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ABSTRACT 

Surface waves exist along the interfaces between two different media and are known to 

display properties that have no analogue in continuous systems. In years past, they have been the 

subject of many studies in a diverse collection of scientific disciplines. In optics, one of the 

mechanisms through which optical surface waves can exist is material nonlinearity. Until 

recently, most of the activity in this area was focused on interfaces between continuous media 

but no successful experiments have been reported. However, the growing interest that nonlinear 

discrete optics has attracted in the last two decades has raised the question of whether nonlinear 

surface waves can exist in discrete optical systems. 

In this work, a detailed experimental study of linear and nonlinear optical wave 

propagation at the interface between a discrete one-dimensional Kerr-nonlinear system and a 

continuous medium (slab waveguide) as well as at the interface between two dissimilar 

waveguide lattices is presented. 

The major part of this dissertation is devoted to the first experimental observation of 

discrete surface solitons in AlGaAs Kerr-nonlinear arrays of weakly coupled waveguides. These 

nonlinear surface waves are found to localize in the channels at and near the boundary of the 

waveguide array. The key unique property of discrete surface solitons, namely the existence of a 

power threshold, is investigated in detail. 

The second part of this work deals with the linear light propagation properties at the 

interface between two dissimilar waveguide arrays (so-called waveguide array hetero-junction). 
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The possibility of three different types of linear interface modes is theoretically predicted and the 

existence of one of them, namely the staggered/staggered mode, is confirmed experimentally. 

The last part of the dissertation is dedicated to the investigation of the nonlinear 

properties of AlGaAs waveguide array hetero-junctions. The predicted three different types of 

discrete hybrid surface solitons are analyzed theoretically. The experimental results on 

observation of in-phase/in-phase hybrid surface solitons localized at channels on either side of 

the interface are presented and different nature of their formation is discussed. 
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CHAPTER ONE: INTRODUCTION 

In the field of physics, discrete phenomena such as the interaction of the elementary 

particles of matter (e.g. electrons and atoms) are usually described by quantum mechanics or 

particle physics. However, a quantum-mechanical approach is hardly applicable to most natural 

phenomena which involve billions of billions of such particles. To account for all the interaction 

between these objects would be an impossible task even for modern state-of-art computers. 

Therefore, most natural phenomena are treated using the macroscopic approaches of classical 

physics where a particular physical system is described by means of averaged macroscopic 

quantities. Nevertheless, many macroscopic systems can still be described by some type of a 

discrete model. 

The first study of discrete dynamical systems dates back to 1939 when Frenkel and 

Kontorova used a discrete model to describe the motion of dislocations inside a crystal [1]. Since 

then, discrete models have been developed for a variety of systems in the field of physics, 

chemistry and biology. They have been used to describe heat transfer in lattices [2, 3], to explain 

vibrations in crystal lattices [4, 5], to analyze the dynamics of structural phase transitions in 

crystals, etc. [6, 7]. In biology, discrete nonlinear models have been used to describe the 

contraction of proteins [8, 9], and more recently the localization and transport of vibrational 

energy in different systems including DNA molecules [10]. Nonlinear localization phenomena 

have been also predicted in atomic lattices [11, 12] and molecular chains [13]. In 2001, 

Abdullaev et. al. used a discrete Schrödinger-like model to predict the existence of nonlinearly 
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self-trapped states in Bose-Einstain condensates [14]. Their predictions have been verified 

experimentally soon after [15]. 

Discrete periodic structures are becoming progressively more important in optics since 

they are at the core of the fascinating optical properties of photonic crystals, photonic crystal 

fibers and coupled waveguide arrays [16, 17]. One of the prime examples of these systems where 

a discrete model can be developed is an array of weakly coupled identical waveguides. When an 

optical beam propagates in a waveguide array, it excites a linear superposition of the Floquet-

Bloch modes of the structure [18]. Each of these bound modes has a unique propagation constant 

and modal profile [19]. A more simplified approach to problems in weakly coupled arrays is to 

utilize the fact that in the first order band most of the energy tends to localize to the higher 

refractive index waveguide regions. Therefore, the total optical field can be effectively 

decomposed into a superposition of discrete modes associated with individual channels. 

Moreover, it is often possible to approximate the total optical field by analyzing only the 

amplitude and phase of each mode [20]. The optical energy exchange between the individual 

waveguides occurs due to the evanescent overlap of their modal fields and is modeled by the 

introduction of a coupling term into the discrete evolution equations. Linear properties of light 

propagation in one-dimensional (1D) waveguide chains (linear discrete diffraction) were first 

studied theoretically by Jones in 1965 [21] and experimentally observed several years later in 

gallium arsenide (GaAs) waveguide arrays [22].  The study of nonlinear optical properties of 

waveguide arrays started in 1988 when Christodoulides and Joseph suggested the idea that light 

can trap itself in a nonlinear waveguide array through the Kerr nonlinear effect forming discrete 

soliton (DS) [23]. An example of this non-diffracting nonlinear wave is shown in Figure 1.1.  
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Figure 1.1: Discrete soliton in a waveguide array. 

Stimulated by their work, further theoretical studies of discrete optical systems with other types 

of optical nonlinearity, e.g. quadratic [24], photorefractive [25], and recently more complex 

systems such as dissipative systems [26, 27], have been conducted. The first experimental 

observation of discrete solitons in Kerr media conducted by Eisenberg et. al. in 1998 [28] has 

triggered a wave of experimental activity in the field. To date, discrete solitons have been also 

experimentally observed in media with photorefractive [29], quadratic [30] and orientational 

nonlinearities [31]. 

Another class of natural phenomena that has been the subject of many studies in diverse 

areas of physics, chemistry and biology is surface waves [32]. In general, these waves exist along 

the interface between two different media and are known to display properties that have no 

analogue in continuous systems. Quantum surface states were first predicted in condensed matter 

physics by Tamm in 1932 [33]. Subsequently, Shockley has shown how such states can emerge 

from atomic orbitals near a surface and demonstrated that the associated surface levels can lead 

to surface bands in three-dimensional crystals [34, 35].  When two dissimilar semiconductor 

crystals are separated by an interface, new electronic states are formed in the forbidden gap 

between the valence and conduction bands [34]. In acoustics, an interface is well known to give 

rise to surface waves, in this case due to the coupling between transverse and longitudinal modes 

at the boundary [36]. In linear optics, perhaps the best known example of surface states are 
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surface plasmon waves, which exist at metal/dielectric interfaces [37]. In addition, Tamm-

Shockley-like states were suggested in periodic layered media [38, 39] and were successfully 

observed in semiconductor multilayer structures [40, 41]. 

Material nonlinearity is another mechanism through which optical surface waves can 

exist [42-47]. In particular, nonlinear TE, TM, and mixed-polarization surface waves traveling 

along the interface between two or more dielectric interfaces were theoretically predicted and 

analyzed [42]. These waves are a direct outcome of nonlinearity and have no analogue 

whatsoever in the linear domain. They exhibit power thresholds which depend linearly on the 

index difference between two interfaces and require a nonlinear index change large enough to 

reverse the initial index contrast between the media. Nonlinear surface waves have been also 

studied in thin dielectric films [48] and at the interfaces between photorefractive materials [49, 

50]. Yet, till recently, direct observation of nonlinear optical surface waves has been hindered by 

experimental difficulties such as low damage threshold of materials with high nonlinearities, 

compatible nonlinear media with small index differences, high losses etc. As a result, most of the 

activity in this area has remained theoretical. 

It was recently predicted in our research group that the interface between a nonlinear 

waveguide array and a continuous medium can be a suitable system for the experimental 

observation of nonlinear surface waves, i.e. surface solitons. An example of discrete surface 

soliton confined to the three boundary channels is shown schematically in Figure 1.2. In such a 

system, the effective periodic index potential of waveguide array can be engineered with high 

accuracy thus greatly reducing optical power requirements and opening the horizons for the 

observation of a variety of new nonlinear phenomena inherent to interfaces.  
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Figure 1.2: Discrete surface soliton in a semi-infinite waveguide array. 

The main goal of the work presented in this dissertation was to explore experimentally 

for the first time surface solitons propagating along the interface between discrete and 

continuous media to verify theoretical predictions. These solitons were successfully 

demonstrated, including the family of such solitons peaked at and near the boundary, their power 

threshold property and the linear diffraction near the interface were studied in detail, etc.  

The second goal of this work was to investigate optical modes, both linear and nonlinear 

(interface solitons), at the interface between two dissimilar, discrete, periodic lattices brought 

together to close proximity. This was again investigated successfully and both linear and 

nonlinear (with a power threshold) waves were identified theoretically and experimentally. 

Chapter 2 of this dissertation gives a brief theoretical background necessary for 

understanding of linear and nonlinear wave propagation in discrete systems. In order to 

understand solitons at the boundaries of such discrete systems, it is first necessary to understand 

the linear optical properties of weakly coupled waveguides. In many ways this requires only a 

standard application of the usual solutions for an isolated waveguide (waveguide modes) in 

which light is confined in two dimensions. Here a linear array comprised of such waveguides is 

analyzed both via standard coupled mode theory used in integrated optics and also with Floquet-

Bloch analysis borrowed from solid state physics of periodic systems. Of these, although coupled 

mode theory offers a great deal of insight, it is nevertheless necessary to use the Floquet-Bloch 
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approach to fully compare between experiment and theory. These approaches and their results 

are discussed in Chapter 2, including the addition of nonlinearity to predict the existence and 

properties of discrete surface solitons. 

Fortunately AlGaAs waveguides, even in the form of coupled arrays, have been 

extensively studied in our group before, and the experience in dealing with them experimentally 

and pertinent physical data were available for the present work. Existing samples were used for 

the initial observation of discrete surface solitons. However, it was necessary to explore 

theoretically the range of sample geometries which would optimize the observations of discrete 

solitons at the boundary between dissimilar arrays. The details of the design, fabrication and 

characterization of aluminum gallium arsenide (AlGaAs) waveguide array samples, as well as 

the reasons why AlGaAs was chosen as a material for sample fabrication, are discussed in 

Chapter 3. 

Chapter 4 provides a description of the experimental setup and of the high power pulsed 

laser system that was chosen as a light source to satisfy the power requirements set by AlGaAs 

samples.  

Chapter 5 is dedicated to the first experimental observation of discrete surface solitons 

[51]. It is shown that the results agree very well with the theoretical predictions [52]. The 

stability of these nonlinear surface waves and their unique power threshold behavior at and near 

the interface are discussed in detail. The experimental results on power threshold measurements 

and its dependence on soliton trapping site are presented. The work was extended to the samples 

with different waveguide widths which allowed the dependence on coupling strength between 

neighboring channels to be explored. 
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Chapters 6 and Chapter 7 deal with the interface between two dissimilar semi-infinite 

waveguide lattices. In such a configuration the dispersion curves of the two neighboring arrays 

are shifted with respect to each other due to the detuning of the propagation constants of the 

waveguides constituting the arrays. Here the Brillouin zone was kept identical for the two arrays 

by making their center-to-center channel spacing equal. The arrays were made different by 

choosing the different width of their channels. This led to an asymmetry in the intra-array and 

inter-array coupling parameters resulting in different power transfer across the boundary and 

different diffraction patterns in each array. In addition, the dynamical behavior of the coupled 

system depends on the separation of the two lattices. As a result, there exist new linear and 

nonlinear wave phenomena which are not possible in regular arrays and at array/continuum 

interfaces. 

In Chapter 6, the study of linear propagation and the possibility of linear modes of 

different symmetry at the hetero-interface are discussed. Sample properties needed for various 

linear modes were investigated and regions of modes’ existence identified numerically. Modes 

with π-out-of-phase fields in neighboring channels were predicted and observed experimentally 

in our samples [53]. 

In the nonlinear regime reported in Chapter 7, such a hetero-junction between two arrays 

can support a new family of surface waves, namely the hybrid surface solitons predicted recently 

by Makris et. al. [54]. For AlGaAs samples with self-focusing Kerr nonlinearity, two different 

solitons are predicted with fields in-phase in neighboring channels on both sides of the boundary. 

Both were observed in our samples. Their unique properties and results of the experiments on 

their observation are presented. Also, a number of unexpected interface soliton states were 

discovered experimentally. 
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The main results of this work, as well as possible directions of future work, are 

summarized in Chapter 8.   
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CHAPTER TWO: THEORY OF ONE-DIMENSIONAL DISCRETE 

OPTICS 

The basic theory that leads to the equations describing electromagnetic wave propagation 

for arrays infinitely extended in one dimension is developed in this chapter. The approximate 

coupled mode approach which is based on solving Maxwell’s equations for isolated channel 

waveguides is discussed. The overlap of pairs of the individual channel evanescent fields in the 

weak coupling limit is then calculated. Each pair corresponds to the well-known directional 

coupler of integrated optics in which energy is transferred periodically with propagation distance 

between channels. For the infinite 1D array this leads to coupled mode equations for each 

channel field with a weak nearest neighbor coupling to adjacent waveguides. This approach 

yields approximate solutions for the dispersion relations in the first band of the periodic systems 

and allows simple evaluation of discrete diffraction, the way in which light spreads throughout 

the array. 

In parallel, the exact Floquet-Bloch modes of this periodic array are developed. In 

contrast to the coupled mode approach, in which only the integral over the first Fourier 

components of the index distribution is used to obtain the coupling constants, the Floquet-Bloch 

approach uses the exact index distribution of the array to produce numerical dispersion relations 

and the corresponding fields. This turns out to be important for evaluating the threshold powers 

for surface solitons at the continuum-discrete boundary in Chapter 5 and crucial for finding 

linear modes and solitons at the interface between two dissimilar arrays. 
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2.1. Wave propagation in a medium 

The propagation of an electromagnetic wave in a medium with no sources of the 

electromagnetic field is described by the following set of Maxwell’s equations 
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     (2.1) 

where E and H are the electric and magnetic field vectors, D and B are the electric and magnetic 

flux densities, respectively. For a nonmagnetic dielectric medium the flux densities are related to 

the electric and magnetic field vectors through the following constitutive relations 
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where 0ε  
is the vacuum permittivity, 0µ  is the vacuum permeability, and P is the electric 

polarization induced in the medium by the electromagnetic field. 

By combining Equations 2.1 and 2.2 one can obtain the wave equation which describes 

the evolution of the electric and magnetic fields of an optical wave. For the electric field the 

wave equation is given by 
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where
00

1

εµ
=c is the speed of light in vacuum and 
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The induced electric polarization P  is the result of the interaction of light with the 

material it passes through, the average of the induced dipole moments of individual atoms and 

molecules. In general the total electric polarization induced can be written as 

,: )3()2()1(
0 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+++⋅= termsorderhigherEEEEEEP χχχε   (2.4) 

in which 
)1(χ , 

)2(χ and 
)3(χ are the linear, second and third order susceptibilities, and, in 

general, they are tensors of rank 2, 3, and 4, respectively. The corresponding terms in the 

Equation 2.4 are the linear, second order and third order contributions to the total electric 

polarization.  

The work presented in this dissertation focuses on third order nonlinear effects in samples 

made of AlGaAs material. AlGaAs exhibits non-zero second order susceptibilities but they make 

no contribution to the present work due to lack of phase-matching for the geometries used. The 

third order susceptibility dominates nonlinear effects for the AlGaAs samples. Even higher order 

effects in the form of three photon absorption (due to }{ )5(χmagℑ ) become important at the 

highest powers used in this work. 

It is convenient to separate P  into linear and nonlinear parts 

,NLL PPP +=      (2.5) 

where EP
L ⋅= )1(

0χε
 
and can be easily incorporated into the left side of the Equation 2.3 such 

that the wave equation with optical polarization along the “i-axis” becomes 
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where ( ))1(2 1 iiealn χℜ+=  and n  is the linear refractive index of a medium. 

Consider the simple case of a time-harmonic optical wave propagating in the z direction 

and linearly polarized along the x direction. The electric field of this wave is given by 
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Here ),,( zyxE  is the spatial envelope of the electric field, k  is the propagation constant in the z 

direction, and ω  is the carrier frequency of the electromagnetic wave. Assume also that the 

nonlinear term in Equation 2.6 can be neglected (linear propagation). Substitution of the 

Equation 2.7 into the wave Equation 2.6 gives 
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where ck /0 ω= . Often, the so-called slowly varying envelope approximation (SVEA) [55] is 

used for which 
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 SVEA is based on the assumption that the electric field envelope changes slowly on a 

wavelength scale with propagation distance z. As a result, under SVEA Equation 2.8 becomes 

the well known paraxial equation of diffraction  
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Consider now the nonlinear propagation. For the reasons discussed earlier, for AlGaAs 

material we keep only the
)3(χ contribution to the nonlinear polarization given by 

                              .)3(
0 EEEP

NL χε=      (2.11) 

Because the electric field was assumed to be time harmonic with a single frequencyω , the right 

side of Equation 2.11 yields only components at frequencies ω  and ω3 . The polarization 

component at frequencyω  in case of the single-direction polarized wave gives rise to the 

nonlinear phenomenon called the Kerr effect (or intensity dependent refractive index) while that 

at frequency ω3  is responsible for third-harmonic generation. Because nonlinear soliton 

phenomena in 
)3(χ
 nonlinear materials occur through the Kerr effect, henceforth only 

contributions from the “Kerr” component of the nonlinear polarization will be considered. 

Therefore, by analogy with the electric field for the linear case discussed earlier and ignoring 

cross-polarization effects, the nonlinear polarization can be written as 
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   (2.12) 

Substituting expressions for 
NL

P  and E  from Equations 2.6 and 2.12 into the Equation 2.11 

will give the following expression for 
NL

P  

,
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and the nonlinear analog of the paraxial equation of diffraction (Equation 2.10) becomes 
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Usually, the nonlinearly induced change of the refractive index is quantified by introducing the 

parameter 2n
 (called optical Kerr nonlinear coefficient) such that 

.
2

2 Ennn +=      (2.15) 

Using this relation and assuming that 2nn >> , Equation 2.14 can be written in exactly the same 

form as the linear paraxial equation of diffraction (Equation 2.10) with n replaced by .n In this 

case, the parameter 2n
 is easily found to be   
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and Equation 2.14 can be rewritten as 
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In the experiments, the readily measurable quantities are power and intensity of the optical beam. 

Therefore, it is customary to use another definition for Kerr nonlinear coefficient [55] 

,ˆ2Innn +=       (2.18) 

where I (units 
2/ mW ) is the intensity of the optical beam and is related to the electric field as 
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Straightforward analysis of Equations 2.15, 2.18 and 2.19 gives the relation between 2n̂
 and 

2n , and, with the use of Equation 2.16, the nonlinear coefficient 2n̂
 is found to be 
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2.2. Channel dielectric waveguide 

The dielectric waveguide is the basic structural element of a waveguide array. In the 

discrete systems considered in this dissertation, it has a ridge cross-sectional geometry shown 

schematically in Figure 2.1.  

 

Figure 2.1: Channel ridge waveguide. 

In such a waveguide, the optical field stays confined in both transverse x and y directions 

as it propagates along the z axis. In addition, the refractive index ),( yxnn = of the waveguide is 

assumed to be independent of the z coordinate. It is convenient to write ),( yxn  as 

).,(),( 0 yxfnyxn δ+=     (2.21) 

Here ),( yxf  is the refractive index distribution function, normalized to unity, and δ  is the 

maximum index contrast. Typicallyδ  is of the order of 310)21( −⋅− , and is much smaller than 

the background index 0n . Therefore, the nonlinear evolution Equation 2.17 for this geometry 

becomes 
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This equation is known as nonlinear Schrödinger equation (NLSE) for weakly guiding structures 

and, in general, can describe optical wave propagation for any refractive index 

distribution ),( yxf  as far as the weakly guiding limit holds. To find the beam propagation 

dynamics, 2D analog of the NLSE with only one transverse coordinate is usually used in 

numerical computer simulations. 

2.3. Directional coupler 

2.3.1. Coupled mode theory 

Couple mode theory is an approximate and simple model for describing optical wave 

propagation when two or more waveguides are placed in proximity to each other. In general in 

an optical waveguide, there exist a number of propagating modes. These propagation modes are 

specific to each waveguide and satisfy the orthogonality condition. When two waveguides are 

brought together as shown in Figure 2.2, the optical modes of each waveguide interfere with 

each other [56].  

 

Figure 2.2: Schematic 1D refractive index distribution of two coupled waveguides with the field 

profiles of their fundamental modes. 
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The waveguide channels of the array structures discussed in this work were specially designed to 

be single-mode (i.e. to have only one propagating mode in each polarization at the experimental 

wavelength of light). The electric and magnetic field distribution of these unperturbed 

eigenmodes satisfy Maxwell’s equations 2.1. In the case of time-harmonic fields, the latter can 

be written as   
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    (2.23) 

where pE  and pH  ( p = 1, 2 ) are the eigenmodes’ unperturbed fields and ),(2
yxnp  is the 

refractive index distribution in each waveguide. Also, the guided mode fields can be written as 
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where pe  and ph  are the transverse modal profiles and pβ  is the propagation constant of the 

mode. Assume that the total electromagnetic field of two coupled waveguides can be written as a 

superposition of these unperturbed eigenmode fields such that 
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where )(za and )(zb  are called complex amplitudes. These total fields of the coupled structure 

also have to satisfy Maxwell’s equations, i.e. 
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Here ),(2
yxn is the refractive index distribution of the entire structure.  
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By using Equations 2.23 – 2.26, the solution for the complex amplitudes )(za
 and )(zb

 

can be found. Its detailed derivation is provided in Reference [56], and for the geometry shown 

in Figure 2.2 the solution is given by the following coupled mode equations 
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where the pairs (p,q) are either (1, 2) or (2, 1), and 
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The introduction of the nonlinear polarization into Maxwell’s equations 2.23 and 2.26 

makes derivation of nonlinear coupled mode equations much more involved. However, for the 

simpler case of weak guiding, weak coupling and x-polarized electric fields, it can be shown that 

the nonlinear coupled mode equations are the following 
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Based on Equations 2.28 and 2.29, it can be shown that in the weak coupling limit 1211 CC <<
 

and 2122 CC << . Therefore, the second terms of Equations 2.30 are usually neglected. 

2.3.2. Linear directional coupler 

A directional couple is formed when two waveguides are brought together such that the 

evanescent tail of the modal field in one waveguide overlaps with the core region of the second 

waveguide as shown in Figure 2.3. As a result, energy can be transferred from one waveguide to 

the other [19, 21, 56, 57]. The efficiency of the transfer process depends on many parameters 

such as extent of the modal field, separation between the waveguides and the mismatch in the 

propagation constants of the two guides. 

 

Figure 2.3: Schematic of a symmetric directional coupler in ridge waveguide geometry. At low 

power, there is a periodic exchange of energy between waveguides (red arrows). At high power, 

the waveguides are nonlinearly detuned, and no coupling occurs (blue arrow). 

In the weak coupling limit, Equation 2.27 that describes the evolution of complex field 

amplitudes is reduced to 
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The analytical solution of this pair of coupled mode equations under the assumption 

CCC =≈ 2112  (waveguides are similar but not exactly identical) is given by 
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where ( ) 22
2/ Cq +∆= β . Assuming that only one waveguide is initially excited, i.e. 

0)0(,)0( 0 == baa , the optical power in the channels as a function of distance z is given by 
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This solution shows that power is coupled periodically back and forth between channels as the 

beam propagates. However, as β∆  increases, these oscillations become more frequent, and a 

progressively smaller amount of energy is transferred from waveguide 1 to waveguide 2. 

2.3.3. Symmetric nonlinear coupler 

High power optical beams propagating in a nonlinear waveguide induce a nonlinear 

refractive index change through the Kerr effect, thus changing the propagation constant of the 

waveguide mode. Therefore, an optical beam launched into one channel of the nonlinear coupler 

changes the propagation constant mismatch β∆ . As a result, beam propagation dynamics in 
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such a coupler at high powers is qualitatively similar to that of the mismatched linear coupler 

where essentially no power is transferred.  

The evolution of complex field amplitudes in a symmetric nonlinear coupler (i.e. a 

coupler with identical waveguides) is described by the following coupled-mode equations (See 

Equations 2.30) 
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This system of equations can be solved analytically in terms of Jacobi elliptic functions [58, 59]. 

Figure 2.4 shows the evolution of the power confined in the excited waveguide with propagation 

for three different powers of the incident beam. Here the propagation distance z has been 

normalized to the so-called coupling length CLc 2/π=  at which maximum power transfer is 

achieved in the linear regime. There is a critical power cP  at which total power is split equally 

between the waveguides after an infinite propagation distance [58]. This critical power is given 

by 
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where effA
 
is the nonlinear effective area of the waveguide mode which can be found as in [60] 
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Figure 2.4: Power in the excitation waveguide as a function of the normalized propagation 

distance for quasi-linear propagation ( 10/cPP = , black curve), the critical power ( cPP = , red 

curve), and high power ( cPP 2= , blue curve). 

When the power is increased above the critical power, most of the energy stays in the 

excitation channel. Due to their unique nonlinear properties, nonlinear directional couplers have 

been the subject of a number of both theoretical [58, 59, 61–64] and experimental [65–68] 

studies for all-optical switching. 

2.4. Array of coupled waveguides 

When many identical parallel waveguides are placed equidistantly close to each other, 

they form a waveguide array as shown in Figure 2.5. The waveguides of the array are brought 

sufficiently close such that light is weakly coupled between channels as it propagates down the 

array. 
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Figure 2.5: Schematic of a ridge waveguide array and the evolution of light wave propagating 

inside it. At low power, light diffracts in a discrete manner due to evanescent coupling (red 

arrows). At high power, strong localization in the excitation channel occurs (blue arrow). 

There are two common approaches to describing optical wave propagation in such a 

structure. One of them is to use the nonlinear paraxial Equation 2.22. Usually, in order to 

simplify the analysis, the two-dimensional distribution function of the waveguides ),( yxn
 is 

reduced to a one-dimensional refractive index profile using the effective refractive index method 

[56, 69]. The basic idea of this method is to calculate separately the effective refractive index of 

the vertical slab waveguide mode for the ridge region (
eff
ridge

n ) and that for the region in between 

ridges (
eff
clad

n ). The one-dimensional refractive index distribution )(xn of the array is then given 

by interchanging regions with these two indices as shown in Figure 2.6.     

 

Figure 2.6: 1D refractive index potential of a waveguide array. 
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Now Equation 2.22 for the 1D refractive index potential, including nonlinearity, can be written 

as 
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where
eff
clad
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nn −=δ , and the relation )()( xVnxn
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δ+= was used. 

Coupled mode theory discussed in Section 2.3 is another (approximate) approach to 

describe the propagation dynamics in waveguide arrays. Using this approach, the nonlinear 

evolution equations for the directional coupler 2.34 can be rewritten to include the coupling of 

each particular waveguide n  (see Figure 2.6) with its neighboring )1( +n  and )1( −n  channels 
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n aaaaC

dz
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where na
 
is the mode field amplitude in the 

thn  channel and the definition 20nk=γ
 
has been 

used for the Kerr nonlinear coefficient. Equation 2.38 is known as discrete nonlinear 

Schrödinger equation (DNLSE) [70]. 

2.4.1. Linear diffraction 

In the linear regime, the following set of equations describes the evolution of the mode 

field amplitudes in a waveguide array 

( ) .011 =++ −+ nn
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dz
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i     (2.39) 

In order to gain an understanding of the beam diffraction dynamics inside the array, consider two 

distinct cases: excitation of a single waveguide and infinite plane wave excitation. 
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Excitation of a single waveguide 

When only one channel labeled 0=n  of the waveguide array is excited )0,( 000 == ≠= nn aaa , 

the infinite set of ordinary differential Equations 2.39 can be solved analytically in terms of 

Bessel functions [21, 22]. The analytical solution is given by 

),2()( 0 zCJaiza n
n

n =     (2.40) 

where )(xJn  
is a Bessel function of the 

thn order. The evolution of the intensity of the optical 

beam described by Equation 2.40 is shown in Figure 2.7. 

 

Figure 2.7: Discrete diffraction in a waveguide array for single channel excitation. 

The striking difference between this diffraction pattern and diffraction in a continuous medium is 

clearly visible. While in a homogeneous medium the intensity maximum of the diffracting beam 

stays centered at the position of the input beam, for a discrete system most of the power is 

concentrated in the two intensity side lobes.  
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Diffraction of a plane wave 

In the discrete case, the channels’ modal field amplitudes for an infinite “plane wave” with 

constant amplitude in each channel can be defined as  

),exp()exp()( 0 iqzDinkaza xn =     (2.41) 

where Dkx  
( D  is the inter-channel spacing) is the relative phase difference between adjacent 

waveguides and q
 is the contribution to the propagation constant β (of an isolated waveguide) 

due to discreteness. Substituting Equation 2.41 into Equation 2.39 yields the following 

dispersion relation [3, 23] 

).cos(2 DkCq x=      (2.42) 

Hence, the corresponding longitudinal wavector zk  is related to its transverse component as 

).cos(2 DkCk xz += β     (2.43) 

Equation 2.43 is known as the dispersion relation for a 1D array [71, 72]. Its plot, reduced to the 

first Brillouin zone, is shown in Figure 2.8. 

 

Figure 2.8: Dispersion relation of a 1D waveguide array. 



  27

Usually, in order to describe the diffraction of optical beams with a finite spatial extent, 

the dispersion relation given by Equation 2.43 is expanded around the central spatial frequency 

of the beam’s wavepacket. By analogy with diffraction in the continuous media, it can be shown 

that for a particular transverse (Bloch) wavevector xk , the transverse velocity xv
 
and diffraction 

coefficient xD
 
are given by [73] 
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One of the most important consequences of discreteness is that the cosine dependence of 

the diffraction parameter xD on the normalized transverse momentum )( Dkx  makes it possible 

to access both the normal )0( <xD
 
and anomalous )0( >xD

 
diffraction regimes. This is in 

clear contrast to the diffraction in continuous media where diffraction is always normal. 

Moreover, “diffractionless” propagation is possible when 2/π=Dkx   [71].  

2.4.2. Bloch waves and band diagram of a waveguide array. 

The dispersion relation of a waveguide array can also be obtained from the linear 

analogue of wave Equation 2.37 using Floquet-Bloch analysis. Solving the wave equation by 

assuming Bloch wave solutions of the form 

)(exp)(exp)(),( zikxikxEzxE zxkx
=     (2.45) 

gives multiple values of zk  for each value of the transverse momentum xk . This means that the 

propagation eigenvalues zk  form multiple bands of the periodic structure [41, 74, and 75]. The 
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band diagram of a typical waveguide array is shown in Figure 2.9(a). The validity of this 

approach has been confirmed experimentally by Mandelik et. al. in 2003 who demonstrated the 

excitation of the higher order bands in AlGaAs arrays [75, 76].   

 

Figure 2.9: (a) Band diagram of a typical waveguide array with the four lowest order bands 

shown. (b) The first Floquet-Bloch band (red curve) and dispersion relation obtained based on 

discrete model (blue curve).  

The coupled mode theory describes only approximately the propagation within the first 

band of the band diagram, the upper curve in Figure 2.9(a). The comparison of the first band of 

the band diagram with the discrete model dispersion relation is given in Figure 2.9(b). It is clear 

that the shape of the first Bloch band, although periodic, deviates from the cosine behavior found 

for the discrete model. This deviation is a result of the approximations used in coupled mode 

theory derivations. 
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2.4.3. Nonlinear propagation and solitons 

To gain an understanding of nonlinear propagation dynamics and to see the difference 

relative to the linear propagation case, consider again single waveguide excitation. Figure 2.10 

shows the simulated intensity of the cw optical wave for three different propagation regimes. At 

low input power as shown in Figure 2.10(a), the discrete diffraction pattern is obtained when 

most of the power finally escapes the excited channel. When the power is increased to the critical 

power cP  (Figure 2.10(b)), the propagation dynamics changes, and power escape rate from the 

excited channel decreases significantly. Finally, at even higher power level (Figure 2.10(c)), 

almost all energy stays confined in a single waveguide.  

 

Figure 2.10: Simulated intensity as would be seen from the top of the waveguide array under 

single channel excitation at (a) 10/cP , (b) cP  and (c) cP2  incident power levels. 

To summarize the results presented in Figure 2.10, the evolution of the power confined in 

the excitation waveguide for the optical power levels of Figure 2.10 is shown in Figure 2.11. 
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Figure 2.11: Power remaining in the excitation waveguide for single channel excitation as a 

function of the propagation distance for quasi-linear propagation ( 10/cPP = , black curve), the 

critical power ( cPP = , red curve), and high power ( cPP 2= , blue curve).  

Discrete solitons 

The nonlinear localization behavior observed in Figure 2.10c suggests the possibility of non-

diffracting stationary solutions to the DNLSE, known as spatial solitons. 

As was discussed earlier, the nonlinear evolution of the envelope of the complex modal 

field amplitudes can be accurately described by the DNLSE of Equation 2.38. Because the 

solutions to DNLSE cannot be found analytically, a so-called continuum approximation is used 

to find the discrete field envelope of soliton waves [23]. First the substitution to DNLSE for 

modal field amplitudes of the form 

)2exp( zCiua nn =      (2.46) 

is implemented. After this substitution, the DNLSE becomes [23] 

( ) .02
2

11 =+−++ −+ nnnnn
n uuuuuC

dz

du
i γ    (2.47) 
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Under the continuum approximation, we replace DNLSE by the continuous NLSE by applying 

the following Taylor series expansion: 

,
2 2

22
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x
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x
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Duun

∂

∂
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∂
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±=±     (2.48) 

where nu
 
was replaced by u . Applying this expansion to Equation 2.47, one can obtain the 

following continuous evolution equation for the field envelope 
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i γ     (2.49) 

Assuming the soliton solution to the Equation 2.49 of the form 

),(exp ziu µϕ=      (2.50) 

the approximate discrete field envelope nϕ  
and the nonlinear eigenvalueµ are found to be [23, 

77, 78] 

,sec
0

0
w

n
hAn =ϕ      (2.51) 

where 2
0

0

2

w

C
A

γ
= is the peak amplitude, 

2
0w

C
=µ  is the nonlinear eigenvalue, 0w  is the width 

of the soliton expressed in units of the inter-channel spacing, and n is the channel number when 

the soliton is assumed to be centered on n = 0 channel. The full width at half-maximum (FWHM) 

of the discrete field envelope is given by 

( ) .63.232ln2 00 wwN ≈+=∆     (2.52) 

The soliton propagation of the discrete envelope for 2.10 =w
 
is shown in Figure 2.12. 
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Figure 2.12: Simulation of the diffractionless propagation of a discrete soliton in a waveguide 

array. 

This continuum approximation is valid only for sufficiently wide discrete soliton solutions, i.e. 

when the variation of the modal field amplitudes is relatively slow over a number of waveguides. 

For the single channel solitons and for those only a few channels wide, a numerical approach is 

used.  

The discrete soliton shown in Figure 2.12 is of the bright, in-phase type, i.e. the fields in 

adjacent channels are all in-phase with each other. The nonlinear eigenvalueµ of such solution is 

located at the center of the Brillouin zone ( 0=Dkx  
in Figure 2.8). Another type of bright 

soliton is the so-called “staggered” soliton with a π  phase shift between the modal field peak 

amplitudes in adjacent waveguides (i.e. π=Dkx  for this type). Both in-phase and staggered 

types are further split into odd, even, and twisted soliton sub-groups depending on the phase 

structure of their discrete field envelope [79]. The most common ones with relatively strong 

localization (existing in up to 5 channels) are shown in Figure 2.13 [80]. Many are unstable or 
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require a defocusing ( 02 <n ) nonlinearity. For example, the soliton shown in Figure 2.12 is of 

the odd type because the maximum of its envelope is centered on a waveguide site. In regular 

waveguide arrays with positive material nonlinearity ( 02 >n ) only the in-phase bright solitons 

are possible with all fields in phase. However, as will be discussed later, bringing the two 

dissimilar arrays together creates a hetero-junction where a new family of hybrid solitons with 

more complicated phase profiles of their field envelopes is found [54]. 

 

Figure 2.13: Strongly localized soliton solutions to the discrete nonlinear wave equation. The 

even solutions with maxima located between two equal magnitude neighboring channels which 

are either in phase or out of phase are both unstable. The twisted solutions are only stable for 

strong confinement.  The remaining solutions are all stable. 
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CHAPTER THREE: SAMPLES 

In this chapter we discuss many of the properties of the AlGaAs samples used in the 

observing discrete solitons in general. Of importance here are the material properties, the 

fabrication techniques used to make arrays, and the essential characterization of the samples 

including the coupling constants etc. The detailed modeling needed to study discrete surface 

solitons is left to Chapter 5, and the modeling of the hetero-structures to Chapters 6 and 7. 

3.1. AlGaAs material properties 

There were two main reasons for the choice of aluminum gallium arsenide (AlGaAs) as 

the material for sample fabrication. The first one is that the AlGaAs nonlinear properties make it 

an excellent material for nonlinear optics experiment. The Kerr nonlinear coefficient 2n̂
 of 

AlGaAs is about Wm /105.1 217−⋅  at a wavelength around mµ55.1 , as measured in 

waveguides similar to those studied here [81]. For example, it is approximately three orders of 

magnitude higher than that of fused silica. The second reason for AlGaAs choice is the 

availability of the mature manufacturing technology for this semiconductor material which 

allows for fabrication of high quality waveguides. Different AlGaAs samples used in the 

experiments had linear losses in the range cmdB /1.16.0 − (linear absorption coefficient 

125.014.0 −−= cmα ). The nonlinear two-photon absorption (2PA) losses in the samples can 
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be reduced by using excitation at a wavelength mµ6.155.1 −  with photon energies below the 

half of the band gap energy of semiconductor material. While in this wavelength region 2PA still 

plays a role due to band tail states, the 2PA coefficient decreases rapidly with a wavelength 

increase and was considered to be negligible in our samples [81]. Therefore, below the half band 

gap, three-photon absorption (3PA) appeared to become the dominant nonlinear absorption 

mechanism and the limiting factor on the maximum power in the experiments. The 3PA 

coefficient of AlGaAs material at the wavelengths in the vicinity of mµ55.1  was 

23
3 /02.005.0 GWcm±≈α

 
[82]. 

3.2. Design and fabrication 

The basic sample fabrication procedure can be described as follows. First, molecular 

beam epitaxy (MBE) was used to deposit various AsGaAl xx −1  layers on a GaAs  wafer by 

Gregory Salamo’s group at the University of Arkansas to grow a multilayer, single mode slab 

waveguide. The growth direction was along the [001] crystal axis. The channel waveguides were 

formed along the [011] axis by standard photolithography and reactive ion etching. The first set 

of samples (regular waveguide arrays) was fabricated by Marc Sorel’s group at the University of 

Glasgow and the two-array hetero-junction samples were made by Richard Ares’s research group 

at the University of Sherbrooke, Canada. 

The AlGaAs waveguide array cross-sectional design is shown in Figure 3.1. In this 

design, a mµ5.1  thick core layer of AsGaAl 82.018.0  is sandwiched between the lower index 

AsGaAl 76.024.0  layers. The thickness mµ4  of the lower cladding layer was chosen to be 

sufficiently large to isolate the guiding layer from the mµ400  thick GaAs  substrate which had 
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the highest refractive index in the sample’s composition.  As was already discussed earlier, the 

guiding of light in the structure is achieved under the unetched ridges due to the local higher 

effective refractive index of the slab waveguide modes. 

 

Figure 3.1: AlGaAs waveguide array design (schematic cross-section). 

A microscope image of the actual sample with md µ4= , mD µ10=  and mw µ72.0=  is 

shown in Figure 3.2.  

 

Figure 3.2: Optical microscope image of a real sample. 

With these parameters, the intensity profile of the fundamental transverse-electric (TE) mode of 

an isolated waveguide has an elongated in x-direction shape as shown in Figure 3.3. 
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Figure 3.3: Calculated intensity of the fundamental mode of a ridge waveguide. The locations of 

the waveguide ridge and of the core layer are indicated by white lines. 

In order to check the validity of the weakly guiding approximation (i.e.
eff
clad

n<<δ ) for 

the AlGaAs ridge array, its effective refractive index contrast δ  for the 1D periodic index 

potential as a function of the etch depth w  was calculated. The results shown in Figure 3.4 

indicate that even with the cladding layer completely removed in between the guides 

(corresponds to mw µ5.1= ), the index contrast 006.0≈δ  is still much smaller than 

29.3≈eff
clad

n . The etch depths of the available samples were mµ72.0  and mµ1.1  which 

correspond to 
4105.7 −⋅≈δ  and 

3102 −⋅ , respectively. 

 

Figure 3.4: Calculated effective refractive index contrast as a function of the etch depth. 
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3.3. Sample characterization 

Coupling constant 

The coupling constant C  of an array of coupled waveguides can be extracted by fitting the 

experimentally measured low power discrete diffraction pattern with the analytical solution 

given by Equation 2.40. An example of the best fit for the mm35.1  long sample with 

md µ4.4= , mD µ10=  and mw µ1.1=  is shown in Figure 3.5. The measured diffraction 

pattern agrees well with the coupled mode theory calculations. As a result, using this method, the 

coupling constant can be found with an accuracy of about %32− . 

 

Figure 3.5: Measured discrete diffraction pattern (red curve) and the best fit with the analytical 

solution (dots) using value
1430 −= mC  for the coupling constant. 

Dispersion relation 

The dispersion relation of the first Bloch band of the array’s band diagram can be experimentally 

obtained by exciting the array with a wide beam at low power. Then the relative phase shift 
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Dkx=∆θ  between the adjacent channels is changed continuously within the range ( ππ ,− ) by 

tilting the beam with respect to the array’s entrance facet, and the output intensity is recorded. 

Because the propagation direction inside the array is given by the normal to the dispersion curve, 

the beam’s output position will trace the shape of its first derivative xz dkdk / . The results of the 

corresponding experiment are shown in Figure 3.6. One can clearly see the deviation of the 

measured shape from the sinusoidal behavior of the first derivative for the discrete model. The 

experimental results are in much better agreement with the calculations based on the Bloch wave 

analysis as discussed in Chapter 2. In agreement with the Floquet-Bloch model, the zero 

diffraction point lies at larger than π/2 values of the relative phase ∆θ which correspond to zero 

slope in Figure 3.6. Nevertheless, in most cases the coupled mode equations give a sufficiently 

accurate description of wave propagation dynamics in waveguide arrays.  

 

Figure 3.6: Measured derivative of the first Bloch band’s dispersion relation. The white curve 

shows the approximate position of the output beam center. 
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Sample losses 

Linear losses in the samples can be found using the Fabry-Pérot resonance technique [83, 84]. 

This approach utilizes the fact that an isolated single waveguide can be considered as a low 

finesse resonator with equal reflectivity at its end facets. From the standard analysis for a lossy 

resonator, the transmitted power of a Fabry-Pérot type waveguide is given by 
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where inP
 
is the incident optical power, 

22 )1/()1( +−= effeff nnR
 
is the Fresnel power 

reflection coefficient at each of the waveguide’s facets, α is the linear loss coefficient, and L  is 

the waveguide length. As can be seen from the Equation 3.1, the dependence of the transmitted 

power on wavelength has an oscillating behavior. It is straightforward to show that the loss 

coefficient is given by 
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where 
minmax / tt PPy = (

max
tP and 

min
tP are the maximum and the minimum of the 

transmitted power, respectively). In the experiment, light from a low power cw source 

(HP81680A diode laser) was launched into an isolated waveguide, and the variation in the 

transmitted power was measured while the input wavelength was scanned within a narrow range 

around mµ55.1 . The recorded transmitted power for the sample with mw µ1.1=  is shown in 

Figure 3.7. 
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Figure 3.7: Throughput of an isolated waveguide as a function of the input beam wavelength. 

Based on the throughput data and assuming the calculated value of the Fresnel power reflection 

at the waveguide’s facets 29.0≈R , the value 
1)01.015.0( −±= cmα (or cmdB /)04.065.0( ± ) 

for the linear propagation losses was extracted. 

Other parameters used in simulations of the nonlinear propagation in waveguide arrays 

are: effective mode area 
21914 mAeff µ−≈  (depends on the width of the waveguide ridge) and 

the Kerr nonlinear coefficient
11

20 5.43.3/ˆ −−−≈= WmAnk effγ for 
1217

2 105.1ˆ −−⋅= Wmn . 

Assuming the two-photon absorption (2PA) to be negligible for the reason discussed earlier in 

this section, the three-photon absorption (3PA) coefficient 
23

3 /04.0 GWcm≈α  was found by 

fitting the nonlinear transmission curve to be in good agreement with the data found in the 

literature [82]. 
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CHAPTER FOUR: EXPERIMENTAL SYSTEM 

The use of the AlGaAs system for experimental investigation requires the power levels at 

the sample input facet of the order of 1kW. Given that beam shaping etc. would necessitate a 

factor of 2 - 4 additional power this is clearly not available at 1550nm from any CW sources. 

Hence it is necessary to use a pulsed laser which considerably complicates the analysis of soliton 

effects since all of the predictions are for cw cases. Furthermore, such large cw powers would 

also lead to considerable heating, possibly leading to the sample damage. Thus, the usual         

80-100MHz mode-locked lasers could also give problems due to the thermal load of high 

repetition rate pulses. Given all of these considerations, an OPG-OPA system operating at KHz 

repetition rates was a reasonable choice as the laser source. In this chapter, the laser system, as 

well as the other experimental apparatus required for experiments on solitons in arrays, is 

described. 

4.1. OPA tunable high power laser source 

A Spectra-Physics optical parametric amplifier (OPA) pumped by a laser/amplifier 

source was the system of the choice. The system layout and the typical operation parameters of 

its individual components are shown in Figure 4.1 and Table 1.   
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Figure 4.1: Optical source layout showing all of the major components. The typical operating 

parameters are given in Table 1. 

Table 1: Typical operation parameters used in the experiments. 

  
Average power 

 

 
Wavelength

 
Pulse duration 

 
Repetition rate 

 
MilleniaVs 
 

 
4.4W 

 
532nm 

 
cw 

 
- 

 
Tsunami 
 

 
800mW 

 
783nm 

 
150fs 

 
79MHz 

 
EvolutionX 
 

 
6W 

 
527nm 

 
200ns 

 
1kHz 

 
Spitfire 
 

 
700mW 

 
783nm 

 
1ps 

 
1kHz 

 
OPA 800CP: 
Signal beam 
Idler beam 

 
 

40mW 
30mW 

 
 

1550nm 
1582nm 

 
1ps 

 
1kHz 

 

The system contains a Ti:Sapphire pulsed mode-locked femtosecond laser (Tsunami) pumped by 

an intracavity doubled neodymium yttrium vanadate (Nd:YVO) cw laser (MilleniaVs), a Q-

switched neodymium yttrium lithium fluoride (Nd:YLF) intracavity doubled laser (EvolutionX), 

a Ti:Sapphire regenerative amplifier (Spitfire), and an optical parametric amplifier (OPA 

800CP). Also, two custom-made autocorrelators were used to monitor the duration of pulses 

from both the Spitfire and the OPA 800CP. Despite the fact that the Tsunami output itself has 

peak powers of the order of tens of kilowatts, its achievable fundamental wavelength range (690 
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- 1080nm) does not cover the required experimental wavelengths of 1500 - 1600nm. Therefore, 

wavelength extension to the latter region is accomplished through the use of an OPA. A more 

detailed description of the laser system elements is given below. 

 

Nd:YVO laser (MilleniaVs)  

The MilleniaVs is a solid state, high power, visible cw laser that can provide more than 5W of 

the green light at a wavelength 532nm. The gain medium of this laser is a Nd:YVO rod pumped 

by two 13W laser diode bars. Fiber-coupling and delivering of the astigmatic beam from the 

diode bars transforms it to a round beam suitable for an efficient end-pumping geometry. This 

also allows the diode bars to be located in the power supply thus giving a very compact design 

and reducing the heat load on the laser head. The non-critically phase-matched lithium triborate 

(LBO) crystal placed within the laser cavity is used to convert the light at fundamental 

wavelength 1064nm to 532nm through a second harmonic generation (SHG) nonlinear process. 

 

Ti:Sapphire laser (Tsunami) 

The Tsunami is a solid-state mode-locked Ti:Sapphire laser. Its laser medium, a titanium-doped 

sapphire, is capable of tunable laser operation over a broad range of near infrared wavelengths 

from 690nm to 1080nm, and a range of pulse durations continuously variable from 80ps to less 

than 50fs. Our Tsunami is pumped by a MilleniaVs and produces 150fs long pulses at a 79MHz 

repetition rate. The operating wavelength was chosen to be 783nm. The regenerative mode-

locking technique is used to convert the laser from cw to pulsed operation. Similar to the most 

common active mode-locking technique [85], it utilizes an acousto-optic modulator (AOM) as a 

mode-locking element which is placed inside the optical cavity and provides the required 
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periodic modulation of the cavity losses. However, unlike active mode-locking, the RF signal 

used to drive the AOM is obtained not from a separate RF generator but delivered from the laser 

cavity. A small part of the laser beam is deflected to a photodiode, and the detected signal is used 

to drive the AOM. This removes the requirement for the exact match of RF and the cavity round-

trip frequency because the drive signal to the AOM changes accordingly with the cavity length.  

The mode-locked pulse shortening in the Tsunami occurs through a combination of 

positive group velocity dispersion (GVD) and self-phase modulation in the Ti:Sapphire rod. 

Ideally, for the shortest pulse formation, the round-trip time in the cavity must be frequency 

independent within the pulse bandwidth. Therefore, in order to achieve near transform-limited 

pulses, positive GVD of the cavity elements is compensated by using prism pairs, a standard 

GVD compensation technique.  

The Tsunami’s output serves as the seed beam for the Spitfire. 

 

Nd:YLF laser (EvolutionX) 

The EvolutionX is a diode-pumped, Q-switched, intra-cavity frequency doubled Nd:YLF laser. 

Its gain medium (Nd:YLF rod) is pumped by four laser diodes which allows to achieve very 

efficient pumping because almost all spectrum of pump light falls within the absorption 

bandwidth of the gain medium. The laser resonator is Q-switched at the repetition rate of 1kHz 

using an acousto-optic modulator [86] which results in a train of ~200ns long pulses. Similar to 

the MilleniaVs, the fundamental wavelength 1053nm of the EvolutionX is efficiently frequency 

doubled to produce green light via a LBO crystal placed within the laser cavity. 

The output of the EvolutionX is used as a pump for the Spitfire. 
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Regenerative amplifier (Spitfire) 

The Spectra-Physics Spitfire is a regenerative amplifier designed to amplify single pulses from a 

mode-locked Ti:Sapphire laser. Input pulses of energy only a few nano-joules are typically 

amplified to milli-joule levels, which represents an overall amplification of the order of 610 . 

Usually in amplifiers, the maximum output energy is limited by pulse distortion through the 

nonlinear interaction of light with the amplifier gain medium and by the damage threshold of 

optical elements. However, the use of chirped pulse amplification (CPA) technique makes it 

possible to avoid these detrimental effects. In CPA, the pulse to be amplified is temporally 

stretched in order to reduce its peak power, then amplified, and finally recompressed to close to 

its original duration. Therefore, the Spitfire consists of three main elements, namely a pulse 

stretcher, an amplifier, and a pulse compressor. 

In the stretcher, the seed pulse from the Tsunami is stretched by as much as 10000 times 

using a bulk grating system. The Spitfire regenerative amplifier contains a Ti:Sapphire crystal as 

a gain medium pumped by the 200ns long pulses from EvolutionX. The amplification of a seed 

pulse takes place when the seed pulse passes through the gain medium. Since the one-pass 

amplification is only about a factor of 3 - 4, the Ti:Sapphire crystal is placed into a cavity with 

two mirrors, thus allowing the amplified pulse to pass multiple ( 2015~ − ) times through the 

gain medium while the much longer pump pulse is present. In order to introduce the seed pulse 

into the resonator and to switch the amplified pulse out of the cavity, two Pockel’s cells (electro-

optic switches) are placed inside it. The first Pockel’s cell is used to switch the seed pulse into 

the amplifier cavity, and the timing of the second one is adjusted to switch the amplified pulse 
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out of the resonator after a sufficient number of round trips. Finally in the Spitfire pulse 

compressor, the high energy amplified pulse is recompressed to the ps1≈ duration. 

 

Optical parametric amplifier (OPA 800CP) 

As pointed out earlier in this section, the need for conversion of the Tsunami wavelength to the 

1550nm wavelength region necessitates the use of an optical parametric amplifier. The OPA 

800CP is a two stage, white light seeded optical parametric amplifier pumped by the output from 

the Spitfire regenerative amplifier. In the OPA 800CP, a small part of the pump is directed to 

pass through the Sapphire plate where a super-continuum (so-called white light) is generated 

through a variety of nonlinear processes including self-phase modulation, self-focusing, Raman 

shift and other higher order nonlinear phenomena. The white light is pre-amplified in a Beta-

Barium Borate (BBO) crystal using about 10% of the pump power through the nonlinear second 

order parametric process. The amplified signal and idler beam wavelengths are determined by 

the phase-matching angle of the BBO crystal. The pre-amplified signal is then amplified with the 

remaining ~90% of power during the second pass through the nonlinear crystal. Finally, the 

signal and idler beams are separated using a polarizing beam splitter. The OPA 800CP allows 

continuous tuning of the signal wavelength within the range 1100 – 1570nm. The wavelength of 

the idler beam which is given by the relation )/1/1/(1 SignalSpitfireIdler λλλ −=
 
spans from 

1570nm to approximately 2800nm. 

 

Output pulse parameters 

The duration of the OPA output pulses was measured by a custom-made autocorrelator using the 

collinear interferometric second harmonic autocorrelation technique [87, 88]. The measured 
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autocorrelation and its envelope calculated based on the 1ps long pulse (FWHM) are shown in 

Figure 4.2(b). For the transform-limited Gaussian pulse, the duration of 1ps corresponds to a 

spectrum of 3.53nm FWHM. The measured OPA spectrum shown in Figure 4.2(a) has a slightly 

higher bandwidth of 4nm FWHM which indicates the presence of a small residual chirp. 

 

Figure 4.2: Output of OPA 800CP (a) Measured spectrum (black curve) and Gaussian fit (red 

curve). (b) Measured interferometric autocorrelation (blue dots) and calculated autocorrelation 

envelope for a 1ps long pulse (red curve). 

4.2. Experimental setup 

The experimental setup for the observation of discrete solitons in AlGaAs waveguide 

array samples is shown in Figure 4.3. The signal beam from the OPA 800CP described above is 

used as a light source for the experiments. First, directly after the exit aperture of the OPA, about 

4% of the input power is split off the main beam with a beam sampler and is used for the OPA 

diagnostics (to monitor the spectrum and the pulse train stability (using a photodiode connected 

to an oscilloscope). Then the main part of the beam is spatially filtered to reduce spatial beam 

distortions. The spatial filter consists of a lens L1 with a focal length equal to 7.5cm, and a 
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100µm diameter ceramic pinhole. The beam is then collimated using the lens L2 with the same 

focal length as that of L1.  

 

Figure 4.3: Experimental setup. 

After the spatial filter, the peak power of the signal beam is ~20MW. For typical experiments the 

maximum required peak power right before the sample does not exceed 5kW. Therefore, taking 

into account losses in the optics downstream, the OPA beam power needs to be reduced by three 

orders of magnitude.  This is done by using a reflective attenuator A1 which directs about 99% 

of the power to a low backscatter laser beam trap, and a variable attenuator A2. 

After the attenuator A1, a flip mirror M1 is placed in the beam path. In the position when 

the beam from OPA is blocked, this mirror allows the introduction of the low peak power, cw 

radiation from an amplified spontaneous emission (ASE) source. This beam is collinear with the 

OPA beam and is used for coupling light into the waveguide array during initial aligning.  

The polarization of the beam is then adjusted with a half-wave plate. The polarizing beam 

splitter PBS1 is introduced into the beam path to generate two orthogonally polarized beams 

when needed for certain experiments. After recombining the orthogonally polarized beams again 
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in PBS1, a small part of the beam is split off with a beam sampler for the power monitoring 

purposes. The two polarizations are separated by the beam splitter PBS2 and detected by 

germanium photodiodes. The photodiodes’ signals are directed to lock-in amplifiers 

synchronized to the repetition rate of the OPA which provides a significant suppression of the 

uncorrelated noise.  

The beam input into the sample is shaped using a pair of cylindrical lenses L3 and L4, 

and the in-coupling microscope objective MO with a 40x magnification. The available lens set 

includes 50, 100, 150, 200, 250, 300, 500 and 1000mm focal length cylindrical lenses. The 

orientation of the cylindrical lenses is chosen such that the beam spatial parameters are not 

changed in the vertical direction, i.e. normal to sample surface. The FWHM of the beam 

intensity in vertical direction is therefore defined by the strength of the in-coupling objective 

MO, and is adjusted to be ~2µm thus matching the vertical profile of the waveguide mode. The 

choice and the position of the cylindrical lenses L3 and L4 are defined by the experimental 

requirements to the horizontal beam cross-section which (with the available set of lenses) can be 

set within the range between 2µm and more than 300µm. Furthermore, a plane parallel glass 

plate is placed in front of the in-coupling objective. The horizontal rotation of this plate shifts the 

beam sideways which results in a change of the propagation direction of the input beam after the 

in-coupling objective and hence in a change of the input phase difference between adjacent 

channels. The glass plate is mounted on a rotation motorized stage. This is particularly useful for 

the experiments which require the continuous controlled tilting of the input beam with respect to 

the sample’s entrance facet (i.e. the continuous variation of the relative phase between the 

adjacent channels). 
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The sample itself is mounted on a five axis translation stage. This gives the possibility to 

adjust not only the XYZ position of the sample but also to align the axis of the one-dimensional 

array with the horizontal axis of the asymmetric input beam. The output facet of the sample is 

imaged onto two cameras using a non-polarizing 50/50 beam splitter BS1 and an additional lens. 

The less sensitive Hamamatsu vidicon camera is usually used only for visual monitoring of the 

output intensity during alignment procedures. Another 50% of the power is directed to a highly 

sensitive InGaAs line array camera (Roper Scientific OMA V) with 512 pixels. This power is 

also used to monitor the output power in either polarization by introducing additional beam 

splitters BS2 and PBS3. A polarizer mounted right in front of the InGaAs camera in used to take 

images in different polarizations. 
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CHAPTER FIVE: DISCRETE SURFACE SOLITONS 

After the experimental observation of discrete solitons inside the nonlinear waveguide 

lattices [27-31], the question arose whether discrete nonlinear surface waves (surface solitons) 

can exist at the edge of a semi-infinite waveguide array. And in 2005 the possibility of such 

nonlinear states had been demonstrated theoretically [52].  

In this chapter the theory of surface solitons at the boundary between a 1D discrete and a 

1D continuous medium is developed. The key properties of these solitons are first identified and 

then investigated experimentally.  

5.1. Introduction 

To analyze the problem of nonlinear surface waves, consider a semi-infinite Kerr-

nonlinear lattice shown schematically in Figure 5.1.  

 

Figure 5.1: The schematic of a semi-infinite waveguide array. 
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The DNLSE that describes the evolution of complex modal field amplitudes for this system can 

be written as 
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where the first equation describes the envelope of the peak field in the channel at the edge of the 

array (n = 0 waveguide site) and the second one is applied at every other site n ≥ 1. Of course, 

these equations are valid only for the first band in the coupled mode approximation which is 

adequate for this purpose. The ridges formed in the upper cladding lead to an effective refractive 

index to the right of the boundary larger than that to the left. Hence, the fields associated with the 

channel waveguides exhibit a higher effective refractive index than that experienced by any 

propagating modes in the 1D slab waveguides, i.e. the propagation wavevectors for the array 

region are larger than those of the slab waveguide. As a result, at the boundary, there is no 

coupling between the slab waveguide modes and the array modes, and the boundary channel 

field decays exponentially with distance into the slab region with the decay constant 

approximately that for a single isolated channel. However, this boundary channel does couple via 

its evanescent field to its nearest neighbor channel. 

Consider the linear behavior of this system first. Similar to the case of an infinite 

waveguide lattice, the spatial impulse response of this semi-infinite system (i.e. when only one, 

the
thm channel of the array is excited) can be obtained in closed form in terms of Bessel 

functions using coupled mode theory [52] 
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The resulting propagation dynamics for the excitation of the first (m = 0), the second (m = 1) and 

the third (m = 2) waveguides of the array is shown in Figures 5.2(a) - (c), respectively.  As one 

can see, these discrete diffraction patterns differ considerably from that in an infinite lattice. The 

difference arises from the boundary reflection which results in an additional (higher order Bessel 

function) term in the analytical solution given by Equation 5.2. 

 

Figure 5.2: Simulated discrete diffraction when (a) the first, (b) the second, and (c) the third 

waveguides of a semi-infinite array are excited. 

It is noteworthy that in the linear response regime, the system under consideration cannot support 

any linear surface waves since the background index of the slab waveguide underlying the array 

is the same as that of the outer slab waveguide region. 

To gain an understanding of nonlinear propagation in a semi-infinite waveguide array, 

consider again the single waveguide excitation of the boundary n = 0 channel. Figure 5.3 shows 

the simulated intensity of an incident cw optical wave for three different propagation regimes. In 

the low input power regime shown in Figure 5.3(a), the discrete diffraction pattern associated 

with the analytical solution of Equation 5.2 is obtained. Most of the power escapes the excitation 

channel. When the power is increased to the critical power cP  as defined previously for a two-

channel nonlinear directional coupler in Equation 2.35, the propagation dynamics (Figure 5.3(b)) 



  55

changes with more than half of the total power confined in the boundary channel. Finally, at a 

power level twice the critical power (Figure 5.3(c)), almost all the energy stays localized in the 

excited waveguide. Such nonlinear localization behavior suggests the possibility of discrete 

surface solitons, the non-diffracting stationary solutions to the DNLSE of Equation 5.1. 

 

Figure 5.3: Simulated propagation in a semi-infinite array when the first (n = 0) channel was 

excited at (a) 10/cP , (b) cP , and (c) cP2  power levels. 

To summarize the results presented in Figure 5.3, the evolution of the power confined in 

the excitation waveguide as a function of distance is shown in Figure 5.4. While these results are 

qualitatively similar to those of Figure 2.11 for an infinite lattice, two quantitative differences are 

easily identifiable. To be specific, for the low power case the power escape rate from the excited 

channel is much faster for a semi-infinite lattice. Also for the semi-infinite case at the critical 

power, about three times more power stays in the excited guide (~60% versus ~20% in an 

infinite lattice). 
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Figure 5.4: Power remaining in the excitation (n = 0) channel as a function of the propagation 

distance for quasi-linear propagation ( 10/cPP = , black curve), the critical power ( cPP = , red 

curve), and high power ( cPP 2= , blue curve). 

Discrete nonlinear surface waves in a semi-infinite lattice can be numerically found using 

relaxation methods by assuming a stationary solution to the Equation 5.1 of the following form 

   )exp( Cziua nn µ=      (5.3) 

where 2≥µ  is the normalized nonlinear propagation eigenvalue. Because the nonlinearity for 

AlGaAs is of the self-focusing type ( 02 >n ), one searches for in-phase solutions, i.e. all the 

fields nu  are taken to be positive [52]. Figure 5.5 shows the total power
2∑=

n

naP  carried by 

the soliton solutions peaked at the boundary channel versus the eigenvalueµ . This plot indicates 

that the µ−P  curve exhibits a minimum which, in turn, implies that discrete nonlinear surface 

waves can exist only above a certain power threshold. Below the power threshold no surface 

waves can be supported. The power threshold behavior of discrete surface solitons will be 

discussed in detail later in this chapter. 



  57

 

Figure 5.5: Normalized total power versus eigenvalueµ  for an in-phase surface soliton solution 

peaked at the n = 0 waveguide site. The red dashed line defines the minimum µ for stable 

propagation. 

Linear stability analysis reveals that the surface wave solutions are only stable to the right of the 

minimum of µ−P  curve, i.e. in the region where 0/ >µddP , in agreement with the well-

known Vakhitov-Kolokolov criterion for continuous media [89, 90]. In the stable branch, the 

localization of soliton solutions increases with soliton power and the evanescent field decays into 

the continuous low index region. All these properties of discrete nonlinear surface waves mirror 

closely those of surface solitons between continuous media [42-48]. 

5.2. First Observation of discrete surface solitons 

For the experimental observation of highly confined discrete surface solitons, the setup 

described in Chapter 4 was configured to excite a single boundary channel of a 1cm long 

AlGaAs array containing 101 waveguides. Other parameters of the sample were the following: 

period mD µ10= , channel width md µ4= , and etch depth mw µ72.0= . The coupling constant 
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for the TE polarized light was found to be 
1730 −= mC . Therefore, the length of the sample 

corresponds to approximately 4.5 discrete coupling lengths. 

In the first set of experiments, the input beam was focused onto the boundary n = 0 

channel of the AlGaAs waveguide array, and the intensity distributions at the sample’s end facet 

were recorded. The variation of the normalized output intensity across the array as a function of 

the input beam peak power is shown in Figure 5.6. 

 

Figure 5.6: Intensity distributions recorded at the sample’s output facet versus peak power of an 

input beam injected into the n = 0 channel. The output data was sampled for each power by the 

software, the maximum intensity channel identified, the color of that channel was set to red 

(maximum), and the remaining data at that power was renormalized. 

There are three clear regions to the response. The discrete diffraction associated with the linear 

response of the array persists until the threshold power is reached. In the threshold region there is 

a rapid collapse of power towards the excitation channel. Finally, a discrete surface soliton is 

formed with most of its energy localized in the boundary channel. Some fraction of the incident 

power still remains in the discrete diffraction pattern due to the pulsed nature of the excitation. 
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Even though the experiments were carried out with pulses, a rapid collapse was found to occur 

above 1.2kW, a clear indication of the threshold behavior expected of surface solitons. 

Given the fact that the experiments utilized ultra-short (1ps) pulses and that the 

waveguides are not only dispersive but also exhibit three-photon absorption, the beam dynamics 

in both space and time was simulated using the following NLSE [51] 

,0ˆ)(
22

1 4
3

2
2002

2''

2

2

=+++
∂

∂
−

∂

∂
+

∂
∂

EEiEEnkExVk
T

Ek

x

E

kz

E
i αδ  (5.4) 

where 
2124'' 103.1 smk

−−⋅=  is the normal group velocity dispersion coefficient of AlGaAs at 

a wavelength of mµ55.1 , T is a time coordinate moving at the group velocity of the wave, 

4105.7 −⋅≈δ (obtained from Figure 3.4 using mw µ72.0= ), and 00
2

33 8/ˆ µεαα n=  

(
23

3 04.0 −= GWcmα is the 3PA coefficient). The simulation results and the experimental 

intensity patterns for three different input power levels are presented in Figure 5.7. Overall the 

agreement between experiment and theory is very good. 

 

Figure 5.7: Measured output intensity when the boundary channel of the waveguide array was 

excited with a beam of (a) 450W (low power), (b) 1300W and (c) 2100W peak power. (d) - (f) 
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are the corresponding simulated intensities for 280W (low power), 1260W and 2200W of input 

power, respectively. 

Another set of experiments was done to verify that the surface soliton is a nonlinear 

eigenmode at the interface using a wide, strongly asymmetric input beam of approximately 50µm 

FWHM. The beam was injected into two different positions of the AlGaAs array, namely with 

the maximum of the beam profile in the middle of the array, and the maximum located at the 

boundary waveguide site. In the latter case the steep side of the beam intensity profile was facing 

the edge of the array in order to prevent a significant amount of radiation from leaking into the 

continuous region. The corresponding measured output intensities, as well as input beam shape 

and position, are shown in Figures 5.8(b), (c). Also, for comparison, the experimental result for a 

wide symmetric input beam injected in the middle of the array is given in Figure 5.8(a).  

 

Figure 5.8: Measured output intensity patterns when (a) a wide symmetric beam is injected into 

the middle of the array, (b) an asymmetric beam is injected in the middle of the array, and (c) the 

peak of the asymmetric input beam is aligned with the first (n = 0) channel site. Outputs for three 

different powers for each case are shown. Input beam intensity is identified by dashed curve. 
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Figure 5.8(a) shows that, as power is increased, the well-known symmetric discrete 

soliton centered on the input beam peak is formed. Unlike this, for the asymmetric input beam 

(Figure 5.8(b)) the resulting discrete soliton is centered two waveguide sites away from the 

position of the maximum of input intensity, near the centroid position of the input energy. 

However, when such a beam is injected near the interface as shown in Figure 5.8(c), a discrete 

surface soliton is always formed at the first channel site. This proves that discrete surface 

solitons are indeed the nonlinear eigenmodes near the interface. Note that the sharp falling edge 

of the input beam was not steep enough to prevent the excitation of modes in the slab waveguide. 

The input power in case (c) was increased further to well above the discrete surface soliton 

threshold. The results shown in Figure 5.9 for this case (i.e. 2200W of peak power) indicate that 

a second discrete soliton is formed at the position of the secondary broad peak of the intensity 

pattern for input power of 1300W.  

 

Figure 5.9: Measured output intensity patterns when the peak of the asymmetric input beam is 

aligned with the first (n = 0) channel site and the input power is increased from 1300W to 

2200W. 
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This occurs because there is now more than enough power in the input beam to form two discrete 

solitons. Since the two solitons are coherent and in-phase with each other, they attract and hence 

the surface soliton is shifted by one channel inside the array. 

5.3. Power threshold measurements 

In this section the key property of discrete surface solitons, i.e. the existence of a power 

threshold is investigated in detail. As was already mentioned in the previous section, a rapid 

collapse of the diffraction pattern toward the excitation channel in Figure 5.6 is a clear indication 

of the threshold behavior expected of surface solitons. Moreover, theory predicts that solutions 

of the DNLS Equation 5.1 can be obtained for solitons localized at other waveguide sites, e.g. at 

the n = 1, 2, 3 etc. channels. The cw power threshold of these solutions goes to zero as n  (the 

site where the soliton peak resides) increases. Therefore, the purpose of the experiments 

described in this section was to measure the threshold’s dependence on the distance away from 

the boundary as well as its correlation to the inter-channel coupling strength. 

The initial observation of discrete surface soliton formation was performed with TE 

polarization. However, the simulations showed that the thresholds for soliton formation were 

smaller for the TM polarization. Experiments were performed with TM polarization, and 

strongly localized discrete surface solitons with single channel excitation were also observed in 

that case. A comparison of the results for the evolution of the solitons for the two polarizations is 

shown in Figure 5.10. It was consistently found that the threshold power for TM case was lower 

than for TE, in agreement with the simulations. Given the influence of three photon absorption 

discussed later in this chapter, the TM polarization was chosen for most of the experiments. 
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Figure 5.10: The evolution with input power of the intensity distribution across the array 

measured at the output facet for (a) TM and (b) TE polarized inputs when the boundary (n = 0) 

channel was excited. 

New AlGaAs samples, 1.35cm long waveguide arrays, each consisting of 50 weakly 

coupled ridge waveguides and surrounded on both sides by a 1D slab waveguide were fabricated 

for these experiments. Several arrays with constant period mD µ10=  but different widths of the 

waveguide ridges, namely 4.4,4.3,4.2=d  and mµ4.5 , were fabricated. The etch depth was 

mw µ1.1=  which corresponds to the index contrast 
3102 −⋅≈δ , three times larger than in the 

first experiment discussed above. In order to understand how the waveguide width affects the 

inter-channel coupling constant, the intensity profiles of the TM fundamental modes of isolated 

waveguides were simulated. The modal intensity profiles for the mµ4.2  and mµ4.4  wide 

waveguides are shown in Figure 5.11. It is clearly seen that the mode profile for 

the mµ4.2 channel is more spread out in a horizontal direction. Therefore, when two mµ4.2  

waveguides are brought to close proximity with each other, they will experience a higher 

evanescent mode-field overlap than the two mµ4.4  wide guides (given that the center-to-center 
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separation is kept constant). This, in turn, will result in a higher coupling constant for an array 

with mµ4.2  wide channels. 

 

Figure 5.11: Intensity profile of the fundamental mode of a single waveguide for 

md µ4.2= (top) and md µ4.4=  (bottom). 

A systematic study of the dependence of the coupling constant and of the mode effective 

area on ridge width was performed. The coupling constants in the available samples were found 

using the technique described in Section 3.3, i.e. the diffraction patterns for single channel 

excitation were recorded at low powers in the middle of each array and the coupling constants 

were obtained by fitting these patterns with analytical solution given by Equation 2.40. The 

effective area was calculated using Equation 2.36. The obtained results are presented in Table 2. 
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Table 2: The coupling constant and effective mode area for the four ridge widths. 

Ridge width (µm) Coupling constant (m
-1

) Effective  mode area (µm
2
) 

2.4 520 17.0 

3.4 445 14.8 

4.4 420 14.2 

5.4 430 14.4 

 

The comparison of measured and calculated values for the coupling strength in Figure 5.12 

shows the excellent agreement between calculations and experiment. Note that there is a 

minimum in the coupling constant at a ridge width of approximately mµ5.4 . 

 

Figure 5.12: The dependence of the coupling constant C on the ridge width for the fixed center-

to-center channel spacing of 10µm. Data given by diamonds , and calculations by the red 

curve. 

Based on these array parameters the curves which define the existence region for discrete 

surface solitons were calculated for solitons peaked at channels at varying distance (channel 

number) from the interface. An example is given in Figure 5.13(a) for the 4.4µm ridges. As 
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expected, the threshold powers, shown by squares in Figure 5.13(b), fall with increasing channel 

number and approach asymptotically the power required to form discrete solitons deep inside the 

array. 

 

Figure 5.13: (a) The existence curves of discrete solitons centered on various channels “n” versus 

the nonlinear wavevector shift. (b) Threshold powers corresponding to the minima of the 

existence curves (squares ), and the powers of essentially single channel surface solitons 

(circles ), versus waveguide number. 

The corresponding soliton fields at the threshold are shown in Figure 5.14, and give a 

great deal of insight into the threshold behavior. For n = 0, the solitons are strongly confined to 

the boundary channel and the fields are strongly asymmetric because they decay exponentially 

with the single channel decay constant into the 1D slab waveguide. As the channel number at 

which the soliton fields peak is increased, the fields become both progressively wider and more 

symmetric. By n = 12, the fields are completely symmetric and indistinguishable from those deep 

inside the array. As the total power of the solitons for n ≥ 1 is increased, they move up the curves 

in Figure 5.13(a), eventually acquiring a confinement equivalent to the case n = 0, but with more 

symmetric envelopes. 
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Figure 5.14: The calculated electric field distributions of discrete surface solitons peaked at 

different channels “n”, at power threshold. 

There are problems associated with identifying the threshold power in the experiments. 

First, the use of pulses leads to “smearing” of the results because temporal pulse contains a 

distribution of powers ranging from zero to the peak power. This leads to “tails” in the output 

distributions which can make it difficult to differentiate solitons from the low power linear 

diffraction which “reflects” off the boundary, see Figure 5.2. Second, the solitons broaden at 

threshold with increasing “n” and for each “n” slowly collapse in width with increasing power. 

This makes it difficult to define a single criterion for “threshold”. Third, in the limit of discrete 

spatial solitons spanning many channels, equivalent to the continuum limit for Kerr spatial 

solitons in 1D slab waveguides, the product of the soliton power and soliton width is a constant. 

Although in the discrete case the confinement of the surface soliton also increases with 

increasing power, the theoretical power-width relationship for the excitation of discrete solitons a 

few channels wide is not analytical.  

Hence we adopted a different philosophy to show that the presence of the surface results 

in power thresholds which decrease for surface solitons peaked on channels progressively further 

from the boundary. Note that the fields at the threshold powers for the n = 0 and 1 already 

correspond to a soliton strongly confined to one channel. We define the threshold power for a 
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strongly confined soliton as the minimum input power at which the peak output intensity in the 

excitation channel exceeds 3 times that of its adjacent secondary channels. We calculated the cw 

power required for generating such strongly confined discrete surface solitons. This is equivalent 

to moving up the existence curves to higher powers as identified in Figure 5.15(a) where the 

criterion for strong confinement was satisfied at the points A, B etc. In Figure 5.13(b), this gave 

another (green circles) total power versus channel number curve. Note that for the first few 

values of “n” this condition corresponds quite closely to the actual power threshold minimum. 

On the other hand, for n ≥ 2 this definition starts to deviate progressively more from the 

theoretical power threshold, see Figure 5.13(b).  

 

Figure 5.15: (a) Total power for steady state (cw) surface soliton solutions peaked at n = 0 (red 

dash-dot curve), n = 1 (blue dashed curve), n = 2 (black curve), and n = 12 (green dotted curve) 

channels. The location of the “single channel” discrete solitons are identified by the points A (n 

= 0), B (n = 1) etc. (b) Calculated input peak power required for the formation of a “strongly 

localized discrete soliton” versus channel number. 

However, when the effects of pulse propagation, GVD, linear and nonlinear loss are taken into 

account in BPM simulations, the predicted curve for this “strongly localized discrete soliton” 
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threshold shown in Figure 5.15(b) resembles very closely that for the minima of the P - µ curves 

in Figure 5.13(b). In the pulsed case the required peak powers are higher since only a single 

channel is excited and this power must be shared by all the channels defining the soliton and by 

the “diffraction tails”. This “strongly localized surface soliton” threshold was adopted as the 

experimental parameter to measure. The calculated intensity distributions of these solitons 

(corresponding to the points A, B etc in Figure 5.15(a)) are shown in Figure 5.16, and indeed it 

was found relatively easy to identify these intensity distributions experimentally. 

 

Figure 5.16: The intensity distributions associated with the “single channel” discrete solitons as a 

function of channel number. 

In the experiment the first six (n = 0 – 5) and the n = 12 channels were individually excited and 

the intensity distributions at the sample’s end facet were recorded. As the input power was 

increased, the soliton states were identified by almost complete confinement of power in the 

excitation channel. Examples of the measured output patterns associated with the single channel 

solitons localized at the n = 0, 2 and 12 channels for the array with md µ4.4=  are shown in 

Figures 5.17(a) - (c), respectively. Note that in all three cases the solitons are strongly confined. 

Just as in the results of Figure 5.6 for the n = 0 channel, further increase in the incident power did 
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not produce significantly better confinement. These experimental results were in excellent 

agreement with the soliton intensities obtained from BPM simulations, see Figures 5.17(d) – (f).  

 

Figure 5.17: Recorded output intensities corresponding to strongly localized discrete solitons 

when the (a) n = 0, (b) n = 2, and (c) n = 12 channels of the AlGaAs array were excited with the 

peak power of 1250W, 920W and 660W, respectively. (d) - (f) are the corresponding BPM 

simulated intensities. 

A comparison of the measured and calculated (Figure 5.15(b)) input peak powers for the 

excitation of strongly localized surface solitons is shown in Figure 5.18, and the agreement is 

excellent. It is also important to realize that the Kerr nonlinear and 3PA coefficients used in the 

calculations are themselves only known to an accuracy of ±10%. 
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Figure 5.18: Measured (circles) and calculated (squares) input peak powers as a function of a 

soliton localization site for an array with md µ4.4= . 

Note that the experimental powers required for the excitation of these surface solitons are 

higher by a factor of approximately 2 - 2.5 than the threshold powers defined in Figure 5.13(b). 

This is a consequence of many factors, first of all the pulsed nature of the experiment and 

nonlinear losses. The total linear losses in our 1.35cm long AlGaAs samples measured using the 

Fabry-Pérot technique (see Section 3.3 of Chapter 3) were found to be approximately 18%. As 

the measured throughput of the samples has shown, at high input powers the dominant 

absorption mechanism was the nonlinear 3PA loss. This is quantified in Figure 5.19 which shows 

the net throughput as a function of the input peak power in the surface soliton experiment for the 

array with md µ4.4=  (the corresponding intensity evolution with input power was shown in 

Figure 5.10(a)).  
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Figure 5.19: Throughput measurements (red curve) for the array with 4.4µm wide ridges. Linear 

slope is indicated by a dashed line. 

Until the threshold region is reached, the slope of the throughput curve is constant which 

corresponds to the linear regime without 3PA. This is expected because in this region discrete 

diffraction process results in spreading of power over many channels thus prohibiting the 

formation of high intensities necessary for significant 3PA. In the threshold region, where the 

narrowing of the intensity pattern occurs, the 3PA becomes noticeable. Finally, above 1200W the 

discrete surface soliton is formed with most of its power localized in a single waveguide. At this 

point about 25% of the input power is lost because of 3PA as indicated by the deviation of the 

throughput curve from the linear slope in Figure 5.19. The progressively faster nonlinear loss 

growth at powers beyond 1200W explains why the confinement of surface solitons is not 

improved significantly with further increase in input power. All these three factors, i.e. the 

fraction of power in discrete diffraction due to the pulsed nature of the excitation (~30%), linear 

losses (~18%), and the 3PA nonlinear losses (~25%) more than double the power requirements 

for observation of discrete surface solitons. 

Similar experiments were performed in each of the other three waveguide arrays listed in 

Table 2 with different channel widths for the n = 1 – 5 and 12.  A summary of the experimental 
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results for the input power required for clean “strongly localized soliton” formation is given in 

Figure 5.20(a). There the peak input power is plotted versus soliton waveguide site for four 

different channel widths. It is clear for each ridge width, that the soliton generation condition for 

n ≥ 4 (and corresponding input power level) is essentially the same as measured for the soliton 

deep inside the array (n = 12). This is a consequence of strong confinement so that the solitons 

peaked at the n ≥ 4 channels are only weakly influenced by the presence of the boundary. To 

study the correlation of power thresholds with the coupling strength, the variation of the 

calculated and measured coupling constant with the ridge width is given again in Figure 5.20(b). 

 

Figure 5.20: (a) Input peak power required for a strongly localized soliton formation versus 

localization site for the samples with md µ4.2=  (squares), mµ4.3  (circles), mµ4.4  (triangles), 

and mµ4.5  (inverted triangles). (b) Calculated (dots) and experimentally found (rhombi) inter-

channel coupling constants as a function of the ridge width. 

It is noteworthy that for the soliton in each particular channel the corresponding input 

power level was the lowest for md µ4.4= , and the highest for md µ4.2= , as indicated in 

Figure 5.20(a). This is not surprising because, as shown in Figure 5.20(b), of all four array 

geometries these two arrays have the smallest and the highest coupling constants (
1430 −

m  and 
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1520 −
m , respectively). And in general, the stronger the coupling between adjacent waveguides 

the higher the input power necessary for nonlinearity to decouple the excitation channel from its 

neighbors and form a soliton. This implies that the power threshold is inversely proportional to 

the coupling length. However, the result for a ridge width of 5.4µm belies such a simple 

interpretation since the threshold power for this case rose much faster than the increase in the 

coupling constant. The effective mode area also rises (Table 2) for this case, but not enough to 

explain the large increase in threshold power. Hence, additional factors must play a role with the 

most probable one being the approximate nature of the coupled mode analysis. 
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CHAPTER SIX: LINEAR MODES AT A HETERO-JUNCTION OF TWO 

ARRAYS 

The recent advances in fabrication technologies have allowed manufacturing of 

artificially structures materials (called meta-materials) where light propagation properties can be 

strongly affected and even controlled [91]. Photonic crystals are probably the most prominent 

example of a meta-material where such properties as diffraction and refraction of light wave can 

be varied to a large extent [92, 93]. A waveguide array is another example of a meta-material and 

exhibits many new phenomena due to its unique diffraction properties. To date, the unique linear 

optical properties of waveguide arrays such as anomalous diffraction, multiple allowed bands, 

Bloch oscillations, the discrete Talbot effect etc. have been reported [73, 75, 94, 95]. 

Furthermore, the disruption of translational symmetry by a defect buried in an “infinite” 

waveguide array has been predicted and observed to lead to “defect” modes [96 – 98].  

In previous chapters, only single arrays comprised of identical waveguides were 

considered. This chapter will focus on the linear properties of the interface between two 

dissimilar waveguide arrays, i.e. a waveguide array hetero-junction. More specifically, the 

existence of linear propagating optical modes located in k-space in the band gaps of the 

composite structure are studied both theoretically and experimentally for the first time. 
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6.1. Theory of linear interface modes 

Consider a 1D waveguide array hetero-junction shown in Figure 6.1(a). This structure is 

composed of two dissimilar semi-infinite waveguide arrays joined together and separated by the 

gap gd . The scanning electron microscope (SEM) image of the real 2D cross-section of such a 

hetero-junction is given in Figure 6.1(b). As before, to simplify the theoretical analysis, this 2D 

geometry is reduced to the 1D geometry of Figure 6.1(a) using the effective refractive index 

method described in Section 2.4. 

 

Figure 6.1: (a) A 1D refractive index potential of a two-array hetero-structure. (b) SEM image of 

the AlGaAs sample facet. 

The system of linear coupled mode equations that describes the evolution of complex 

modal field amplitudes for this structure can be written as 
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where we have four different coupling constants: C  (between neighboring channels of left-side 

array), rC  (between channels of right-side array), rC →  (between the two interface channels 

from left to right) and →rC  (between the two interface channels from right to left). The two 

interface channels are sufficiently different so that the coupling coefficients from left to right, 

and from right to left, differ significantly [56]. Because the analytical solution of Equation 6.1 

could not be found, the linear propagation within and between the two arrays was analyzed using 

the following paraxial equation of diffraction 
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where ),( zxE  is the slowly varying electric field envelope, δ  is the effective refractive index 

contrast, and )(xV  is the normalized index potential.  

The spatial impulse response for the single channel excitation of the boundary 

waveguides of the two arrays was found using the BPM code based on Equation 6.2. The hetero-

junction samples were originally designed for observation of the interface discrete surface 

solitons discussed in the next chapter, and the design considerations will be described there. The 

following composite structure parameters which reflect the available samples were used in the 

simulations: the period of each array mDD r µ10== , the channel widths md µ2=  and 
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mdr µ5= , 
3102 −⋅=δ , and the spacing between the two arrays 3,5=gd and .2 mµ Note 

that by using the same inter-channel spacing within the two arrays, the size of their Brillouin 

zones is kept identical. The simulated beam propagation dynamics for excitation of the single 

boundary channels for three different values of the inter-array spacing is shown in Figure 6.2. 

 

Figure 6.2: BPM simulation of the beam propagation for the excitation of a single boundary 

channel on the left (a) - (c) and on the right (d) – (f) from the interface. The inter-array spacing is 

mdg µ5= (a), (d); mµ3 (b), (e); and mµ2 (c), (f). 

Clearly for mdg µ5=  (Figures 6.2(a) and (d)), the tunneling across the gap between the 

two arrays is negligible and the discrete diffraction patterns are almost identical to that shown in 
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Figure 5.2(a) for the array-continuum interface. When the inter-array spacing is reduced to mµ3 , 

the coupling between the boundary channels becomes significant for the excitation of the 

boundary channel of the left-side array (Figure 6.2(b)). Note that a weak localization occurs at 

the interface characterized by a periodic exchange of energy between the boundary channels 

which dies off with propagation distance via discrete diffraction into both arrays.  On the other 

hand, as Figures 6.2(e) shows, some coupling also occurs across the gap to the left-side array 

from the right-side array, leading again to a (weaker) periodic energy exchange between the 

boundary channels decaying only into the right-side array. Finally, further decrease of gd  to 

mµ2 results in strong coupling between the two boundary channels with localization of power at 

the interface. Note that the localization is stronger for the excitation of the left array boundary 

channel (Figure 6.2(c)) and that in both excitation geometries the discrete diffraction occurs 

preferably into the right-side array. These localization results suggest that when gd  is 

sufficiently small the array hetero-junction can support linear optical modes propagating along 

the interface. 

It can be formally shown via Floquet-Bloch analysis of the composite array that the band 

diagram of the hetero-structure involves essentially the bands of the individual semi-infinite 

arrays with the possible addition of linear surface modes which lie either above the highest lying 

band; in the gap between the bands, or below both first bands [54]. Figure 6.3(a) shows a typical 

calculated band structure of the array hetero-junction which can support linear surface waves. 

Here the first-order bands of the right- and left-side arrays are represented by the red and the blue 

upper curves, respectively. Also, a part of the second band of the right-side array is shown in red 

at the bottom of the plot. 
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Figure 6.3: (a) Band diagram of the composite array. The locations of eigenvalues are shown for 

staggered/staggered (triangle), in-phase/staggered (circles), and in-phase/in-phase (square) linear 

modes. (b) - (d) are the corresponding electric field distributions of these modes.  

In order to quantify the various electromagnetic modes supported by the composite 

structure, Floquet-Bloch analysis of Equation 6.2 was performed numerically. Finite difference 

techniques were used to identify the linear eigenmodes localized at the interface by assuming 

stationary solutions to the of the form 

),exp()(),( zixzxE λφ=      (6.3) 

where λ  is the propagation eigenvalue of a particular mode and )(xφ  is its transverse electric 

field profile. For the specific hetero-junction parameters mentioned above, only one interface 

mode was numerically found for mdg µ2= . The mode eigenvalue indicated by a triangle in 

Figure 6.3(a) is located at the edge of the Brillouin zone in the gap between the first band of the 

left-side array and the second band of the right-side array. The electric field distribution of this 
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mode is shown in Figure 6.3(b). It has a staggered profile in either array (i.e. fields are π -out-of-

phase in neighboring channels). The stronger the coupling between the two arrays, the deeper the 

mode eigenvalue lies into the gap below the first band of the left array and the narrower the 

envelope of the mode field distribution. 

Numerical simulations have also revealed that for different hetero-junction parameters, 

the gaps between the bands can be tuned, and linear modes of other symmetry types are also 

possible. These include in-phase/in-phase (fields are in-phase in the adjacent channels in each 

array) and in-phase/staggered (fields in the adjacent channels are in-phase in the left-side array 

while staggered in the right-side array). The typical electric field distributions of these modes are 

shown in Figures 6.3(c) and (d) with the schematic locations of their eigenvalues given by circles 

and a square in Figure 6.3(a). The possibility for the existence for each type of linear interface 

modes was investigated numerically by varying within reasonable limits the effective index 

contrast δ  and the spacing gd  between the two arrays. All other hetero-structure parameters 

were kept constant ( mDD r µ10== , md µ2=  and mdr µ5= ). The results of the 

calculations are summarized in Figure 6.4. As one can see, there is a region without surface 

modes of any kind at all; regions where one mode type exists and regions which can support two 

different types of linear surface modes where the individual existence regions overlap. In this last 

overlap case, the appropriate surface mode can be excited by tailoring the input field to the mode 

structure. The location of the staggered/staggered mode discussed earlier is shown by a red dot 

on the diagram. The smallest array spacing in the existing samples was too large to excite the in-

phase/in-phase stable mode. However, a leaky version of this mode could have been at least 

partially responsible for the localization seen in Figures 6.2(e) and (f). This leaky mode would 

have a longer tail from the boundary into the right-side array than into the left-side array, 
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resulting from the closer location of the mode eigenvalue to the top of the first band of the right-

side array compared to that of the left-side array. 

 

Figure 6.4: The regions of existence for interface modes with in-phase/in-phase, in-

phase/staggered and staggered/staggered field distributions. The red circle identifies the sample 

geometry for which the surface mode is predicted in one of the available samples. 

6.2. Experimental results 

In fabrication, the following sample design parameters were used: mDD r µ10== , 

md µ2= , mdr µ5= , mw µ1.1=  (corresponds to 
3102 −⋅≈δ ), and the spacing between the 

two arrays 3,5=gd and .2 mµ The real parameters of the AlGaAs samples measured using 

SEM deviated slightly from the design values in terms of ridge widths and spacing gd . They 

are: mdmd r µµ 4.5,4.2 == , and 4.3,2.5=gd and .2.2 mµ However, the main experimental 

results on observation of the predicted linear interface mode were not significantly affected by 

these differences. 
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First, discrete diffraction under single channel excitation condition was investigated 

experimentally for the three available samples. Radiation at 1550nm wavelength from a low 

power cw source (HP81680A diode laser) was shaped spatially to match the mode profile of an 

isolated waveguide and focused onto the boundary channels on either side of the interface. The 

intensity distributions at the samples’ end facets were recorded with an InGaAs line array 

camera. The resulting discrete diffraction patterns shown in Figure 6.5 were in excellent 

agreement with the simulation results of Figure 6.2. As predicted numerically, the excitation of a 

leaky surface wave was observed for the smallest gap.  

 

Figure 6.5: Intensities recorded at the sample’s output facet for the inter-array spacing =gd  

(a) mµ2.5 , (b) mµ4.3 , and (c) mµ2.2 . The boundary channels of the left (blue curves) and of 

the right (red curves) arrays were excited. 

To observe the stable staggered/staggered linear interface mode experimentally, the best 

shape of the input beam needs to be found. Apparently, despite the significant localization of 

energy near the interface in Figure 6.5(c), single waveguide excitation is not the best way to do 

this. Of course, the best approach would be to shape the input beam to match exactly the mode 

field profile shown in Figure 6.3(b). The simulated propagation dynamics under these input 

conditions is given in Figure 6.6(a) and shows stable propagation of the linear mode for a 
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sufficiently long distance with almost no energy radiated away form the boundary region. 

However, shaping the input beam exactly is a challenging task. Therefore, in order to excite the 

linear mode, another approach was chosen. The calculated interface mode fields areπ -out-of-

phase in adjacent channels and the mode envelope spreads over a number of waveguides. Hence 

a beam tilted to produce a relative phase of π  between waveguides and several channels wide 

should produce good coupling to the interface mode. First we verified this approach numerically. 

A Gaussian beam with FWHM of 35µm and a linear phase variation across its profile was 

chosen as an input for the composite array with mdg µ2.2= . The simulated propagation for a 

3cm distance shown in Figure 6.6(b) revealed that after some distance the input beam evolves 

into the intensity distribution of the interface mode. 

 

Figure 6.6: BPM simulation of (a) stable propagation of the staggered/staggered mode when the 

beam with the exact mode-field distribution is launched into the hetero-structure, (b) propagation 

dynamics of a 35µm wide tilted Gaussian beam injected at the interface location. The length of 

the actual sample is shown by a dotted line. 

The simulations also show that the length of the real AlGaAs sample (1.35cm) indicated by a 

dotted line in Figure 6.6(b) would be sufficient to observe this mode.    
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In the experiment a Gaussian beam with FWHM of 35µm and tilted to produce a π  

phase difference between the adjacent channels was launched at the position of the first 

waveguide of the left-side array (n = -1) as shown by a black curve in Figure 6.7. The intensity 

distribution recorded at the sample’s end facet is shown in red in the same plot. Its excellent 

agreement with the calculated intensity of the interface mode plotted in Figure 6.7(b) proves that 

this linear mode does indeed exist at the array hetero-junction. 

 

Figure 6.7: Experimentally measured (a) and calculated (b) intensity distribution associated with 

a staggered/staggered mode. Black curve in (a) is the intensity distribution of the input beam. 

In a second set of experiments, the relative phase θ∆  between adjacent channels was 

varied continuously by tilting a wide Gaussian beam (overlapping the interface) with respect to 

the sample’s entrance facet, and the output intensity distributions were recorded. As was 

discussed earlier in the Section 3.3 regarding a regular waveguide lattice, this technique is known 

to yield the derivative of the first Bloch band’s dispersion relation (the experimental results are 

shown in Figure 3.6). The results of the corresponding experiments for two hetero-junction 

samples with mdg µ2.2=  (proven to have an interface mode) and mdg µ2.5=  (predicted to 
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have no interface mode) are shown in Figures 6.8(a) and (b), respectively. The structure of these 

intensity patterns is similar because the individual waveguide arrays constituting the hetero-

structures are the same. It is also more complicated compared to Figure 3.6 because the 

reflection off the boundary between the two arrays is now involved.  

 

Figure 6.8: Measured output intensity of the composite array versus relative phase θ∆  for (a) 

mµ2.2  and (b) mµ2.5   inter-array spacing. 

Despite the similarity, the main difference between the two cases of different inter-array 

spacing is apparent. For mµ2.2  gap between the arrays (Figure 6.8(a)), the formation of the 

linear mode is indicated by a strong localization of energy at the interface in the vicinity of 

πθ ±=∆  while at all other values of relative phase light diffracts away from the boundary. In 

contrast to this, Figure 6.8(b) shows that for mdg µ2.5=  there were no signs of energy 

localization at the interface region for any value of relative phase. 

These results clearly show that a linear interface mode propagating along the boundary 

between two dissimilar periodic structures can exist under appropriate conditions. 
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CHAPTER SEVEN: HYBRID INTERFACE SOLITONS 

Besides the interface modes in the linear regime, the waveguide array hetero-junction can 

support a variety of nonlinear surface waves, namely the hybrid surface solitons predicted 

recently by Makris et. al. [54]. These solitons are referred to as “hybrid” because their two field 

components in the dissimilar arrays can propagate locked together as a composite self-trapped 

state, thus forming a hybrid surface soliton. It has been shown theoretically that three different 

types of hybrid solitons are possible with their propagation eigenvalues located inside different 

band gaps in the band diagram of the composite structure. In this chapter, the unique properties 

of these nonlinear surface waves are studied both theoretically and experimentally. 

7.1. Introduction 

The system under consideration in this chapter is the structure composed of two 

dissimilar semi-infinite waveguide arrays shown earlier in Figure 6.1. In the nonlinear regime, 

optical wave propagation in this system is governed by a paraxial scalar NLSE given by 
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where again ),( zxE  is the slowly varying electric field envelope, δ  is the effective refractive 

index contrast, )(xV  is the normalized refractive index potential of the composite structure, and 

γ  is the Kerr nonlinear coefficient. The hybrid surface soliton solutions are numerically found 
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by using relaxation schemes based on the self-consistence method [99]. In this approach the 

following solutions to Equation 7.1 are assumed [54] 

 ),exp()(),( zixzxE λφ=      (7.2) 

where )(xφ  is the transverse electric field profile and λ  is the soliton eigenvalue, the nonlinear 

correction to the propagation constant due to nonlinearity. Using this method, three different 

types of hybrid surface soliton have been found. Based on the symmetry of their electric fields 

)(xφ  and similar to the naming convention used in Chapter 6 for linear interface modes, these 

three soliton types are in-phase/in-phase, in-phase/staggered and staggered/staggered solitons.  

To understand the difference between these three soliton solutions, it is necessary to 

consider the band diagram of the composite two-array structure. The typical calculated band 

diagram of the array hetero-junction is shown in Figure 7.1(a). Again, as in Figure 6.3(a), the 

first order bands of the right- and left-side arrays are represented by the red and the blue upper 

curves, and second band of the right-side array is partially shown in red at the bottom of the plot. 

It is noteworthy, that two types of hybrid soliton solutions, namely in-phase/in-phase and in-

phase/staggered ones, were found for the self-focusing (i.e. 0>γ ) Kerr-type nonlinearity while 

for the defocusing case ( 0<γ ) only staggered/staggered hybrid solitons exist. The nonlinear 

eigenvalues of in-phase/in-phase hybrid solitons shown by a square in Figure 7.1(a) were found 

to lie in the semi-infinite band gap above the first band of the right-side array in the center of the 

Brillouin zone. As a result, the soliton fields in adjacent channels are in-phase on either side of 

the interface. The in-phase/staggered soliton solutions have their eigenvalues inside the complete 

band gap between the first bands of the two arrays (circles in Figure 7(a)). The location of their 

eigenvalues implies that fields of the soliton’s component in the left-side array are in-phase while 

the other part of the soliton, in the right-side array, is staggered. Finally, the eigenvalues of 
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staggered/staggered soliton solutions shown by triangle in Figure 7.1(a) were found to lie in the 

gap between the first band of the left-side array and the second band of the right-side array. The 

typical electric field distributions of these three types of hybrid solitons are shown in Figures 

7.1(b) – (d). As was pointed out earlier, the existence of staggered/staggered solutions requires a 

defocusing Kerr nonlinearity. Since AlGaAs at a wavelength 1550nm has a positive Kerr 

coefficient, such solitons will be excluded from further discussions. 

 

Figure 7.1: (a) Band diagram of the composite array. The locations of the eigenvalues are shown 

for staggered/staggered (triangle), in-phase/staggered (circles), and in-phase/in-phase (square) 

hybrid soliton solutions. (b) - (d) are the respective typical electric field distributions of these 

solutions. 

It is important to note that, according to theory, in-phase/in-phase hybrid surface solitons 

exist regardless of the shape and relative position of the bands. However, in contrast to this 

universal case, in-phase/staggered solitons can only exist when the first bands of the two arrays 
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exhibit a minimum value of the band gap separating them. Such a band diagram was shown in 

Figure 7.1(a) but for a wide range of hetero-structure parameters this is not usually the case. 

Therefore, it is useful in the next section to establish the sample design considerations needed for 

observing hybrid interface solitons. 

7.2. Sample design considerations 

To find the condition for the existence of the gap between the two first-order bands, 

consider these two bands alone as shown in Figure 7.2.  

 

Figure 7.2: Band diagram of the composite array with only the two first order bands shown. 

For the analysis, the coupled mode theory approach will be used. The dispersion relation 

for a 1D infinite waveguide array given by the Equation 2.43 predicts that the existence domain 

of the first-order band along the propagation wavevector axis (vertical axis in Figure 7.2) is 

centered on the value of the propagation constant β  of the array’s isolated waveguide and 

extends from )2( C−β  to )2( C+β . Therefore, the condition for the existence of a gap 

between the two bands in Figure 7.2 is given by 
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,22 CCrr +>− ββ      (7.3) 

where rβ  and β  are the propagation constants, and rC  and C  are the coupling strengths of 

the right-side and left-side arrays, respectively. By rearranging its terms, Equation 7.3 can be 

rewritten as 

),(2 CCr +>∆β       (7.4) 

Where βββ −=∆ r . Simple considerations suggest that all one needs to do to satisfy Equation 

7.4 is to take arrays with sufficiently different ridges (to have a high β∆ ) and large enough 

intra-array channel spacing (to keep coupling constants small). However, in reality things are not 

as simple as they may seem because a number of restrictions on sample design such as maximum 

sample length, a single-mode condition for the waveguides etc. have to be also taken into 

account. 

The design of the samples for the hybrid surface soliton experiments was based on the 

AlGaAs multilayer structure described earlier in Chapter 3. As a reminder, it consists of a 1.5µm 

thick AsGaAl 82.018.0  core layer sandwiched between AsGaAl 76.024.0  upper and lower 

cladding layers with thicknesses of 1.5µm and 4µm, respectively. For this composition the 

calculated effective refractive index contrast δ  was found to be within the range 
310)60( −⋅−  

depending on the etch depth of the upper cladding (see Figure 3.4). To facilitate further 

discussion, the key parameters of the sample geometry given in Figure 6.1(a) are reproduced 

here as Figure 7.3.  
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Figure 7.3: Schematic of a 1D array hetero-junction. 

First the restriction on the coupling constant has to be determined. To allow for the 

evolution of the input beam into a soliton during propagation and to discriminate it from the 

discrete diffraction pattern, a sample with a length of several (minimum 3 - 4) discrete coupling 

lengths is usually required for the experiment. Because of fabrication limitations, the maximum 

length of the samples that could be fabricated was set at 1.6cm. This implies that the discrete 

coupling length has to be not larger than 4-5mm which, in turn, sets the minimum limit of 300 -

400m
-1

 on the coupling constants C  and rC . Also, in order to keep the waveguides of the two 

arrays single-mode, the width of their ridges should not exceed ~6µm. The lower limit of 

approximately 2µm on the ridge width was set based on the consideration that for the narrower 

ridges the transverse profile of a waveguide mode deviates significantly from Gaussian profile of 

the input beam. Thus, for ridge width less than 2µm, an undesirable decrease of power coupling 

efficiency into the sample would occur.  

To satisfy all the requirements just mentioned, the following parameters of the sample 

design were chosen: mDD r µ)109( −== , md µ)32( −=  and mdr µ)54( −= . The range 

of appropriate δ  can be found from the condition imposed by Equation 7.4. The results of the 

corresponding calculations for the parameters mDD r µ10== , md µ3=  and mdr µ5=  are 

plotted in Figure 7.4. Here the coupling constants of the two arrays are plotted separately as a 

function of refractive index contrast δ  (green and blue curves) and their doubled sum which 



  93

corresponds to the right side of Equation 7.4 is shown by a red curve. The black curve in this 

figure represents the mismatch β∆  in the propagation constants of the individual waveguides. It 

is not difficult to see that the inequality given by Equation 7.4 is satisfied in the region to the 

right of the intersection of the two latter curves (i.e. for 
3102.2 −⋅>δ ). The maximum suitable 

value of 
3102.3 −⋅≈δ  is given by the point where the coupling constant of one of the arrays 

falls below the 300m
-1

 limit, imposed earlier. Hence, the range of appropriate values of the 

effective refractive index contrast is indicated by a shaded region in Figure 7.4. Based on this 

data and Figure 3.4, the etch depth w , an important fabrication parameter, was found to lie 

within the range mµ)3.11.1( − . 

 

Figure 7.4: Coupling constant versus refractive index contrast for an array with mµ3 (blue curve) 

and mµ5  (green curve) wide channels. The red curve is the doubled sum of these two curves, 

and the propagation constant mismatch β∆  as a function of δ  is shown by the black curve. 
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Taking into account all the design considerations discussed above, thirteen different 

AlGaAs array hetero-junctions were fabricated. Their parameters measured with a scanning 

electron microscope are shown in Table 3. The different values for the inter-array spacing gd  

for the hetero-junctions were chosen to facilitate the observation of linear interface modes (see 

Chapter 6) and also to prevent their existence in the search for interface solitons with power 

thresholds. The length of the samples was 1.35cm, and the exact value of etch depth (height of 

the waveguide ridges) was measured to be 1.1µm. It was expected that within this matrix of 

samples, at least one would be ideal for observing discrete interface solitons of the hetero-

structure. 

Table 3: Parameters of the fabricated AlGaAs samples. 

)( mD µ  )( mDr µ  )( md µ  )( mdr µ  )( mdg µ  

10 10 2.4 5.4 2.2 

  2.4 5.4 4.2 

  3.4 5.4 2.4 

  2.4 4.4 3.4 

  2.4 4.4 5.2 

9 10 5.4 2.4 2.4 

  2.4 5.4 2.4 

9 9 2.4 5.4 2.2 

  2.4 5.4 4.2 

  2.4 4.4 2.2 

  2.4 4.4 4.2 

8 9 5.4 2.6 2.2 

  2.4 5.6 3.0 
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7.3. Experimental results and discussion 

For the experiments on the observation of in-phase/in-phase hybrid surface solitons, two 

samples with the parameters given by the 4
th

 and 5
th

  lines of Table 3 were chosen. Because 

many of the properties (i.e. the dispersion curves and power thresholds) of the hybrid solitons 

and discrete surface solitons, discussed in Chapter 5, are similar, again a TM polarized input 

beam was chosen for the experiments. The lower input power requirements for observation of 

hybrid surface soliton in TM versus TE polarization (regarding discrete surface solitons see 

Figure 5.10) helped to reduce detrimental effects of nonlinear absorption. In our samples, two 

different in-phase/in-phase solitons are predicted: one with its peak in the first channel of the 

left-side array and another one peaked in the boundary channel of the right-side array. Both were 

observed in the AlGaAs hetero-junction samples.  

The evolution of optical wave propagating in a hetero-junction sample involves many 

factors such as the coupling strengths in the individual arrays C  and rC , the inter-array 

coupling constants rC →  and →rC  (between the two interface channels) and the mismatch 

β∆  in the propagation constants of isolated channels of the two arrays. In the samples chosen 

for the experiments, these parameters were: 
1440 −= mC , 

1360 −= mCr ; 
1310( −

→ ≈ mC r  

and )540 1−
m  and 

1940( −
→ ≈ mCr  and )1420 1−

m  for the two array separations 

mdg µ2.5=  and mµ4.3 , respectively. Finally, 
12600 −≈∆ mβ . 

In order to understand the nature of the interface solitons, linear beam propagation 

dynamics for single channel excitation of the two boundary channels was investigated. Linear 

propagation in the hetero-structures with similar parameters was discussed earlier in Chapter 6 
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and the results of BPM simulations were presented in Figure 6.2. The experimentally recorded 

output intensities for the two inter-array separations are shown in Figure 7.5. When the boundary 

channel of the left-side array is excited, some fraction of energy clearly couples to the right-side 

array boundary channel even for the larger inter-array spacing mµ2.5  (see Figures 7.5(c)). 

Furthermore, as expected, the smaller the gap between arrays, the stronger the power transfer, as 

can be seen from Figure 7.5(d). This is in sharp contrast to transfer from the right to the left 

when the boundary channel of the right-side array is excited, see Figures 7.5(a) and (b). In this 

case, there is almost no energy coupled across the gap in either case. 

 

Figure 7.5: Discrete diffraction patterns recorded at the sample’s output facet for the inter-array 

spacing mdg µ2.5= (a), (c) and mµ4.3  (b), (d). The boundary channel of the right-side (a), (b) 

and the left-side (c), (d) arrays was excited.  
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The differences in the discrete diffraction patterns between the two cases suggest that the 

nonlinear propagation (i.e. the soliton formation at the interface) will also occur differently for 

the two sides of the interface. This hypothesis has been confirmed by the results of the nonlinear 

experiments. 

Consider first the surface soliton that peaks in the first channel of the right-side array 

because its nature is easier to explain. In the experiment, the boundary (n = 1) waveguide of the 

right-side array was excited, and, as the power of the input beam was increased, the intensity at 

the sample’s end facet was recorded.  

  

Figure 7.6: Intensity patterns observed at the sample’s end facet as a function of input power for 

=gd  (a) mµ2.5  and (b) mµ4.3  when the input beam was injected into the n = 1 channel. (c) 

and (d) are the detailed recorded intensities at peak input power levels indicated by the vertical 

dashed lines on the respective plots. 
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The results of the experiments are shown in Figures 7.6(a) and (b) for the inter-array spacing 

mµ2.5  and mµ4.3 , respectively. As before in similar plots in Chapter 5, the intensity pattern at 

each power level was normalized to unity before plotting. Therefore, the red-brown color is only 

an indication of the intensity maxima at particular power levels and not the measure of the real 

intensity. 

In both samples, as the incident power was increased, a collapse of the discrete 

diffraction pattern toward the excitation channel occurred. The threshold input power for the 

formation of a strongly localized soliton for each case is identified by dashed lines in Figures 

7.6(a) and (b) which correspond to the points where most of the power is confined in the initially 

excited boundary channel. The threshold peak power of 800W was found for hetero-structure 

with mdg µ2.5=  while a 600W was measured for the sample with mdg µ4.3= . The 

corresponding intensity distributions of hybrid surface solitons are shown in Figures 7.6(c) and 

(d). It is clear that they are associated with a discrete surface soliton at the array-continuum 

interface shown earlier in Figure 5.17(a) because almost no power is carried in the first channel 

of the left-side array. Note that the two outer boundaries of the composite structure correspond to 

interfaces between the corresponding arrays and a 1D slab waveguide. These boundaries were 

used to evaluate the threshold powers for discrete surface solitons traveling along the interface 

between the slab waveguide and the appropriate array.  It turned out that the power threshold for 

the composite array with mdg µ2.5=  (~800W) was ~1.5 times lower than that for the array-

continuum boundary (1200W). Furthermore, for mdg µ4.3= , the measured array-array discrete 

soliton threshold power (~600W) was only half of that for the array-continuum boundary.  

Similar experiments have been conducted to observe hybrid solitons peaked in the 

boundary channel on the left from the interface. This time, the input beam was injected into the 
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first boundary channel of the left-side array (n = -1). Figures 7.7(a) and (b) show the distribution 

of the output intensity versus peak input power for the inter-array spacing mµ2.5  and mµ4.3 , 

respectively. Again, as in the previous case, the collapse toward the excitation channel was 

observed as the incident power was increased. The threshold powers were found to be 2400W 

( mdg µ2.5= ) and 1700W ( mdg µ4.3= ), and corresponding soliton intensities at the output 

facet are presented in Figures 7.7(c) and (d). 

 

Figure 7.7: Intensity patterns observed at the samples’ end facets as a function of input power for 

=gd  (a) mµ2.5  and (b) mµ4.3  when an input beam was injected into the n = -1 channel. (c) 

and (d) are intensities at peak power levels indicated by vertical dashed lines in the respective 

plots. 

The discrete surface soliton threshold power was measured at the 1D array-continuum boundary, 

and a value of 1500W was found which is lower than the array-array interface values (2400W 
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and 1700W). This is in sharp contrast to the previous case of a hybrid soliton peaked in the n = 1 

channel where the threshold power was lower than that for the array-continuum boundary. 

Unlike the case of a soliton peaked in the n = 1 channel, there are nonzero fields associated with 

these solitons in the channels on the other side of the interface. This identifies the observed 

discrete soliton as belonging to the interface between the two arrays. 

It can be qualitatively shown that only one of the two soliton types discussed above can 

be a true soliton of the hetero-structure, i.e. the one with its field components in the two arrays 

propagating locked together. Such a soliton has a common propagation constant for soliton fields 

on both sides of the boundary. Therefore, taking into account the location of the nonlinear 

eigenvalue of an in-phase/in-phase hybrid soliton in the band diagram (see Figure 7.8), this 

condition can be written as 

,)2()2( ,,
NL

rzrr
NL
z kCkC ∆++=∆++ ββ    (7.5) 

where )2( C+β  and )2( rr C+β  are the propagation wavevectors which correspond to the 

top of the first bands of the individual arrays, and 
NL
zk ,∆  and 

NL
rzk ,∆  are the nonlinear 

contributions to the wavevector.  
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Figure 7.8: The first band of the right-side array )(, xrz kk  (upper curve) and of the left-side 

array )(, xz kk  (lower curve), and the nonlinear changes to the wavevector 
NL
zk ,∆  and 

NL
rzk ,∆  

required for the formation of a hybrid soliton. 

Rearranging Equation 7.5 gives the following relation 

).(2,, CCkk r
NL

rz
NL
z −+∆=∆−∆ β     (7.6) 

For the samples studied, the right side of Equation 7.6 is positive and approximately equal to 

12440 −
m . This implies that 

NL
rz

NL
z kk ,, ∆>∆ . For the self-focusing Kerr nonlinearity, a positive 

nonlinear refractive index change results in a positive nonlinear contribution to the propagation 

wavevector in either array. This implies that the soliton intensity in the left-side array boundary 

channel must be larger than that in the right-side array boundary channel. This can only be true 

for a composite soliton peaked in the boundary channel of the left-side array (n = -1). 

Furthermore, using Equation 7.6, an approximate threshold power for this soliton can be 

estimated. The minimum of the optical power required to satisfy Equation 7.6 corresponds to the 

situation when 
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The dependence of 
NL
zk ,∆  on the optical peak power can be found based on the 

expression for the nonlinearly induced refractive index change of AlGaAs material as given by 

),(10ˆ 6
2 WattsP

A

P
nn

eff

NL ⋅≈=∆ −
    (7.8) 

 where effA  is the effective area of the TM fundamental mode of an isolated waveguide. To find 

the relation between 
NL
zk ,∆  and 

NLn∆  for ridge waveguide geometry, first the refractive index 

of the core layer under the ridge is increased by the value of 
NLn∆ , then the corresponding 1D 

effective refractive index potential is calculated using the effective index method, and finally the 

nonlinear mode field is found using a 1D finite difference mode-solver. Using this approach, the 

following relation that connects 
NL
zk ,∆  and 

NLn∆  was found 

).(25.0)( 0
1

, WattsPnkmk NLNL
z ⋅≈∆⋅≈∆ −

   (7.9) 

Using Equations 7.7 and 7.9, the minimum peak power required for hybrid soliton formation was 

estimated to be approximately 1200W. This number is close to the experimental values of 

2400W and 1700W which are higher because of the pulsed nature of the experiment and the fact 

that channel fields in both arrays are excited. Note that it is the excitation of both arrays that 

results in power thresholds for the interface solitons being higher than that for the respective 

array-continuum boundary. 

For the excitation of the n = 1 channel, which has led to discrete surface solitons peaked 

in the excitation channel, the condition 
NL

rz
NL
z kk ,, ∆>∆  cannot be satisfied. Also note the lack of 
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excitation of channels in the left-side array in Figure 7.6 for this case. Therefore, these solitons 

are associated with a 1D array-continuum boundary. The lower values of power thresholds 

measured for these solitons when compared to those measured for the simple 1D array-

continuum interface occur because the soliton field extending into the left-side array experiences 

an average effective refractive index which is higher than that of the “bare” slab waveguide due 

to the presence of the ridges of the left-side array. The threshold soliton power is proportional to 

the effective index difference across the boundary. 

  Similar to the case of the array-continuum interface discussed in Chapter 5, discrete 

spatial solitons with decreasing power thresholds were observed for channels progressively 

deeper into a given array of the composite structure, see Figure 7.9.  

 

Figure 7.9: The evolution of the output intensity distribution across the array with increasing 

input power into the channels (a) n = -1, (b) n = -2, (c) n = -3, (d) n = -4 for the array separation 

mdg µ4.3= . Interface location is shown by dashed lines. 
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Power thresholds were measured for solitons with fields peaked in channels of the left-side array 

(n = -2, -3, -4…). They were found to be similar to those of the array-continuum case because 

even for the second (n = -2) channel, almost no power is coupled to the right-side array. 

In contrast to this, the experimental study of solitons peaked in channels of the right-side 

array (n = 2, 3, 4…) yielded unexpected and interesting phenomena. The results of the 

experiments with the excitation of the second (n = 2) guide of the right-side array are shown in 

Figures 7.10(a) and (b) for the two values of the gap mdg µ2.5=  and mµ4.3 , respectively.  

 

Figure 7.10: Output intensity versus peak input power for =gd  (a) mµ2.5  and (b) mµ4.3  

when the input beam was injected into the n = 2 channel. (c) and (d) are the recorded intensities 

at power levels indicated by vertical dashed lines on the respective plots. 

As expected in both cases, the discrete diffraction pattern collapses into the initially 

excited n = 2 waveguide at high powers. However, in a limited input power range before collapse 
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into the excitation channel to form a discrete soliton there, localization occurs in the boundary 

channel (n = 1). The smaller the gap between arrays, the larger the power range over which this 

localization occurs, see Figure 7.10(a) and (b)). This localization persists over a factor of two in 

input power for mdg µ4.3= , suggesting that this could be a stable soliton. 

In order to confirm or disprove the speculation that it is a stable soliton that was observed 

in the channel n = 1, the simulation of the nonlinear propagation with the second (n = 2) channel 

excited over a sufficiently long propagation distance (4cm, or ~10 coupling discrete diffraction 

lengths) was performed. The simulation results with the use of pulsed excitation are presented in 

Figure 7.11(a). While the propagation seems to be stable after the initial jump of the input beam 

to the boundary (n = 1) guide, the continuous leaking of energy from this channel into the right-

side array finally causes the power to decay. However, for the cw excitation case shown in 

Figure 7.11(b), stable propagation with the intensity peak in the boundary channel is obtained, 

thus confirming the existence of a stable soliton. Note that simulations also showed that at higher 

input powers light beam never jumps to the boundary channel and a soliton is formed at the 

excited n = 2 waveguide site, as expected. 

 

Figure 7.11: Simulated propagation for the excitation of the n = 2 channel with (a) pulses with 

500W of peak power and (b) cw beam at 350W. 
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Shown in Figure 7.12 are experimental results for the excitation of the n = 3 and 4 

channels. Clearly localization into the n = 1 channel also occurs for these cases, and again these 

solitons were found to be stable (by BPM simulation studies). For the n = 4 excitation, the rapid 

“collapse” from the n = 1 into the n = 4 channel with increased power is clearly observed. 

Furthermore, the power range for the formation of a soliton in the boundary channel decreases 

with increasing n and disappears completely deeper inside the array. 

 

Figure 7.12: Intensity at the output facet versus peak input power for mdg µ4.3=  when input 

beam was injected into (a) n = 3 and (b) n = 4 channels. 

Similar experiments were performed for mdg µ2.5= , and as shown in Figure 7.13, 

there is no extended power range over which localization occurs in the n = 1 channel at typical 

powers for the formation of a discrete soliton. Hence, this is clearly a surface effect which has a 

strong dependence on the size of the gap. 
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Figure 7.13: Intensity at the output facet versus peak input power for mdg µ2.5=  when input 

beam was injected into (a) n = 3 and (b) n = 4 channels. 

A speculative explanation for this effect will now be given for the simplest n = 2 

excitation case. The threshold power for the n = 1 soliton is depressed relative to that of the 

surface soliton at the slab waveguide – right-side array boundary. This occurs because the 

effective index of the left-side array region, as sampled by light guided in the n = 1 channel, is 

increased over that of the slab waveguide due to the presence of the high index ridges. As a 

result, the soliton threshold power is the lowest in the n = 1 channel, as observed. Thus it is more 

power efficient for a soliton to form in that channel, even with excitation of channels with n > 1. 

As power is increased further, the soliton “jumps” to the excitation channel when the incident 

power exceeds that required to trap the soliton in the particular n > 1 excitation channel. 

As explained in the theoretical discussion, no staggered field hybrid surface solitons exist 

in an AlGaAs hetero-structure at 1550nm because they require the opposite sign of the 

nonlinearity. This was checked experimentally for the sample which exhibits the 

staggered/staggered linear interface mode discussed in Chapter 6 (sample’s parameters were 

md µ4.2= ,  mdr µ4.5=  and mdg µ4.2= ). This linear mode was excited as described in 
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Chapter 6, and the input peak power was ramped up. As shown in Figure 7.14, there was no 

shape change in the output pattern with increased power. If indeed a soliton had been generated, 

increased localization of the intensity pattern was expected. Clearly, no soliton was generated in 

this case. 

 

Figure 7.14: (a) Intensity at the output facet versus peak input power for the mµ4.2  gap when a 

wide input beam was injected with a π phase shift between adjacent channels. (b) - (d) Intensity 

distributions measured at three separate powers indicated by dashed lines in (a). 

In summary, the first results on discrete spatial solitons guided by the boundary between 

two dissimilar periodic arrays have been presented. Two solitons were predicted and identified 

experimentally, and their properties were in excellent agreement with theoretical predictions. 

Initially unexpected localization into the boundary channel was observed for certain excitation 

conditions. 
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CHAPTER EIGHT: CONCLUSIONS 

8.1. Summary 

In this dissertation both experimental and theoretical investigation of linear and nonlinear 

optical properties of the interface between one-dimensional Kerr-nonlinear waveguide lattice and 

a continuous slab waveguide, as well as properties of a boundary between two dissimilar 

waveguide arrays, have been presented. Most of the experiments were conducted for the first 

time verifying various theoretical predictions. 

The major part of the dissertation was devoted to the first experimental observation of 

discrete surface solitons. These nonlinear surface waves have been predicted to exist at and near 

the boundary of a semi-infinite nonlinear waveguide lattice. It has been shown that in the linear 

regime such an interface cannot support surface waves. Therefore, discrete surface solitons are 

the direct outcome of nonlinearity. The formation process of highly confined discrete surface 

solitons with an increased power of an optical beam injected into single channels close to the 

boundary has been investigated in detail, both theoretically and experimentally. In the 

experiments, a collapse of the output intensity pattern associated with discrete diffraction into the 

array’s boundary channel has been observed thus proving the existence of discrete surface 

solitons. The rapid nature of the collapse has confirmed the key property of these nonlinear 

waves, namely the existence of a power threshold predicted by theory. 
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The power thresholds of discrete surface solitons localized in different channels near the 

array’s boundary have been measured experimentally for several array geometries having 

different values of coupling constant between adjacent waveguides. The results of the 

experiments were in excellent agreement with the theoretical analysis which predicts that the 

power threshold decreases as the localization site of a soliton moves inside the array. Also, a 

qualitatively good correlation of the measured threshold values with the inter-channel coupling 

strength has been found. A minimum in the incident threshold power required for the formation 

of an essentially single channel soliton was found by varying the channel width and coincided 

with a minimum in the inter-channel coupling strength. 

Interfaces between two dissimilar waveguide arrays (waveguide array hetero-junctions) 

were also predicted to support discrete nonlinear surface waves called hybrid surface solitons. It 

has been shown that the detuning of the propagation constants of the waveguides constituting the 

two semi-infinite arrays shifts the dispersion relation of one array with respect to that of the other 

one. This can result, under the appropriate array geometries, in the formation of additional band 

gaps between the allowed bands of the individual arrays. Depending on the position of their 

nonlinear eigenvalues within the band diagram of the composite hetero-structure, different 

symmetry hybrid surface solitons have been theoretically predicted. For the Kerr-type 

nonlinearity, three different soliton solutions with different symmetry of their electric fields have 

been found, two of them for the self-focusing nonlinearity and the third one for the defocusing 

case. For the experiments, the AlGaAs hetero-junction samples, where the two arrays were made 

different by varying the width of their waveguides, have been designed and fabricated. In these 

samples, two different in-phase/in-phase solitons peaked on either side of the interface have been 

demonstrated experimentally. A theoretical study has revealed that only one of these two solitons 
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is a true hybrid soliton of a hetero-structure while the other one is associated with a 1D array-

continuum boundary with very little power propagating in the array on the opposite side of the 

interface. Also, a decrease in the inter-array separation with all other parameters of the composite 

structure kept constant has brought some interesting results. More specifically, it has been 

observed that within the limited input power range, when the second waveguide of one of the 

arrays (with higher propagation wavevectors of its first band) is excited, the input beam jumps to 

the boundary channel forming a soliton there. Only when incident power was increased above a 

certain level, the soliton formation occurred in the excitation channel, as expected. This behavior 

has been found only in the samples with a sufficiently small inter-array spacing, and 

experimental observations have been confirmed by the results of the corresponding BPM 

simulations. 

Decreasing the inter-array spacing has been found to lead also to the possibility of stable 

linear (low power) modes propagating along the hetero-interface in the linear regime. These 

modes located in the k-space in the band gaps of the composite structure were studied both 

theoretically and experimentally for the first time. Three different symmetry types of linear 

modes were numerically found with their propagation eigenvalues in different band gaps. One of 

them, namely the staggered/staggered interface mode, has been successfully observed in the 

experiments, and its intensity profile was found to be in excellent agreement with the calculated 

mode intensity.  

8.2. Implications and future work 

As was mentioned earlier in Chapter 6, the recent advances in fabrication technologies 

have allowed manufacturing of periodic structures with higher dimensionality such as photonic 
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crystals. Photonic crystals, the artificial materials with a periodic modulation of their dielectric 

constant, display many properties analogous to semiconductors and waveguide arrays, including 

allowed bands and band gaps in their band structure. A two-dimensional waveguide lattice is an 

example of a photonic crystal. Recently, it has been predicted that besides the 1D array – slab 

waveguide interface, discrete surface solitons can also exist at the boundaries of such 2D lattices. 

More specifically, it has been shown that discrete nonlinear surface waves are possible in the 

corner and at the edge of the semi-infinite square lattice of Kerr-nonlinear waveguides [54]. 

Subsequently, these two-dimensional surface solitons have been successfully observed at the 

boundaries (edges and corners) of a finite optically induced photonic lattice in photorefractive 

nonlinear medium [100] as well as at the edge and in the corner of a Kerr-nonlinear laser-written 

waveguide array in fused silica [101]. These results, both experimental and theoretical, suggest 

that discrete hybrid solitons should also exist at the hetero-interfaces of two (or more) dissimilar 

2D waveguide lattices (and photonic crystals in general).  

On the other hand, similar to a 1D interface case in the linear regime, it has been 

theoretically shown that simple 2D photonic crystal hetero-structures such as that composed of 

two semi-infinite square lattices of air cylinders embedded in a homogeneous dielectric 

background, and the other one made of two dissimilar lattices of dielectric cylinders in air (i.e. 

2D waveguide array hetero-junction), can support linear guided modes if the separation between 

the two lattices is small enough [102]. Therefore, it would be of great interest to investigate new 

linear and nonlinear phenomena in photonic crystal hetero-structures which no doubt should be 

more versatile than their one-dimensional counterparts owing to the bigger diversity of possible 

2D structure geometries. 
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Regarding 1D waveguide array hetero-junctions, the study presented in this dissertation 

by no means exhausts interesting linear and nonlinear phenomena that can be observed in such 

systems. For example, the transmission and reflection properties of array hetero-junction have 

been studied theoretically and it was proposed that this structure can be used as a spatial filter 

where certain spatial frequency components are allowed to cross the interface while other are 

reflected [103]. This happens because the z-component of the propagation wavevector has to be 

conserved when light wave crosses the interface between the two lattices. In Reference 103, the 

general case of two 1D semi-infinite lattices with a transition/interface region composed of 

several waveguides is considered. Using the coupling mode theory, the power transmission and 

reflection coefficients of AlGaAs hetero-interface, described in this dissertation, can be readily 

derived. These coefficients depend on such parameters as coupling constants C , rC , rC → , 

and →rC , the propagation constants’ mismatch β∆ , and on the wavevector of the light wave 

in the input array. Therefore, it would be of interest to study experimentally how the power 

transmission of a real beam (with a finite spatial extent and hence with a definite spectrum of 

spatial frequencies) across the hetero-interface depends on the inter-array separation gd  and the 

mismatch β∆ . 

On the other hand, some of the nonlinear soliton phenomena associated with the 1D 

array-continuum interface such as vector discrete surface solitons are yet to be observed. These 

self-trapped states are formed through the coexistence of two orthogonally polarized fields. 

Discrete vector solitons were first predicted and successfully observed in the bulk of one-

dimensional Kerr-nonlinear waveguide arrays in 2003 [104]. Later in 2005, vector discrete 

nonlinear surface waves were predicted to exist at the boundary of such waveguide lattices [105]. 

In particular, the possibility of linearly polarized vector surface waves localized in the first 
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waveguide of a semi-infinite array and comprised of in-phase TE and TM components 

propagating locked together has been demonstrated. Moreover, it has been found that, when only 

a single waveguide is excited with the appropriate power levels for the TE and TM components, 

these vector surface waves can propagate in a stable fashion even when the relative phase 

difference between the two components is as high as
020± . 
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