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Discrete state observability of hybrid systems
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SUMMARY

We propose a novel definition of observability, motivated by safety critical applications, given with respect
to a subset of critical discrete states that model unsafe or unallowed behaviors. For the class of discrete
event systems, we address the problem in the setting of formal (regular) languages and propose a novel
observability verification algorithm. For the class of switching systems, we characterize the minimal set
of extra output information to be provided by the continuous signals in order to satisfy observability
conditions, and propose a milder observability notion that allows a bounded delay in state observation. For
the class of hidden Markov models, we analyze decidability and complexity of the verification problem.
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1. INTRODUCTION

In many safety critical applications, e.g. in air traffic management procedures [1–3], it is often
required to detect if the current behavior of the system is associated with a dangerous or unallowed
operation. Estimation methods and observer design techniques are essential in this regard, for the
design of a control strategy for error propagation avoidance and/or error recovery. Discrete event
and hybrid systems are a powerful tool for the analysis and control of multi-agent systems, since
it is convenient to model undesired or dangerous behaviors by means of discrete states that we call
critical states. Then, the possibility of detecting dangerous situations depends on the observability
properties of the system with respect to the critical states.
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Various notions of observability have been introduced in the literature for discrete event systems
[4–8] and hybrid systems [2, 9–13]. We focus in this paper on the observability of the discrete
state, and propose a definition of observability with respect to a subset of discrete critical states.
We first formulate our problem in the setting of discrete event systems, then we extend our results
to switching systems and hidden Markov models.

We first consider discrete event systems and propose our definition of discrete state observability.
Observability conditions can be checked on the structure of the discrete state observer [2, 4, 5, 9],
which can be constructed in exponential time with respect to the cardinality of the discrete state
space: this implies that the complexity of the verification algorithm is exponential as well. We
address the observability verification problem in the setting of formal (regular) languages [14], and
propose a new verification algorithm, executable in polynomial time, which exploits properties of
operations on regular languages. The main contribution with respect to the results of [9] consists in
the analysis of the computational complexity for the observability verification. We prove that our
observability conditions can be checked efficiently in polynomial time, instead of exponential time.
Moreover, our algorithms provide (i) the minimum number of steps K after which the critical states
can be observed and (ii) the minimum set of the extra signals needed to satisfy the observability
conditions.

We then consider a subclass of hybrid systems, called switching systems, where a continuous
dynamical system is associated with each discrete state. When the information given by the discrete
output are not sufficient to build an observer, the continuous dynamics can be exploited as proposed
in [9] to generate some discrete signals that provide additional information useful to discriminate
the discrete states. This can be done by using fault detection techniques [15, 16], as for example in
[9, 17] where a bank of Luenberger observers is used to identify the discrete state. However, the
choice of the extra signals needed to satisfy the observability conditions is not unique. We propose
an algorithm to compute the minimum extra information needed to achieve observability. Since
the generation of these extra output symbols requires a nonzero generation time, a milder notion
of observability, which allows a bounded delay in the observation, and a verification algorithm are
proposed.

Finally, we consider hidden Markov models. We propose an observability definition similar to
that given in [18] for the continuous states of jump linear systems, which allows a bound in the
probability of estimation uncertainty. As one of the main results of the paper, we show that the
addressed observability verification problem is decidable, and we characterize its computational
complexity.

The organization of the paper is as follows. In Section 2, we analyze discrete state observability
for discrete event systems. In Section 3, we extend our results to switching systems. In Section
4, we address the observability verification problem for hidden Markov models. In Section 5, an
illustrative example is presented. Finally, in Section 6, we offer some concluding remarks.

2. DISCRETE EVENT SYSTEMS

In this section we propose a formal definition of observability of a subset of discrete states for
discrete event systems. We analyze the verification problem using the discrete output of the system
and propose a novel verification procedure that can be executed in polynomial time.
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Definition 1 (Discrete event system)
A discrete event system is a tuple D=(Q,Q0,E,�,�) such that

• Q is a finite set of N discrete states.
• Q0⊆Q is the set of initial conditions.
• E⊆Q×Q is a collection of edges; each edge e∈E is an ordered pair of discrete states, the

first component of which is the source and is denoted by s(e), while the second is the target
and is denoted by t (e).

• � is the finite set of discrete output symbols. It includes the empty string � that corresponds
to unobservable output.

• � :E→� is the output function, that associates with each edge a discrete output symbol.

The executions of discrete states of D are the sequences �={qk}|�|
k=0 such that q0∈Q0, (qk,qk+1)∈

E,k=0,1, . . . , |�|−1, with |�|�0 the length of the execution.

From this definition, it is not possible that a system has two edges e1, e2 with the same source
s(e1)=s(e2) and target t (e1)= t (e2). There is no loss of generality since it is always possible to
construct an equivalent system that complies our model by splitting the source or the target state,
where ‘splitting’ a state qi means creating two states q ′

i , q
′′
i , keeping the incoming and outgoing

edges.

Definition 2 (Formal language of executions)
The formal language of the executions of discrete states of D is given by

L�{�={qk}|�|
k=0 :q0∈Q0, (qk,qk+1)∈E,

k=0,1, . . . , |�|−1}

Given a subset of discrete states Q∗ ⊆Q, we define

LQ∗�{�∈L : |�|<∞,q|�| ∈Q∗}
the language of executions with finite cardinality, such that the last visited discrete state belongs
to Q∗. For q∈Q, we use for simplicity the notation Lq instead of L{q}. Given an execution

�={qk}|�|
k=0, the associated output string is {�((qk,qk+1))}|�|−1

k=0 . The associated observation P(�)

is obtained erasing all unobservable outputs from the output string.

Definition 3 (Formal language of observations)
The formal language of the observations of D is given by

P�{P(�) :�∈L}
Given a subset of discrete states Q∗ ⊆Q, we define PQ∗ the language of the observations

generated by executions whose last visited state belongs to Q∗

PQ∗�{P(�) :�∈LQ∗}
Since two distinct executions can generate the same observation, the intersection set PQ1 ∩PQ2

is not necessarily empty for Q1∩Q2=∅. This is a crucial issue for observability of the discrete
state, as we will show in the following.
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Let Qc⊂Q be the set of critical states of D, i.e. the set of discrete states associated with unsafe
or unallowed behaviors of D. We say that Qc is observable for D if it is possible to construct a
system that, on the basis of the observations, is able to detect whether the current discrete state of
D belongs to Qc or not. A necessary and sufficient condition can be given in terms of observations.

Definition 4
Given a discrete event system D, the set Qc is observable if and only if

PQc ∩PQ\Qc =∅ (1)

Intuitively, each observation can be generated either only by executions whose last visited state
belongs to Qc, or only by executions whose last visited state does not belong to Qc.

In the following we address the observability verification problem in the setting of regular
languages [14]. Given a discrete event system D=(Q,Q0,E,�,�), one of the algorithms
proposed in [2, 4, 5, 9] can be used to construct the discrete state observer OQc =(Q̂⊆2Q, q̂0=
{Q0}, Q̂c, Ê,�̂=�\{�}, �̂). OQc is a deterministic finite automaton (DFA), where each discrete
state q̂∈ Q̂ is a subset of Q and the final set

Q̂c�{q̂∈ Q̂: q̂∩Qc �=∅∧ q̂∩Q\Qc �=∅}
is induced by the critical set Qc. The definitions of nondeterministic finite automaton (NFA), DFA,
regular language, and an algorithm to construct the discrete state observer OQc are recalled in the
Appendix.

The DFA OQc accepts the language PQc ∩PQ\Qc and it is therefore possible to verify observ-
ability conditions directly on OQc checking if the accepted language is empty, i.e. if Q̂c=∅. Hence,
the observability verification can be done in time exponential in N =|Q| by constructing the
observer. However, there exists an NFA having a discrete state space cardinality polynomial in N ,
which accepts the same language as OQc . This implies that it is possible to construct an observer
that consists of a set of concurrent DFAs, and whose output is given by a logical operation on
the outputs of the DFAs. We exploit this property of regular languages to define an observability
verification procedure that can be executed in time polynomial in N , on a discrete event system
D. The main idea of the algorithm is to use operations on regular languages to check condition
(1) without constructing the observer.

Algorithm 1
Given a discrete event system D and a critical set Qc

1. Construct the NFA NQc that accepts PQc .
2. Construct the NFA NQ\Qc that accepts PQ\Qc .
3. Construct the NFA N∩ that accepts PQc ∩PQ\Qc .
4. Qc is observable for D if and only if the language accepted by N∩ is empty.

Theorem 1
Algorithm 1 can be executed in O(N 4).

Proof
The first and second steps require N 2 iterations each, since PQc , PQ\Qc are finite unions of
the regular languages |Qc|, |Q\Qc|, respectively. The third step requires N 4 iterations, since the
intersection of the two regular languages PQc , PQ\Qc is accepted by a NFA with state space
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cardinality N 2×N 2. The last step can be executed during step 3. Hence, the overall complexity is
given by 2N 2+N 4∼O(N 4). �

The previous result can be extended to the case of state observability after a transient of K
transitions.

Definition 5
Given a discrete event system D, the set Qc is observable in K -steps if and only if

∀� : P(�)∈PQc ∩PQ\Qc, |�|<K (2)

In order to verify condition (2), Algorithm 1 can be used with line 4 replaced by:

4′. Qc is observable in K -steps for D if and only if the final states of N∩ can only be reached
by finite paths that contain less than K transitions.

The minimum value Kmin such that Qc is observable in Kmin-steps can be computed in polynomial
time by searching for the maximum length of all paths that reach a final state of the system N∩.

3. SWITCHING SYSTEMS

In this section we extend our results to a subclass of hybrid systems, called switching systems,
where a continuous dynamical system is associated with each discrete state. When the information
given by the discrete output are not sufficient to build an observer, we provide an algorithm to
compute the minimum set of extra information we need in order to make the system observable.
These extra information are determined from the continuous input and output signals and cannot be
generated instantaneously. We propose an algorithm to construct an abstract model that formalizes
the generation of extra information by means of discrete output symbols. We then introduce a
milder observability definition that allows bounded delay in the observation of the current discrete
state and give a procedure to verify this property on the abstract system.

Definition 6 (Switching system)
A switching system is a tuple S=(D, X, X0,U,Y,E) such that:

• D=(Q,Q0,E,�,�) is a discrete event system as in Definition 1.
• X ⊆Rn is the continuous state space.
• X0⊆ X is the set of initial continuous conditions.
• U ⊆Rm , Y ⊆Rp are the sets of continuous control input and observable output.
• {Eq}q∈Q associates with each discrete state q∈Q the continuous time-invariant dynamics

Eq : ẋ= fq(x,u) (3)

with output y=gq(x).

It is worth noting that a solution of Equation (3) exists and is unique under the assumption that
fq is continuous with respect to time and Lipschitz continuous with respect to x , and the control
input is piecewise continuous from the right and with left limit.

This class of switching systems is nondeterministic, in general. The continuous state evolves
following deterministic dynamics, and the discrete state performs nondeterministic transitions.
We recall in the Appendix, the definitions of a hybrid time basis ��{Ik}0�k�|�| with cardinality
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|�| and of a hybrid execution �=(�,q, x). Let X be the set of all executions � of S. In this
paper, we consider nonblocking switching systems, i.e. systems such that all hybrid executions
are defined for all time instants [19]. We say that a hybrid execution is Zeno if it is characterized
by an infinite number of jumps in a finite time [20]. We consider switching systems that do not
generate Zeno executions.

To each execution �=(�,q, x)∈X we associate a unique string �(�) as a sequence {q(Ik)}|�|k=0
with cardinality |�(�)|=|�|. Namely, �(�) represents an execution of the discrete state of S, with
q(Ik) the discrete state in the time interval Ik .

Definition 7 (Formal language of executions)
The formal language of the executions of discrete states of S is given by

L�{�(�) :�=(�,q, x)∈X}
According to Definition 7, we can use the same notions of language of observations given in

Section 2, and all previous results hold.
Given a switching system S whose discrete layer D does not satisfy the observability condition

(1), following [9] we exploit the knowledge coming from the continuous dynamics to generate
additional discrete signals that provide extra information to discriminate the discrete states. We
define a partial function h :Q→�e that associates to some states q∈Q an additional discrete output
symbol h(q)∈�e. We say that (�e,h) is a solution if Qc is observable, according to condition
(1), for the system S augmented with the additional output. An optimal solution (�∗

e ,h
∗), which

is not necessarily unique, is a solution that minimizes the number |�∗
e | of extra discrete outputs

that are necessary to achieve observability. This optimal solution can be computed in exponential
time (with respect to the cardinality |Q| of the discrete state space) using the following algorithm.

Algorithm 2
Given a switching system S and a critical set Qc

1. Compute N∩ applying Algorithm 1 to system S.
2. For each set Q̄∈2Q , searching with increasing cardinality of Q̄, delete from N∩ the discrete

states (q1,q2) such that q1, q2∈ Q̄. If the language accepted by N∩ is empty, then define
�∗

e�{�q :q∈ Q̄},h∗(q)��q and exit.

Proposition 1
Given a switching systemS and a critical set Qc, the output of Algorithm 2 (�∗

e ,h
∗) is an optimal

solution.

Proof
If a state (q1,q2) belongs to the state space of the system N∩, then there exist two executions
�1∈Lq1 , �2∈Lq2 such that P(�1)= P(�2). Given any q1,q2∈ Q̄ it is clear that, using the extra
outputs h(q1), h(q2), h(q1) �=h(q2), we obtain P(�1) �= P(�2). Moreover, all executions �′

1, �2′
that have �1, �2 as prefixes will satisfy P(�′

1) �= P(�′
2). For this reason, all observations of N∩

generated passing through the state (q1,q2) will not generate ambiguity, and thus (q1,q2) can be
deleted. When all states (q1,q2) such that q1,q2∈ Q̄ are deleted fromN∩ and if the obtained system
accepts the empty language, then it follows that using the extra output defined by �∗

e�{�q :q∈ Q̄},
h∗(q)��q satisfies observability conditions. Since Algorithm 2 performs a search on all sets of
extra output signals Q̄∈2Q , with increasing cardinality of Q̄, then the output of the algorithm is
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an optimal solution. Since the number |Q| of discrete states is finite, Algorithm 2 is guaranteed
to converge. Moreover, a solution (�∗

e ,h
∗) is always defined at the end of the algorithm, since

�∗
e =Q, h∗(q)=q is always a solution. �

A nonoptimal solution (��
e,h

�) can be computed in polynomial time as follows.

Algorithm 3
Given a switching system S and a critical set Qc

1. For all qc∈Qc, initialize Qqc�∅.
2. Compute N∩=(Q∩,q∩

0 ,Q∩
f ,E∩,�∩,�∩) applying Algorithm 1 to system S.

3. Given (q1,q2)∈Q∩
f , by definition, either q1∈Qc, q2 /∈Qc, or q2∈Qc, q1 /∈Qc. In the former

case, add q2 to Qq1 , and in the latter case, add q1 to Qq2 .
4. For any qc∈Qc and q∈Qqc , define ��

e = {�q : q ∈ Qc or q ∈ ⋃
qc∈Qc

Qqc}, h�(q)��q .

Proposition 2
Given a switching system S and a critical set Qc, the output of Algorithm 3 (��

e,h
�) is a solution.

Proof
Algorithm 3 performs a search only on extra output signals in a subset 2Q̄ ⊆2Q , Q̄⊆Q, namely
only within the set of states that are indistinguishable from critical states. More formally, Q̄={q :
∃p∈PQc ∩PQ\Qc,∃�∈Lq : P(�)= p}. Since the number |Q| of discrete states is finite, Algorithm
3 is guaranteed to converge. Since Algorithm 2 performs a search on a subset of extra output
signals, a solution is not always defined at the end of the algorithm. Even if Algorithm 3 fails to
find a solution, a solution may exist. �

It can happen that a solution (�e,h) obtained using the algorithms above is not achievable,
in the sense that we may not be able to generate the extra signals for all discrete states, or
different discrete states may have ‘similar’ continuous dynamics (namely if Eqi =Eq j , qi �=q j ,
then h(qi )=h(q j )). Moreover, even if the solution is achievable, we have to take into account
the time needed for the generation of each signal h(q) by using the continuous dynamics. For
example, in [9] where a bank of Luenberger observers is used for the generation of extra outputs,
this time depends on the gain matrices of the observers. If the generation time in state q , denoted
�h(q), is nonzero (which is almost always the case), then Qc may be not observable in the sense
of Definition 4. As a consequence, we introduce a milder definition of observability that requires
a bounded delay in the observation of a critical state.

Definition 8 (Observer with bounded delay)
Given a switching system S, an observer with delay � of the critical set Qc is a system O�

Qc

whose input is the output of S, and whose output ŷ(t) is such that
∀k � 0 ∀t ∈[tk+�, t ′k]

ŷ(t) =
{
1 if q(Ik)∈Qc

0 if q(Ik) /∈Qc

A set Qc is said to be observable with delay � for S if and only if an observer O�
Qc

exists.

If Qc is observable with delay �∗�0, then it is observable with delay � for any �>�∗. We
define �min as the minimum value such that Qc is observable with delay �min. It is clear that
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the value �min depends on the structure of the system and on the generation times �h(q) of extra
outputs.

In order to verify if the additional information obtained by (�e,h) are sufficient to satisfy
the observability condition with delay, we give an algorithm for constructing a system S̃ that
formalizes the generation of extra discrete output symbols. This algorithm uses the notions of
minimum �m(q) and maximum �M (q) dwell times, the definitions of which can be found in the
Appendix, and is based on the following assumption.

Assumption 1
For each q∈Q, the generation time �h(q) is less than the minimum dwell time �m(q), namely
h(q) is generated before any discrete transition from the discrete state q to a different discrete
state takes place.

Algorithm 4
Given a switching system S, construct a switching system S̃ as follows. First, assign ���∪�e.
Then, for each discrete state q∈Q do

1.1. Replace each q by the discrete states q1 and q2.
1.2. For all e∈E such that t (e)=q assign t (e)�q1, and for all e∈E such that s(e)=q assign

s(e)�q2.
1.3. Add eq�(q1,q2) to E and assign �(eq)�h(q).
1.4. Assign �m(q1)��M (q1)��h(q), �m(q2)��m (q)−�h(q) and �M (q2)��M (q)−�h(q).

The intuition of Algorithm 4 is illustrated in Figure 1. Assumption 1 implies that the executions
of S̃ are the same as those of S, splitting the time bases intervals.

Proposition 3
For each execution �=(�,q, x) of S, there exists an execution �̃=(�̃, q̃, x̃) of S̃ such that

1. let �={Ik}|�|k=0, Ik =[tk, t ′k], then �̃={I 1k }|�|k=0∪{I 2k }|�|k=0, where I 1k =[tk, tk+�h(q(Ik))] and I 2k =
[tk+�h(q(Ik)), t

′
k],

2. let q(Ik)=q , then q̃(I 1k )=q1, q̃(I 2k )=q2,
3. x(t)= x̃(t), ∀t ∈�,

and viceversa.

It is possible to verify observability with delay for S by checking the observability condition
(1) for S̃. Let Q and Q̃ be the discrete state spaces of S and S̃, respectively, and let suc(q)�{q̄∈
Q :∃e∈E,s(e)=q, t (e)= q̄} be the set of successors of q .

Theorem 2
Given S and S̃, Qc is observable with delay � for S if

1. The set Q̃c�
⋃

q∈Qc
(q2∪suc(q2)) is observable for S̃.

2. �h(q)��, ∀q∈Qc∪suc(Qc).

Proof
Define �∗=maxq∈Qc∪suc(Qc) �h(q), where �∗�� by Condition 2. Condition 1 implies that there
exists an observer ÕQ̃c

for S̃ such that if q̃( Ĩk)∈ Q̃c, then the observer’s output ŷ(t)=1 for all

t ∈ Ĩk . By construction of S̃ and by Proposition 3, there exists an observer for OQc such that
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Figure 1. Discrete states of S are split by Algorithm 4, to consider the generation time of h(q).

if q(Ik)∈Qc, Ik =[tk, t ′k], then the observer’s output ŷ(t)=1 for all t ∈ Ĩk =[tk+�h(q(Ik)), t
′
k]⊇

[tk+�∗, t ′k]⊇[tk+�, t ′k]. Condition 1 also implies that there exists an observer ÕQ̃c
for S̃ such

that if q̃( Ĩk) /∈ Q̃c, then the observer’s output ŷ(t)=0 for all t ∈ Ĩk . By construction of S̃ and
by Proposition 3, there exists an observer for OQc such that if q(Ik) /∈Qc, Ik =[tk, t ′k], then the
observer’s output ŷ(t)=0 for all t ∈ Ĩk =[tk+�h(q(Ik)), t

′
k]⊇[tk+�∗, t ′k]⊇[tk+�, t ′k]. �

Given a solution (�e,h) obtained using Algorithms 2 and 3, if the first condition of Theorem 2
holds, then �min=�∗ as defined in the proof. The condition is only sufficient since S̃ embeds
continuous inputs and outputs of S by means of extra output discrete signals that are not unique.
The condition becomes necessary and sufficient if these extra output signals represent all the
available information.

4. HIDDEN MARKOV MODELS

In this section, we extend our results to the class of hidden Markov models [21]. We propose
an observability definition similar to that given in [18] for the continuous states of jump linear
systems,which allows abound in theprobability of estimationuncertainty.Weshow that the addressed
observability verification problem is decidable, and we characterize the computational complexity.

Let P[q(k)=q] denote the probability that the discrete state is q at time k.

Definition 9 (Hidden Markov model)
A hidden Markov model is a triple M=(D,�,�0), where

• D=(Q,Q0,E,�,�) is a discrete event system as in Definition 1, where the discrete output
function is redefined as an output probability function � :E×�→[0,1], which associates
with each edge e∈E and output �∈� the probability that the discrete transition e generates
the symbol � as output.

• � is a N×N transition probability matrix defined by

�i j =P[q(Ik+1)=q j |q(Ik)=qi ],∀k�0

with
∑N

j=1�i j =1, ∀i =1, . . . ,N .
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• �0 is a N -dimensional initial probability vector defined by

�0i =P[q(I0)=qi ]

with
∑N

i=1�0i =1.

We define execution and observation languages of hidden Markov models as in Section 2.
When not clear from the context, a superscript will identify the system we refer to. Given M=
(D,�,�0), the spaces of all executions of M and D coincide, i.e. LM=LD. However, while
for D the discrete execution is generated by a nondeterministic algorithm, for M it is generated
by a probability space, uniquely identified by the transition probability matrix � and by the initial
probability distribution �0. We use these additional information on the system execution to define
an observability notion for hidden Markov models, which requires a bound in the estimation
uncertainty probability. We then relate this notion to the one introduced in Section 2.

In the observability definition for a discrete event system D, we required the existence of an
observer able to detect whether the current discrete state is in the critical set or not, without error.
Since we have defined on a hidden Markov model M a probability measure in the target and
output of a discrete transition, one can use the discrete observations to compute (using the Viterbi
algorithm [22, 23]) the conditional probability distribution of the current discrete state given the
measured observation. We define the conditional probability that the final state of an execution
� belongs to a critical set Qc given an observation p by P[�∈LQc |P(�)= p]. Notice that the
output function P :L→P defined in Section 2 is not invertible. Since more than one path can
generate the same observation, it is possible to define for each observation p∈P generated by the
system M, the set of executions that generate p as observation by P−1(p)�{�∈L : P(�)= p},
where P−1 :P→L is a map. We assume in this section, the absence of edges whose output is
unobservable: this implies that ∀p∈P, ∀�∈ P−1(p), |p|=|�|.

With the assumption that our observer generates as output the most likely current discrete state
according to the Viterbi algorithm estimate, we formalize an observability definition that requires
a bound in the probability of estimation error. More precisely, we require that the probability of
an estimation error is always bounded by (	m,	M )∈[0,1]×[0,1],1−	m<	M as follows:

1. 1−	m is the worst-case probability that the observer misses to detect that a critical state is
currently active, when the current discrete state of M is in the critical set (observation miss
probability).

2. 1−	M is the worst-case probability that the observer detects that a critical state is currently
active, when the current discrete state of M is not in the critical set (false alarm probability).

We can formalize the above properties as follows.

Definition 10 (Observer with bounded reliability)
Given a hidden Markov model M, an observer of the critical set Qc with reliability (	m,	M ) is a
function OQc :P→{0,1} such that

OQc(P(�))=
{
1 if P[�∈LQc |P(�)= p]∈[	M ,1]
0 if P[�∈LQ\Qc |P(�)=p]∈[0,1−	m]

A set Qc is said to be observable with reliability (	m,	M ) for M if and only if an observer OQc

with reliability (	m,	M ) exists.
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The definition above characterizes a structural property of the hidden Markov model M. This
condition guarantees that, if 	m �1 and 	M �1, then for each observation of M we are very confi-
dent either that the discrete state is critical or that it is not. When 	m=	M=1 the observer provides
correct estimate with probability 1. In what follows, observability with reliability 	�(	m,	M ) will
be called 	-observability. A necessary and sufficient condition for 	-observability is the following.

Proposition 4
Given a hidden Markov model M, the set Qc is observable with reliability (	m,	M ) if and only if

∀p∈P, P[�∈LQc |P(�)= p]∈[0,1−	m]∪[	M ,1] (4)

We introduce a relation between 	-observability and the observability notion given in
Definition 4.

Proposition 5
Given a hidden Markov modelM=(D,�,�0), then a critical set Qc is 	-observable with 	=(1,1)
for M if and only if Qc is observable for D.

Proof
(⇒) Let Qc be 	–observable with 	=(1,1) for M: this implies that, if p∈PM=PD, then
P[�∈LQc |P(�)= p] is either 0 or 1: if it is 0, this implies that p /∈PD

Qc
, thus p /∈PM

Qc
as well;

if it is 1, this implies that p /∈PD
Q\Qc

, thus p /∈PM
Q\Qc

as well. It follows that PD
Qc

∩PD
Q\Qc

=∅
and Qc is observable for D. (⇐) Let Qc be observable for D, then it is possible to construct an
observer that deterministically detects whether the current discrete state of D belongs to Qc or
not: this clearly implies that Qc is 	-observable with 	=(1,1) for M. �

In order to verify observability of a given hidden Markov model, one can check if P[�∈
Lq |P(�)= p] satisfies condition (4) for any p∈P. However, P almost always has infinite cardi-
nality because of cycles in the discrete layer of M. Thus, it is not possible to execute the above
computation in finite time. We prove now that the 	-observability verification problem is decidable.

Theorem 3
Given a hidden Markov model M=(D,�,�0) and a set Qc, 	-observability verification problem
of Qc is decidable, and belongs to the complexity class EXPTIME.

Proof
As first step of the proof, we remark that condition (4) can be rewritten as

∀p∈PQc ∩PQ\QcP[�∈LQc |P(�)= p]∈[0,1−	m]∪[	M ,1] (5)

In fact, for any given 	m,	M , for all p∈P�(PQc ∩PQ\Qc) and for all �∈ P−1(p), then

1. either �∈LQc , and thus P[�∈LQc |P(�)=p]=1.
2. or �∈LQ\Qc , and thus P[�∈LQc |P(�)=p]=0.

This implies that condition (4) is already satisfied for any p∈P�(PQc ∩PQ\Qc). We recall from
Section 2 that PQc ∩PQ\Qc is accepted by the DFA OQc . As discussed in [3], it is possible to use
the structure of OQc to compute the conditional probability distribution


i�P[�∈Lqi |P(�)= p] ∀i =1, . . . ,N
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for any observation p∈P. In other words, it is possible to implement the Viterbi algorithm using
the discrete layer given by OQc and a continuous variable 
=(
1, . . . ,
N )∈[0,1]N ,N=|Q|, which
is reset every time a new output symbol is generated by the system M. 
i is the probability that
the current discrete state of M is qi∈Q. The initial discrete state is q̂0, and the initial condition of

 is given by the initial probability distribution 
(0)=�0. For this reason, 
(k) is the probability
distribution during the hybrid time basis interval Ik . When M generates an output symbol, OQc

switches the discrete state according to a transition e, and 
(k) is reset to a value 
(k+1) according
to a matrix Re, and normalized such that

∑N
i=1
i (k+1)=1


′(k)= Re
(k), 
(k+1)= 
′(k)∑N
i=1
′

i (k)

Given any p∈P, 
(k) evolves to a state 
(|p|), that is the conditional probability distribution of
the discrete state of M given the observation p


i (|p|)=P[�∈Lqi |P(�)= p]
It is straightforward to define the conditional probability that the current state is critical given the
observation p


c(|p|)� ∑
qi∈Qc


i (|p|)=P[�∈LQc |P(�)=p]

We propose an algorithm to verify in a finite number of steps whether condition (5) holds, by
checking that 
c(|p|) does not reach the set (1−	m,	M ) for all p∈PQc ∩PQ\Qc .

It is sufficient to consider all executions of OQc that terminate in Q̂c with just one cycle. If for
all those executions 
c(|p|) does not reach the set (1−	m,	M ), then for all executions with more
than one cycle 
c(|p|) does not reach the set (1−	m,	M ) as well, and condition (5) is satisfied.
On the contrary, if there exists just one bad cycle that brings 
c(|p|) in the set (1−	m,	M ), then
condition (5) is not satisfied. Checking that such bad cycles do not exist provides necessary and
sufficient conditions for 	-observability.

The algorithm consists of four iterations. For each q̂∈ Q̂c (iteration 1), and for any path without
cycles q̂(0), q̂(1), . . . , q̂( f ) where q̂(0)= q̂0, q̂( f )= q̂ (iteration 2), compute the probability distri-
bution at the end of the path


c( f )�
∑
i∈Qc


i ( f )

Let 
c( f ) satisfy condition (5), namely 
c( f )∈[0,1−	m]∪[	M ,1]. For any k=0, . . . , f (itera-
tion 3), compute 
c( f ) as function of 
(k): if 
c( f ) is independent by 
(k), then skip to k+1.
Otherwise, consider each cycle that crosses q(k) (iteration 4): notice that for a cycle of length c
and a value of 
(k) at the beginning of the cycle, then 
(k+c) computed on a run of the cycle
is either equal to 
(k) or it is different. In the first case, skip to the next cycle since condition
(5) on 
c( f ) is satisfied for any number n�0 of times the cycle is crossed. In the second case,
each 
i (k+nc) is either monotone increasing or monotone decreasing w.r.t. n crosses of the cycle.
Since any 
i (k+nc) is upper bounded by one and lower bounded by zero, then limn→∞ 
(k+nc)
is a vector of zeros and ones. For this reason, 
c( f ) is either monotone increasing or monotone
decreasing as well, and converges to a value that depends on limn→∞ 
(k+nc). If 
c( f +nc)
belongs to the set [0,1−	m]∪[	M ,1] for any n�0, then skip to the next cycle. Otherwise, exit
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algorithm since Qc is not 	-observable for M. Executing iterations 1–4 completes the verification.
The maximum cardinality of Q̂c is bounded by 2N−1 (iteration 1). The number of paths without
cycles connecting q0 and q̂ is bounded by N (iteration 2). The number of states for each path
without cycles is bounded by N (iteration 3). The number of cycles crossing q(k) is bounded by
N 2 (iteration 4). Since the verification requires at most N 4 ·2N−1 steps, the result holds. �

If Qc is observable with reliability (	∗
m,	∗

M ), then it is observable with reliability (	m,	M ) for
any 	m<	∗

m,	M<	∗
M . Themaximum reliability (	max

m ,	max
M ) such that Qc is (	max

m ,	max
M )-observable

can be determined as shown in the proof of Theorem 3. An example of this computation is given
in the following section.

The notion of 	-observability can be generalized to a notion of 	-observability in K steps as
done in Section 2. Theorem 3 still holds, since it is sufficient to check conditions only for paths
of length greater than K .

5. EXAMPLE

Consider the discrete event systemD described in Figure 2. We use the theoretical results discussed
above to analyze the discrete state observability. Let Qc={q7}. It is possible to define the languages
of observations for each discrete state by means of regular expression [14]:

Pq1 = {�}, Pq2 =a(aa+bb)∗

Pq3 = a(bb)∗, Pq4 =a(aa+bb)∗b

Pq5 = a(aa+bb)∗b, Pq6 =a(bb)∗b

Pq7 = a(bb)∗b

Following Algorithm 1, it is possible to compute the language

PQc ∩PQ\Qc =Pq7 ∩
6⋃

i=1
Pqi =a(bb)∗b �=∅

The discrete state observer Oq7 associated with D is illustrated in Figure 2. It is clear that the
system is not observable.

Figure 2. Discrete layers of D and Oq7 .
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Consider now a switching system S defined upon D, where all discrete states are characterized
by different continuous dynamics except q4 and q7, namely Eq4 =Eq7 . This implies that h(q4)=
h(q7), i.e. it is not possible to generate different extra output signals for q4 and q7. As discussed
before, we can use the information given by the continuous output, and we therefore apply
Algorithms 2 and 3 to find the set of extra information we need to achieve observability. The
sub-optimal approach yields to a set of extra outputs {h(q4),h(q6),h(q7)}, that is not a solution to
obtain observability of {q7} since h(q4)=h(q7). The optimal algorithm provides the set of extra
information {h(q2),h(q3)}. In this case, by detecting if the system visited q2 or q3, we anticipate
the uncertainty between q4,q6,q7 and we use only two extra outputs. Even if the generation times
�q2,�q3 are greater than zero, Theorem 2 implies that the system augmented with the extra output
{h(q2),h(q3)} is observable with delay zero.

Assume now that it is not possible to use the continuous input and output signals: then the
critical state {q7} is not observable in the sense of Definition 4. However, if we own a stochastic
characterization of the system execution by means of transition probabilities, we can apply our
results in the stochastic setting to analyze the weaker notion of 	-observability. Consider the hidden
Markov model M=(D,�0,�), where the output function is deterministic and

�0=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, �=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.9 0.1 0 0 0 0

0 0 0 0.01 0.99 0 0

0 0 0 0 0 0.01 0.99

0 1 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Applying the verification procedure presented in Theorem 3, we compute:

P[�∈Lq4 |P(�)=ab] = 9
109

P[�∈Lq6 |P(�)=ab] = 1
109

P[�∈Lq7 |P(�)=ab] = 99
109

∼=0.9

P[�∈Lq7 |P(�)=a(bb)nb] = ( 1099 (
1
99 )

n+1)−1

Thus, we can state that

∀p∈PQc ∩PQ\Qc, P[�∈Lq7 |P(�)= p]∈{0}∪[0.9,1]
hence the critical set {q7} is observable for M with reliability (	max

m =1,	max
M =0.9). This implies

that, even if the system is not ‘deterministically’ observable, it is possible to detect with probability
1 whether a critical state is currently visited, and the probability to generate a false alarm is in the
worst case less than 1−	max

M =0.1.
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6. CONCLUSIONS

We introduced a notion of observability with respect to a subset of critical discrete states. For
discrete event systems, we exploited properties of regular languages to propose an algorithm
for checking observability in polynomial time. We extended our result to switching systems: we
proposed an algorithm to find the minimum set of extra output information, retrieved from the
continuous observations, to satisfy the observability condition, and discussed a notion of observ-
ability with bounded delay. We then extended our results to hidden Markov models: we proposed
an observability definition that requires a bound in the probability of observation reliability, and we
showed that the verification problem is decidable and belongs to the complexity class EXPTIME.

The framework proposed in this paper can be used for the simulation of real safety crit-
ical procedures, and verification of the detection of dangerous operations, as shown in [2, 3].
Future work will focus on the extension of our results to continuous time hidden Markov
models.

APPENDIX A

Definition A1 (NFA)
A NFA is a tuple N=(Q,Q0,Q f ,E,�,�), such that the set of initial states Q0={q0} is a
singleton and Q f ⊆Q is the set of final states. The language accepted by an NFA N is the
language of the observations PQ f on the alphabet �.

Definition A2 (DFA)
A DFA is an NFA D=(Q,q0,Q f ,E,�,�), such that � :E→2� and for each q∈Q the set
{�(e)}e∈E :s(e)=q is a partition of �. The language accepted by a DFA D is the language of the
observations PQ f on the alphabet �.

Definition A3 (Regular language)
A language L is called a regular language if there exists a NFA that accepts L.

Proposition A1
Given a regular language L accepted by a NFA N, it is possible to construct a DFA D that
accepts L. The cardinality of the state space of D is exponential with respect to the cardinality
of the state space of N.

Proposition A2
Regular languages are closed with respect to the operations of union, intersection and complement.

Let cl�(Q∗) be the �-closure [14] of a set of states Q∗ ⊆Q, namely the set of states that can be
reached from Q∗ via a path of edges whose outputs are unobservable.

Algorithm A1 (Discrete state observer construction)
Given a discrete event system D=(Q,Q0,E,�,�), and a critical set Qc, construct a DFA
OQc =(Q̂, q̂0, Q̂c, Ê,�̂, �̂) as follows:

1. Q̂�cl�(Q0)⊆2Q ;
2. q̂0�{Q0}⊆2Q ;
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3. Q̂c�{q̂∈ Q̂ : q̂ ∩Qc �= ∅ ∧ q̂ ∩ Q\Qc �= ∅}⊆2Q ;
4. �̂��\{�};
5. In order to define Ê and �̂, for each unvisited discrete state q̂∈ Q̂ do

5.1 For each �∈�̂, define q̂ ′{q ′ ∈Q :∃e∈E,∃q∈q̂,q=s(e),q ′=t (e),�(e)=�}: if q̂ ′ �=∅ then
assign Q̂=Q̂∪cl�(q̂ ′), Ê = Ê ∪ ẽ = {q̂, q̂ ′}, and �̃(ẽ)=�;

5.2 Mark q̂ as visited.

Definition A4 (Hybrid time basis [24])
A hybrid time basis ��{Ik}0�k�|�| is a finite or infinite sequence of intervals Ik =[tk, t ′k]. The length
t ′k− tk of every interval Ik denotes the dwelling time in a discrete state, while the extremes tk , t ′k
specify the switching instants of the hybrid flow. The number of such intervals is the cardinality
|�| of the time basis. Furthermore, the following hold:

1. tk�t ′k for k>0, and t ′k−1= tk for k>1.
2. If the sequence is infinite, i.e. |�|=∞, then Ik is closed for all k.
3. If the sequence is finite, i.e. |�|<∞, then the last interval I|�| might be right-open.

Definition A5 (Hybrid execution [24])
A hybrid execution is a triple �=(�,q, x), where � is a hybrid time basis, and q, x describe the
evolution of the discrete and continuous state by means of functions q :�→Q piecewise continuous,
and x :�→ X . Functions q, x, defined on the hybrid time basis �, take values on the hybrid state
space, and satisfy the continuous and discrete dynamics.

Definition A6 (Minimum and maximum dwell time)
Given a switching system S, we define for each state q∈Q a (possibly infinite) minimum dwell
time �m(q)�0 and a (possibly infinite) maximum dwell time �M (q)�0, namely the minimum
and maximum time that can be spent in the discrete state q . This implies that given an execution
� of S, then �m(q(Ik))�t ′k− tk��M (q(Ik)) for all k=0, . . . , |�|.
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