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Abstract

Discrete strip-concave functions considered in this paper are, in fact, equivalent to an extension
of Gelfand–Tsetlin patterns to the case when the pattern has a not necessarily triangular but convex
configuration. They arise by releasing one of the three types of rhombus inequalities for discrete
concave functions (or “hives”) on a “convex part” of a triangular grid. The paper is devoted to a
combinatorial study of certain polyhedra related to such functions or patterns, and results on faces,
integer points and volumes of these polyhedra are presented.Also some relationships and applications
are discussed.
In particular, we characterize, in terms of valid inequalities, the polyhedral cone formed by the

boundary values of discrete strip-concave functions on a grid having trapezoidal configuration. As a
consequence of this result, necessary and sufficient conditions on a pair of vectors to be the shape and
content of a semi-standard skewYoung tableau are obtained.
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1. Introduction

Let n ∈ N Consider a two-dimensional arrayX = (xij )0� i�n, ai � j�bi of reals, where
the index boundsai, bi (depending on rows) are integers satisfyingai�bi and

a0 = 0, 0�a1 − a0�a2 − a1� · · · �an − an−1�1,
and 1�b1 − b0�b2 − b1� · · · �bn − bn−1�0. (1)

We denote the set of pairsij of indices inX byV and say thatX hasconvex configuration.
(This term is justified by the fact thatV can be identified with the set of nodes of a convex
triangular grid; see Remark1. We visualizeX so that(x00, . . . , x0b0) is the topmost row
and each triplexij , xi+1,j , xi+1,j+1 or xij , xi,j+1, xi+1,j+1 is disposed so as to form an
equilateral triangle. Then the array is shaped like a convex polygon, with 3–6 sides.) Two
examples of such arrays are depicted in Fig. 1.
Dependingon theshapeof thecorrespondingconvexpolygon,wemayspeakof hexagonal

configuration, pentagonal configuration, etc. Although main results in this paper will be
applicable to any of these, three special cases witha1 = · · · = an = 0 are of most interest

for us: (a)bi = i for eachi (giving a�-array); (b)bi = i+m for eachi (a/ \-array), seeFig.
1b; (c)bi = m for eachi (a / / -array), wherem ∈ N. In these cases we will also refer to an
array as havingtriangular, trapezoidal, or parallelogram-wise configuration, respectively
(usually ignoring other possible dispositions of triangle, trapezoid, or parallelogram). We
say thatXhassize nin case (a), and(n,m) in cases (b),(c). Sometimes we will admitm = 0

in case (b), regarding�-arrays as a degenerate case of/ \-arrays.
Let us associate withX the array�X = (�xij )0� i�n, ai+1� j�bi of local differences

�xij := xij − xi,j−1, referring to�X as therow derivativeof X. We deal with arraysX
satisfying the following condition: fori = 1, . . . , n andj = ai + 1, . . . , bi ,

�xij ��xi−1,j (whenj�bi−1) and �xi−1,j ��xi,j+1 (whenj < bi). (2)

The array�X obeying (2) and having triangular configuration is said to be aGelfand–Tsetlin
pattern, and in this paper we apply the same name to�X with such a property whenXhas an
arbitrary convex configuration as well. In this case we callXastrip-concavearray, using an
analogy with the corresponding functions explained in Remark 1. For example, both arrays
in Fig. 1 are strip-concave; their row derivatives are shown in Fig. 2.
One can identify the set of all arrays forVwith the Euclidean spaceRV whose unit base

vectors are indexed by the pairsij ∈ V . Let SCV denote the set of arraysX ∈ RV that
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Fig. 1. (a) A hexagonal array withn = 3, a = (0,0,0,1), b = (2,3,3,3); (b) a trapezoidal array withn = 3,
a = (0,0,0,0), b = (2,3,4,5).
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Fig. 2. Gelfand–Tsetlin pattern examples: (a)�X for X in Fig. 1a; (b)�X for X in Fig. 1b.

Fig. 3. (a) The grid for the array in Fig.1a; (b) the grid for the array in Fig.1b.

satisfy property (2) and the normalization conditionx00 = 0; imposing this condition leads
to no loss of generality in what follows. ThenSCV is a polyhedral cone inRV .

Remark 1. Let �, � be linearly independent vectors inR2. By aconvex(triangular) grid
we mean a finite planar graphG = (V ,E) embedded in the plane so that each node ofG
is a point with integer coordinates(i, j) in the basis(�, �), each edge is the straight-line
segment connecting a pairu, v of nodes withu− v ∈ {�, �, � + �}, each bounded face is a
triangle with three edges (alittle triangle of G), and the unionR of bounded faces covers
all nodes and forms a convex polygon in the plane. A convex grid can be considered up to
an affine transformation, and to agree with the above visualization of arrays, one should
take the generating vectors as, e.g.,� := (−1/2,−√

3/2) and� := (1,0) and assume that
(0,0) ∈ V and(i, j)�(0,0) for all (i, j) ∈ V . (The convex grids behind the arrays in Fig.1
are exposed in Fig. 3).A functionx : V → R determines an arrayXof convex configuration
in a natural way:xij := x(i, j). The arrays inSCV (consideringV as the index set) are
determined by the functionsx having the following property: iff is the extension ofx to
R which is affinely linear on each bounded face ofG, thenf is a concave function within
each region (strip) confined by the boundary ofG and linesi� + R� and(i − 1)� + R�,
i = 1,2, . . . . We call such a functionx discrete strip-concave(by an analogy with discrete
concave functions; see Remark 2 in the end of this section), and accordingly apply the
adjective “strip-concave” to the arrays with property (2).

Local differences on the “boundary” ofX will be of most interest for us in this paper.

These are represented by four tuples�X, �
X
, �X, �X (concerning the lower, upper, left and

right boundaries, respectively) defined by

�Xj := �xnj , j = 1, . . . , bn; �
X

j ′ := �x0j ′ , E′ = 1, . . . , b0;
�Xi := xiai − xi−1,ai−1 and �Xi := xibi − xi−1,bi−1, i = 1, . . . , n.
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(�
X
vanisheswhenb0 = 0.) For example, thearrayX inFig.1ahas�X = (3,0),�X = (2,1),

�X = (2,−2,5) and�X = (1,0,4), and the arrayX in Fig. 1b has�X = (6,4,3,1,1),

�
X = (5,2), �X = (1,−7,−2) and�X = (4,−5,1).
Given� = (�an+1, . . . , �bn), � = (�1, . . . , �b0) and�, � ∈ Rn, define

SC(� \ �, �, �) := {X ∈ SCV : (�X, �X, �X, �X) = (�, �, �, �)}.

This set, if nonempty, forms a bounded polyhedron (a polytope) inRV in case of/ \- and
/ / -arrays. Indeed, (2) andx00 = 0 imply

xij ��1 + · · · + �i + �1 + · · · + �j and xij ��1 + · · · + �i + q, (3)

whereq := �n−i+1+· · ·+�n−i+j for / \-arrays, andq := �1+· · ·+�j for / / -arrays. (On
the other hand, such a polyhedronP is unbounded when there is at least one interior entry
and both left and right boundaries make a bend, i.e., 0< an < n and 0< bn − b0 < n;
in particular, if the hexagonal configuration takes place. One can check that adding any
positive constant to all interior entries of an arrayX ∈ P gives a point inP as well.)
The first problemwe deal with in this paper is to characterize the setBV of all quadruples

(�, �, �, �) (depending onV ) such thatSC(� \ �, �, �) is nonempty. Two conditions on
such quadruples are trivial. The first one comes up from the fact that (2) implies that�X is
weakly decreasing, i.e.,�Xan+1� · · · ��Xbn , and similarly for�. The second one comes up
by observing that

|�X| − |�X| + |�X| − |�X| = (xnbn − xnan)− (x0b0 − x00)+ (xnan − x00)
−(xnbn − x0b0) = 0,

where for a tuple (vector)d = (dp, . . . , dq), |d| stands for∑(di : i = p, . . . , q).
To obtain the desired characterization, we need to introduce certain values depending on

�, �. Fork ∈ Z+, define

�k(j) :=max{0, �j−k − �j }, j = an + 1, . . . , bn, and

�k := �k(an + 1)+ · · · + �k(bn),

letting by definition�k(j) := 0 if j − k�0 orj − k > b0. We refer to�k as thekth deficit
of � \ �.
We shall explain later that the above problem is reduced to the case of trapezoidal config-

uration. Necessary and sufficient conditions on the corresponding quadruples for/ \-arrays
are given in the following theorem. Hereinafter, ford = (dp, . . . , dq) andI ⊆ {p, . . . , q},
d(I ) denotes

∑
(di : i ∈ I ), and forp�k�k′ �q, d[k, k′] denotesdk + · · · + dk′ .

Theorem 1. For n ∈ N andm ∈ Z+, let � = (�1, . . . , �n+m) and� = (�1, . . . , �m)
be weakly decreasing, and let�, � ∈ Rn be such that|�| − |�| + |�| − |�| = 0. Then

a strip-concave/ \-array Xwith (�X, �
X
, �X, �X) = (�, �, �, �) exists if and only if the

inequality

�[1, |I |] + �(I )− �(I )− �|I | �0 (4)
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holds for each(includingempty) subsetI ⊆ {1, . . . , n}.Furthermore, if �, �, �, �are integer
and the polytopeSC(� \ �, �, �) is nonempty, then it contains an integer point.

In particular,BV forms a polyhedral cone (inRn+m× Rm× Rn× Rn) for V in question.
Also (4) implies evident relations�j ��j (j = 1, . . . , m) and�j ��j−n (j = n+1, . . . , n+
m), where the former is easily obtained by takingI = ∅, and the latter by comparing
|�| − |�| + |�| − |�| = 0 with (4) for I = {1, . . . , n}.
Note that relation (4) involves a piece-wise linear term, namely,�|I |. One can replace

each instance of (4) by a collection of 2m linear inequalities, yielding an equivalent version
of Theorem 1. This version, giving rise to a description of the facets of the coneBV , is
discussed in Section 4. (It turns out that the number of facets ofBV grows exponentially
in n,m. On the other hand, to verify that a given quadruple(�, �, �, �) belongs toBV , it
suffices to check validity of (4) only forn+ 1 setsI: for k = 0, . . . , n, takeI with |I | = k
maximizing(� − �)(I ).)
For an arbitrary convex configuration, the problem with prescribed local differences

�, �, �, � is reduced to the trapezoidal case as follows. Since the polyhedronP := SC(� \
�, �, �) is described by a linear system formed by the inequalities in (2) and the corre-
sponding equalities involving�, �, �, �, one can efficiently compute a numberc ∈ R+ such
that if P is nonempty, then there existsX ∈ P with |xij | < c/2 for all entriesxij . (For
example, one can roughly takec equal to|V ||V | times the maximum absolute value� of
the entries in�, �, �, �, taking into account that the constraint matrix of the system has

entries 0,1,–1. In fact, there is a boundc linear in �|V |; cf. (3) for / / -arrays.) Suppose
an �= 0 and take the maximump with ap = 0 (thenai = i − p for p < i�n). Add to
V the setA of pairsij with 0�j < i − p�n − p, define�′

j := c for j = 1, . . . , n − p,
and define�′

i := �i − c for i = p + 1, . . . , n. Symmetrically, ifbn < b0 + n, we take the
maximumqwith bq = b0+q, add the setBof pairsij with 1�j−bn� i−q�n−q, define
�′
j := −c for j = bn + 1, . . . , bn + n − q, and define�′

i := �i − c for i = q + 1, . . . , n.
Let �′ coincide with� for the remaining entries, and similarly for�′, �′. The resulting
V ′ := V ∪A ∪ B gives a trapezoid (of size(n, b0)), and it is straightforward to verify that
the setP ′ := SC(�′/�, �′, �′) (concerningV ′) is nonempty if and only ifP is so, that the
restriction of anyX′ ∈ P ′ to V belongs toP, and thatX as above is extended in a natural
way to an array inP ′.
Applying this reduction to the parallelogram-wise configuration of size(n,m), one can

derive the following corollary from Theorem 1.

Corollary 1. Let n,m ∈ N, and let�, � ∈ Rn and weakly decreasing�, � ∈ Rm satisfy

|�| − |�| + |�| − |�| = 0. Then a strip-concave/ / -array X with (�X, �
X
, �X, �X) =

(�, �, �, �) exists if and only if for each subsetI ⊆ {1, . . . , n}, the inequality

�[1, |I |] − �[m− |I | + 1,m] + �(I )− �(I )− �|I | �0

holds for|I |�m, and the inequality

|�| − |�| + �(I )− �(I )�0
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holds for|I | > m. Furthermore, if �, �, �, � are integer and the polytopeSC(� \ �, �, �) is
nonempty, then it contains an integer point.

(To see this, observe that each entry�′
i for the new right boundary tuple is equal to

�i − c, that�′ = �, and that�′
j = −c for j = m + 1, . . . , m + n. The fact that� has all

entries greater than−c implies that fork = 0, . . . , n, eachj with max{m, k} < j�m+ k
contributes�j−k+c units to the newk-deficit�′

k (whereas�
′
k(j) = �k(j) for j = 1, . . . , m

and�′
k(j) = 0 for the remainingj’s). Therefore, givenI ⊆ {1, . . . , n}, the new|I |-deficit

becomes�|I | + �[m+ 1− |I |,m] + |I |c whenever|I |�m, and|�| +mc whenever|I | >
m. Also �′[1, |I |] = �[1, |I |] if |I |�m, and�′[1, |I |] = |�| − (|I | − m)c if |I | > m.
Now Corollary1 is obtained from Theorem 1 by substituting these relations, together with
�′(I ) = �(I ) and�′(I ) = �(I )− |I |c, into relation (4) (taken with primes).)
A converse reduction, from/ \- to / / -case, is easily constructed as well, and Theorem 1

follows from Corollary 1. In contrast, we cannot point out a “simple” reduction of Theorem
1 to its special casewithm = 0 concerning�-arrays. (Nevertheless, amore intricate, though
constructive, way of reducing does exist, as we explain in part D of Section 4. In fact, this
sort of reduction is behind our method of proof of Theorem 1 where the casem = 0 is used
as a base.)
Another object of our study is theset of verticesof thepolyhedron formedbystrip-concave

arraysX with convex configuration whose entries are fixed only on the lower, upper and
left boundaries. More precisely, for� = (�an+1, . . . , �bn), � = (�1, . . . , �b0) and� ∈ Rn,
define

SC(� \ �, �) := {X ∈ SCV : (�X, �X, �X) = (�, �, �)}.
(This polyhedron is bounded in case of�-, / \-, or / / -configuration since the bounds on
xij indicated in (3) remain valid in this case too.) We show the following.

Theorem 2. For an arbitrary convex configuration and integer�, �, �, the polyhedron
SC(� \ �, �) is integral, i.e., each face of this polyhedron contains an integer point.

Note that for arbitrary realsq1, . . . , qn, the transformation of an arrayX into the array
X′ with entriesx′

ij := xij + qi preserves the row derivative. Such a transformation shifts
a polyhedronSC(� \ �, �, �) into SC(� \ �, �′, �′) with �′

i := �i + qi − qi−1 and�′
i :=

�i + qi − qi−1 (lettingq0 := 0) and it maintains relation (4). This implies that, without loss
of generality, in Theorem 1 one can consider only the quadruples of the form(�, �,0n, �)
(where 0n is the zeron-tuple). Similarly, one can restrict� to be 0n in Theorem 2 as well.
When dealing with�-configuration, for a triple(�,0n, �), inequality (4) turns into the

majorization condition�[1, |I |]��(I ). Therefore, for a fixed�, the set{� : (�,0n, �) ∈
BV } forms apermutohedron, a polytopeP formed by all vectorsz ∈ Rn with the same
value |z| such that fork = 1, . . . , n − 1, the sum of anyk entries ofz does not exceed
a constant depending only onk. (The vertices ofP are obtained by permuting entries of
a fixedn-vectorh; in our case,h = �.) It is known that for nonnegative integer�, �, the
majorization condition is necessary and sufficient for the existence of asemi-standardYoung
tableau with shape� and content�, and that these tableaux one-to-one correspond to the
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Fig. 4. The semi-standard skew Young tableau corresponding to the pattern in Fig.2b (here� = (6,4,3,1,1),
� = (5,2) and� = (3,2,3)).

integer Gelfand–Tsetlin patterns respecting�, �; for a definition and a survey, see[11].

Theorem 1 (Corollary 1) shows that in case of/ \-arrays (resp./ / -arrays) and�, � fixed,
the analogous set{� : (�, �,0n, �) ∈ BV } forms a permutohedron inRn as well (but now
the corresponding vertex generating vectorh becomes less trivial to write down; it will be
indicated in Section 4). Each integer (generalized) Gelfand–Tsetlin pattern for nonnegative
integer�, �, � determines a so-called semi-standardskewYoung tableauwith shape�\� and
content� (cf. [11]), and our theorem (corollary) yields necessary and sufficient conditions
for the existence of such tableaux. Fig. 4 illustrates an instance of semi-standard skewYoung
tableau.
It should be noted that in case of�-configuration one can obtain the claim of Theorem 2

by using a description for the generators of the Gelfand–Tsetlin patterns cone given in [1].
Our method of proof of Theorem 2 is based on attracting a certain equivalent flow model

and showing that the integer points inSC(� \ �,0n) one-to-one correspond to the integer
flows in a certain directed graph. In addition, we explain how to use the flow approach
to easily show that Kostka coefficientK(�, �) (or K(� \ �, �)), as well as the intrinsic
volume ofSC(�,0n, �) (resp.SC(�\�,0n, �)) in the nondegenerate case, preserves under a
permutation of the entries of�. HereK(�, �) is the number of semi-standardYoung tableaux
with shape� and content� (which is equal to the number of integer points inSC(�,0n, �)),
whileK(� \ �, �) concerns the corresponding skew tableaux.
This paper is organized as follows. Theorems 1 and 2 are proved in Sections 2 and 3,

respectively. The concluding Section 4 discusses some additional aspects related to these
theorems and demonstrates consequences from the proving method of Theorem 2: a com-
binatorial characterization of the vertices of polyhedraSC(� \ �, �), the above-mentioned
facts on integer points and volumes, and others.
We conclude this section with two more remarks.

Remark 2. Let us say that an arrayX (as in (1)) is (fully) concaveif it satisfies (2) and

xij − xi+1,j �xi−1,j−1 − xi,j−1 for all 1� i < n andai < j�bi. (5)

This is equivalent to saying that the extensionf of the functionx on the nodes of the
corresponding gridG (cf. Remark1) is concave in the entire regionR. The functionsxwith
such a property are often calleddiscrete concaveones, and a series of interesting results on
these have been obtained. Knutson et al. [9] pointed out the precise list of facets of the cone
BNDRn formed by all possible triples(�, �, �) of n-tuples whose entries are the differences
x(v)− x(u) on boundary edgesuv for a discrete concave functionx on the triangular grid
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of sizen, or ahive (equivalently:�, �, � are the spectra of three Hermitiann × n matrices
with zero sum). Also it is shown in[8] that for each integer(�, �, �) ∈ BNDRn there exists
an integer discrete concave functionx as required for this triple. (A history of studying this
cone and related topics are reviewed in [5], see also [3]). Nontrivial constraints for BNDRn

are expressed by Horn’s inequalities. These are generalized to an arbitrary convex grid (see
[7]), and relation (4) in Theorem 1 is, in essence, equivalent to a special case of Horn’s
inequalities. We will briefly explain in Section 4 that Theorem 1 can be derived from the
above-mentioned results on discrete concave functions. At the same time, our direct proof
of Theorem 1 is much simpler compared with the proofs of the corresponding theorems in
[8,9].

Remark 3. The polyhedron integrality claimed in Theorem2 need not hold when the array
entries are fixed on the whole boundary. More precisely, by a result due to De Loera and
McAllister [4], for any k ∈ N, there exist�, �, � ∈ Zn and a triangular arrayX of sizen,
with n = O(k), such thatX is a vertex of the polytopeSC(�, �, �) and some entry ofX
has denominatork. (Some ingredient from a construction in [4] is used in [6] to obtain an
analogous result for fully concave triangular arrays in the casewhen the values are fixed only

on two “sides”.) Nevertheless, for/ \-, / / - or �-configuration, at least one integer vertex
in each nonempty polytopeSC(� \ �, �, �) with �, �, �, � integer does exist, as explained in
the end of Section 4.

2. Proof of Theorem 1

As explained in the Introduction, it suffices to consider the case� = 0n.
To show part “only if” in the theorem, we use induction onn. Casen = 1 is trivial, so

assumen > 1. Let (�, �,0n, �) ∈ BV (for V determined byn,m) and consider an array
X ∈ SC(� \ �,0n, �) and a setI = {i(1), . . . , i(k)} with 1� i(1) < · · · < i(k)�n.
DefineI ′ := I ∩ {1, . . . , n − 1} and�′

j := �xn−1,j for j = 1, . . . , n + m − 1. Then
�j ��′

j ��j+1 (by (2)). By induction,

�′[1, |I ′|] − �(I ′)− �′
|I ′| �0, (6)

where�′
k′ stands for thek

′th deficit for�′, �, i.e.,�′
k′ := �′

k′(1) + · · · + �′
k′(n + m − 1),

where�′
k′(j) := max{0, �j−k′ − �′

j }. Two cases are possible.
Case1. Letn /∈ I , i.e.,I ′ = I . Since�k(j) = max{0, �j−k−�j }, �′

k(j) = max{0, �j−k−
�′
j } and�j ��′

j , we have�k(j)��′
k(j), implying�k��′

k. Now, using (6),

�[1, k] − �(I )− �k��′[1, k] − �(I )− �′
k�0,

and (4) follows (with� = 0n).
Case2. Letn ∈ I . Then|I ′| = k − 1. Summing up (6) and the evident equality|�| −

|�′| − �n = 0, we obtain

�[1, k] +
∑
(�j − �′

j−1 : j = k + 1, . . . , n+m)− �(I )− �′
k−1�0. (7)
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Note also that�j + �k(j) = max{�j , �j−k} (in view of �k(j) = max{0, �j−k − �j }),
and similarly�′

j−1 + �′
k−1(j − 1) = max{�′

j−1, �j−k}. Since�j ��′
j−1, we have�j +

�k(j)��′
j−1+�′

k−1(j−1). Therefore,
∑
(�j−�′

j−1 : j = k+1, . . . , n+m)−�′
k−1�−�k.

This together with (7) implies (4).
Nextweshowpart “if” in the theorem.Wefirst consider casem = 0 (i.e.,�-configuration);

in this case all deficits�k are zeros, which simplifies the consideration. We use induction
on n; casen = 1 is trivial. Letn > 1 and let (4) hold for allI. In particular,�1 − �n�0
(by takingI := {n}). Also, subtracting inequality (4) withI = {1, . . . , n − 1} from the
equality|�| − |�| = 0, we obtain�n − �n�0. Therefore, as� is weakly decreasing, there
existsp ∈ {1, . . . , n− 1} such that

�p��n and �p+1��n. (8)

Assign the(n− 1)-tuple�′ by the following rule:
�′
j := �j for j = 1, . . . , p − 1; �′

j := �j+1 for j = p + 1, . . . , n− 1;
and �′

p := �p + �p+1 − �n. (9)

Consider the triple(�′,0n−1, �′), where�′ := (�1, . . . , �n−1). We assert that
�′[1, |I ′|]��(I ′) (10)

holds for eachI ′ ⊆ {1, . . . , n− 1}. Consider two cases, lettingk := |I ′|.’
(i) Let k < p. Then�′[1, k] = �[1, k], and (10) follows from (4) forI := I ′.
(ii) Let k�p. DefineI := I ′ ∪ {n}. Then�′[1, k] = �[1, k + 1] − �n (by (9)), and we have

(using (4))

�′[1, k] − �(I ′) = �[1, k + 1] − �n − �(I ′) = �[1, |I |] − �(I )�0.

Thus, (10) holds for eachI ′. Also (8) and (9) imply�j ��′
j ��j+1 for j = 1, . . . , n− 1

(in particular,�′ is weakly decreasing), and (9) together with|�| = |�| implies |�′| = |�′|.
By induction there exists a strip-concave�-arrayX′ of sizen − 1 with (�X

′
, �X

′
, �X

′
) =

(�′,0n−1, �′). Assignxij := x′
ij for 0�j� i�n − 1 andxnj := �[1, j ] for 1�j�n. The

resulting arrayX of sizen satisfies (2) and has the desired local differences on the “sides”,
namely,(�X, �X, �X) = (�,0n, �). Hence(�,0n, �) ∈ BV . Also when�, � are integer, the
tuple �′ defined by (9) is integer as well, and the last claim in the theorem (form = 0)
follows by induction, as the integrality ofX′ implies that forX.
It remains to prove part “if” whenm > 0. Notice that the triple�, �, � can be considered

up to adding a constant to all entries (which matches adding a constant to the array row
derivative), so one may assume that� is nonnegative. Also, by compactness and scaling,
w.l.o.g. one may assume that�, �, � are integer (this slightly simplifies technical details).
We proceed by induction onm + |�|; case|�| = 0 is trivial. Let (4) hold for allI. In

particular,�j ��j ��j+n for j = 1, . . . , m. If �n+m = �m, we make a simple reduction to

/ \-configuration of size(n,m−1) by truncating the tuples�, � to �′ := (�1, . . . , �n+m−1)
and�

′ := (�1, . . . , �m−1), respectively. (This maintains (4), and ifX is a required array
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of size (n,m − 1) for �′, �′
, �, then adding toX the elementsxi,i+m := xi,i+m−1 + �m

for i = 0, . . . , n produces a required array of size(n,m) for �, �, �.) A similar reduction
(discarding�1, �1) is applied when�1 = �1.
Therefore, one may assume�1 > �1 and�m > �n+m. Then there are 1�r�n+m− 1

and 1�s�m such that

�r��1 = · · · = �s > �s+1 and �s > �r+1, (11)

letting �m+1 := 0. Note that�r > �s+1 implies r�s + n and�s > �r+1 implies r�s.
Define

�′
j :=

{
�j − 1, j = r − s + 1, . . . , r,

�j , j = 1, . . . , r − s, r + 1, . . . , n+m; (12)

�
′
j :=

{
�j − 1, j = 1, . . . , s,

�j , j = s + 1, . . . , m.
(13)

Then �′, �′
are weakly decreasing and|�′| − |�′| − |�| = 0. We assert that for any

I ⊆ {1, . . . , n} andk := |I |:
�′[1, k] − �(I )− �′

k�0, (14)

denoting by�′
k thek-deficit for�

′, �′
, i.e., the sum of numbers�′

k(j) := max{0, �′
j−k−�′

j }
overj. To see this, first of all observe that�′

k(j) = �k(j) = 0 if 1�j�r (since�j ��1 and

�′
j ��

′
1, by (11)–(13)). Consider three cases.

(a) Letk�r − s. Then forj = r + 1, . . . , n+m, we have�′
j = �j and�

′
j−k = �j−k (in

view of j − k > s). Hence�′
k = �k. Also �′[1, k] = �[1, k]. Then (14) follows from (4).

(b) Letr − s < k�r. Then�′
k(j) = �k(j)−1 for j = r +1, . . . , k+ s (as 1�j − k�s

implies�
′
j−k = �j−k − 1��j = �′

j ), and�
′
k(j) = �k(j) for j = k+ s+ 1, . . . , n+m. So

�′
k = �k − (k + s − r). Also �′[1, k] = �[1, k] − (k + s − r), and (14) follows.
(c) Let r < k�n. Then�′

k(j) = �k(j)− 1 for j = k+ 1, . . . , k+ s, and�′
k(j) = �k(j)

for j = k + s + 1, . . . , n + m. So�′
k = �k − s. Also �′[1, k] = �[1, k] − s, and (14)

follows.
Since|�′| < |�|, by induction the setSC(�′ \ �

′
,0n, �) is nonempty and contains an

integer memberX′. We transformX′ into the desired arrayX for �, �, � as follows. Let
� := �′

r−s+1 (=�r−s+1 − 1). Fori = 0, . . . , n, definep(i) to be the maximumj such that
�x′
ij > �, letting by definition�x′

i0 := ∞. Thenp(0) = 0, p(n) = r − s andp(i)� i for
eachi (as�′

r−s > �′
r−s+1��

′
1��x′

i,i+1). For i = 0, . . . , n, define

xij :=


x′
ij , j = 0, . . . , p(i),
x′
ij + j − p(i), j = p(i)+ 1, . . . , p(i)+ s,
x′
ij + s, j = p(i)+ s + 1, . . . , i +m.

(15)

Observe that�X = �, �
X = � and�X = � (sincexi,i+m = x′

i,i+m + s for eachi). AlsoX
satisfies (2).Tosee the latter, let�ij := �xij−�x′

ij for all correspondingi, j ; then�ij ∈ {0,1}.
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Using the definition of�, p(0), . . . , p(n), relation (15) and the fact thatX′ is strip-concave,
it is not difficult to conclude that�ij < �i−1,j is possible only ifj = p(i) = p(i − 1)+ 1.
In this case we have�x′

ij �� + 1> �x′
i−1,j , whence�xij ��xi−1,j . Similarly, one can see

that if �i−1,j < �i,j+1, thenj = p(i − 1) = p(i); in this case�xi−1,j ��xi,j+1 follows
from �x′

i−1,j �� + 1> �x′
i,j+1. This implies thatX is strip-concave.

This completes the proof of Theorem 1.

Remark 4. The�-arrayX recursively constructed in the second part of the proof is, in fact,
a vertex of the polytopeSC(�,0n, �). This can be seen as follows. GivenX′ ∈ SC(�,0n, �),
letQ(X′) be the set of all equalities of the form�x′

ij = �x′
i−1,j or �x′

i−1,j = �x′
i,j+1. A

trivial observation is thatX′ is a vertex ofSC(�,0n, �) if and only ifX′ is determined by
Q(X′), i.e., there is no other pointX′′ in this polytope such thatQ(X′′) ⊇ Q(X′). In our
case, the equalities as in (9) (in the recursive process) give the corresponding equalities
for �X; clearly the latter equalities determineX uniquely, soX is a vertex ofSC(�,0n, �).
Moreover, if�, � are integer, thenX is integer as well. This strengthens the last claim in

the theorem for casem = 0. On the other hand, the construction of/ \-arrayX in the third
part of the proof does not guarantee that thisX is a vertex ofSC(� \ �,0n, �). (Although an
integer vertex in this polytope with�, �, � integer does exist, as explained in Section 4.)

Remark 5. Onecanaccelerate theprocessof constructinga required/ \-arrayX in the third
part of the proof. Given (not necessary integer)�, �, �, define� := �1 −max{�r+1, �s+1},
for r, s as in (11). When�1 > �1 and�m > �n+m, we can reduce the corresponding entries
of �, � just by� (rather than by one), by setting�′

j := �j − � and�
′
j := �j − � in the

first lines of (12) and (13), respectively (one shows that (4) is maintained). Given an array
X′ for �′, �′

, �, we iteratively transformX′ into an array for�, �, �. More precisely, at the
first iteration, for�, p(0), . . . , p(n) defined as above, we increase the entriesx′

ij for ij as
in the second and third lines of (15) by�(j − p(i)) and by�s, respectively, where� is the
maximum value not exceeding� and such that the resulting array is still strip-concave (�
is computed efficiently). If� < �, we apply a similar procedure (at the second iteration)
to the updatedX′ and� := � − �, and so on. One shows that afterO(n2) iterations we
get � = 0, and that the finalX′ is the desired arrayX for �, �, �. Hence the number of
operations in the whole process of finding a member ofSC(� \ �,0n, �) is polynomial inn.
Such a transformationX′ → X is closely related to a rearrangement of flows (associated
with strip-concave arrays) explained in part D of Section 4.

3. Proof of Theorem 2

First of all we observe that the generic case of convex configuration in this theorem is

reduced to the case of/ \-configuration. Indeed, given�, �, � for V as in (1), there exists
a (sufficiently large) positive integerc such that each face ofSC(� \ �, �) contains a face
of the polyhedronP formed by the arraysX ∈ SC(� \ �, �) with |�xij |�c for all entries
�xij of �X. Letm := b0 and extend� to (n+m)-tuple�′ by setting�′

1 := · · · := �′
an

:= c,
�′
b(n)+1 := · · · := �′

n+m := −c and�′
j := �j for j = an + 1, . . . , bn. Accordingly, set
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�′
i := �i if ai = 0, and�′

i := �i − c if ai > 0. Then the restriction mapX′ → X′
V

gives a bijection between the/ \-arraysX′ with �X
′ = �′, �

X′ = �, �X
′ = �′ and the

arrays inP (cf. explanations in the Introduction). This implies thatSC(� \ �, �) is integral
if SC(�′ \ �, �′) is such.
In the rest of the proof we deal with/ \-configuration of size(n,m). As before, we may

assume� = 0n. Also one may assume that� is nonnegative (cf. reasonings in the previous
section). For brevity we denote the polytopeSC(� \ �,0n) bySC(� \ �). Theorem 2 will be
proved by constructing a bijection between the vertices ofSC(� \ �) and certain forests in
the gridG (defined in Remark1 in the Introduction). Establishing this correspondence, we
admit� and� to be real-valued.
The node setV of G is naturally partitioned into subsets (horizontal layers) Li =

{(i,0), . . . , (i, i + m)}, i = 0, . . . , n. Extract the edges connecting neighbouring lay-
ers and orient them from the top to the bottom. Formally, letA be the set of pairse0ij :=
((i, j), (i + 1, j)) ande1ij := ((i, j), (i + 1, j + 1)) of nodes ofG, for i = 0, . . . , n − 1,
j = 0, . . . , i + m. ThenHn,m := H := (V ,A) is an acyclic digraph in which any max-
imal (directed) path begins at a node of the “topmost” layerL0 and ends at a node of the
“bottommost” layerLn.
We say that a functiong : A :→ R+ is a(�, �)-admissible flowin H if

divg(i, j)=


0, i = 1, . . . , n− 1, j = 0, . . . , i +m,
�j − �j+1, i = n, j = 0, . . . , n+m,
�j+1 − �j , i = 0, j = 0, . . . , m.

(16)

Here divg(v) (v ∈ V ) stands for the value∑e=(u,v)∈A g(e) − ∑
e=(v,u)∈A g(e), and we

formally extend� and� by setting�0 := �0 := �1 and�n+m+1 := �m+1 := 0. In particular,
g(e0n−1,0) = 0 andg(e1n−1,n+m−1) = �n+m. The setF(� \ �) of (�, �)-admissible flows

forms a polytope inR|A|.

Claim. For anyX ∈ SC(� \ �) there exists a(�, �)-admissible flowg = 	(X) satisfying

g(e0ij ) = �xi,j − �xi+1,j+1,
g(e1ij ) = �xi+1,j+1 − �xi,j+1,

i = 0, . . . , n− 1, j = 0, . . . , i +m, (17)

letting�xi0 := �1 and�xi,i+m+1 := 0.Moreover, 	 is a bijective mapping ofSC(� \ �) to
F(� \ �).

(Fig. 5 illustrates the flow determined by the arrayXwith �X as in Fig. 2b; here the flow
is integer and its value on an edge is indicated by the number of lines connecting the ends
of this edge.)

Proof. LetX ∈ SC(� \ �) and letgbe defined by (17). Then for each nodev = (n, j) with
j = 0, . . . , n+m,

divg(v) = g(e1n−1,j−1)+ g(e0n−1,j )= (�xnj − �xn−1,j )+ (�xn−1,j − �xn,j+1)
= �j − �j+1,
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Fig. 5. The flow corresponding to�X in Fig. 2b.

lettingg(e) := 0 if the edgee is void (e.g., fore = e1n−1,−1). Similarly, divg(v) = �j+1−�j
for each nodev = (0, j), j = 0, . . . , m. And for each nodev = (i, j) with 1� i�n − 1
and 0�j� i +m, one has

divg(v)= g(e1i−1,j−1)+ g(e0i−1,j )− g(e0ij )− g(e1ij )
= (�xij − �xi−1,j )+ (�xi−1,j − �xi,j+1)− (�xij − �xi+1,j+1)

−(�xi+1,j+1 − �xi,j+1) = 0.

Also the functiong is nonnegative, as is seen by comparing (17) and (2). Thus,g is a
(�, �)-admissible flow.
Conversely, letg be a(�, �)-admissible flow inH. Assign numbers�xij recursively by

the following rule:

�xnj := �j , j = 1, . . . , n+m,
�xij := �xi+1,j − g(e1i,j−1), i = 1, . . . , n− 1, j = 1, . . . , i +m.

This gives the/ \-arrayX of size(n,m). Reversing the argument above, one can check
validity of (17). This and the nonnegativity ofg imply thatX is strip-concave and satisfies

�X = � and�
X = �. ThenX ∈ SC(� \ �), and the claim follows. �

Thus,	 is a linear operator (in view of (17)) and	 gives a one-to-one correspondence
between the points in the polytopesSC(� \ �) andF(� \ �). Therefore,	 establishes a
one-to-one correspondence between the vertices of these polytopes.
Next we characterize the vertices ofF(� \ �). To this aim, we distinguish, in the bot-

tommost layerLn, the setL(�) of nodes(n, j) (1�j�n + m) such that�j > �j+1, and
in the topmost layerL0, the subsetL(�) of nodes(0, j) (0�j�m) such that�j > �j+1.
Given a flowg ∈ F(� \ �), letH(g) denote the subgraph ofH induced by the set of edges
e with g(e) > 0. From (16) it follows thatH(g) containsL(�) andL(�) and that each
node ofH(g) lies on a path fromL(�) toL(�). Suppose there are two different pathsP,P ′
in H(g) having the same beginning and the same end. Choose� > 0 not exceeding the
minimal value ofg on the pathsP andP ′. Then the functionsg′ := g + �
P − �
P

′
and

g′′ := g−�
P +�
P
′
are nonnegative and satisfy (16), where
Q ∈ {0,1}A is the character-

istic function of the edge set of a pathQ. Sog is expressed as the half-sum of two different
(�, �)-admissible flowsg′, g′′, and therefore,g cannot be a vertex ofF(� \ �).
On the other hand, let for any two nodesy andz, H(g) contain at most one path fromy

to z, i.e.,H(g) is a (directed) forest with the setL(�) of zero indegree nodes (roots) and the
setL(�) of zero outdegree ones (leaves). Theng is the only(�, �)-admissible flow taking
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zero values on all edges outsideH(g), i.e.,g is determined byH(g). Indeed, one can see
that for each edgee = (u, v) of H(g), g(e) is equal to

∑
(�j − �j+1 : (n, j) ∈ V (Q))−

∑
(�j − �j+1 : (0, j) ∈ V (Q)), (18)

whereQ is the connected component ofH(g) \ {e} that contains the nodev, denoting by
V (Q) the node set ofQ. This implies thatg is a vertex ofF(� \ �). Moreover,g is integer
if �, � are integer, and Theorem2 follows. �
Arguing as in the above proof, one can associate the vertices ofSC(� \ �) with certain

subgraphs ofH, as follows.

Corollary 2. In case of/ \-configuration of size(n,m), each vertex ofSC(� \ �) one-to-
one corresponds to a forestH ′ in Hn,m havingL(�) as the set of roots andL(�) as the set
of leaves and satisfying the following condition: for each component Q ofH ′, the value in
(18) is zero, and for each edgee = (u, v) and the component Q ofH ′ \ {e} containing v,
the value in(18) is positive. Therefore, in casem = 0, the vertices ofSC(�) one-to-one
correspond to the rooted trees inHn (:= Hn,0) with root (0,0)and set of leavesL(�).

Remark 6. The flows introduced in the proof of Theorem2 give an alternative way to rep-
resent the Gelfand–Tsetlin patterns (or the strip-concave arrays), and Corollary 2 suggests
a way to compute or estimate the number of vertices of the polytopeSC(� \ �, �) in case

of / \-configuration (or�-configuration). One can check that the reasonings in the proof
of Theorem 2 and the corresponding corollary are applicable to/ / -configuration as well
(with Hn,m arising from the corresponding parallelogram-wise grid of size(n,m)).

4. Concluding remarks

As mentioned in the Introduction, Theorem 1 admits a reformulation in which the piece-
wise linear constraints are replaced by linear ones. More precisely, one can see that for each
I ⊆ {1, . . . , n}, inequality (4) is equivalent to the set of linear inequalities

�[1, |I |] + �(J + |I |)− �(J )+ �(I )− �(I )�0, (19)

whereJ ranges all subsets of{1, . . . , m}, and fork ∈ Z, J +k stands for the set{j +k : j ∈
J }. In turns out that, as a rule, each of the latter inequalities is essential, i.e., determines a
facet of the coneBV . More precisely, one can show that for/ \-configuration of size(n,m),
the set of facets of this cone is described as follows:

(∗) For I, J as above, (19) determines a facet ofBV if and only if |I | + |J | �= 0, n + m
and either (i)|I | �= 0, n (andJ is arbitrary), or (ii)|I | = 0 and|J | = 1, or (iii) |I | = n

and |J | = m − 1. Furthermore,BV has no other facets ifn = 1 or if n = 2 and
m = 0. Otherwise the remaining facets are exactly those determined by the “chamber
inequalities”�j ��j+1 (j = 1, . . . , n+m− 1) and�j ��j+1 (j = 1, . . . , m− 1).
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In particular,BV has(2n−2)2m+n+4m−2 facets in casen�2, and 2m facets in case
n = 1. The proof of (∗) is rather technical and the main part of it consists in showing that
for each(I, J ) indicated in the claim, there exist 3n+ 2m− 2 linearly independent vectors
(�, �, �, �) in BV for which (19) turns into equality. (Note thatBV is easily shown to have
dimension 3n+ 2m− 1.) The details are omitted here and will be given elsewhere.
Next, we outline (in parts A–D) more applications of the flow approach developed in

the proof of Theorem 2. Here, unless explicitly said otherwise, we consider the case of

/ \-configuration of size(n,m). (Note that the exposed properties remain valid if we deal
with / / -configuration.)
(A) Let P = Pn,m be the set of paths in the graphH = Hn,m beginning at a node of the

layerL0 and ending at a node ofLn\{(n,0)}.Associate with a pathP ∈ P the/ \-arrayYP
with the entriesyi1 = · · · = yi,p(i) = 1 andyi,p(i)+1 = · · · = yi,i+m = 0 for i = 0, . . . , n,
where(i, p(i)) is a node ofP. Considering the case of triangular arrays, Berenstein and
Kirillov [1] noticed that the set of arraysYP (P ∈ Pn,0) constitutes a minimal list of
generators of the cone of nonnegative Gelfand–Tsetlin patterns of sizen − 1. A similar

property takes place for/ \-patterns (or/ / -patterns) and can be easily shown by use of

flows. More precisely, for a strip-concave/ \-arrayXwith �X�0, take the flowg = 	(X)
defined by (17). Theng is represented as a nonnegative linear combination�1
P1 + · · · +
�N
PN , whereP1, . . . , PN ∈ P. One can check that�X = �1YP1 + · · · + �NYPN , as
required (the minimality of{YP : P ∈ P} is obvious).
(B) One can establish some invariants for polytopesSC(� \ �,0n, �) when the entries of

� are permuted. Consider an arrayX ∈ SC(� \ �,0n, �) and the flowg = 	(X) as in (17).
For i = 1, . . . , n, we have

∑i+m
j=1 �xij − ∑i+m−1

j=1 �xi−1,j = xi,i+m − xi−1,i+m−1 = �i .

Also �xij − �xi−1,j = g(e1i−1,j−1) for j = 1, . . . , i + m (see Section 3 for the definition
of edgese0

i′j ′ ande1i′j ′ ; as before,�xi−1,i+m := 0). Comparing these relations, we conclude
that

�i = g(e1i−1,0)+ · · · + g(e1i−1,i+m−1) for i = 1, . . . , n. (20)

Choosei ∈ {1, . . . , n − 1} and consider the subgraphHi of H induced by the edges
connecting the layersLi−1, Li or the layersLi, Li+1. Forj = 0, . . . , i +m− 1, the nodes
(i−1, j) and(i+1, j +1) are connected by two paths, namely, by pathZj with the edges
e0i−1,j , e1ij and by pathZ′

j with the edgese
1
i−1,j , e0i,j+1. Let us call such a pathZwith edges

e, e′ azigzagand define its capacity to beg(Z) := min{g(e), g(e′)}. Thezigzag swapping
operationmodifiesg within Hi by swapping the capacities simultaneously for each pair
Zj ,Z

′
j . More precisely, forj = 0, . . . , i +m− 1, assign

g′(e) :=
{
g(e)− g(Zj )+ g(Z′

j ) for each edgee of Zj ,
g(e)− g(Z′

j )+ g(Zj ) for each edgee of Z′
j ,

andg′(e) := g(e) for the remaining edges ofH. Obviously,g′ is again a(�, �)-admissible
flow. (For example, such an operation applied to the flow in Fig.5 results in the flow
illustrated in Fig. 6.)
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Fig. 6. The flow obtained by the zigzag swapping operation applied to the flow in Fig.5 at layer 2.

Let �i (X) denote the array	−1(g′) and let�′ be then-tuple of local differences on the
“right boundary” of�i (X). Using (20), one can check that the zigzag swapping operation
swaps�i and�i+1, i.e., �′

i = �i+1, �′
i+1 = �i and�′

p = �p for p �= i, i + 1. Moreover,
applying the zigzag swapping operation (with the samei) to g′ returnsg.
Thus, for eachi,�i is a continuous bijectivemapping ofSC(�\�,0n, �) toSC(�\�,0n, �′)

(and�2i is the identity onSC(� \ �)). 3 Moreover, fork ∈ N, if g is 1
k
-integer, so isg′.

Therefore,�i gives a bijection on the1k -integer points in these polytopes for anyk. As a

consequence (fork = 1), the following known property is obtained: if�, �, � are integer and
if �′ is an arbitrary permutation of�, then Kostka coefficientsK(� \ �, �) andK(� \ �, �′)
are equal.
(C) Let �, �, � be rational-valued and let�′ be a permutation of�. Let V0 denote the set

of boundary index pairs inV (or the boundary nodes in the gridG). The fact that each
map�i is continuous and bijective implies that the polytopesSC := SC(� \ �,0n, �) and
SC′ := SC(�\�,0n, �′)have the samedimension (which typically equals|V \V0|).Consider
the |V \ V0|-dimensional affine subspacesSandS′ containing the polytopesSC andSC′,
respectively, which are obtained by imposing the corresponding equalities on the values on
V0. SinceSandS′ are parallel, there isk′ ∈ N such that for any multiplek of k′, the lattice
of 1
k
-integer points inS′ is obtained by a parallel translation of a similar lattice inS. So the

density of 1
k
-integer points inSandS′ (measured by the number of such points in a unit

ball with center at a point of the lattice) is the same. Also the numbers of1
k
-integer points

in the polytopes in question are equal. Thus, whenk tends to infinity, we obtain equality for
the corresponding volumes and can conclude with the following.

Proposition 1. Given(real-valued) �, �, �, let �′ be a permutation of�.Then the polytopes
SC(� \ �,0n, �) andSC(� \ �,0n, �′) have the same|V \ V0|-dimensional volume.

It should be noted that, although�i (being a piece-wise linear operator) brings integer
points into integer ones, it need not do so for polytope vertices, even for polytopesSC(�\�).
Indeed, in casem = 0, take a rooted treeT inHn,0 (with root (0,0) and the leaves inLn) such
that for somei, j , the subgraphT ∩ Hi contains zigzagsZj andZ′

j+1. Then the zigzag
swapping operation (applied to a nowhere zero flow onT) transforms the pairZj ,Z′

j+1
intoZ′

j , Zj+1, so the resulting graphT ′ is not a tree, as it has two edges entering the node
(i, j + 1).

3 Note also that for integer points the zigzag swapping operation produces Bender–Knuth’s involution, cf.[1].
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(D) The reduction applied in the proof of part “if” of Theorem1 in casem > 0 can be
described in terms of flows. Moreover, the language of flows is convenient to develop a
more general sort of reduction and to demonstrate some additional properties. To explain
the idea, considerX ∈ SC(� \ �,0n, �) andg as in (17), assuming that� is nonnegative.
Let P be a path inH beginning at a node(0, s) of the layerL0, ending at a node(n, t)
of the layerLn and such that the minimum� of values ofg on the edges ofP is nonzero.
Choosep ∈ Z and�′ ∈ R satisfying 0�s+p�m and 0< �′ �� and changeg by moving
the pathP with weight�′ at distance|p|, to the right of left depending on the sign ofp.
Formally: defineP ′ to be the path containing the node(i, j + p) for each node(i, j) of P
and transformg into g′ := g− �′
P + �′
P ′

. This transformation does not change the sum
in (20), and therefore, the resulting arrayX′ := 	−1(g′) satisfies�X′ = �. Whenp > 0
(p < 0), the row derivative�X′ is obtained from�X by increasing (resp. decreasing) by�′
the entries corresponding to the horizontal edges of the gridG lying between the pathsP

andP ′; the tuples�X and�X are changed accordingly.
Using such operations, one can transformgmore globally, still preserving�: decompose

g into the sum of path flows�q
Pq (�q > 0), q = 1, . . . , N , and move each pathPq
to the left so that the resultingP ′

q begin at the node (0,0). This gives an arrayX
′ with

�x′
ij = 0 for i = 0, . . . , n andj = i + 1, . . . , i + m, i.e., in essence,X′ is equivalent to

a �-array. One can deduce that the firstn entries of the tuple�′ := �X
′
are expressed as

follows:

�′
k =

n+m∑
t=k

|[�t , �t+1] ∩ [�1, �t−k+1]| for k = 1, . . . , n, (21)

denoting by|[a, b]| the lengthb − a of a segment[a, b] and letting�j := 0 for j >
m. Conversely, given�, �, �, define then-tuple �′ by (21) and consider a�-arrayX′ ∈
SC(�′,0n, �). Then one can determine a special path decomposition for	(X′) and move
each path at a due distance to the right so as to obtain a flow determining a/ \-array in
SC(� \ �,0n, �) (moreover,�′ is integer when�, � are such and one can maintain flow
and array intergality under the transformation). This gives a constructive way to reduce the
trapezoidal case to the triangular one. The tuple�′ is weakly decreasing and it just represents
the vertex generating vector for the permutohedron mentioned in the Introduction.
Next we explain the idea of deriving Theorem 1 from results in [8,9] (mentioned in

Remark 2 in Section 1). We use the equivalence between/ \-arrays of size(n,m) and
functions on the node set of the corresponding gridG = (V ,E). Given tuples�, �, �, �,
let us choose a positive integerc and replace�, � by �′, �′ defined by�′

i := �i − ic and
�′
i := �i − ic, i = 1, . . . , n. This turns the polytopeSC(� \ �, �, �) into SC(� \ �, �′, �′)
(each arrayX in the former polytope corresponds toX′ defined byx′

ij := xij − i(i+1)
2 c);

for brevity, we denote the latter polytope byC. Whenc is large enough,C consists of fully
concave arrays, and we can apply results on the corresponding discrete concave functions.
The second part of Theorem 1 follows from a result in [8] (in fact, shown there for any
convex grid) which in our case reads: if�, �, �′, �′ are integer and ifC �= ∅, thenC contains
an integer point.
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Thefirst part ofTheorem1 follows fromacombinatorial characterization for theexistence
of a discrete concave function under prescribed boundary data (we use its extension to an
arbitrary convex grid given in [7]). It uses a notion ofpuzzle(originally introduced for
�-grids in [9]). This is a subdivision� of the grid into a set of little triangles and little
rhombi (the union of two little triangles sharing an edge), along with a 0,1-labeling of the
edges ofGoccurring in the boundaries of these pieces, satisfying the following properties:

(i) for each little triangle� in �, the edges of� are all labeled either by 0 or by 1;
(ii) for each little rhombus� in �, a side edge of� is labeled 1 if clockwise of an obtuse

angle, and 0 if clockwise of an acute angle.

Then a necessary and sufficient condition on the nonemptiness ofC (in / \-case) is that
each puzzle� satisfies the inequality

�(I )− �(J )+ �′(K)− �′(L)�0, (22)

whereI, J,K,L are the sets of edges labeled 1 in the lower, upper, left and right sides
of G, respectively. To show the necessity is rather easy, as follows. LetC �= ∅ and let
x ∈ C (consideringx as a function onV). The discrete concavity ofx implies that for each
little rhombus� with obtuse verticesu, u′ and acute verticesv, v′, one hasq(x, �) :=
x(u)+ x(u′)− x(v)− x(v′)�0. When summing up these inequalities for all rhombi in�
and the equalities(x(v)−x(u))+ (x(w)−x(v))+ (x(u)−x(w)) = 0 for all little triangles
labeled 1, with verticesu, v,w in the anticlockwise order, the termsx(·) for interior vertices
cancel out and we just obtain (22) with I, J,K,L to be the sets of edges labeled 1 on the
corresponding sides.
Whenc tends to+∞, the valueq(x, �) does so as well (uniformly for allx ∈ C) for each

little rhombus�, if any, whose smaller diagonal is parallel to the bottom side ofG. The grow
of q(x, �)must cause a similar behavior for the left-hand side in (22). This implies that the
puzzles containing at least one of such rhombi� can be excluded from the consideration,
as they become redundant in verification of the nonemptiness ofC. Now relation (4) in
Theorem 1 can be deduced from (22) when the remaining puzzles� are considered.
In conclusion, it should be noted that, using the above reduction to the fully concave case

and an argument in [2] (where an alternative proof of the integrality theorem from [8] is
given), one can show the following sharper version of the last claim in Theorem 1.

Proposition 2. For integer�, �, �, �, the down hullD ofSC(�\�, �, �) (i.e., the polyhedron
SC(� \ �, �, �)− RV+) is integral.

One can give a direct, relatively simple, proof of this proposition. A sketch: Consider a
vertexX of D; then there is no arrayX′ �= X in D with X′ �X. Let V1, . . . , VN be the
minimal nonempty sets of index pairs such that forq = 1, . . . , N and for anyij andi′j ′
with i′ = i+1, j ′ ∈ {j, j +1} and�xij = �xi′j ′ , the setVq contains either both or none of
ij andi′j ′. Let cq := �xij for ij ∈ Vq . EachVq is associated with the corresponding subset
of horizontal edges in the gridG; let Rq denote the union of little triangles containing an
edge in this subset. Then the interior of each regionRq is connected, and each maximal
horizontal lineLi in G (corresponding to theith row in�X) intersectsRq by a connected,
possibly empty, set. We say thatRq is anintermediateregion if it has no edge in the lower
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or upper boundary ofG; let for definitenessR1, . . . , R3 be the intermediate regions. One
shows that if the setWq of nodes ofGoccurring in the interior of an intermediate regionRq
is nonempty, then one can increase the functionxby a (small) positive constant within the set

Wq so as to preserve the strip-concavity; the boundary tuples�X, �
X
, �X, �X are preserved

automatically. (This relies on the observation that if, e.g.,�xij = �xi−1,j and the vertex
(i, j−1) is inWq , then(i−1, j−1) is inWq aswell, in viewof�xij = �xi,j−1 = �xi−1,j−1.)
Therefore,Wq = ∅ for all q = 1, . . . , 3; in other words, each horizontal lineLi contains at
most one edge withinRq .
Now associate withRq (1�q�3) a real variablezq . LetA = (aiq) be the(n − 1) × 3

matrix in whichaiq is the number of edges of the lineLi occurring inRq . Form the linear
systemAz = b, where fori = 1, . . . , n − 1, bi is equal toxi,i+m − xi0 minus the sum
of values�xij over all ij concerning the edges of nonintermediate regions. Then for the
numberscq as above, the tuplez := (c1, . . . , c3) is a solution to this system. Note that each
bi is an integer. (Indeed, each of the above values�xij is equal to some entry of� or �,
which is an integer;xi0 andxi,i+m are integers as well.) AlsoA is a 0,1-matrix and the ones
in each column go in succession, i.e.A is an intervalmatrix. SoA is totally unimodular
(cf. [10, Section 19.4]) and must have full column rank (otherwiseAz = 0 has a nonzero
solution and we can representXas the half-sum of two other points inSC(�\�, �, �)). Then
c1, . . . , c3 are integers, as required.
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