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Abstract

Discrete strip-concave functions considered in this paper are, in fact, equivalent to an extension
of Gelfand-Tsetlin patterns to the case when the pattern has a not necessarily triangular but convex
configuration. They arise by releasing one of the three types of rhombus inequalities for discrete
concave functions (or “hives”) on a “convex part” of a triangular grid. The paper is devoted to a
combinatorial study of certain polyhedra related to such functions or patterns, and results on faces,
integer points and volumes of these polyhedra are presented. Also some relationships and applications
are discussed.

In particular, we characterize, in terms of valid inequalities, the polyhedral cone formed by the
boundary values of discrete strip-concave functions on a grid having trapezoidal configuration. As a
consequence of this result, necessary and sufficient conditions on a pair of vectors to be the shape and
content of a semi-standard skew Young tableau are obtained.
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1. Introduction

Letn e N Consider a two-dimensional arra§/= (x;/)o<i <n,« < j <b; Of reals, where
the index bounds;, b; (depending on rows) are integers satisfyines b; and

ap =0, 0<a1—ap<az—a1<---<ap —ay—1<],
and 1>by—bo=by—b1>--- 2b, —b,—1>0. 1)

We denote the set of paiijsof indices inX by V and say thaK hasconvex configuration

(This term is justified by the fact thatcan be identified with the set of nodes of a convex
triangular grid; see Remark We visualizeX so that(xgp, . . . , xop,) IS the topmost row

and each tripleq;;, x; 41, j, Xi+1, j+1 OF Xij, X j+1, Xi+1, j+1 IS disposed so as to form an
equilateral triangle. Then the array is shaped like a convex polygon, with 3—6 sides.) Two
examples of such arrays are depicted in Fig. 1.

Depending on the shape of the corresponding convex polygon, we may speak of hexagonal
configuration, pentagonal configuration, etc. Although main results in this paper will be
applicable to any of these, three special casesayith - - - = a,, = 0 are of most interest
forus: (a)b; = i foreachi (giving aA-array); (b)b; = i +m for each (a/ -array), see Fig.
1b; (c)b; = m for eachi (a/7-array), wherem € N. In these cases we will also refer to an
array as havingriangular, trapezoida) or parallelogram-wise configuratiqrmrespectively
(usually ignoring other possible dispositions of triangle, trapezoid, or parallelogram). We
say thaiX hassize nin case (a), anch, m) in cases (b),(c). Sometimes we will admit= 0

in case (b), regarding-arrays as a degenerate casggfarrays.

Let us associate wit)l the arrayoX = (0x;j)o<i<n,a;+1<j<b; Of local differences
Oxij = x;j — x; j—1, referring todX as therow derivativeof X. We deal with arrayX
satisfying the following condition: for=1,...,nandj =a; + 1, ..., b;,

('3x,-j > 5xi,1,j (whenj<b;—1) and ébcl»,l,j > 6x,-,j+1 (whenj < b;). (2)

The array X obeying @) and having triangular configuration is said to eedfand—Tsetlin
pattern and in this paper we apply the same nam&ifavith such a property wheX has an
arbitrary convex configuration as well. In this case we Xalkstrip-concavearray, using an
analogy with the corresponding functions explained in Remark 1. For example, both arrays
in Fig. 1 are strip-concave; their row derivatives are shown in Fig. 2.

One can identify the set of all arrays féwith the Euclidean spad@” whose unit base
vectors are indexed by the pairs € V. Let SCy denote the set of arrays € RY that

@) (b)

Fig. 1. (a) A hexagonal array with = 3,a = (0,0,0, 1), b = (2, 3, 3, 3); (b) a trapezoidal array with = 3,
a=(0,000),b=(2345).
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@) (b)

Fig. 2. Gelfand-Tsetlin pattern examples: {&) for X in Fig. 1a; (b) dX for Xin Fig. 1b.

(a) (b)

Fig. 3. (a) The grid for the array in Fida; (b) the grid for the array in Fidb.

satisfy propertyZ) and the normalization conditiog = O; imposing this condition leads
to no loss of generality in what follows. ThefCy is a polyhedral cone ifR" .

Remark 1. Let «, § be linearly independent vectors kf. By a convex(triangular) grid

we mean a finite planar gragh = (V, E) embedded in the plane so that each nodé& of

is a point with integer coordinatgs, ;) in the basig«, f5), each edge is the straight-line
segment connecting a paiy v of nodes withu — v € {«, 8, « + 5}, each bounded face is a
triangle with three edges (dtle triangle of G), and the unioriR of bounded faces covers

all nodes and forms a convex polygon in the plane. A convex grid can be considered up to
an affine transformation, and to agree with the above visualization of arrays, one should
take the generating vectors as, exg+= (—1/2, —+/3/2) andf := (1, 0) and assume that
(0,0) € Vand(i, j)>=(0,0) forall (i, j) € V.(The convex grids behind the arrays in Fig.

are exposed in Fig. 3). Afunction: V — R determines an arrayof convex configuration

in a natural wayx;; = x(i, j). The arrays inSCy (consideringV as the index set) are
determined by the functionshaving the following property: if is the extension ox to

‘R which is affinely linear on each bounded faceGfthenf is a concave function within

each region (strip) confined by the boundary®énd linesic + RS and (i — L)o + Rp,

i =1,2,....We call such a functior discrete strip-concavgpy an analogy with discrete
concave functions; see Remark 2 in the end of this section), and accordingly apply the
adjective “strip-concave” to the arrays with property (2).

Local differences on the “boundary” of will be of most interest for us in this paper.

These are represented by four tuplés IX, X, vX (concerning the lower, upper, left and
right boundaries, respectively) defined by

, . —X
/L;( = 0xpj, =1 by A= Oxgjr, ) =1,..., bo;
X

. X . .
W = Xig; — Xi—lq_, and v i=xp, —xi—1p,4, =1...,n.
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(IX vanishes whehg = 0.) For example, the arra§in Fig. 1ahasiX = (3, 0,7° = @2, 1),
pX = (2,-2,5) andvX = (1,0, 4), and the array in Fig. 1b has’® = (6,4,3,1, 1),
=625 =1 -7,-2 andv* = 4, -5,1).

Giveni = (Agy41s - --» Ab,)s A= (A1, ..., Apy) @ndp, v € R”*, define

SC(/I\Z, wv):={X eSCy : ()LX,ZX, ,uX, vy =, 4, w, )}

This set, if nonempty, forms a bounded polyhedron (a polytop&'inin case of— - and
[7-arrays. Indeed2) andxgo = O imply

xij<H1+"'+Hi+;L1+"'+}vj and xij>/“{l+"'+ﬂi+q7 (3)

whereg = Jy_i41+- - -+ in_itj for M -arrays, ang := iy +---+4; for /7-arrays. (On
the other hand, such a polyhedrBris unbounded when there is at least one interior entry
and both left and right boundaries make a bend, i.e<, &, < nand O< b, — by < n;
in particular, if the hexagonal configuration takes place. One can check that adding any
positive constant to all interior entries of an artéye P gives a point i as well.)

The first problem we deal with in this paper is to characterize thBseff all quadruples
(2, 4, i, v) (depending onV) such thatSC(4 \ 4, i, v) is nonempty. Two conditions on
such quadruples are trivial. The first one comes up from the fact2hanplies thatl” is
weakly decreasing, i.edy 1> -+ >/} , and similarly for/. The second one comes up
by observing that

X
25T = 1201+ 11X = VY] = (b, — na,) — (o — %00) + (na, — X00)
—(Xnb, — X0ny) = 0,
where for a tuple (vectoq = (dp, ..., d,), |d| standsfoy (d; :i = p,...,q).

To obtain the desired characterization, we need to introduce certain values depending on
A, A. Fork € 74, define

ok(j):=max0, Aj—x — j}, j=an+1,...,b,, and
A :=0r(an +1) + - + 0k (bn),
letting by definitiond, (j) := 0if j —k<0orj —k > bo. We refer toA; as thekth deficit
of A\ L.
We shall explain later that the above problem is reduced to the case of trapezoidal config-

uration. Necessary and sufficient conditions on the corresponding quadruptesdorays
are given in the following theorem. Hereinafter, b= (d, ..., d,) andl C {p, ..., q},
d(I) denotesy (d; : i € I), and forp <k <k'<gq, d[k, k'] denotesly + - - - + dy.

Theorem 1. Forn € N andm € Zy, let 2 = (J1,..., ngm) @NdA = (A1, ..., /)
be weakly decreasin@gnd lety, v € R" be such thafl| — |1] + || — [v] = 0. Then

a strip-concave— -array X with (1%, 7% X, vX) = (4, 4, u, v) exists if and only if the
inequality

AL T+ p) —v(I) — Ay 20 4
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holds for eaclfincluding emptysubset C {1, ..., n}. Furthermoreif 4, ., 1, vare integer
and the polytope&sC (4 \ 4, 1, v) is nonemptythen it contains an integer point

In particular,By forms a polyhedral cone (iIR"*" x R™ x R" x R") for V in question.
Also (4) implies evident relation; 22, (j=1,...,m)and/; dj_,, (j=n+1,...,n+
m), where the former is easily obtained by takihg= ¢, and the latter by comparing
|2l — |2 + |ul — |v] = O with (4) forl = {1, ..., n}.

Note that relation (4) involves a piece-wise linear term, namgly, One can replace
each instance of (4) by a collection df Znear inequalities, yielding an equivalent version
of Theorem 1. This version, giving rise to a description of the facets of the Bpnés
discussed in Section 4. (It turns out that the number of facets,ofrows exponentially
in n, m. On the other hand, to verify that a given quadru@leZ, u, v) belongs toBy, it
suffices to check validity of (4) only for + 1 setdl: fork =0, ..., n, takel with |I| =k
maximizing(v — ) (1).)

For an arbitrary convex configuration, the problem with prescribed local differences
4, 7., u, v is reduced to the trapezoidal case as follows. Since the polyhgtenSC(/ \
2, 1, v) is described by a linear system formed by the inequalities in (2) and the corre-
sponding equalities involving, 7, u, v, one can efficiently compute a numkee R, such
that if P is nonempty, then there exisks € P with |x;;| < ¢/2 for all entriesx;;. (For
example, one can roughly takeequal to]V|!V! times the maximum absolute valaeof
the entries in, 4, u, v, taking into account that the constraint matrix of the system has

entries 0,1,—1. In fact, there is a bouadinear in«|V|; cf. (3) for /7-arrays.) Suppose
a, # 0 and take the maximumwith a, = 0 (thena; = i — p for p < i<n). Add to
V the setA of pairsij with 0<j <i — p<n — p, define)/j =cforj=1,...,n—p,
and definQu; =w, —cfori=p-+1,...,n Symmetrically, ifb, < bg+ n, we take the
maximumawith b, = bo+ ¢, add the seB of pairsij with 1< j — b, <i —g <n—q, define
)/j =—cforj=0b,+1...,b,+n—gq,anddefine) :=v; —cfori=¢q +1,...,n.
Let A’ coincide with 4 for the remaining entries, and similarly faf, v. The resulting
V' :=V UAU B gives a trapezoid (of size, bo)), and it is straightforward to verify that
the setP’ := SC(2'/4, i/, v') (concerningV’) is nonempty if and only ifP is so, that the
restriction of anyX’ € P’ to V belongs tdP, and thatX as above is extended in a natural
way to an array iP’.

Applying this reduction to the parallelogram-wise configuration of gizen), one can
derive the following corollary from Theorem 1.

Corollary 1. Letn,m € N, and lety, v € R" and weakly decreasing, . € R" satisfy
|4l = 14l 4+ lul — [v] = 0. Then a strip-concave—-array X with X, 7% X %) =
(4, A, u, v) exists if and only if for each subsktC {1, ..., n}, the inequality

AL NN = Alm — 1] + 1, m] + u(I) —v(I) — A =0

holds for|I|<m, and the inequality

12 = 121 + u(I) — v(I) =0
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holds for|I| > m. Furthermoreif 2, , u, v are integer and the polytop€C(/ \ Z, u, v) is
nonemptythen it contains an integer point

(To see this, observe that each entfyfor the new right boundary tuple is equal to
v; — ¢, thaty/ = u, and thati’j = —cforj =m+1,...,m+ n. The fact thatl has all
entries greater tharc implies that fork = 0, ..., n, eachj with max{m, k} < j<m +k
contributesl;_ + ¢ units to the nevk-deficit A} (whereas),(j) = dx(j)forj =1,...,m
andd, (j) = 0 for the remaining’s). Therefore, given < {1,..., n}, the new|/|-deficit
becomes\ ;| + Am +1—|I|,m] + |I|c whenevelrI|<m, and|Z| + mc whenever/| >
m. Also A'[1, [I|] = AL, [I|]if [I|<m, and'[1, |I|]] = || — ({I| — m)c if || > m.

Now Corollaryl is obtained from Theorem 1 by substituting these relations, together with
W () = u() andv'(I) = v(I) — |I|c, into relation (4) (taken with primes).)

A converse reduction, fronm - to /7 -case, is easily constructed as well, and Theorem 1
follows from Corollary 1. In contrast, we cannot point out a “simple” reduction of Theorem
1toits special case with = 0 concerning\-arrays. (Nevertheless, a more intricate, though
constructive, way of reducing does exist, as we explain in part D of Section 4. In fact, this
sort of reduction is behind our method of proof of Theorem 1 where thecas® is used
as a base.)

Another object of our study is the set of vertices of the polyhedron formed by strip-concave
arraysX with convex configuration whose entries are fixed only on the lower, upper and
left boundaries. More precisely, far= (Zq,+1, ..., 4, ) A = (A1, ..., Ap,) @andu € R",
define

SCONT 1) = (X € SCy : O, 75, 15 = (W 7, w).

(This polyhedron is bounded in case®f, -, or /7-configuration since the bounds on
x;; indicated in 8) remain valid in this case too.) We show the following.

Theorem 2. For an arbitrary convex configuration and integér /, u, the polyhedron
SC(A\ 7, w) is integral i.e., each face of this polyhedron contains an integer point

Note that for arbitrary realgy, . .., ¢,, the transformation of an arrayinto the array
X’ with entrieSx[i = x;; + g; preserves the row derivative. Such a transformation shifts
a polyhedronSC( \ Z, u, v) into SC(A\ 4, ¢/, V') with i, == w; + q; — gi—1 andv; :=
vi +q; — gi—1 (letting go := 0) and it maintains relatiomj. This implies that, without loss
of generality, in Theorem 1 one can consider only the quadruples of the(forn0”, v)
(where @ is the zera-tuple). Similarly, one can restrigtto be & in Theorem 2 as well.
When dealing withA-configuration, for a triplg4, 0", v), inequality (4) turns into the
majorization conditionl[1, [I|]>v(I). Therefore, for a fixed,, the set{v : (1,0",v) €
By} forms apermutohedrona polytopeP formed by all vectorg € R" with the same
value |z| such that fork = 1,...,n — 1, the sum of ank entries ofz does not exceed
a constant depending only ¢n (The vertices ofP are obtained by permuting entries of
a fixedn-vectorh; in our casefr = 1.) It is known that for nonnegative integerv, the
majorization condition is necessary and sufficient for the existenceasfizzstandard Young
tableau with shapé and content, and that these tableaux one-to-one correspond to the
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Fig. 4. The semi-standard skew Young tableau corresponding to the pattern ZbKigerel = (6,4,3,1, 1),
4= (5,2 andv = (3,2, 3)).

integer Gelfand—Tsetlin patterns respectihg; for a definition and a survey, s¢&l].

Theorem 1 (Corollary 1) shows that in caserof-arrays (resp~-arrays) and., / fixed,

the analogous sét : (4, 4, 0", v) € By} forms a permutohedron iR" as well (but now

the corresponding vertex generating vedtdrecomes less trivial to write down; it will be
indicated in Section 4). Each integer (generalized) Gelfand—Tsetlin pattern for nonnegative
integer4, 4, v determines a so-called semi-standskewoung tableawvith shapel\ 4 and
contenty (cf. [11]), and our theorem (corollary) yields necessary and sufficient conditions
for the existence of such tableaux. Fig. 4 illustrates an instance of semi-standard skew Young
tableau.

It should be noted that in case &fconfiguration one can obtain the claim of Theorem 2
by using a description for the generators of the Gelfand—-Tsetlin patterns cone given in [1].

Our method of proof of Theorem 2 is based on attracting a certain equivalent flow model
and showing that the integer points§it'(4 \ 4, 0") one-to-one correspond to the integer
flows in a certain directed graph. In addition, we explain how to use the flow approach
to easily show that Kostka coefficielt (4, v) (or K (4 \ 1,v)), as well as the intrinsic
volume ofSC(4, 0", v) (resp.SC(J\ 4, 0", v)) in the nondegenerate case, preserves under a
permutation of the entries of HereK (4, v) is the number of semi-standard Young tableaux
with shapel and content (which is equal to the number of integer pointsSé(4, 0*, v)),
while K (1 \ 4, v) concerns the corresponding skew tableaux.

This paper is organized as follows. Theorems 1 and 2 are proved in Sections 2 and 3,
respectively. The concluding Section 4 discusses some additional aspects related to these
theorems and demonstrates consequences from the proving method of Theorem 2: a com-
binatorial characterization of the vertices of polyhe8t&4 \ 2, u), the above-mentioned
facts on integer points and volumes, and others.

We conclude this section with two more remarks.

Remark 2. Let us say that an array (as in (1)) is (fully) concavsf it satisfies (2) and
Xij — Xi+1,j 2)(,‘_]_",'_1 — Xij-1 forall 1<i <n anda,- < jgb, (5)

This is equivalent to saying that the extensioaf the functionx on the nodes of the
corresponding gri& (cf. Remarkl) is concave in the entire regi@. The functionx with

such a property are often calldiscrete concavenes, and a series of interesting results on
these have been obtained. Knutson et al. [9] pointed out the precise list of facets of the cone
BNDR,, formed by all possible triple&i, u, v) of n-tuples whose entries are the differences
x(v) — x(u) on boundary edgesv for a discrete concave functionon the triangular grid
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of sizen, or ahive (equivalently:4, u, v are the spectra of three Hermitianx n matrices

with zero sum). Also it is shown i8] that for each integef4, u, v) € BNDR,, there exists

an integer discrete concave functioas required for this triple. (A history of studying this

cone and related topics are reviewed in [5], see also [3]). Nontrivial constraints for BNDR
are expressed by Horn’s inequalities. These are generalized to an arbitrary convex grid (see
[7]), and relation (4) in Theorem 1 is, in essence, equivalent to a special case of Horn’s
inequalities. We will briefly explain in Section 4 that Theorem 1 can be derived from the
above-mentioned results on discrete concave functions. At the same time, our direct proof
of Theorem 1 is much simpler compared with the proofs of the corresponding theorems in
[8,9].

Remark 3. The polyhedron integrality claimed in Theor@mneed not hold when the array
entries are fixed on the whole boundary. More precisely, by a result due to De Loera and
McAllister [4], for anyk € N, there existi, u, v € Z" and a triangular arra}{ of sizen,

with n = O (k), such thaiX is a vertex of the polytop&C(4, i, v) and some entry oK

has denominatdk. (Some ingredient from a construction in [4] is used in [6] to obtain an
analogous result for fully concave triangular arrays in the case when the values are fixed only
on two “sides”.) Nevertheless, fgr -, /- or A-configuration, at least one integer vertex

in each nonempty polytop8C (4 \ 4, u, v) with , 4, u, v integer does exist, as explained in

the end of Section 4.

2. Proof of Theorem 1

As explained in the Introduction, it suffices to consider the ¢gase0”.

To show part “only if” in the theorem, we use induction enCasen = 1 is trivial, so
assumer > 1. Let(4, 2, 0", v) € By (for V determined by:, m) and consider an array
X € SCUNL O, vandasel = {i(1),...,i(k)}with1<i(l) < --- < i(k)<n.

Definel’ :=IN{1,...,n — 1} andi’j = 0xy—1,jforj=1,...,n+m—1.Then
2j 22 =241 (by (2)). By induction,

AL — v —A(,,@o, (6)

whereA;, stands for the'th deficit for 7', 2, i.e., A}, := 3, (1) + --- + §j(n +m — 1),
whered;, (j) :== max0, 1;_p — )/j}. Two cases are possible.

Casel.Letn ¢ 1,i.e.,I’ = I.Sinced;(j) = max0, 4;_x — 4}, 6, (j) = max{0, 1;_x —
2y andZ; > 2, we haved (j) < d;(j), implying Ay <Ay Now, using 6),

ALkl —v(I) — A= AL, k] —v(I) — A, >0,
and @) follows (with ¢ = 0").
Case2. Letn € I. Then|I’| = k — 1. Summing up (6) and the evident equality —

|/| — v, = 0, we obtain

ALK+ (Gj=2 g j=k+1....n+m)—v(I)—A_;>0. (7)
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Note also that; + &x(j) = max{4;, 1;_x} (in view of 64 (j) = max0, Lj_x — 4;}),
and similarly;_; + 6, 1(j — 1) = max{i’j_l,j,j,k}. Since; </j_;, we havez; +
(/) gz;_1+5§{._1(j.—1)..'I'hereforeZ(),.,~—Af/._l cj=k+1, ... n+m)—A_1 < —Ar.
This together with 7) implies (4).

Nextwe show part “if” in the theorem. We first consider caise: 0 (i.e., A-configuration);
in this case all deficitd; are zeros, which simplifies the consideration. We use induction
onn; casen = lis trivial. Letn > 1 and let (4) hold for all. In particular,2; — v, >0
(by taking ! := {n}). Also, subtracting inequality (4) with = {1, ...,n — 1} from the
equality|4| — |v] = 0, we obtainl,, — v, <0. Therefore, ag is weakly decreasing, there
existsp € {1,...,n — 1} such that

Apzvy and Z,p1 <y, (8)
Assign the(n — 1)-tuple i’ by the following rule:
/l/j::),j forj=1,...,p—1, )/j::ij+l forj=p+1,...,n—1

and A; = Ap+ Apt1— Vn. 9)
Consider the triplé’, 0°=1, '), wherev' := (v1, ..., v,—1). We assert that
AL 1 =vh (10)
holds for each’ C {1, ..., n — 1}. Consider two cases, lettiig:= |I’|.’

() Letk < p. ThenA'[1, k] = A[1, k], and (LO) follows from (4) forl :=I'.
(i) Let k> p. Definel :=I' U {n}. Then/'[1, k] = A[1, k + 1] — v, (by (9)), and we have
(using (4))

ALkl —vI) =L k+1]—v, —v{I) = A1, |I|]]—v()=0.

Thus, (L0) holds for eacli’. Also (8) and (9) imply/; >)Jj 2Ajforj=1,...,n-1
(in particular,i” is weakly decreasing), and (9) together wiith = |v| implies|1'| = |v/|.
By induction there exists a strip-concatearray X’ of sizen — 1 with (2, uX', vX') =
(2,071 v). Assignx;; = x/, for 0< j <i<n — 1 andx,; := A[1, j] for 1<j<n. The
resulting arrayX of sizen satisfies (2) and has the desired local differences on the “sides”,
namely,(AX, uX, vX) = (1, 0", v). Hence(/, 0", v) € By. Also when/, v are integer, the
tuple // defined by (9) is integer as well, and the last claim in the theoremuffer 0)
follows by induction, as the integrality &’ implies that forX.

It remains to prove part “if” whem > 0. Notice that the triplé,, /., v can be considered
up to adding a constant to all entries (which matches adding a constant to the array row
derivative), so one may assume thas nonnegative. Also, by compactness and scaling,
w.l.0.g. one may assume that/, v are integer (this slightly simplifies technical details).

We proceed by induction om + |A|; case|4| = O is trivial. Let (4) hold for alll. In
particular,l; >7; =24, for j =1, ..., m. If Jyym = Zm, We make a simple reduction to

/\-configuration of sizén, m — 1) by truncating the tuples, 21t0 2’ := (1, ..., Ausm—1)
and? := (1, ..., m_1), respectively. (This maintains (4), andXfis a required array
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of size (n,m — 1) for 7,7, v, then adding toX the elements;; j+m = Xiitm—1 -+ Jm
fori = 0,...,n produces a required array of sige m) for A, /, v.) A similar reduction
(discardingl1, 11) is applied wheniy = ;.

Therefore, one may assume > 11 and,, > A,4m. Thentherearedr<n+m —1
and 1< s <m such that

JpZdi == Jg > lgqy1 and Ay > Aiq, (11)

letting A1 := 0. Note thatl, > A1 impliesr<s +n and/; > .41 impliesr>s.
Define

A= j=r—s+1...r

A _{ i j=LkL..r—sr+1.. . n+m; (12)
- li—1, j=1,...,s

A/':Z ./ _a ) ) ) 13
J { i, j=s+1...,m. (13)

Then }/,7 are weakly decreasing and'| — |7| — |v] = 0. We assert that for any
I C{1,...,n}andk :=|I]:

XTL k1 = v(I) = A >0, (14)

denoting byA;, thek-deficit for A', 7 ,i.e., the sum of numbetg (j) := maxo, I/j,k A
overj. To see this, first of all observe thajt(j) = dx(j) = 0if 1< j <r (sinceZ; >/1and
A’/ 271, by (11)-(13)). Consider three cases.

(a) Letk<r —s.Thenforj = r+1,...,n+m,we have?; = i; and?;_;, = Z; « (in
view of j — k > s). HenceA, = Ax. Also 2'[1, k] = /[1, k]. Then (14) follows from (4).

(b) Letr —s < k<r.Thend,(j) = o (j)—1forj=r+1,..., k+s(@sI<j—k<s
impliesz/j_k = 2jk—122; = 2}), andd;(j) = oi(j) for j =k+s+1,....n+m.So
A, = A — (k+s—r). Also /[1, k] = A[1, k] — (k + s — r), and (14) follows.

(c) Letr < k<n.Thend,(j) = o (j) —1forj =k+1,....k+s,andd,(j) = S (j)
forj=k+s+1....,n+m. S0A, = Ay —s.Also [1,k] = A[1,k] — s, and (14)
follows.

Since|/| < ||, by induction the seSC(// \Z', 0", v) is nonempty and contains an
integer membek’. We transformX’ into the desired arrayX for A, , v as follows. Let
o= 2_sq (FAr—s41 —1). Fori =0, ..., n, definep(i) to be the maximun such that
ax;j > a, letting by definitiondx’, := oco. Thenp(0) = 0, p(n) = r — s and p(i) <i for

eachi (asi,_, > /,_ 1>/ >x],,4). Fori =0,...,n, define
xl{j, ]=07’P(l),
xiji=%;+i—-p@®, j=p@O+L...,p@0+s, (15)
xl.’j—i-S, j=p@)+s+1,...,i +m.

. =X - . .
Observe that™ = 7, 2" = Aandv¥ = v (sincex; ;1w = x{,,,, + s for eachi). Also X

satisfies?). Toseethe latter, le; := dx;;—0dx]; forallcorresponding j;thene;; € {0, 1}.
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Using the definition of, p(0), ..., p(n), relation L5) and the fact that’ is strip-concave,
it is not difficult to conclude that;; < ¢;_1 ; is possible only ifj = p(i) = p(i — 1) + 1.
In this case we havéx’ >a+1> 0x]_ 1) whencedx;; > 0x;_1, ;. Similarly, one can see
that if g1 ; < & j+1, thenJ = p(i — 1) = p(i); in this casedx;_1 ; > 0x; j+1 follows
fromox]_; ;> +1> dx[ ;4. Thisimplies thai is strip-concave.

This completes the proof of Theorem 1.

Remark 4. TheA-arrayX recursively constructed in the second part of the proofis, in fact,
a vertex of the polytop&C(/, 0", v). This can be seen as follows. Giv&h € SC(4, 0", v),

let 0(X") be the set of all equalities of the foréy;, = ox{_; ; orox;_; ; = 0x; ;4. A
trivial observation is thaX’ is a vertex ofSC(/4, 0", v) if and only if X" is determlned by
Q(X’), i.e., there is no other poirX” in this polytope such tha®(X”) 2> Q(X’). In our
case, the equalities as i8)((in the recursive process) give the corresponding equalities
for 0X; clearly the latter equalities determideuniquely, soX is a vertex ofSC(4, 0%, v).
Moreover, if 1, v are integer, theiX is integer as well. This strengthens the last claim in

the theorem for case = 0. On the other hand, the constructionyof-arrayXin the third
part of the proof does not guarantee that ¥is a vertex ofSC(/ \ 4, 0", v). (Although an
integer vertex in this polytope with, 4, v integer does exist, as explained in Section 4.)

Remark 5. One can accelerate the process of constructing a requiredrayXin the third

part of the proof. Given (not necessary integer), v, definep := A1 — max{,4+1, As+1},

forr, s asin @1). Whenly > 41 andZ,, > A,4m, We can reduce the correspondlng entries
of A, A just by p (rather than by one), by settm?g =4 —p andzj = )», — p in the

first lines of (12) and (13), respectively (one shows that (4) is maintained). Given an array
X' for X, 7, v, we iteratively transfornX’ into an array fori, 7, v. More precisely, at the
first iteration, fore, p(0), ..., p(n) defined as above, we increase the entry?éor ij as

in the second and third lines of (15) byj — p(i)) and byes, respectively, whereis the
maximum value not exceedingand such that the resulting array is still strip-concave (
is computed efficiently). It < p, we apply a similar procedure (at the second iteration)
to the updatedd’ andp := p — ¢, and so on. One shows that afi@(r?) iterations we
getp = 0, and that the finaX’ is the desired arra) for 4, Z, v. Hence the number of
operations in the whole process of finding a membef@(’. \ Z, 0", v) is polynomial inn.
Such a transformatioX’ — X is closely related to a rearrangement of flows (associated
with strip-concave arrays) explained in part D of Section 4.

3. Proof of Theorem 2

First of all we observe that the generic case of convex configuration in this theorem is

reduced to the case of\-configuration. Indeed, giveh 4, u for V as in (1), there exists
a (sufficiently large) positive integersuch that each face &fC(4 \ 2, n) contains a face
of the polyhedrorP formed by the array& e SC(/ \ 7, i) with |0x;;| < c for all entries
dx;; of 0X. Letm := bo and extend. to (n + m)-tuple ' by setting; := ---:= %, :=c,

b

Apmysd = 0 = Ay = —cand; = A;for j = a, +1,..., by. Accordingly, set
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;= p; if @i = 0, andy; := p; — ¢ if @; > 0. Then the restriction ma§’ — X'},

gives a bijection between ther-arraysX’ with 2% = 2/, 7 = 7, ¥ = i and the
arrays inP (cf. explanations in the Introduction). This implies tis#t(/ \ 2, w) is integral
if SC(X'\ 2, 1) is such.

In the rest of the proof we deal withn, -configuration of sizé€n, m). As before, we may
assumeu = 0". Also one may assume thais nonnegative (cf. reasonings in the previous
section). For brevity we denote the polytaBé(/ \ Z, 0") by SC(/.\ 1). Theorem 2 will be
proved by constructing a bijection between the verticeS@(f’ \ 1) and certain forests in
the gridG (defined in RemarR in the Introduction). Establishing this correspondence, we
admit/ and/ to be real-valued.

The node seV of G is naturally partitioned into subsethqrizontal layery L; =
{G,0),...,G,i +m)}, i = 0,...,n. Extract the edges connecting neighbouring lay-
ers and orient them from the top to the bottom. FormallyAlde the set of pairs?/. =
(@ ), G+1, ) ande = (({, j),( +1,j+1)ofnodes ofG, fori =0,...,n — 1,
j=0,....i+m. Thean m = H := (V, A) is an acyclic digraph in which any max-
imal (dlrected) path begins at a node of the “topmost” laygland ends at a node of the
“bottommost” layerL,, .

We say that a functiog : A :— R, is a(4, 2)-admissible flown H if

0, i=1...,.n—=1, j=0,...,i+m,
d|Vg(l,])= %j_)vjil’ i=n,j=0,...,n+m, (16)
ij+1-/lj, i:O,j:O,...,m

Here diy(v) (v € V) stands for the valug _,_, ,,c4 g(e) — Ze (waea &(e), and we

formally extendl and/ by settinglp := J0 =1 and/,ym+1 := An+1 := 0. In particular,
g% 10 =0 andg(e?l_ Lntm—1) = ‘n+m. The setF(i\ 7) of (4, 2)-admissible flows

forms a polytope iri4!.

Claim. ForanyX e SC(A\ /) there exists &/, /)-admissible flowg = 7(X) satisfying

) = 0x; g 0xi41, Jj+1
) = axl+l j+1— Oxl Jj+1s

g(e?

: i =0,...,n—1, j=0,...,i+m, 17
g(ef i n—1 j i+m (17)
letting dx;0 := A1 anddx; ;1. +1 := 0. Moreover y is a bijective mapping afC(/ \ 4) to

FON D).

(Fig. 5 illustrates the flow determined by the ardawith ¢X as in Fig. 2b; here the flow
is integer and its value on an edge is indicated by the number of lines connecting the ends
of this edge.)

Proof. LetX € SC(A\ /) and letg be defined by (17). Then for each nade- (n, j) with
j=0,...,n+m,

dive(v) = g(el_y ;1) +8(ed_y ;) = (@xnj — Bxu—1j) + @u—1,j — O j+1)
=Jj — Aj41.
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Fig. 5. The flow corresponding @X in Fig. 2b.

letting g (e) := Oifthe edgeeis void (e.g., foe = eX_; _,). Similarly, div, (v) = ;41— 4;
for each node = (0, j), j =0, ..., m. And for each node = (i, j) with 1<i<n — 1
and 0< j <i + m, one has

divg(v) =glef 1 ;1) +g(e) 1 ;) — g(el) — gle;)
= (0xjj — 0xi—1,j) + (0xi—1,j — 0X; j+1) — (0Xij — OXi+1,j+1)
—(0xit1,j+1 — 0xi j+1) = 0.

Also the functiong is nonnegative, as is seen by comparidad)(and (2). Thusg is a
(4, )-admissible flow.

Conversely, leg be a(/, /)-admissible flow inH. Assign numbergx;; recursively by
the following rule:

Oxpj == Aj, j=1...,n+m,
Oxjj == 5Xi+1,j*g(€,%j,l), i=1...,n=-1 j=1...,i+m.

This gives the— -array X of size (n, m). Reversing the argument above, one can check
validity of (17). This and the nonnegativity gfimply thatX is strip-concave and satisfies

JX = jandZ" = 7. ThenX e SC(4\ %), and the claim follows. [

Thus,y is a linear operator (in view of (17)) andgives a one-to-one correspondence
between the points in the polytop&g (1 \ 1) and F (4 \ 1). Therefore,y establishes a
one-to-one correspondence between the vertices of these polytopes.

Next we characterize the vertices 1/ \ 2). To this aim, we distinguish, in the bot-
tommost layetL,, the setL(4) of nodes(n, j) (1<j<n + m) such thatl; > 1,11, and
in the topmost layeLo, the subseL (/) of nodes(0, j) (0< j <m) such thatl; > ;1.
Given a flowg € F(/\ 2), let H(g) denote the subgraph bfinduced by the set of edges
e with g(e) > 0. From (16) it follows thatH (g) containsL(4) and L(7) and that each
node ofH (g) lies on a path froni (1) to L (/). Suppose there are two different pathsP’
in H(g) having the same beginning and the same end. Choosé® not exceeding the
minimal value ofg on the path$ and P’. Then the functiong’ := g + &y* — sXP/ and
g’ = g—exP +¢ex” are nonnegative and satisfy (16), whefee {0, 1}4 is the character-
istic function of the edge set of a path Sog is expressed as the half-sum of two different
(4, 2)-admissible flowg’, g”, and thereforeg cannot be a vertex gF (4 \ A).

On the other hand, let for any two nodgandz, H(g) contain at most one path froyn
toz i.e.,H(g) is a (directed) forest with the s&() of zero indegree nodempts) and the
setL (1) of zero outdegree oneke@ves. Theng is the only(Z, /)-admissible flow taking
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zero values on all edges outsi#éieg), i.e., g is determined byH (g). Indeed, one can see
that for each edge = (u, v) of H(g), g(e) is equal to

Y Gy =2jr1: () € V(@) = Y (2 —Ajs1: (0, j) € V(Q)), (18)

whereQ is the connected component Hf(g) \ {e} that contains the node denoting by
V(Q) the node set o@. This implies thag is a vertex ofF (4 \ 4). Moreover,g is integer
if 1, 2 are integer, and Theoreifollows. [

Arguing as in the above proof, one can associate the vertic§§@f\ 1) with certain
subgraphs oH, as follows.

Corollary 2. In case of— -configuration of siz&n, m), each vertex o8C(2 \ 1) one-to-

one corresponds to a fore&t’ in H,, havingL (/) as the set of roots anH() as the set
of leaves and satisfying the following conditidor each component Q @f’, the value in
(18)is zerqg and for each edge = (u, v) and the component Q @’ \ {e} containing v

the value in(18) is positive Therefore in casem = 0, the vertices ofSC(1) one-to-one
correspond to the rooted trees Hj, (:= H, o) with root (0,0) and set of leaves (1).

Remark 6. The flows introduced in the proof of Theorehgive an alternative way to rep-
resent the Gelfand-Tsetlin patterns (or the strip-concave arrays), and Corollary 2 suggests
a way to compute or estimate the number of vertices of the poly§ajie \ 4, u) in case

of /\ -configuration (orA-configuration). One can check that the reasonings in the proof

of Theorem 2 and the corresponding corollary are applicablest@onfiguration as well
(with H,_,, arising from the corresponding parallelogram-wise grid of éizen)).

4. Concluding remarks

As mentioned in the Introduction, Theorem 1 admits a reformulation in which the piece-
wise linear constraints are replaced by linear ones. More precisely, one can see that for each
I € {1,...,n}, inequality (4) is equivalent to the set of linear inequalities

AL TN+ A + 1) = () + p(d) = v(1) =0, (19)

whereJranges all subsets ¢1, ..., m}, and fork € Z, J +k stands forthe séfj +k : j €
J}. In turns out that, as a rule, each of the latter inequalities is essential, i.e., determines a

facet of the conésy . More precisely, one can show that fox -configuration of sizén, m),
the set of facets of this cone is described as follows:

(%) For I, J as above,19) determines a facet &y if and only if |[I| + |J| # 0,n + m
and either (i) 1| # 0, n (andJ is arbitrary), or (ii)|I| = 0 and|J| = 1, or (iii) |[I| = n
and|J| = m — 1. FurthermoreBy has no other facets f = 1 orifn = 2 and
m = 0. Otherwise the remaining facets are exactly those determined by the “chamber
inequalities”; >2;11 (j =1,...,n+m—1)andi; > 141 (j =1,...,m — 1).
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In particular,3y has(2" —2)2" +n + 4m — 2 facets in case > 2, and 2 facets in case
n = 1. The proof of ) is rather technical and the main part of it consists in showing that
for each(7, J) indicated in the claim, there exist 3 2m — 2 linearly independent vectors
(4, 2, i, v) in By for which (19) turns into equality. (Note thaty is easily shown to have
dimension 3 + 2m — 1.) The details are omitted here and will be given elsewhere.

Next, we outline (in parts A-D) more applications of the flow approach developed in
the proof of Theorem 2. Here, unless explicitly said otherwise, we consider the case of

M\ -configuration of sizén, m). (Note that the exposed properties remain valid if we deal

with /7 -configuration.)
(A) Let P = P, », be the set of paths in the graph= H, ,, beginning at a node of the

layer Lo and ending at a node &f, \ {(n, 0)}. Associate with a pat® € P the~ -arrayY”

with the entrieyy;; = --- = y; p) = L andy; piy+1 =+ = yi,itm =0fori =0,...,n,
where(i, p(i)) is a node ofP. Considering the case of triangular arrays, Berenstein and
Kirillov [1] noticed that the set of array¥” (P € P,.0) constitutes a minimal list of
generators of the cone of nonnegative Gelfand—Tsetlin patterns of sizé. A similar

property takes place fqor -patterns (or—-patterns) and can be easily shown by use of

flows. More precisely, for a strip-concaye -arrayX with X >0, take the flowg = y(X)
defined by (17). Theq is represented as a nonnegative linear combinatight + - - - +
anyP¥, wherePy, ..., Py € P. One can check tha@tX = a1Y Pt + ... + ay¥Y "V, as
required (the minimality ofY” : P € P} is obvious).

(B) One can establish some invariants for polytof€s/. \ 7,0, v) when the entries of
v are permuted. Consider an arrdye SC(4 \ 4, 0", v) and the flowg = y(X) as in (17).
Fori =1,...,n,we haveZ’j’;”l’ (')x,-j — Zl]-:;_l 6x,-,1,j = Xii+m — Xi—1,i+m—-1 = Vi-
Also 0x;j — Oxij—1,j = 8(61-1_1,]'_1) forj =1,...,i +m (see Section 3 for the definition
of edges;»?/j, andel.l,j,; as beforegx;_1 iy, := 0). Comparing these relations, we conclude
that

vi=glet 1)+ +glet g m ) fori=1....n (20)

Choosei € {1,...,n — 1} and consider the subgrag’ of H induced by the edges
connecting the layers; _1, L; orthe layerd.;, L;+1. Forj =0, ...,i +m — 1, the nodes
(i—1, j)and(i +1, j +1) are connected by two paths, namely, by pajtwith the edges
3971,," ¢f; and by pat?Z’; with the edges;" ; ;, e?Hl. Let us call such a pathwith edges
e, ¢’ azigzagand define its capacity to g Z) := min{g(e), g(¢’)}. Thezigzag swapping
operationmodifiesg within H' by swapping the capacities simultaneously for each pair
Zj, Z’] More precisely, forj =0, ...,i +m — 1, assign

o | 8e)—g(Zj) +g(Z}) foreachedge of Z;,
(0= gle) —g(Z}) +g(Zj) foreach edge of Z",

andg’(e) := g(e) for the remaining edges &f. Obviously,¢’ is again a, 4)-admissible
flow. (For example, such an operation applied to the flow in Bigesults in the flow
illustrated in Fig. 6.)
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Fig. 6. The flow obtained by the zigzag swapping operation applied to the flow i Bidayer 2.

Let o;(X) denote the array1(g) and lety’ be then-tuple of local differences on the
“right boundary” ofs; (X). Using 0), one can check that the zigzag swapping operation
swapsy; andv; i1, 1.€.,v; = Vi1, Vi 4 = Vi andv}, = v, for p # i,i + 1. Moreover,
applying the zigzag swapping operation (with the sante g’ returnsg.

Thus, for each, ¢; is a continuous bijective mappingSE (A\ 1, 0", v) to SC(A\ 4, 0", V)
(and¢? is the identity onSC(i \ 1)).% Moreover, fork € N, if g is 1-integer, so is’.
Therefore,s; gives a bijection on thé—integer points in these polytopes for akyAs a
consequence (fdr = 1), the following known property is obtained:if Z, v are integer and
if v/ is an arbitrary permutation of then Kostka coefficient& (1 \ 4, v) andK (1 \ 4, V')
are equal.

(C) Let 4, 2, v be rational-valued and let be a permutation of. Let Vo denote the set
of boundary index pairs iv (or the boundary nodes in the gri). The fact that each
mapa; is continuous and bijective implies that the polytogegs:= SC(J\ 4, 0", v) and
SC' := SC(J\4, 0", V') have the same dimension (which typically equ#lsVo|). Consider
the |V \ Vp|-dimensional affine subspac8ands$’ containing the polytopeSC andSC/,
respectively, which are obtained by imposing the corresponding equalities on the values on
Vo. SinceSand s’ are parallel, there i8' € N such that for any multipl& of &/, the lattice
of %-integer points ir§” is obtained by a parallel translation of a similar lattic&Sirso the
density of%-integer points inSand S’ (measured by the number of such points in a unit
ball with center at a point of the lattice) is the same. Also the numbe%sim‘eger points
in the polytopes in question are equal. Thus, wk&ands to infinity, we obtain equality for
the corresponding volumes and can conclude with the following.

Proposition 1. Given(real-valued 4, ., v, letV' be a permutation of. Then the polytopes
SC(A\ 4, 0", v) andSC(A\ 4, 0", V) have the samg/ \ Vp|-dimensional volume

It should be noted that, although (being a piece-wise linear operator) brings integer
points into integer ones, it need not do so for polytope vertices, even for poly#61es /).
Indeed, incase: = 0, take arooted treBin H, o (with root (0,0) and the leaves ity,) such
that for some, j, the subgrapll” N H' contains zigzag¥ ; and Z}+1- Then the zigzag
swapping operation (applied to a nowhere zero flowlptransforms the pai;, Z’/.+l
into Z}, Z 11, so the resulting grapfi’ is not a tree, as it has two edges entering the node
i, j+D1.

3 Note also that for integer points the zigzag swapping operation produces Bender—Knuth’s involufidn, cf.
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(D) The reduction applied in the proof of part “if” of Theoreliin casen > 0 can be
described in terms of flows. Moreover, the language of flows is convenient to develop a
more general sort of reduction and to demonstrate some additional properties. To explain
the idea, considek € SC(/\ 4,0, v) andg as in (17), assuming thatis nonnegative.

Let P be a path irH beginning at a nodé€0, s) of the layerLg, ending at a nodén, 1)

of the layerL,, and such that the minimumof values ofg on the edges d? is nonzero.
Choosep € Z ando’ € R satisfying 0<s + p <m and O< « <« and changg by moving
the pathP with weighto at distancgp|, to the right of left depending on the sign pf
Formally: defineP’ to be the path containing the node j + p) for each nodéi, j) of P
and transforng into g’ := g — o/y* + «'y*'. This transformation does not change the sum
in (20), and therefore, the resulting array := y~1(g’) satisfiess’ = v. Whenp > 0

(p < 0), the row derivativé X’ is obtained fron?X by increasing (resp. decreasing)dy
the entries corresponding to the horizontal edges of the@tidng between the pathB

and P’; the tuplest® and7" are changed accordingly.
Using such operations, one can transfgrmore globally, still preserving: decompose

g into the sum of path flowaq;(”q (0q > 0),g = 1,..., N, and move each path,
to the left so that the resultingé begin at the node (0,0). This gives an artgywith
ax;j =0fori =0,...,nandj =i+1,...,i +m,i.e., in essenceX’ is equivalent to

a A-array. One can deduce that the finséntries of the tuplel’ := X" are expressed as

follows:

n+m

=3 s st ML, Al fork =1, 21)
t=k

denoting by|[a, b]| the lengthb — a of a segmen{a, b] and Iettingzj = 0forj >
m. Conversely, giveri, Z, v, define then-tuple /' by (21) and consider a-array X’ <
SC(X, 0", v). Then one can determine a special path decomposition(fof) and move

each path at a due distance to the right so as to obtain a flow determipingaeray in
SC(1\ 4,0, v) (moreover,/ is integer when, 4 are such and one can maintain flow
and array intergality under the transformation). This gives a constructive way to reduce the
trapezoidal case to the triangular one. The tuple weakly decreasing and it just represents
the vertex generating vector for the permutohedron mentioned in the Introduction.

Next we explain the idea of deriving Theorem 1 from results in [8,9] (mentioned in

Remark 2 in Section 1). We use the equivalence betweerrays of sizen, m) and
functions on the node set of the corresponding gtie= (V, E). Given tuplesi, 2, u, v,

let us choose a positive integeiand replace., v by x', v defined byy, := u; — ic and

V. :=v; —ic,i = 1,...,n. This tumns the polytop&C(A \ Z, u, v) into SC(A\ 4, i/, V)

(each arrayX in the former polytope corresponds X6 defined byx[j =X — @c);

for brevity, we denote the latter polytope ByWhenc is large enough; consists of fully
concave arrays, and we can apply results on the corresponding discrete concave functions.
The second part of Theorem 1 follows from a result in [8] (in fact, shown there for any
convex grid) which in our case readsif/, i/, v are integer and i€ # ¢, thenC contains

an integer point.
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The first part of Theorerhfollows from a combinatorial characterization for the existence
of a discrete concave function under prescribed boundary data (we use its extension to an
arbitrary convex grid given in [7]). It uses a notion pfizzle(originally introduced for
A-grids in [9]). This is a subdivisioi] of the grid into a set of little triangles and little
rhombi (the union of two little triangles sharing an edge), along with a 0,1-labeling of the
edges ofs occurring in the boundaries of these pieces, satisfying the following properties:

(i) for each little triangler in IT, the edges of are all labeled either by 0 or by 1;
(i) for each little rhombug in I1, a side edge op is labeled 1 if clockwise of an obtuse
angle, and 0 if clockwise of an acute angle.

Then a necessary and sufficient condition on the nonemptings§f— -case) is that
each puzzld] satisfies the inequality

) = 2(J) + 1 (K) — v (L) >0, (22)

wherel, J, K, L are the sets of edges labeled 1 in the lower, upper, left and right sides
of G, respectively. To show the necessity is rather easy, as followsC Ls#t ¢ and let
x € C (consideringk as a function o). The discrete concavity ofimplies that for each
little rhombusp with obtuse vertices, u’ and acute vertices, v/, one has(x, p) :=
x(u) +x(u') — x(v) — x(v') >0. When summing up these inequalities for all rhomHilin
and the equalitieée (v) — x (1)) + (x (w) — x (v)) + (x (1) — x (w)) = 0O for all little triangles
labeled 1, with vertices, v, w in the anticlockwise order, the term¢) for interior vertices
cancel out and we just obtai@Z) with 7, J, K, L to be the sets of edges labeled 1 on the
corresponding sides.

Whenctends to+oo, the valugg (x, p) does so as well (uniformly for all € C) for each
little rhombusp, if any, whose smaller diagonal is parallel to the bottom side.dfhe grow
of g (x, p) must cause a similar behavior for the left-hand side in (22). This implies that the
puzzles containing at least one of such rhomisan be excluded from the consideration,
as they become redundant in verification of the nonemptinegs Nbw relation (4) in
Theorem 1 can be deduced from (22) when the remaining pukkzbes considered.

In conclusion, it should be noted that, using the above reduction to the fully concave case
and an argument in [2] (where an alternative proof of the integrality theorem from [8] is
given), one can show the following sharper version of the last claim in Theorem 1.

Proposition 2. For integer?, Z, u, v, the down hullD of SC(2\ Z, u, v) (i.e., the polyhedron
SC(\ 7, 1, v) — RY) is integral

One can give a direct, relatively simple, proof of this proposition. A sketch: Consider a
vertex X of D; then there is no arraX’ # X in D with X’ > X. Let V4, ..., Vy be the
minimal nonempty sets of index pairs such thatdoe 1, ..., N and for anyij andi’;’
withi" =i 41, € {j, j +1} anddx;; = dx; j, the setV, contains either both or none of
ij andi’j’. Letc, = dx;; forij € V,. EachV, is associated with the corresponding subset
of horizontal edges in the gri@; let R, denote the union of little triangles containing an
edge in this subset. Then the interior of each regigns connected, and each maximal
horizontal line£; in G (corresponding to thith row in 0X) intersectsR,, by a connected,
possibly empty, set. We say thaj is anintermediateregion if it has no edge in the lower
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or upper boundary o; let for definitenessRy, ..., R, be the intermediate regions. One
shows that if the seW, of nodes ofG occurring in the interior of an intermediate regip
is nonempty, then one can increase the functiopa (small) positive constant within the set

W, so as to preserve the strip-concavity; the boundary tu?ﬁ‘ie§x, uX,vX are preserved
automatically. (This relies on the observation that if, edg;; = Jx;—1 ; and the vertex
(i, j=1isinW,,then(i—1, j—1)isinW, aswell, inview ofox;; = dx; j_1 = 0x;—1,j-1.)
Therefore W, =@ forallg =1, ..., ¢;in other words, each horizontal ling contains at
most one edge withi, .

Now associate witlR, (1<q <¢) areal variable;,. Let A = (a;4) be the(n — 1) x ¢
matrix in whicha;, is the number of edges of the li occurring inR,. Form the linear

systemAz = b, where fori = 1,...,n — 1, b; is equal tox; j+, — x;o minus the sum
of valuesdx;; over allij concerning the edges of nonintermediate regions. Then for the
numbers, as above, the tupte:= (c1, .. ., ¢,) is a solution to this system. Note that each

b; is an integer. (Indeed, each of the above valiigs is equal to some entry of or 7,
which is an integery;o andx; ; 1, are integers as well.) Als@is a 0,1-matrix and the ones
in each column go in succession, ifis aninterval matrix. SoA is totally unimodular
(cf. [10, Section 19.4]) and must have full column rank (otherwigze= 0 has a nonzero
solution and we can represefias the half-sum of two other points& (4 \ 2, u, v)). Then
c1,...,ce are integers, as required.
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