy;(r)=—jyi-(r+¢), and mass is con-

served for the model elementary dynamic processes. Note

that, based on the mass conservation expression(18y. then distribute the amount of particlag into the intersected
the global mass change of nodeis the sum of the link volumes proportionally to the intersected region. In Fig. 1,
fluxes,j;. Mass evolution in the diffusive limit is described we depict in shadow the volumes that correspond to the frac-
only on the basis of mass flux divergence, as we have ddion of the density that is transported in the new cells. The
scribed. In general, the procedure developed based on lirkdvantage of this approach is that it greatly reduces the spu-
fluxes provides a consistent framework to obtain other grarious diffusion that usually results during advection in lattice

dients if needed. models. To be more precise, even with the present method,
advection will cause some spurious diffusigmoportional to
2 Advection the flow velocity. However, in Sec. VIA we show that, in

. . _tpractice, this effect is negligible.
Local density can also be altered due to advection i

there is a local velocity of the fluid. If, for the time being, we

disregard diffusion, the advection mechanisms can be writteR- Lattice Boltzmann method

in the form In order to simulate the hydrodynamic flow of the fluid,
P we make use of the lattice-Boltzmann approach. This tech-
ﬁpk=—v~(pkv), (16 nigue has been used extensively to model hydrodynamic

flows in complex geometrie€. It is equivalent to solving a
wherev is the barycentric fluid velocity. In principle, the discretized version of the Boltzmann equation with a linear-
change in the number of particles could be computed on thized collision operator. This method describes the dynamics
basis of the advection along each link, in a way similar toof a fluid in terms of the densities of particles that “live” on
Eg. (13). However, as we will describe in the next section, the nodes of a cubic lattice and have discrete velocftigs
the model we will introduce provides the velocity at eachwherei labels the links between a lattice pointand its
node, rather than the link velocity. In order to avoid numeri-neighbors. The values of the velocities are chosen such that,
cal artifacts and spurious diffusion due to the interpolation tan one time step, a particle moves along a link from one
get such a link velocity, we propose an alternative implementattice node to its neighbor. In the lattice-Boltzmann model,
tation of the advection process. We still consider tigt) the unit of length is equal to the lattice spacing and the unit
give us the number of particles in a volume element centeredf time is equal to the time step. In addition, the unit of mass
around noder. Since we know the velocity of that node, (or, equivalently, energyis fixed by the requirement that, in
v(r), in one step the node willirtually displace tor+v(r).  the continuum limit, the transport equations for the lattice
As a result, the volume associated to nadwill intersect  model approach the Navier—Stokes equation. This imposes a
some neighboring cells of the real latti¢eee Fig. 1L We  relation between the temperature and the speed of Jeaed
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below Eq.(20)]. The central dynamic quantity in the lattice- mixture model is obtained by following the same procedure
Boltzmann approach is the one-particle distribution functionas the one needed for the standard lattice Boltzmann method
fi(r,t), which describes the probability of having a particle for one phase flows:

at siter at timet with velocity ¢;. The hydrodynamic vari- Introducing the mixture nonideality as a local effective
ables are obtained as moments of this distribution functiorforce implies that the fluid reacts with the appropriate sus-
over the lattice velocitiesg; ; e.g., density and momentum ceptibility to applied external fields, although in the absence

can be obtained as of spatial gradients the equilibrium distribution corresponds
to that of an ideal gas. Since we are not concerned with local
p(r )= f.(r.t) structure, the model can be regarded as an effective kinetic
[} 4 i [ [}
I

model, similar in structure to a linearized Vlasov equation.
(17) Hence, this approach differs from previous proposals that try
to derive the hydrodynamics of nonideal mixtures from ki-

j(r,t)Ep(r,t)v(r,t)zzi Gti(r.b), netic models of mixturd$ or from a modification of the
equilibrium distribution to recover the equilibrium presséire.
respectively. For a particular choice of the shear viscosig 1/6 in

In the presence of external forcé,the evolution equa- lattice units'* the general dynamic rule E¢L8) simplifies to
tion can be expressed as

| 1
fi(r4G Lt 1) = Fi(r,0) + Ly (r,0 — 4,01+ 45, fintrh=al p(r.h+ 5 6-(rH+F)
(18 )

1

where £[V] is a linear collision operator acting o#f that Z 5
tends to relax the distribution function toward its equilibrium 2¢s pvvi(GiG—cgl)

limit. Hence, one needs to specify the equilibrium distribu-g 1he sake of convenience, we implement the model with
tion as well as the collision operator. The collision operator,iq simplified updating rule. However, it is straightforward

ensures mass and momentum conservatibe., =iLij g implement the more general form that allows us to impose
=3¢ L;;=0). Its eigenvalues also determine the VISCOSItY jihar values of the viscosity

of the fluid. The equilibrium distribution appearing in EqQ. e peculiarities of the nonideality of the mixture enters

(18) is that of an ideal gas. It can be sh_own that the N"’T"ier‘through the forcing terniF) in Eq. (21). This forcing term
Stokes equations are r.e%%\{ered, keeping a low-velocity €Xz3, he decomposed into an external field and a interaction
pansion of the Maxwellian, i.e., contributions,F= F®'+ F°| This interaction force, as previ-
1 1 ously described in Eq7), has the formF°'=3,p,V But*.
fe9=al| p+ S+ —4pvv:(cici—c§1) , (19  Using the same approach that we have used to model the
S convection-diffusion equation, we can determine the force

. (21

S
_ _ o acting on each linkF;. Moreover, for the particular case
where: is the double inner product, and the coeffici@its  where the diffusion matrix is diagonal,

depend on the geometry of the lattice, and are chosen to )
ensure that the anisotropy of the lattice does not affect the ¢ )_$ Tk M(r+c)—ny(r) (22)
hydrodynamic behavior of the model, as well as ensuring ! x | Dk A, '

that al .the distribution functions are non-negative. More'The advantage of using the force exerted on the links is that,
over, C, is the speed of sound and its value depends on the

values of the coefficienta', but it is always smaller than again, we keep a symmetric dependence on the neighboring

unity (in lattice unit3. Finally, the termy; accounts for the nodes, and, moreovert;(r)==F;/(r+¢). Yet, in the
- n ~ lattice-Boltzmann update rule, we need the force acting on
external force. It satisfie€;#;=0 and =;c;¢;=F. For a : . . .
. - the node. This force can be obtained averaging the link
more detailed description of how to model the external force
forces,
see, e.g., Refs. 11 and 12.

By means of a Chapman Enskog expansion, it can be sol _E i B
showrt! that in the hydrodynamic limit one recovers the ~ Fa (=2 aciFi(r), a=xy.z (23
Navier—Stokes equation, _ _ )

Let us now introduce an alternative way of treating the
same systems. There are situations, as is the case in electro-
lytes, where one of the components of the mixture is domi-
nant, and plays the role of the solvent. In this case, we can
Since the third term on the rhs is the pressure gradient for asingle out this componenpg, and treat it separately from
ideal gas, if we fix the temperature such tlk@trzcg, we the rest. In particular, since>p,, we can approximate the
then recover Eq(5) for an ideal mixture. For nonideal mix- overall density by the solvent densitg<ps), and the over-
tures, we will introduce the missing contribution to the pres-all momentum by the solvent momentumpu(=X,py vk
sure gradients as a local external foree,Because the sol- =pgws). If we then relate the moments of the distribution
utes act onto the solvent exclusively by means of thidunction f; to the solvent density, i.eX;f;=ps and Z;c¢f;
effective forceF, the hydrodynamic limit of the non-ideal- =pgvs instead of Eqs(17), we impose a constant solvent

J
EpV+V~pVV= nV2pv+ §VV-V—C§Vp+ F. (20
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density in the incompressible regime. Hence, the rest of theequirement is achieved by a kind of partial bounce-back

components will need to compensate their densities to avoithove: the number of particles that would have been assigned
any net local density variation. Although this incompressibil-to a solid node after advection is reflected back to its node of
ity constraint is not exact, it may be a convenient approxi-origin.

mation. From the point of view of the link force, E@2), it The updating rule, both for the number densities of the

has the computational advantage that one g&ts convection-diffusion equations and for the lattice Boltzmann

=2jki/Dk and it reduces to the link diffusive flux previ- distribution function, requires the evaluation of gradients of

ously computed, Eq(15). In this case the Navier—Stokes chemical potentials. To this end, we need to specify the val-

equation becomes ues of the excess chemical potentials on neighboring nodes,
J and those may involve the values of the fluid densities in
Epsvst V-poVeVs= 7V v+ gVV-vs—C§Vps contact with the solid wall. We consider that the relevant

value of the density is that in contact with the wall, which is
somewhere in between the fluid and the solid node. Such
—KgTX [Vpit Vu]+Fe value can be obtained by requiring that it is consistent with
K the no-flux condition for the link flux of that species. The no
(24 flux condition is satisfied, requiringsee Eq(15)]

and by takingkgT=c2, we recover an appropriate behavior nk(r+ci):nk(r)eﬁ[ﬂ?(wci)—;t?(r)]’ (25)
whenp>py .

The advantage of this approach is that densities of difwhich should be understood as the extrapolation of the fluid
ferent species are dealt with on different footing, which maydensity to ensure the absence of flux diffusion, and, in gen-
prove advantageous in certain applications, especially whe@ral, it is an implicit equation to obtain an estimate of the
dealing with boundary conditions that act differently on the€xtrapolated number of particlesy(r +¢;). Note that this
solvent and solute, as it is the case if dealing with semiperfictitious extrapolated density is a property of the link, not of
meable membranes. Numerically, in this case there is a née node.
force only when the density distribution deviates from its ~ As we have mentioned in Sec. lIl, the formulation based
local equilibrium value, in contrast with the original method, on the fluxes is based on the evolution of the number of
where the density coming from the advection contributionParticles contained in a given volume element. For the fluid
balances the local force. This ensures an additional way tgodes in the absence of solid interfaces the particle number is

avoid spurious artifacts from the underlying lattice. proportional to the number density. This is no longer the case
close to a solid wall. This difference is pertinent because the

excess chemical potential and the pressure are functions of
IV. BOUNDARY CONDITIONS the number density, . While for a wall at rest, one can still
If the fluid mixture is confined between walls, or if col- consider that the wall is equidistant from the nodes apd

loids are added to the mixture, we need to specify how thénd pi coincide, for a moving solid surface, the position of

densities and distribution function will interact with solid the solid boundary will change as it moves. In this case, a
interfaces. To account fully for such an interaction, we needoefficienta that establishes how close the solid boundary is
to describe in turn how the distribution function behaves 0 the fluid node should be introduced. In the limiting case

how the particle number evolves, and how we estimate théhat the solid boundary is reaching the neighboring fluid
interacting force at the surface. node, the corresponding cell has a volume that is approxi-

At a solid surface we expect hydrodynamic “stick” mately half the volume of a usual cell, henee-1/2; in the
boundary conditions to apply. One way to impose these is t@pposite case when the solid surface reaches the solid node
apply the so-called “bounce-back rule” on the links. How- One gets accordinglw=3/2. This coefficient then allows us
ever, the standard version of this procedgsee, for ex- 1O relate n,= apy . Although there exist different ways in
ample, Ladd)) allows the fluid to leak into the solid. Al- Which this coefficient may be computed, any smooth func-
though this leakage is usually innocuous, there are c@ses tion that accounts for the volume change will be enough to
typical example being when electrostatics is part of the ex@void abrupt changes in the density when a fluid nodes is
cess chemical potentjaihere this leakage may change the @bsorbed or created by the moving boundary.
density of the solvent inside the solid, leading to a corre-
s_ponding error in the pressure gradient. There exist altemfv ELECTROKINETIC EQUATIONS
tive bounce-back rules that do not allow for any fluid
leakage®® In the previous sections we have developed a model to

The formulation of our model in terms of link fluxes simulate general nonideal fluid mixtures. We will now ana-
simplifies the implementation of boundary conditions for thelyze the special case in which the fluid mixture is an electro-
fluxes of the different species densities,. Since the Ilyte. The simplest electrolyte model corresponds to a three-
convection-diffusion equation involves only mass conservaspecies mixture, two of them being the ionic speciesand
tion, it is enough to impose that there is no net flux on anyp_ with chargesz, e andz_e, and the third one being the
link that joins a fluid node and a solid node. We accomplishneutral solvenps. e is the elementary charge, and andz_
this by imposing that the diffusive flujx;=0 on such a link, are the valencies of the ions. The local charge can then be
and that the flux due to advection also vanishes. This seconekpressed agj(r)=e€[z, p . (r)+z_p_(r)]. The simplest
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free-energy model corresponds to an ideal mixture in thé&/I. VALIDATION TESTS
absence of any local electric field, where we can write

In order to validate the model that we introduced in the
previous section, we compare its predictions against known
results. In particular, we verify that the equilibrium charge
- distribution is properly recovered on the lattice, and that out
with @ being the electrostatic potential and the factor 1/2of equilibrium the different coupling mechanisms between
avoids double COUnting. The chemical potential is then fluid flow and Charge inhomogeneities are proper|y ac-

- counted for.
Bug=logpy+ Bz P, k=+,—,

1 .
BiN= 2 pdlog(Afp) —11+ 5 Ba, (26

=+
=,

A. Effective diffusion

Brs=10gps. As was pointed out below E@13), the diffusion coeffi-
The hydrodynamic evolution equations for this free energ)pient CharaCteriZing the discrete version of the diffusion
model become equation is not the same as the link diffusion coefficiet,
but is related to it through a simple geometrical factgy
that depends on the type lattice uség.can be evaluated as
follows. Consider a situation where the transport of spekies
is purely diffusive. A density perturbatign,, initially local-
ized at node,, will spread in one time step to the connected
neighboring nodes. If the process is purely diffusive, we
know the amplitude of the second moment of the density
18 ezp V. (2g) Variation during this time step andA2p(ro+c ,to+1)

K =6D,pg=6Aqd\pg in a three-dimensional cubic lattice. Let

. . ) . us consider for concreteness the D3Q18 lattfcerhich is
We still need an additional equation that prescribes hoV\fhe lattice we used in our LB simulation. Since the link

the electrostatic potential is related to the local charge denﬂuxesj:dpr/A- after one time step the density in each
| 1

sity. Since transport processes associated to mass and ¥ the six nearest neighbors #po, while the density in

mentum transfer in fluid mixtures are much slower than the, .« ok 19 connected nodeslis, /2. As a re-
propagation of electromagnetic waves, the electric field is

: . . sult, 2{AZp(ro+ G to+1)=d(6+ 12y2)pg, which implies
completely determined by the Poisson equation, that Ag=1+ 22 [or Dy = dy(1+2(2)]. Depending on the
value ofdy, it might happen that the total density transferred
: (29 to the neighbors is larger than the initial density. For D3Q18

this gives us an upper bound for the input diffusion coeffi-
which has been expressed in terms of a dimensionless potefient that ensures absolute stability< 1/(6(1+24/2))
tial, ®=eBd, while |z=Be?%/(4m¢) is the Bjerrum length =0.044. In practice, we find that for all cases that we have
(the distance at which the electrostatic and the thermal enefnalyzed, numerical instabilities related to diffusion become
gies are equal with € the dielectric constant of the fluid. In relevant for values of the input diffusion coefficient
the previous equatiom stands for the charge density of the =0.05. In order to perform simulations at higher diffusivi-
solid surfaces, if there are confining walls or moving sus-ies, we need to modify the numerical scheme to simulate the
pended particles in the electrolyte. Obvioustill be non-  diffusion equation. This instability can be overcome by in-
zero only on those solid surfaces. The equatit#®, (28), troducing a multiple-time step technique. To this end, we
and (29) are commonly referred to as the Electrokineticintroduce a smaller diffusion coefficient;=d,/N;; and it-
equations. erateN;; times the discrete diffusion equation, E3J3), to

The electrostatic potentiab can be computed using advance the densities one time step.

standard techniques. Specifically, we have implemented a When applying this multiple time step method to solve
successive over-relaxation schef80OR),*® as described in the lattice diffusion equation, one must compute carefully the
more detail in Ref. 7. The advantage of this model is that iforce that should be applied to the distribution functiprat
does not presume a specific type of boundary condition, anthe end of the time step. In fade> should be computed at
can be easily generalized to deal with media of differentall the intermediate steps. All these contributions should then
dielectric constants. Although not as fast as other methodge added to obtain the total force at the end of the iteration.
for solving the Poisson equation, it is adequate for our purWith this technique we can vary the diffusion coefficient
poses because, once the local equilibrium charge profiles amyer several orders of magnitude. For example, in our simu-
achieved, the calculation of the disturbed electrostatic poterfations we could vanD, from D,=102 to D,=6 (all in
tial due to external forces is much less time consuming thaiattice units.
the iteration part related to lattice Boltzmann and convection  On top of the lattice effects on diffusion itself, advection
diffusion; alternative, more sophisticated, variants to solvecan also induce spurious diffusion, because the lattice veloci-
the Poisson equation numerically can be implemented wheties do not coincide, in general, with the local velocity. As a
ever the standard SOR routine proposed here becomes ueensequence, a concentrated set of particles will spread over
practical. the lattice nodes, even if subject to a pure translational mo-

Pt Vepv=DyV [ Vpi+ 2,V D] 27)

J
p pV+ V-pw= nV?pv+ £VV-pv— Cin

kZi Zypx T ps

V2h=—4mlg

Downloaded 23 Aug 2007 to 145.18.109.185. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



980 J. Chem. Phys., Vol. 121, No. 2, 8 July 2004 Capuani, Pagonabarraga, and Frenkel

1.12
T T 1T _@DD, . /*
S 8'/ —{0.0004 PR
| 7 | i FIG. 2. In the lattice-Boltzmann model, advection
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1.08— Ve —0.0002 , computed effective diffusiorD*/D,, as a function of
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tion. Hence, only when the velocity is commensurate withcoefficient in one dimension is therefor®* =(1/2)v
the lattice spacing, both in direction and magnitude, will spu-— (1/2)v2. In three dimensions this expression is readily
rious diffusion be exactly zero. We must then quantify thegeneralized to yield

amount of spurious diffusion. To this end, we consider an 1

ideal binary mixture composed of a solvent with initial uni- *_ _ _ _

form density,ps, and a solute with initial density,. The D* =3 lolv)+uy(1-v)+u1-v,)]. 3D
mixture is contained between two parallel walls that are per-
meable to the solvent but impermeable to the solute. Th
fluid is moving with a uniform velocity perpendicular to
the walls. As a result of the impermeability of the walls to
the solute, a steady state is reached, determined by the soI[]-
vent density profilep;(x), which satisfies the

y choosing a sufficiently low value of the flow velocity, and
a sufficiently large value dD,, we can largely suppress the
effect of this advective diffusion.
If, on the other hand, one is interested in large values of
Peclet number (Pevl/D, wherev and| are, respec-
tively, a typical velocity and length of the system addhe
diffusion coefficient of the solutg¢sEq. (31) sets an upper
) (30 limit. The smallest diffusion coefficient achievable is given
by the spurious diffusioriwe put the proper diffusion coef-
wherev is the fluid velocity,D* the effective diffusion co- ficient to zerg. Then, by substituting the expression for the
efficient, andp, the solvent distribution at contact with the spurious diffusion into the definition of the Peclet number,

pi(X)=po eXF{ - % (X—Xo)

wall located atxg. we obtain
In Fig. 2 we show the effective diffusion coefficient
measured by using E¢BO) as a function of the fluid velocity vl vl 2l
for a range of values of the diffusion coefficient. We plot e= D 1,— 1,2 1y (32)

D* /Dy (whereDy is the diffusion coefficient for a quiescent

fluid). In order to show that there exists an intrinsic For reasons of flow stability, the quantity-Iv will always
advection-induced spurious diffusion, we plot in the inset ofpe of order 1. Therefore the maximum Peclet number achiev-
the same figure the difference between the effective and thgble will be Pe=2l. In other words, a tracer will be able to
input diffusion coefficient for many values of the input dif- travel a distance twice the obstacle size without feeling any
fusion coefficient as a function of the fluid velocity. Becausediffusion.

all curves collapse, this graph shows that the diffusion coef-

ficient induced by the advection depends only on the fluid

velocity. We observe that the dependence on (Hiesolute
value of flow velocity is linear with slope 1/2. Following the
procedure that we used above to compute the fakgorwe Next, we consider a fluid confined between two parallel
can derive an expression for the advection-induced diffusiosolid walls at rest, with a constant surface charge. The slit
coefficient. In one dimension, a fractiamAt of the density has a widthL and the surface density charge is fixed to
p(x) is displaced to the next node, while a fraction{#) At p(—L/2)=p(L/2)=0al2.

remains at the original node. The center of mass of the den- The space between the two slits is occupied by a solvent
sity is displaced by a factarAt. Simple algebra then shows and counterions. In order to achieve global neutrality, the
that the second moment of the density variation during alensity of the counterion is initially set to be uniformly dis-
time step is(A?)=v(1—v). The flow-induced diffusion tributed,p(x)=—o/L, xe{—L/2L/2}.

B. Electrolyte in a slit
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FIG. 3. Equilibrium distribution of the charge density of counteriéns added saltin the slit between two charged walls at a distahcélhe abscissa
measures the distance from the wall in unitsLofThe local density is expressed in units of the average charge density in theppulk/L. (8) charge
distributions for three values of the dimensionless parani€tefsee the tejt KL =0.553(circles, KL=1.57 (squares andKL=2.77 (diamond$. In the
same figure, we have indicated the corresponding analytical r¢Egjt$33)] (dashed curvedor a slit of width L =20 lattice spacings. Circles and squares
correspond to the linear regim&/(K;,=1.01 and 1.13, respectivg|ywhile diamonds are close to the saturation linkit K ;,=2.01). (b) The accuracy of the
numerical solution for the charge profile can be improved by increasing the spatial resolution of the lattice, in this cdse Zfbfdiamonds$ to L =40

(circles. Again, the analytical result is shown as a dashed curve. The curves @orrespond to the result for a highly charged surfade=2.77 (K/K;,
=2.01).

The actual position of the hydrodynamic and electro-limit. For low surface charge densities, the linear regime is
static solid boundary cannot be resolved within a latticerecovered by linearizing Eq34), and the parametdf be-
spacing. In the neutral case, for the viscosity and geometrgomesK,L= V4 wlgo.
considered the wall can be assumed to be halfway between In the opposite limit of high surface-charge denskKy,
two consecutive lattice nodes, as dictated by the bounce-badaturates a L = #. We can then quantify the deviation of
rule* We will use this position as a reasonable approximathe fluid from the linearized regime, where the electrostatic
tion. In fact, the results we describe for a planar slit indicateinteractions are small by analyzing the departur& bffrom
that for a planar wall the electrostatic position of the wall canK;,L.
be taken as being midway between the boundary nodes. For In Fig. 3(@ we show the equilibrium counterion distri-

a nonplanar interface a separate calibration will be requirecbutions in both limits. In our simulations we fixed the Bjer-
rum length to be 0.4, the channel width to 20 lattice nodes,
I P . . and we have varied the surface-charge density. In the plot we
1. Equilibrium distribution of the counterion density show the profiles fol/K,,—1.01, 1.13, and 2.01, which

In equilibrium, a uniform charge density on a flat wall correspond tar=0.003 125, 0.031 25, and 0.3125 in dimen-
will induce an inhomogeneous equilibrium density profile of sjonless lattice units, respectively. The highest valu i
the counterions. For this simple geometry, the charge-densityot far from the saturation value. The figure shows that, with
profile of the counter ions is analytically knowat least, at  the present method, we can indeed reproduce the correct
the Poisson—Boltzmann levél’ for an arbitrary surface counterion distribution, both in the linear and in the nonlin-
charge density: ear regime. In Fig. ®) we compare the density profiles close
to the wall in the nonlinear regime for two different slit
= L, (33 widths. The larger the surface charge the more localized the

cos(Kx) charge profile will be. The figure shows that increasing the
wherepy=K?/27l 5, K is the solution of the transcendental resolution of the lattice does result in a small but significant

p(X)

equation, improvement in the calculation of the charge distribution. Of
course, the discrepancy would be greater for a more localized
&tar< &) — ol (34) charge profile. In practice, only the computer resources

2 2| me-o (memory will set an upper limit for the surface charge den-

which involves the wall charge density. Since we have ar?ity that can be modeled reliably with the present scheme.
exact solution for the full Poisson—Boltzmann equation for )
arbitrary values of the wall charge, this geometry is a good?- Electro-osmotic flow

case to analyze the limitations of the model dealing with  Having verified that the model correctly reproduces the
large charges, i.e., beyond the linear Poisson—Boltzmanequilibrium behavior, we next turn to the calculation of flow
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i / R FIG. 4. Electro-osmotic flow profile in a slit of width
0.6 \ L=20 lattice spacings. The surface charge density,
’ K | 0=0.003 125 K/K;,=1.01), corresponds to the linear
vy L / \ regime. The fluid in between the slit contains only

n counterions. The electric field is along theirection. It
\ has a strength of 0.1 in unitgsT/(Ale), whereAl is
\ the lattice spacing and is the elementary charge. The
L / e simulation results are compared to the theoretical pre-
diction, Eq.(35), shown as a dashed curve.
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caused by an external electric field. We apply a constan@round the sphere. This charge distribution, in turn, affects
external electric field that is parallel to the sk!. This field  the sedimentation velocity of the particle. Hence, all the dif-
causes hydrodynamic flow as it exerts a force on those fluifierent couplings between charge, electrostatic potential, and
elements that carry a net charge. If we tgkas the compo- fluid flow are present. Such a scenario has been analyzed
nent along the walls and refer foas the coordinate perpen- previously with a different modéknd analytically at infinite
dicular to the walls, then, at the Poisson—Boltzmann leveldilution.*® As a consequence, we can again check our simu-
the exact solution for the fluid flow in the steady state can béations against known results.
written a$ The system that we consider consists of a charged sphere
op cog Kx) of rgdigsa in a three-dimgnsionql box of size Because qf .
vy(X)= Po, , (35)  Pperiodic boundary conditions, this corresponds to a periodic
G o 5( &) array of spheres with volume fractian= (4mwa®/L%). In the
2 simulation, we first allow the electrolyte to equilibrate with
where is the shear viscosity of the fluid. In our simulations, the particle at rest in _the ab;gnpe of external forces; hence
we model the constant electric field by taking into accountthe system deyelops its equilibrium double Iayer._Then, we
pply the gravity as an external body force applied to the

the potential difference that it causes between neighborinﬁ i i in th ¢ £ rof £ th lloid
lattice nodedi.e., Ad, (y)=E'Ay]. uid, i.e., we move in the system of reference of the colloid.

Figure 4 shows the computed electro-osmotic flow pro-In thi.s way we "?“’O‘d the g’“’b"“m .Of updating _the particle’s
file in a slit confined by hard walls with a charge density position dge to its motiort? By forcing the colloid to b? at
0=0.003 125(in units of the elementary charge per squarereSt’ we W'" not conserve momentum, _but.by computing the
lattice uniy. In the same figure, we also show the analyticalr.nean fluid velocity |2n the steady Sta(Wh.'Ch IS reaghed ona
solution [Eq. (35), with K/K,,=1.01] that is exact in the time scale of ordeL“p/ ), we can obtain the sedimentation

- - : . locity.
Debye—Huekel limit. Again, there is good agreement be- ve , . _
tween theory and simulation. This suggests that the effect of We have fixed the Bjerrum length i=0.4 and the

electrostatic forces on the hydrodynamic flow is correctlyra?'uf ?_f thefsp:]ere dt'?f: 4.5tm Ilattlce fut?]'ts' Vl\/e pte;lfo_rdmgd
taken into account in the simulations. calculations for two different values of the solvent fluid den-

sity, ps= 1, andps= 20, while the density of the added sajt
was varied between 1810 2 and 4x 10" 4. As we vary the
salt concentration, we also change the Debye length from 3.3
In the previous sections we have seen that the approprio 21. In order to be sure that the equilibrium properties were
ate equilibrium charge distribution is reproduced both in thecorrect, we have computed the co- and counterion equilib-
linear and nonlinear regimes of the Poisson—Boltzmanmium density distributions and found very good agreement
equation, and that also a charge distribution induces the cowith the ones predicted by the Debye-dkel theory for all
rect fluid profiles. We must still show that the opposite cou-the Debye lengths considered. In particular, spheres with ra-
pling works correctly, i.e., we must compute the hydrody-dius 4.5 lattice units are well described by their approximate
namic drag on a charged object, in the absence of externddttice representation. Sincgs>p,, we have performed
electrical fields. most calculations using the second version of our simulation
To this end, we compute the sedimentation velocity of anrscheme, as described at the end of Sec. Ill B. However, we
array of charged spheres immersed in an electrolyte solutiomlso performed some simulations using the original model
In this case, the velocity of the colloidal particle induces a(taking the solvent density as the overall densifyhe only
fluid flow that determines the steady charge distributiondifference that we observe between the two implementations

C. Sedimentation velocity
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0.9998 — 0.96 - FIG. 5. Reduced sedimentation velocity of a periodic
| L X array of colloids of valency =10 in an electrolyte as a
@ 09ss- % function of xa. The figure shows the results for two
0.9997 = L o ey different values of the ionic diffusion coefficients. The
i 0.95 By curve forD{M=0.95 (circles has been rescaled to the
0.9996 — g L 404..,4'__.-4’ curve for Dy=0.19 (X) according to Eq.(37), i.e.,
L x P 0I5 . Il . 1'5 U(D)=U(DM)*(DYID,). The superposition of the
0.9995 E ’ ® < Xa two curves shows that the scaling is obeyed. In the inset
: B we also show the results for a colloid of valency
i @ Z=100. However, in this high-charge regime the sedi-
0.9994 — mentation velocity does not scale with the diffusion co-
l X efficient in the way predicted by the linearized theory.
0.9993 o
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is a small variation in the numerical value of the sedimentascreening length. As can be seen from the figure, the sedi-
tion velocity. However, this difference already shows up formentation velocities scales with the ionic diffusivity in the
sedimentation of a neutral sphere. It is due to a small changway predicted by Eq(37). The inset in the same figure

in the fluid viscosity that is caused by a small difference inshows that this scaling breaks down at higher colloidal
the overall fluid density in the two implementations. The charges Z=100), i.e., outside the range of validity of the
valency of the macro-ion was chosen to Be 10, which linearized Poisson—Boltzmann description.

corresponds to the small charge limit. Although our compu-  Figure 6 shows the reduced sedimentation velocity
tational scheme should also work outside the Debyeskdu  [U (Z)/U ,(Z=0)] as a function ofxa for a range of vol-
limit, we restrict ourselves to this regime, because it is onlyume fractions. As the volume fraction decreases, the curves
in this limit that we can compare with existing analytical approach Booth’s infinite-dilution result, while the minimum
results. Specifically, Booth predicted that the sedimentatiosedimentation velocity moves toward the minimum value
velocity, Ug(Z), of a weakly charged sphere of valengyn predicted by theory. In order to compare quantitatively the

the dilute limit can be expressed‘s simulation results with Booth’s theory, E¢36), we must
Uy(2) extrapolate the computed values td,(Z)/U ,(Z=0) from
fJ =1-c,Z2, (36)  the finite ¢ values of the simulations to the infinite-dilution
0

limit, Ug(Z)/Uy(Z=0). For neutral spheres Hashimoto has
whereUy, is the sedimentation velocity of a neutral sphere,shown that that the sedimentation velocity converges very
andc, is a constant that can be computed analytically in theslowly to its infinite-dilution value, namely, &

Debye Hickel limit. For the simplified situation of monova-

lent co- and counteriong,. = —z_=1, which have the same U, (Z=0) 13 )
diffusivity, D . =D _=D, the expression foc, simplifies to Uo(Z=0) 1-1.7601p""+ ¢+ O(¢%), (38)
kgTlg ) » )
c,=——f(ka
5 ——f(xa), (37) Ladd has numerically verified this dependefiteFor
72mwa“nD charged spheres, due to the electrostatic screening, we still

wheref(xa) is a linear combination of exponential integral €xPect that the dominagtdependence comes from exclgjded
functiond and is a function of the inverse Debye length, volume; previous results indicate that this is indeed the‘case

=\gl= Ao 2200 5=:Z2pr. We have checked that the sedimen-Wh?” perfor'ming the dilute .Iimit expansion., we therefore
tation velocity scales as predicted with the viscosity. Wedecided to single out the major volume fraction dependence
have also verified that we are indeed in the linear regim®y normalizing the simulation results with the Stokes drag
where the sedimentation velocity is proportional to the apCo€fficient, i.e., computing the low-density limit of
plied gravitational field. In particular, for the two values of Y¢(£)/Uo(0). As aresult, itis reasonable to obtain the same
the density considere, the linear regime was obtained functional dependence op as Hashimoto with a slightly
for forces per unit of volume such that the flow velocity different amplitude. Specifically, we expect
never exceeded 0.1 in lattice units. UL2)
Figure 5 shows the sedimentation velocity of a weakl ® _ 13 213
charggd sphereZ(=10) as a function of the inzerse Debyey Uo(0) =1-(1.760k €)™+ O(¢™), 39
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FIG. 6. Sedimentation velocity of a periodic array of
spheres of valency =10 and hydrodynamic radius
=4.3. The Bjerrum lengths= 0.4 (in lattice unitg. The
diffusion coefficient of both positive and negative ions
is set toD=0.19. We compare simulation results for
finite volume fractions, namely 0.041@squares
0.0123 (diamonds$, 0.005 21 (triangleg, and 0.002 67
(circles against the Booth theory, which is valid at in-
finite dilution (dashed curye For ka=0.5 we also
show the estimated value of the sedimentation velocity
at infinite dilution(see the tejt The point corresponds
to the extrapolation of the law, Eq39). Within the
estimated error, the extrapolated simulation results
agree with the predictions of Ref. 18.
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0.9998

Ka

wheree is much less than one. Eventually, the dilute limit is the spurious fluxes are at the level of machine precision. In
obtained by extrapolating E439) to ¢=0. fact, to make them visible at all, we had to multiply the

In Fig. 6 we show the extrapolated sedimentation velocismomentum fluxes by a factor ¥relative to the old model.
ties for a particular value oka. The estimated error in the In other words, the residual fluxes are controlled by machine
limiting sedimentation velocity is rather large. It could have accuracy. Even at this level one cannot detect a correlation
been reduced by computing more values of the sedimentdetween the fluxes and the position of the sphere. We can
tion velocity at low volume fractions. In addition, there is conclude that the proposed model eliminates the appearance
some uncertainty in the value of the effective sphere radiusof spurious equilibrium fluxes.
In light of these uncertainties, the agreement with the Booth

limit in Fig. 6 is gratifying. VII. CONCLUSIONS AND DISCUSSION

We have introduced a new model to simulate the collec-
tive dynamics of nonideal fluid mixtures, with a special em-

We pointed out in Sec. Il that one of the incentives for phasis on its use to study electrokinetic phenomena. The
developing the present model was to eliminate any mixing ofnethod relies on a lattice-Boltzmann model, where the inter-
continuous-space gradients and discretized gradient operactions are introduced as effective forces. In this respect, our
tors. The reason is that the inevitable approximations assocmodel resembles a Vlasov kinetic model, as opposed to pre-
ated with the discretization of gradient operators usually leadious kinetic lattice models. In our approach the fluxes be-
to the appearance of spurious mass and momentum fluxesyeen neighboring lattice nodes are the fundamental dynami-
even in equilibrium. Such spurious fluxes are present, in pareal objects that couple external fields to both electrical
ticular, whenever there exist spatial inhomogeneities relatedsonduction and hydrodynamic flow.
for example, to the presence of liquid interfaces. In the  As a result of the symmetric formulation of the flux be-
present approach, we only use lattice-gradient operators thaween neighboring nodes we can impose strict local mass
have been constructed such that, in equilibrium, no flow camonservation. As a consequence, the present model is free of
result. To demonstrate the effect that this has, we comparspurious boundary fluxes that plague all other lattice-
the present method with an existing “mixed” method. In Boltzmann models of fluid mixtures. Moreover, a link-based
particular, we consider a spherical colloid of radais 4.5,  description has the additional advantage that boundary con-
at rest in an electrolyte in a cubic box of diameter20. ditions are easily implemented.
The valency of the sphere i8=10 and the system as a Second, by using a multistep approach, we can vary
whole is electrically neutral. In Fig. 7 we show the projectionionic mobilities over many orders of magnitude. This feature
of the momentum flux in the equatorial plane of the sphereof our model allows us to explore electroviscous effects over
and compare these residual fluxes both for the model introa wide range of Peclet numbers. We have shown that flow
duced in this paper and the model of Ref. 7. Figufe) 7 causes spurious advection diffusion. However, this effect is
shows that spurious currents, although small, are certainlyell understood and can be made negligible in most practical
not negligible in this case. Moreover, their magnitude iscases.
clearly correlated with the distance to the colloidal particle: ~ We have checked the performance of the model by
the largest currents appear in the region where the spatiagtudying equilibrium diffuse layers, showing that it is pos-
gradients are largest. For highly charged sphéres outside  sible to recover both low- and high-charge density regimes.
the linear Debye—Htkel regime these spurious fluxes will In the latter, the only limitation is related to computational
become larger. In contrast, in Fig(bj (the present modgl resources, because a finer grid is required to resolve the nar-

D. Absence of spurious fluxes
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