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Robust, automated mesh generation for problems with deforming geometries, such as

ice accreting on aerodynamic surfaces, remains a challenging problem. Here we describe a

technique to deform a discrete surface as it evolves due to the accretion of ice. The surface

evolution algorithm is based on a smoothed, face-offseting approach. We also describe a fast

algebraic technique to propagate the computed surface deformations into the surrounding

volume mesh while maintaining geometric mesh quality. Preliminary results presented here

demonstrate the efficacy of the approach for a sphere with a prescribed accretion rate, a

rime ice accretion, and a more complex glaze ice accretion.

I. Introduction

There are several technical challenges associated with mesh generation for simulating ice accretion on a
three-dimensional configuration. First, ice accretion is an evolutionary process; therefore, the mesh must
evolve in response to the growth of the ice shape. Assuming a loosely coupled ice accretion strategy, such
as that used in LEWICE3D ,1 a sequence of quasi-static accretion steps is performed to generate the final
ice shape. Since the ice shape changes, each accretion step requires a new mesh. However, a full mesh
regeneration may be expensive for complex configurations. An alternative strategy is to deform the mesh
in response to the ice growth. The second challenge is that accreted ice shapes can become quite complex.
While the current state of the art in ice accretion prediction does not produce shapes with exceedingly
complicated geometries, the predicted ice shapes can nevertheless present significant challenges for meshing
software. Additionally, as the fidelity of ice accretion prediction increases, the complexity of the numerically-
generated ice shapes will increase. Any mesh generation strategy will necessarily require the ability to handle
such complex geometries if it is to represent a viable, long-term solution.

Currently, there is no automated mesh generation process designed to work with LEWICE3D. The re-
sulting capability gap precludes routine grid-based, multi-time-step simulations of ice accretion on complex
configurations. As part of the NASA Atmospheric Environment Safety Technology Project, an ongoing
effort at Mississippi State University seeks to facilitate routine simulation of ice accretion on realistic, three-
dimensional configurations by developing a suite of meshing tools that will produce unstructured, mixed
element (hybrid) meshes for evolving ice shapes in an automatic, efficient, and robust manner. Such auto-
mated mesh generation is a necessary step in the enhancement of existing ice accretion prediction tools as
well as in the development of the next generation of these tools.
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Any approach that has the potential to make grid-based ice accretion simulations for realistic configura-
tions commonplace occurrences must have the following characteristics:

• Automation: Simulating the evolving ice shape necessarily requires generating a new mesh for each
ice shape. For this approach to be routine, it is necessary that the mesh generation process be as
automated as possible. Once an initial mesh is generated, the user should be removed from the loop,
even in cases where the surface evolution initially produces an invalid mesh or a mesh of poor quality
due to the complexity of the ice shape.

• Efficiency: Although a new mesh must be generated for each ice shape, the process must be efficient.
The simplest approach, completely regenerating the mesh, is potentially a time-consuming task for
complex aircraft configurations and not appropriate for ice accretion simulations.

• Robustness: Any mesh generation tool that is to be employed in an automated analysis environment
must be robust. In the context of mesh generation for ice accretion simulations, robustness implies
that a valid mesh of reasonable quality must be generated for ice shapes of varying complexity. The
challenge here is to ensure that the mesh retains sufficient quality as the ice surface evolves.

In this paper, we briefly describe the algorithms we employ to evolve the discrete surface mesh that
represents the accreting ice and to project these deformations into the volume mesh. We are developing a
solver-neutral interface propagation tool that computes the position of a discrete surface as it evolves under
an accretion rate map specified by LEWICE3D. The surface evolution tool, iceSurf, is designed to produce
a new surface mesh given the current surface mesh, a face-centroid accretion rate map, and the icing time.
The output from iceSurf provides input, in the form of a surface displacement file, to the mesh deformation
tool gridMover to produce a new volume mesh. We include preliminary results for a sphere with a prescribed
accretion rate field, a relatively simple rime ice accretion, and a more complex glaze ice accretion.

II. Background: Surface Evolution

Figure 1. Face offsetting produces unambiguous nodal po-
sitions in two dimensions.

One of the challenges associated with evolving a
faceted, discrete surface is that the normal at a node
is not unique. This is caused by the discontinuous
nature of the discrete representation of the surface.
One possible solution is to define a displacement di-
rection at each node, based on the normals in the
adjacent faces, and displace the surface a prescribed
distance in this direction at each node. However,
there are numerous challenges associated with this
approach not the least of which is conservation of
volume. Alternatively, the surface evolution could be modeled by generating a plane that is parallel to a
given face by extruding a specified distance – the product of the accretion rate and the time step – from the
face centroid in the direction of the face normal as shown for a two-dimensional surface in figure 1. As seen in
the figure, there is no ambiguity in the location of the nodes in the new surface in two dimensions; however,
this is not the case in three dimensions in which any two of these offset planes (not parallel), intersect in a
line while three non-parallel planes intersect at a point. In general, the intersection of four or more planes
is not defined in three dimensions. Except in special cases, the number of faces that share a given node in
a typical triangular surface mesh is usually more than three and, consequently, the node determination is
overspecified. This results in an ambiguity in how the nodal positions are defined in the new surface.

One approach that has shown promise for evolving a surface mesh while conserving volume is the method
developed by Jiao.2,3 Jiao employs a singular value decomposition (SVD) to solve a least square problem and
then applies an eigenvalue/eigenvector analysis at each node to resolve its normal motion, which generates
the surface geometry, and its tangential motion, which maintains mesh quality.

The first step is to propagate each evolving face in its normal direction. Since the face velocity is given,
a simple, first-order Euler scheme is chosen to integrate along the face normal. This provides the offset
distance for each face.

The second step is to reconstruct the vertices. After computing the new face positions, a new position
for each node on the surface must be determined. For simplicity, assume that the node under consideration

2 of 20

American Institute of Aeronautics and Astronautics



is located at the origin. Each plane passing through a point p with unit normal n can be expressed by a
linear equation nTx = δ, where δ = nTp. If there are m faces passing through a node, an m × 3 linear
system will be formed

Nx = a. (1)

Here, each row of the system corresponds to one of the m faces that are incident on the node and elements of
a are the offset distances for each incident face. The linear system given by Eq. 1 can be under-determined or
over-determined depending on the value of m. To address this difficulty, a least square solution is computed.
A point is chosen that minimizes the weighted sum of squared distances to the face planes, which is a solution
of the following 3× 3 linear system:

Ax = b (2)

where A = NTWN, b = NTWa, and W is an m × m diagonal matrix with Wii equal to the weight
associated with the ith face, which is based on the area of the face incident on node p.

Since the matrix A in Eq. 2 is symmetric and positive semi-definite, it has an eigenvalue decomposition
A = VΛVT, where Λ is the diagonal matrix consisting of the eigenvalues of A, which are real and non-
negative, and the corresponding eigenvectors are the columns of V. Since A = NTWN, the following
singular value decomposition can be derived

√
WN = U

√
ΛVT, (3)

where U is a m× 3 matrix.
The vector space spanned by the eigenvectors corresponding to the larger eigenvalues of A is called

the primary space and the complementary space is the null space. An eigenvalue analysis is performed to
identify the primary space. All of the eigenvectors corresponding to eigenvalues smaller than a threshold will
be filtered to avoid instability due to division by a very small number. The nodal displacement is restricted
to the primary space.

The solution to Equation 2 represents an advective motion in which the resulting surface is the intersection
of the propagated face planes. For wavefront motion, such as that produced by burning, erosion, and
deposition, the displacement in the primary space satisfies an entropy condition. Unfortunately, the exact
displacement for wavefront motion can be difficult to compute. A simple solution is to assume the direction
of the displacement will not change and adjust the displacement to satisfy the required offset.

After the displacement is computed, Jiao improves mesh quality by performing a null space smoothing by
computing a tangential motion t at each vertex v. t is a weighted average of the neighborhood of v projected
onto the null space. This smoothing scheme has been shown to preserve sharp features and to introduce
only very small volume errors. Jiao suggests repeating this step without displacement in the primary space
to incorporate a global smoothing into the algorithm that preserves the accreted volume.

III. Approach

Generating an ice shape for a specified accretion time tice is accomplished by performing a series of
quasi-static, loosely-coupled, ice accretion/flow simulation steps. This approach is necessary because, as the
ice shape evolves, it changes the flow field, which, in turn impacts the local ice accretion rate. We term
each of these quasi-static steps an “ice accretion step” with an associated time interval ∆t. As noted below,
each time interval ∆t may be further subdivided into subintervals ∆ts. For each ice accretion step: (1)
a CFD simulation is performed to compute the flow field about the current ice shape, (2) a LEWICE3D
computation is performed to determine the new ice shape, or alternatively, the accretion rate map, and (3)
the surface and volume meshes are evolved based on the ice accretion rate using iceSurf and gridMover,
respectively. Here, we focus on the the process employed to compute the deformation of the computational
mesh in response to the ice accretion, which can be divided into three distinct phases:

• Generate a volume accretion rate map on the wetted surface

• Evolve the surface mesh based on the accretion rate map using iceSurf

• Deform the volume mesh by projecting the surface deformations into the volume mesh using gridMover
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Each of these processes is described in the sections that follow.

III.A. Generate Accretion Rate Map using Lofting

Currently, LEWICE3D does not provide an accretion rate map. LEWICE3D generates ice shapes using the
strip-based strategy employed in LEWICE2D ,4 which is based on the Messinger icing model.5 In future
generations of LEWICE3D, a fully three-dimensional approach will be employed to generate an ice accretion
rate map that will be used by the surface mesh evolution algorithm. Two different strategies were employed
to circumvent this shortcoming.

The first approach, which is applicable only for cold, rime icing accretions, uses the collection efficiency
to estimate a surface icing rate. The underlying assumption employed in this approach is that the droplets
freeze on impact producing a pure deposition problem. The icing rate for each surface element is calculated
assuming that no evaporation or runback occurred and is given by

dvice
dt

=
V∞ × β × LWC ×A

ρice
(4)

where V∞ is the freestream airspeed, β is the local collection efficiency, LWC is the free stream liquid water
context, A is the area of the surface element under consideration, and ρice is the ice density.

The second approach, which is applicable for warmer, glaze icing conditions, uses a lofting method to
generate the icing rate map. The lofting algorithm assumes that the ice thickness varies linearly along
spanwise lines for wings and circumferentially for bodies of revolution (e.g. inlets, spinners and radomes).
Lofting information is used to generate transformations that facilitate interpolation of ice thickness from
the strip-based ice accretions to the surface. This method is flexible and robust and allows interpolation on
wings with taper, twist, and leading edge curvature and bodies-of-revolution.

The ice patch lofting scheme uses the ice thickness values for the surface nodes, which are interpolated
from the LEWICE3D ice shape values, along with the surface normal at the nodes to generate the new iced
surface. Volume elements are formed from the original surface element and the new displaced iced surface
element. The icing rate is then determined by calculating the volume of these iced volume elements and then
dividing this volume by the icing time. The use of ice thickness interpolated from the LEWICE3D ice shapes
allows a convenient, robust method for generating three-dimensional iced surfaces which have run-back and
evaporation effects.

Two types of lofts are available to describe various surfaces of interest. The first lofting type is a wing-
type lofting. This lofting requires the input of the leading edge and trailing edge of the wing. The second
lofting type is a body of revolution-type lofting. The body of revolution lofting requires the line of rotation
and the leading edge center of rotation. A two-dimensional coordinate system (S,T ) is employed for the
loftings for which S is the axial coordinate and T is either the spanwise coordinate for wing-type lofts or the
circumferential angle for body of revolution-type lofts (figure 2).

Figure 2. LEWICE3D planform types and their associated local coordinate systems – wing(left) and body of revolution
(right).

The position (s,t), and the local coordinate system (u,v,w) at a position (x,y,z) on the lofting are
generated using an iterative process. The up-vector w is the planform normal vector at (S,T ). For wing-
type lofts, the planform normal is generated by taking the cross product of the leading edge direction vector
at T and a vector formed from a line at T between the leading edge and trailing edge lines. For the body of
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rotation type geometries the planform normal is the radial vector at T . The spanwise vector, v is generated
by interpolation from the leading edge and trailing edge lines at (S,T ) for wing-type planforms. For body of
rotation type planforms the spanwise vector is the tangential vector at T . The axial vector, u is generated by
taking the cross product of the up-vector and the spanwise vector (figure 2). The local coordinates systems
generated for the surface point and icing cut points are used to transform the local surface points into the
local ice cut point coordinate system for the interpolation of the ice thickness (figure 3).

Figure 3. Local coordinate systems for surface point and ice shape.

Two lines are formed in the local ice cut point system (figure 4). One line segment connects neighboring
ice cut points (l1). The other line is formed using the local ice cut spanwise vector as the slope and the
transformed surface point as the intercept (l2). A set of tests is performed to determine if the minimum
distance between the l1 and l2 occurs within the endpoints of l1 and if this minimum distance is reasonably
small value. If both tests are positive the ice thickness is interpolated linearly from the two ice cut thickness
values at the ice cut endpoints. The local coordinates systems generated for the surface point and icing cut
points are used to transform the local surface points into the local ice cut point coordinate system for the
interpolation of ice thickness (figure 3).

Figure 4. Ice thickness interpolation scheme for surface point.

This procedure is repeated for all of the ice cuts associated with the local surface point. If more than
one intercept is found for the local surface point then a linear interpolation on T is performed from the two
surrounding intercepts (larger T and smaller T than the surface point T ). If the value of T of the surface
point is either greater than the T ’s of all of the ice cut intercepts or is less than the T ’s of all of the ice cut
intercepts the value of ice thickness is set to zero. If an intercept has been found and only one cut has been
associated with the local surface point then an extrapolation is assumed and the ice thickness at the local
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surface point is set to the interpolated value of ice thickness. The above procedure is repeated for all surface
points and all ice cuts associated with the surface point.

The new iced surface is generated using the ice thickness and surface normal information at each node
(figure 5). The iced surface nodes are determined by adding the ice thickness in the surface normal direction
to the clean surface nodes. The ice accretion rate for each surface element is calculated from the volume of
ice formed at each surface element divided by the icing time.

Figure 5. Ice addition scheme for surface element.

III.B. Surface Mesh Evolution

We have developed a computational tool (iceSurf ) that employs elements of Jiao’s algorithm2,3 to evolve
a discrete surface mesh in response to the ice accretion rate. Like Jiao’s algorithm, the algorithm used in
iceSurf emphasizes conservation of the accreted volume. However, unlike Jiao’s algorithm, which utilizes a
face velocity, iceSurf utilizes the volume growth rate to drive the surface evolution. iceSurf uses the offset
direction in the primary space defined by Jiao’s method as the initial nodal displacement direction and then
employs global and local smoothing algorithms to maintain mesh quality.

III.B.1. Identify Geometrical Features

A procedure similar to that described by Jiao2 is employed to identify geometrical features such as edges
and corners. iceSurf provides special treatment for the nodes associated with these features. If the angle
between the two faces that share a given edge is greater than a threshold, then this edge is considered to be
a geometrical edge. If a node has two associated edges, the node is marked as an edge node. If a node has
three or more associated edges, it is marked as a corner node.

III.B.2. Define Nodal Offset Direction

The next step in the process is to generate an initial nodal offset direction. To determine the displacement
direction for a node, iceSurf computes the direction of the displacement using Jiao’s primary space. However,
there are two significant differences. First, as noted above, Jiao uses a face velocity while we use a volume
accretion rate. This impacts Jiao’s algorithm because the face offset distance, i.e., b, in Equation 1, is
unknown. The approach employed here is to assume a uniform displacement in the determination of the
offset direction

Nx = 1 (5)

where 1 is the m × 1 vector that has elements that are unity. This temporarily circumvents the need for
knowledge of the face displacement. An additional change is that the weight matrix W in Jiao’s algorithm
(see Equation 3) is based on the face areas of the triangles incident on the node under consideration while
our weight matrix is based on the included angles of the faces incident to the node.

Once the primary direction is defined, it is held fixed throughout the remainder of the process.
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III.B.3. Determine Height Field

Figure 6. Accreted volume based on height field. Figure 7. Volume of accreted ice as a function
of height.

It is now necessary to determine the height field that gives the appropriate volume accreted on each
face. From this height field, the nodal displacements can be determined. As illustrated in Figure 6, this
computation is complicated by the fact that the nodal normals are not parallel to the face normal except in
special circumstances. The accreted volume is a nonlinear function of height h given by

V = ah+ bh2 + ch3 (6)

where a, b, and c are functions of the geometry of the face and the nodal “normals” n1, n2, and n3. In
general, this cubic function may not be monotonic (see Figure 7). The first maximum value of volume,
indicated by point A, is the volume at which the faces cross and the volume begins to decrease (due to the
addition of negative volume). The time at which this occurs can be obtained by dividing the maximum
volume by the accretion rate and represents the maximum time step ∆tVmax

that can be taken for a given
set of conditions. Jiao3 describes a procedure to compute a scale factor 0 < α < 1 for the time step to
prevent self intersections. The maximum allowable time step, which we denote as ∆tmax is then given by

∆tmax = αmin (∆t,∆tVmax
) . (7)

If the resulting time increment ∆tmax is less than the desired time increment for the ice accretion step ∆t,
multiple steps are required for the time step. These steps are referred to as subinterval steps with a time
step of ∆ts = ∆tmax.

III.B.4. Smooth the Height Field

In general, the heights for two triangular faces that share an edge will not be equal. A height field smoothing
that conserves volume is then employed to redistribute the volume. Assume that we have two triangles, T1

and T2, that share an edge, with heights h1 and h2, respectively, and h1 > h2. Define a volume increment
∆V = (h1 − h2)A1 where A1 is the area of T1 at the height (h1 + h2)/ 2. The volumes associated with the
two faces are then modified using

V1 = V1 − β∆V

V2 = V2 + β∆V

(8)

where 0 < β < 1/2. We have found that β = 0.2 produces good results. Once the new volumes are created
for all of the faces in the mesh, the process of determining a new height field is repeated. Typically, 10-15
height field smoothing iterations are employed. The resulting accreted volume is then compared to the value
obtained by multiplying the accretion rate by the time increment ∆ts. The resulting volume residue is
converted to a rate and then added or subtracted during the next subinterval step as appropriate.
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III.B.5. Compute Nodal Positions

The next step is to determine the nodal positions using the smoothed height field. As discussed by Jiao,3

the nodal position should be the intersection point of the offset planes for advective motion. In contrast, for
wavefront motion, the node should reside on a smooth nonlinear patch. To simplify the computation, it is
assumed that the direction of the wavefront nodal displacement is the same as the advective displacement,
and only the length of displacement is adjusted so that the node will be on the nonlinear patch. Referring
to Figure 1, recall that the height field represents the offset distance in the direction of the face normal so
it is not the equivalent to the nodal displacement. If h is the offset for the face and the face is contracting
at this node, the nodal displacement hn is given by

hn =
h

n · nn
(9)

where n and nn are the face and node normals, respectively. If the face is diverging at this node, h = hn.
Of course, there are multiple faces associated with this node. The final nodal displacement is given by a
weighted average of the displacement from the faces incident on the node. The weighting is based on the
included angles of the faces at that node.

III.B.6. Smooth the Evolved Surface Mesh

The nodal positions are then smoothed using the null space smoothing described by Jiao.2,3 According to
Jiao, the null space “... is a plane, a line, or the empty set, tangential to the surface at the vertex.” Null
space smoothing moves nodes in the tangent plane or in the direction of minimum curvature of the surface
and therefore, tends to preserve the volume better than other forms of smoothing, such as Laplacian. It also
tends to preserve sharp features or regions of large curvature. Unless noted otherweise, null space smoothing
was performed for all of the results presented here.

III.C. Volume Mesh Deformation

Assuming a valid surface mesh of reasonable quality has been evolved, the next step in the process is the
deformation of the volume mesh using gridMover. gridMover is based on the method developed by Luke
et al.6 to perform a volume mesh deformation in response to a surface mesh deformation. Their approach
takes boundary displacements as input and returns a deformed volume mesh. A robust direct interpolation,
which is based on an inverse distance weighted (IDW) technique, is employed to produce the mesh motion.
A unique feature of this approach is the specification of both a displacement and a local rotation for each
node of the surface mesh. The local rotation for a given node is computed by using a least squares fitting to
determine the rotation about the node that best matches the displacements of all edges and normals from
surface facets that reference the given node. In this method, node i on the deforming surface produces a
displacement field si (r) that is computed using

s (r) = Mir+ bi − r, (10)

where Mi is the rotation matrix, bi is the displacement vector associated with the ith node, and r is the
coordinate vector for the original mesh. The displacement field in the volume mesh is computed using a
weighted average of all boundary node displacement fields:

s (r) =
Σwi (r) si (r)

Σwi (r)
(11)

We chose a function of the reciprocal of distance for the weight function wi (r). A two-exponent weight
function is employed so that we can preserve near-boundary deformations, which is critical for high aspect
ratio viscous meshes, while providing a smooth transition to the interior of the domain. We also use the
area of the surface facet in the weighting function so that mesh refinement of a region does not increase its
influence in the interpolation.

A tree-code-based fast approximation algorithm is used to evaluate Equation 11 in n log n time. This
accelerated IDW approach has been shown to be competitive with the considerably more expensive radial
basis function (RBF) proposed by deBoer et al.7 In fact, the IDW approach does a better job preserving
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the orthogonality of the mesh in the near-wall viscous regions, which makes it an ideal candidate for ice
accretion prediction. More details are given in Luke et al.6

IV. Results

We now present results that demonstrate the efficacy of the mesh evolution and deformation algorithms.
First, we consider a prescribed ice accretion on a sphere. The intent is to illustrate salient features of
the algorithms. We then employ the algorithms in a loosely coupled approach utlizing Loci/Chem and
LEWICE3D for a rime icing condition and a more challenging glaze icing condition.

IV.A. Test Cases: Sphere with Prescribed Accretion Map

To illustrate the effectiveness of the surface evolution algorithm employed in iceSurf, the volume accretion
on a sphere of radius 1 m was computed for an analytically-specified accretion rate map in which faces that
were located at x > 0 were given a uniform accretion velocity, ua = 0.1 m/s. A face volume accretion rate
was then computed by multiplying the face area by the accretion velocity. The evolving surface in time can
be computed analytically as a sphere with a radius offset of h = 3

√
3 ∗ t ∗ ua + 1 − 1. For this test case we

computed the accretion at a time of 2 s, which corresponded to an increase in the radius of the sphere by
h = 0.16961 m. This was performed by iceSurf using six substeps to produce the surface shown in figure 8.
The resulting accretion closely matched the expected analytical results. No smoothing was used for this case.
The surface evolution algorithm employed in iceSurf produced a valid surface mesh even for a discontinuous
rate map and no smoothing.

Figure 8. Sphere with specified discontinuous accretion rate map.

IV.B. Rectangular Planform Wing with GLC305 Cross Section

Loosely-coupled Loci/CHEM-LEWICE3D simulations of ice accretion on a rectangular planform wing with
a constant GLC305 airfoil section were performed and the results compared with available LEWICE2D and
LEWICE3D simulation results and experimental data. The chord length of the wing was 0.9144 m and the
span was 1.8288 m. The flow field was computed using the Loci/CHEM flow solver.8 The flight conditions
and icing conditions were chosen to match cases documented in the LEWICE2D validation report.9 In
this study, the freestream velocity and pressure were 90 m/s and 1 atm, respectively. The angle of attack
was 4.5 deg. Two different icing conditions were selected with different air temperatures producing a rime
accretion and a glaze accretion. A far field boundary condition was imposed approximately ten chords in
front and behind the wing. A far field boundary condition was also applied at the top, bottom, and outboard
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side boundaries of the computational domain, all of which were located approximately five chords from the
wing. A symmetry boundary condition was employed at the midspan symmetry plane. Menter’s baseline
turbulence model,10 which is a blend of k−ω and k−ǫ models, was adopted to model the effects of turbulence
in the RANS simulation. A high Reynolds number mixed element (hybrid) mesh was generated using the
SolidMesh mesh generation tool.11 In order to study the effects of different mesh resolution on the resulting
ice shape, three meshes were generated with 4 million, 7 million and 12 million elements. Starting from the
4 million element mesh, the subsequent meshes represent a doubling of the number of triangular elements
in a region of the surface mesh near the leading edge of the wing over the first 15 percent of the chord
(see figure 9). We also investigated the effects of subdividing the icing time into multiple time steps on the
resulting ice shape.

4M elements 7M elements

12M elements

Figure 9. Meshes employed for refinement study.

After the flow field was obtained, we used the tool fluentensightcnv, provided by NASA GRC as part of
the LEWICE3D distribution, to convert Ensight output files generated by Loci/CHEM into a format that
is compatible with the LEWICE3D ice accretion code. To avoid resolving the droplet collection efficiency
on virtual boundary surfaces, the far field and symmetry planes were removed from the surface element
generation process. The droplet release box covered the wing span direction and a significant portion of
the domain in the vertical direction. A droplet tracking window was specified near the airfoil covering the
whole span. The Monte-Carlo collection efficiency method (IMNTCL=1) was utilized to compute the droplet
collection efficiency.

As noted in Section III.B, iceSurf may subdivide the desired icing time into a number of subintervals,
which may be needed to ensure stability in the surface evolution algorithm. Since it is assumed that accretion
occurs normal to the surface and the surface normals evolve with accretion substeps, the resulting shape
achieved can be dramatically affected by the number of substeps employed in the integration. Additionally,
to achieve volume conservation, the actual volume swept out by each face during the integration is tracked.
A volume conservative height smoothing can be employed at each substep of iceSurf to improve stability
and surface smoothness. The effects of employing substeps and height smoothing in iceSurf will now be
discussed. In the comparisons that follow, we note that only single-step ice accretions can be generated by
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LEWICE3D.

IV.B.1. Results for Rime Ice Conditions

The icing conditions considered for this case were a liquid water content (LWC) of 0.405 gm/m3, an ambient
temperature and pressure of 257.88 K and 1 atm, respectively, and a relative humidity of 100 percent. At this
temperature, the water droplets freeze on impact without runback, so the simplified method for estimating
the icing rate based on collection efficiency described in Section III.A was appropriate. Water droplets
with a diameter of 20 µm were released at a speed of 90 m/s on a plane approximately eight chord lengths
upstream of the wing leading edge. Icing times of 2 and 4.4 min were chosen, which correspond to Case 210
and Case 211 in the LEWICE2D validation report,9 respectively. All rime ice results were generated on the
12 million element mesh.

Figures 10 and 11 show the ice surfaces predicted by iceSurf and LEWICE3D compared with experimen-
tal data at spray times of 2 and 4.4 min, respectively. The black solid line in the figures denotes the clean
wing surface. In both cases, a single accretion step was used with no smoothing. The simulated ice shapes
agree with the experimental data fairly well. Once observed difference was that the numerical scheme does
not predict the inflection on the upper surface of the accretion. To investigate the effects of employing mul-
tiple subintervals, figure 11 also shows results from a two-step ice accretion cycle. Note that the differences
between the single-step prediction and two-step prediction are minimal. The failure to predict this inflection
in the ice shape is currently under investigation. A second difference is the under prediction of icing limit on
the lower surface. The simulation used only a single droplet size that represented the average droplet in the
spray cloud. The inclusion of larger droplets, which would impact further aft, would have shifted the icing
limit further aft. In general, rime cases are more sensitive to collection efficiency because there is excess
convective heat transfer available and the drops freeze where they impact. Glaze shapes are less sensitive to
collection efficiency because the local convective heat transfer controls the amount of ice at location.

These figures also show a comparison of ice shapes generated by iceSurf and LEWICE3D for two different
icing times. The shapes suggest that the volume under the surface by iceSurf is less than LEWICE3D. The
computed volume under the surface from iceSurf agrees with the provided volume rates better than 1%. We
are currently investigating this discrepancy. It can can possibly be attributed to the simplistic model used
to compute the accretion rate map for the rime cases. We have not observed a similar volume difference
in computed glaze ice shapes. The three-dimensional ice shape at time of 4.4 min produced by iceSurf is
shown in figure 12 where the extruded ice is shaded gray.

IV.B.2. Results for Glaze Icing Conditions

The icing conditions for this case corresponded to Case 072604 in the LEWICE2D validation report.9 The
conditions were identical to those employed for the rime ice cases (Cases 210 and 211 above) except that the
ambient temperature was 263.2 K, which would allow runback to occur. Under these icing conditions, the
accretion rate method based on the collection efficiency in not appropriate and the lofting method described
in Section III.A was employed.

The first case considered was for a spray time of 6 min. A comparison of ice shapes generated by iceSurf,
LEWICE3D, and LEWICE2D and experimental data is illustrated in figure 13. The results generated by
iceSurf were obtained using one icing step and 20 steps of smoothing on the 12 million element mesh.
The ice shapes produced by iceSurf and LEWICE3D compare very favorably, although the iceSurf results
is smoother due to height smoothing. The three-dimensional ice shape produced by iceSurf is shown in
figure 14.

We now discuss the ripples that appear in the surface as shown in figure 14. These ripples were smoothed
to a great extent by application of the height smoothing method. The ripples apparently occurred at
surface mesh irregularities and appeared to be caused by a discrepancy in surface normal computation
between iceSurf and the LEWICE3D-lofting scheme. The relationship between the volume assigned to a
surface element and the volume of the extruded prism was strongly dependent on computed surface normals.
Differences in the normal computations between the two codes resulted in height irregularities that were
associated with irregularities in the unstructured surface mesh. We are currently investigating solutions
to this problem that may include standardizing the surface normal computation methods between the two
algorithms. For the present simulations, these differences produced some unwanted irregularities that were
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Figure 10. Comparison of computed ice shapes for tice=2 min with experimental data (black) for Case 2109 – iceSurf

(red) and LEWICE3D (green).

Figure 11. Comparison of computed ice shapes for tice=4.4 min with experimental data (black) for Case 2119 –
iceSurf -single step (red), LEWICE3D (green), and iceSurf -multi step (blue).
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Figure 12. Three-dimensional ice shape for tice=4.4 min generated by iceSurf for Case 211.9

mitigated to some extent by utilizing a number of height smoothing steps; however, this may have introduced
excessive smoothing.

Figure 13. Comparison of the computed ice shapes for tice=6 min with experimental data (black) for Case 0726049 –
LEWICE3D (green), iceSurf (red), and LEWICE2D (green).

The flow field surrounding the airfoil changes in response to the ice accretion, which, in turn, produces a
change in the ice accretion behavior, including the collection efficiency. Therefore, computing the ice shape
with the initial ice accretion rate based on the clean wing is not accurate over long periods of time. To
evaluate how the value of the time step affects the ice shape, we divided the 6-min icing time into three
2-min intervals. That is, the flow field and ice accretion rates were re-computed every 2 min based on newly
deformed mesh obtained from iceSurf. Figure 15 shows the development of ice shape at 2-min intervals.
Growth of ice on the leading edge combined with the change of the surrounding flow field would likely shift
the stagnation point further aft, causing upper portion of the horn to move downward, assuming the same
runback distance, as depicted in the figure. The difference between the ice shapes predicted using the one-
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Figure 14. Three-dimensional ice shape for tice=6 min generated by iceSurf for Case 072604.9

step run and the three-step run is shown in figure 16. Again the downward shift of the upper portion of the
ice in multi-step run is observed, and exhibits closer agreement with the experimental data. No attempt was
made to reduce the subinterval time step below 2 min.

To study the effects of the height smoothing technique described in Section III.B, various numbers of
smoothing steps were utilized during the computation of a single 6-min accretion step. The results are shown
in figure 17. It is obvious that using more smoothing steps tend to “round” the ridge at the top of the horn.
The choice of the appropriate number of smoothing steps is a balance between ensuring good quality of the
deformed mesh and preserving the dominant features of the ice shape.

To examine the effects of mesh resolution on the computed ice shape, 6-min icing-time simulations were
performed using three 2-min accretion steps for the three meshes shown in figure 9. As can be observed in
figure 18, the results obtained using the 12 million and 7 million element meshes are very similar, while the
ice shape obtained using the 4 million element mesh is more diffused.

Starting from the single-step, 6-min ice accretion, we intended to advance the ice shape for a total icing
time of 22.5 min using multiple 2-min intervals, which would correspond to Case 072605 in the LEWICE2D
validation report.9 However, our current tool was unable to advance the surface to a time of 18 min due to
self-intersection of the surface mesh. The surface generated by iceSurf at a time of 16 min, which is just
before failure, is shown in figure 19 with a comparison to a LEWICE2D run. It can be seen that the classic
horned glaze ice shape developed during this period.

The failure of the ice shape calculation at 18 min was caused by accumulated errors due to the ripples
on the ice surface depicted in figure 20. Zooming into the region containing the ripples, we observe that the
main reason for the failure is due to a folding of the surface on itself in a region where two “bumps” merge
as shown in figure 21. While this could be resolved with topological editing of the surface (which is planned
for the future for the iceSurf tool), the present tool is unable to continue surface evolution due to local self
intersection. This issue will be resolved, at least for simpler ice shapes, once we correct problems related to
the transfer of volume rates between LEWICE3D and iceSurf.

To illustrate the effectiveness of the volume mesh deformation tool gridMover, figure 22 shows “crinkle-
cut” images of the mesh in a cutting plane located at z=0.9 m, near the midspan of the wing. These images
show that, as the surface mesh evolved, the volume mesh was deformed in a manner that maintains mesh
quality up to the point that the calculation failed due to the self-intersection of the surface mesh. It should
be noted that no attempt was made to tune the volume mesh deformation parameters.

V. Conclusion

In this paper, we describe a meshing strategy designed for simulating the accretion of ice on aerodynamic
surfaces. Our approach is based on a discrete surface mesh evolution algorithm that employs an eigenvalue
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Figure 15. Comparison of ice shapes for tice=6 min generated by iceSurf for three 2-min intervals and a single 6-min
interval for Case 072604.9

Figure 16. Comparison of ice shapes for tice=6 min generated by iceSurf for a multi-step run, a single-step run with
LEWICE2D and experimental data for Case 072604.9
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Figure 17. Comparison of ice shapes for tice=6 min generated by iceSurf for different numbers of height smoothing
steps for Case 072604.9

Figure 18. Comparison of ice shapes for tice=6 min generated by iceSurf for different mesh resolutions for Case 072604.9
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Figure 19. Comparison of ice shapes for tice=16 min generated by iceSurf and LEWICE2D.

Figure 20. Ice surface for tice=16 min generated by iceSurf.
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Figure 21. Ice surface for tice=16 min generated by iceSurf that highlights the region where the surface mesh is invalid.

analysis to define the primary space, which is the direction of growth, and a null space in which the surface
mesh may be smoothed to maintain mesh quality while preserving the accreted volume. Additionally, we
employ a fast algebraic approach to project the surface deformation into the volume mesh. These techniques
were demonstrated by application to sphere with an analytically-specified, synthetic accretion rate map and
coupled LEWICE3D–Loci/CHEM simulations for rime and glaze ice accretions on a rectangular planform
wing with a constant GLC305 airfoil section. Numerical results for the sphere show good agreement with
the analytical solution. Results obtained for the rime ice case, for which the accretion rate map is based
on collection efficiency, show similar trends to results predicted using LEWICE3D ; however, discrepancies
exist that can be attributed to the manner in which the accretion rate is computed. Results for the glaze ice
case demonstrate that our approach can handle more complex shapes. Remaining issues can be attributed,
in part, to the differences between surface normal evaluation that is employed in iceSurf and the lofting
approach employed by LEWICE3D to generate the accretion rate map.

The progress reported here represents a part of an ongoing effort to develop the tools needed for the
next generation of NASA’s icing software. We are concurrently developing tools that employ local quality
improvement operations, such as edge swaps, etc., and local mesh regeneration to maintain geometric mesh
quality as the accreted surface and volume mesh evolve. We believe that this strategy of robust mesh
generation coupled with local mesh quality improvement will provide a path forward for automated ice
accretion prediction on complex configurations.
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