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1 Introduction and summary of results

Recent years have witnessed important advances in F-theory compactifications [1–3]. While

the study of non-Abelian gauge symmetries has been extensively studied in the past, the

study of Abelian and discrete gauge symmetries has been advanced only lately.

F-theory compactifications with Abelian gauge symmetries Up1qn are based on con-

structions of elliptically fibered Calabi-Yau manifolds with rank-n Mordell-Weil (MW)

group of rational sections. A systematic approach was initiated in [4] for constructions

with rank-one MW group, and generalized to rank-two [5–7] and rank-three [8] MW groups,

respectively.

Recently, there has also been progress in F-theory compactifications with discrete gauge

symmetries Zn, initiated in [9] and further advanced in [10–14]. A natural object attached

to these compactifications is given by the Tate-Shafarevich (TS) group of the genus-one

fibration which is a discrete group that organizes inequivalent genus-one geometries which

share the same associated Jacobian fibration. In F-theory discrete symmetries are also

well understood as a result of a Higgsing process of F-theory compactifications with Up1q
symmetries, where the matter field with charge n acquires a vacuum expectation value and

breaks the Abelian Up1q gauge symmetry to the discrete symmetry group Zn. This field

theoretical process is geometrically interpreted as a conifold transition [11, 15, 16]. Most

of the past works primarily focused on Z2 gauge symmetry. However, new insights into

aspects of the TS group, and its relations to M-theory vacua, as well as the study of the

Higgsing process in the case of Z3 were addressed in [14]. See also [17] for related work.

Heterotic/F-theory duality plays an important role in shedding light on the origin of

gauge symmetries in Heterotic gauge theory from the geometric perspective of F-theory. In

the past aspects of non-Abelian gauge symmetries have been studied extensively [1–3, 18–

20]. In particular, Heterotic/F-theory duality allows for making statements about the

Heterotic vector bundle V , which is typically hard to control, in terms of the controllable

geometry of the Calabi-Yau manifold on the F-theory side. On the other hand, only recently

key steps towards developing the geometrical duality map between Heterotic and F-theory

compactifications with Abelian gauge symmetries were taken in [21].

The purpose of this paper is to study discrete gauge symmetries in Heterotic/F-theory

duality. Since in Heterotic string theory the gauge group is given as the commutant of

the structure group of the respective vector bundles within the two E8 factors, in order to

engineer a discrete gauge group in a Heterotic string compactification, one needs a pair of

vector bundles V1, V2 whose structure group is the centralizer of the desired discrete gauge

group, e.g., [19].

In order to construct explicitly such models we employ the methods of [21] which

provide a semi-stable degeneration for genus-one fibrations. We then generalize a conjec-

ture with connects toric mirror symmetry and Heterotic/F-theory mirror duality1 in eight

dimensions [20]. In particular this relates the gauge symmetry (structure group of the bun-

dle) of a K3 surface to the structure group of the Heterotic bundle (gauge symmetry) which

1See [22–24] for the use of mirror symmetry in the context of Heterotic/F-theory duality in order to

compute F
4 couplings in eight dimensions.
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is associated to the rational elliptic surfaces which arise from the dual K3 surface in the

stable degeneration limit. The dual pairs of K3 surfaces can be constructed by employing

toric geometry techniques and are highlighted in section 2.3. For our purposes we construct

the mirror models where the mirror symmetry in the fiber exchanges torsional sections of

order n with the n-section. Thus, such a construction relates models with discrete structure

group of the bundle to the model with a discrete gauge symmetry.

We therefore start with the construction of toric models where in the stable degen-

eration limit the the structure groups of the Heterotic bundles take the form G{D where

G is a group of ADE type and D is a discrete group. By employing the conjectured

F-theory/Heterotic mirror-symmetry we construct dual toric models, where in the stable

degeneration limit we obtain a discrete gauge symmetry of order n, for compactifications

in six dimensions. The explicit examples are based on the symmetric constructions where

the two bundles V1 and V2 are the same. In six dimensions for these models only a diag-

onal gauge symmetry is realized explicitly, and in particular for the dual polytope only a

diagonal discrete symmetry is realized in the effective theory. We also demonstrate at the

level of an effective six-dimensional field theory how such symmetric Heterotic models with

discrete symmetry are related to un-Higgsing to Heterotic models with only a diagonal

Up1q massless gauge symmetry in the effective theory. It is important to stress that this

description therefore only works in complex codimensions greater than one.

As concrete examples, we construct and analyse the mirror dual pairs for the case of

symmetric Z2 and Z3 symmetry. These constructions also provide further evidence for the

conjectured mirror symmetry in Heterotic/F-theory at the level of fibrations with torsional

sections and those with multi-sections.

This paper is organized in the following way. In section 2, we provide a brief review of

the key aspects of Heterotic/F-theory duality, the origin of discrete symmetries in F-theory

and Heterotic theory, and a discussion of the mirror pairs of K3 surfaces, as it is key in the

study of conjectured mirror Heterotic/F-theory duality. In section 3.1 we summarize a con-

jectured Heterotic mirror symmetry where the Heterotic background bundle of the original

K3 surface is interchanged with the gauge symmetry of the mirror K3 one. In section 3.2 we

provide supporting evidence for this conjecture by studying mirror two-dimensional fiber

ambient spaces where the torsional sections (associated with the discrete bundle structure

group) and multi-sections (associated with the discrete gauge symmetry) surfaces are in-

terchanged. In section 3.3 we elucidate the theory aspects, how six-dimensional Heterotic

models with discrete symmetry are related to those with Up1q gauge symmetry via Hig-

gsing by matter fields with conjectured charges; in the symmetric case only a diagonal

Up1q is massless, and thus after Higgsing only a diagonal discrete symmetry is present.

In section 4.1 we present the construction of models with symmetric Z2 gauge symmetry

which we demonstrate explicitly in the geometry of the mirror polytope. In section 4.2 we

elaborate on aspects of six-dimensional geometry. In section 4.3 we repeat the construc-

tion for models with the symmetric Z3 gauge symmetry. Concluding remarks in section 5

highlight the key insights of the paper and possible future directions. In the appendix we

present explicit results for the Weierstrass map of the models studied in the main text.
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2 Heterotic/F-theory duality and U(1)-factors

This section is divided into two parts: in the first part, we review basic facts about

Heterotic/F-theory duality and discrete symmetries in F-theory and the Heterotic string.

In addition, in order to set the stage for the construction of certain Heterotic background

bundles, we also review the construction of mirror pairs of Calabi-Yau manifolds. The

review part is mainly based on [18, 25, 26], to which we refer for further details.

The next part formulates two important conjectures which are not rigorously proven

but given strong evidence. The first conjecture is concerned with the construction of

background bundles that have structure group
`

E7 ˆSUp2q
˘

{Z2 and
`

E6 ˆSUp3q
˘

{Z3. The

second conjecture establishes a field theory connection between six-dimensional models

with massive Up1q symmetries and models with discrete symmetries and geometrically

corresponds to an analogue of conifold transitions on the Heterotic side.

2.1 Heterotic/F-theory duality in eight dimensions

The basic statement of Heterotic/F-theory duality is that the Heterotic E8 ˆ E8 String

compactified on a torus, which we denote by Z1, is equivalent to F-theory compactified on

an elliptically fibered K3 surface X2.

2.1.1 The standard stable degeneration limit

The moduli of both theories are matched in the stable degeneration limit. In this limit,

the K3 surface X2 degenerates into two half K3 surfaces X`
2 , X´

2 as

X2 Ñ X`
2 YZ1

X´
2 . (2.1)

X`
2 as well as X´

2 are elliptic fibrations π˘ : X˘
2 ÝÑ P1 over a P1. These two P1 intersect

in precisely one point so that the two half K3 surfaces intersect in a common elliptic fiber

which is identified with the Heterotic elliptic curve, X`
2 X X´

2 “ Z1.

Traditionally, this has been formulated for K3 surfaces which are given as elliptic

Weierstrass fibrations over a P1. More recently, it has been realized [17, 21] that the study

of Up1qs requires more general descriptions of the stable degeneration limit, in particular

for fiber ambient spaces different from Pp1,2,3q.

2.1.2 Matching the continuous gauge groups

The non-Abelian part G of the F-theory gauge group is given by the singularities of the

elliptic fibration of X2, while the Abelian part is given by Up1q16´rkpGq ˆ Up1q4 [1, 2, 27].

These are inherited by the two half K3 surfaces X˘
2 in the stable degeneration limit as

follows.

The homology lattice of a half K3 surface X˘
2 is given in general by

H2pX˘
2 ,Zq “ Γ8 ‘ U . (2.2)

Here, Γ8 denotes the root lattice of E8, while U contains the classes of the elliptic fiber as

well as of the zero section. For a non-generic half K3 surface, where the the curves in a
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sublattice RpG˘q of Γ8, denoting the root lattice of some ADE group G˘, are shrunken to

zero size, the half K3 surface develops a singularity of type G˘. In rational homology, Γ8

further splits as

Γ8 “ MWpX˘
2 q ‘ RpG˘q , (2.3)

where MWpX˘
2 q denotes the Mordell-Weil group of X˘

2 .

The latter fact provides the connection to the Heterotic description of the gauge group.

According to [18], the moduli space of semi-stable E8-bundles on an elliptic curve Z1

corresponds to the complex structure moduli space of a half K3 surface X2 whose anti-

canonical class is given by Z1. Furthermore, if X2 has an ADE singularity of type G̃˘ then

the structure group of V1, V2 is reduced to the centralizer H˘ of G̃˘ within E8, respectively.

In contrast, the abelian Up1q symmetries are translated as follows. Sections of MWpX`
2 q

that glue with a section of MWpX´
2 q give rise to a global section of the K3 surface X2 [21].

2

The six-dimensional duality is obtained by fibering the eight-dimensional duality over

a common P1. Thus, on the F-theory side one deals with a Calabi-Yau threefold Z3 which is

elliptically fibered3 over a rational surface, for example a Hirzebruch surface Fn. In contrast,

the Heterotic string is compactified on an elliptically fibered K3 surface whose base P1 is

to be identified with the base of the rational surface. In general, due to monodromies on

the base also non-simply laced gauge groups can occur [18, 27]. In addition, only those

eight-dimensional sections that promote to rational six-dimensional sections give rise to

Up1q symmetries in six dimensions.4

Finally, another six-dimensional effect is the non-perturbative enhancement of the

gauge group [27] due to singularities which map to some of the fibers of the rational

surface. In other words, these are singularities which are visible both on the Heterotic side

as well as on the F-theory side.

2.2 Discrete symmetries in Heterotic string theory and F-theory

As the main focus of this work is the investigation of discrete symmetries, we review their

appearance on the F-theory side as well as on the Heterotic side in this subsection.

2.2.1 Discrete symmetries in F-theory

Discrete symmetries are best understood within F-theory as result of a Higgsing process of

continuous Up1q symmetries. It is important to stress that this description therefore only

works in complex co-dimensions greater than one. As a well-known fact, Up1q symmetries

within F-theory are detected by the generators of the Mordell Weil group [4]. Each such

generator gives rise to an additional globally well-defined embedding of the base manifold

2For a detailed discussion of the role of the Mordell-Weil group in the context of half K3 surfaces and

Heterotic bundles, see [28].
3This is the classical approach. More generally, one is led to consider genus-one fibered three-folds as

well.
4If a half K3 surface has a singularity of rank r, there are 9´r linear independent sections in its Mordell-

Weil group. However, once the half K3 surface is promoted to a six-dimensional rational three-fold, these

sections are not necessarily preserved.
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into the elliptic fibration. Reducing the C3-form field along the corresponding divisors

identifies the corresponding Up1q symmetry.

Such a Up1q symmetry can be higgsed to a discrete Zn symmetry, if there is a matter

field of charge n. Such matter fields arise from M2-branes that wrap components of I2-fibers

which appear at co-dimension two loci. Their corresponding charges are determined from

the number of intersections of the corresponding sections with the respective component of

the I2-fiber. These fields become massless if the corresponding component of the I2-fiber

shrinks to zero size. From a mathematical perspective, this shrinking can be viewed as part

of a conifold transition [11, 15, 16]. Here, the shrunken component of the I2-fiber, which

is topologically a two-sphere, gets replaced by a three-sphere. The physical interpretation

of the latter deformation is to give a vacuum expectation value to the Higgs field. In

addition, for an Zn-symmetry, the conifold transition glues n rational sections to an n-

section. In fact, genus-one fibered Calabi-Yau manifolds with an n-section have an element

of order n in their Tate-Shafarevich (TS) group which is the geometrical analogue of the

Zn-symmetry that occurs in the fields theory and labels in-equivalent geometries that share

the same Jacobian fibration [9, 10, 14].

2.2.2 Discrete symmetries in the Heterotic string

As discussed in a previous subsection 2.1.2, the Heterotic gauge group is given as the

commutant of the structure group of the respective vector bundles within the two E8 factors.

Thus, in order to engineer a discrete gauge group in a Heterotic string compactification,

one needs a pair of vector bundles V1, V2 whose structure group is the centralizer of the

desired discrete gauge group. These centralizers have been determined for different discrete

groups in, e.g., [19]. That is, in order to realize a discrete gauge group Z2, one needs a

background bundle with structure group
`

E7 ˆ SUp2q
˘

{Z2.

2.3 Constructing mirror pairs of K3 surfaces

In the following, we recall the construction of toric mirror pairs of K3 surfaces. As outlined

in section 3.1, we will eventually use mirror symmetry techniques in order to construct

background bundles with structure groups
`

E7 ˆ SUp2q
˘

{Z2 and
`

E6 ˆ SUp3q
˘

{Z3. To set

the geometrical stage, we review in the following Batyrev’s formalism [29] to construct

mirror pairs of Calabi-Yau manifolds using pairs of reflexive polyhedra. A more detailed

review on this subject and further references can be found in, e.g., [30].

It is a well-known fact (see, e.g., [31]), that given a reflexive n-dimensional polyhedron

∆, there is a natural simplicial fan associated to it which will be denoted by Σ. Σ defines

a toric Fano variety which is denoted by P∆. In particular, if a fine triangulation of ∆

has been chosen, the associated variety P∆ is Gorenstein and terminal. We also note that

a general section χ of the anti-canonical bundle Op´KPΣ
q of P∆ defines a Calabi-Yau

pn ´ 1q-fold. Finally, there is a mirror Calabi-Yau pn ´ 1q-fold which is given by a section

of the anticanonical bundle of the Fano toric variety associated to the dual polytope of ∆,

denoted by ∆˝. In particular, the defining equation for χ is given by

χ “
ÿ

P ˝P∆˝

ź

PP∆

aPx
xP,P ˝y`1

P . (2.4)

– 6 –
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Here, P and P ˝ label the integer points of ∆ and ∆˝, respectively. In addition, xP denotes

the coordinate associated to the ray determined by the point P and x , y denotes the natural
product between the dual lattices into which ∆ and ∆˝ are embedded. In addition, one can

calculate the rank of the Picard lattice from Batyrev’s formula which has been generalized

to (very general) toric K3 surfaces in [32]

rkPicpXq “ lp∆q ´ n ´ 1 ´
ÿ

Γ

l˚pΓq `
ÿ

Θ

l˚pΘql˚pΘ̂q . (2.5)

Recall that rkPicpY q “ dimQH2pX,Qq X H1,1pY,Cq; when X is a Calabi-Yau with

dimpXq ě 3, rkPicpXq “ h1,1pXq. Here lp∆q (l˚p∆q) denote the number of (inner) points

of the n-dimensional polytope ∆. In addition, Γ (Γ˝) denote the codimension one faces of

∆ (∆˝), while Θ denotes a codimension two face with Θ̂ being its dual. In the following,

we focus on K3 surfaces which are given as elliptic and genus-one fibrations over P1 and

whose corresponding ambient space is given by the direct product P1 ˆ P∆2
, where ∆2

denotes any two-dimensional reflexive polytope.

3 Conjectures in field theory and geometry

This section is devoted to the discussion of two conjectures. The first one is concerned with

the construction of Heterotic vector bundles that exhibit structure groups whose commu-

tant within E8 gives rise to a discrete symmetry. The second one discusses the relation

of six-dimensional Heterotic field theories with Up1q’s to those with discrete symmetries.

Both conjectures are supported by a number of convincing observations.

3.1 Constructing background bundles using mirror symmetry

In [20] Berglund and Mayr provide explicit descriptions of vector bundles with structure

algebra of type ABCDE. In particular they consider K3 surfaces which are elliptic fibrations

over P1 and the elliptic fiber is specified by the ambient space Pp1,2,3q. Calling the affine

base coordinate z, they conjecture the following: if a K3 surface has singularities of type

G1, G2 at z “ 0 and z “ 8, respectively, its mirror K3 will have singularities of type H1

and H2, where Hi “ rE8, Gis.
This statement can be traced back to the fact that mirror symmetry for K3 surfaces has

an interpretation in terms of orthogonal lattices. It can be proven in the cases considered

in by [20] by considering the stable degeneration limit as discussed in section 2.1.1 and

further elaborated on in [21]; it is clear in fact that the points z “ 0 and z “ 8 map to

different half K3 surfaces. Thus, each half K3 surface inherits precisely one singularity,

whose commutant within E8 gives rise to a singularity within the mirror dual K3 surface.

This conjecture should hold true more generally, i.e. in particular also for singularities that

are inherited by both half K3 surfaces, as follows.

Consider a (genus-one) K3 surface X2 whose mirror K3 surface X̃2 has also a genus-

one fibration; the semi-stable degeneration of both K3 surfaces can then be computed with

the toric symplectic cut techniques of [21] (see also [33]); note that these methods also

extend semi-stable degeneration to genus-one fibrations. Assume that X2 has a couple of

– 7 –
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ADE singularities which correspond to a gauge factor G. Let G1 (respectively G2) be the

product of the singularities inherited by the first half K3 surface X`
2 (respectively X´

2 ).

Then the mirror K3 surface X̃2 will degenerate into two rational surfaces X̃`
2 Y X̃´

2 and

the singularities of X̃`
2 and X̃´

2 correspond to gauge algebras H1 and H2, respectively and

will be given as Hi “ rE8, Gis. It is important to stress that for this generalization, we

can assume any toric ambient space P∆2
— in contrast to only considering Pp1,2,3q — for a

two-dimensional polytope ∆2 for the corresponding genus-one fibration. In this way, one

also obtains structure groups which do not appear in the classification by Berglund and

Mayr.

3.2 Mirror symmetry in the fiber: trading multi- for torsional sections

In this sub-section we provide supporting evidence for the conjecture made above. In

particular, as demonstrated in the concrete examples in section 4, mirror symmetry ex-

changes different two-dimensional fiber ambient spaces, which leads to the exchange of

multi-sections and torsional sections in the corresponding mirror geometries.

In section 4 we will use this conjecture in order to construct background bundles with

structure group
`

E7ˆSUp2q
˘

{Z2 and
`

E6ˆSUp3q
˘

{Z3. We construct an elliptic K3 surface

with gauge group
`

E7 ˆ E7 ˆ SUp2q ˆ SUp2q
˘

{Z2 and ambient space of the elliptic fiber

Pp1,1,2q{Z2. The dual K3 surface is also elliptic with ambient space of the elliptic fiber given

by Pp1,1,2q which generically has a bi-section. The latter is a clear signal of a Z2 symmetry.

The same observation can be made for the case of a discrete Z3 symmetry where the fiber

ambient spaces P2{Z3 and P2 get exchanged under mirror symmetry.

However, as previously explained in 2.2.1, discrete symmetries are best understood

from a Higgsing perspective in six dimensions. Thus, it is expected that the corresponding

multi-sections become apparent in six dimensions. This is indeed, what we will observe.

We would also like to stress that our approach sheds some light on the following obser-

vation made in [12] and further confirmed in [34, 35]. That reference has constructed for

every two-dimensional reflexive polytope a corresponding Calabi-Yau three-fold which was

realized as an elliptic/genus-one fibration, specified by the corresponding two-dimensional

polytope, over an arbitrary two-dimensional base. It was furthermore observed that mir-

ror symmetry exchanges fiber ambient spaces that give rise to Calabi-Yau threefolds with

non-trivial Tate-Shafarevich groups with fiber ambient spaces that give rise to a three-fold

that exhibits non-trivial torsional sections.

Using the Heterotic/F-theory duality, one can explain this phenomenon as follows.

It has been shown in [19] that the construction of a discrete gauge symmetry D in the

Heterotic string requires background bundles with structure group of the form of G{D
where G is a group of ADE type. Groups of the type G{D require that the Mordell Weil

group of the corresponding F-theory compactification has the torsional subgroup D. Due

to the extended conjecture by Berglund and Mayr, the mirror Calabi-Yau manifold should

exhibit a discrete symmetry of type D, where D is a subgroup of the Tate-Shafarevich

group of the mirror Calabi-Yau manifold.

– 8 –
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3.3 Heterotic field theory perspective

In this section we discuss the conjectured field theory perspective on the Heterotic side

which relates the models with Up1q factors to those with discrete gauge symmetries. The

approach is conjectured as we did not calculate the charges of the matter fields, responsible

for Higgsing of the model with an Abelian gauge symmetry to a discrete one. In particular,

we shall focus on the examples where the two Up1q’s factors appear symmetrically. i.e. in

our approach we consider the Up1q which arise upon commutation of Up1q background

bundles that are embedded symmetrically into the two respective E8-bundles.

3.3.1 Stückelberg mechanism

In the Heterotic string theory in in six and lower dimensions, a geometric Stückelberg

mechanism can render a Up1q gauge field massive [36]. In six dimensions the mass term

of Up1q, is due to the modified ten-dimensional kinetic term of the Kalb-Ramond field B2,

which upon dimensional reduction on an elliptically fibered Calabi-Yau threefold Z3 and a

Up1q background bundle, results in a six-dimensional kinetic term for the axions ρα:

LStück. “ Gαβpdρα ` kαAUp1qq ^ ‹pdρβ ` kβAUp1qq , (3.1)

where

Gαβ “
ż

Z3

ωα ^ ‹ωβ . (3.2)

Here ωα, α “ 1, . . . , b2pZ3q, is a basis of harmonic two-forms in Hp2qpZ3q, where b2pZ3q
is the second Betti number of Z3, the axions ρα are associated with the expansion of the

Kalb-Ramond field B2. and the kα are flux quanta associated with the expansion of the

Up1q bundle background field strength F . Note, F “ 1
2πi

c1pLq where c1pLq is the first

Chern class the corresponding Up1q line bundle L.

From (3.1) a single Up1q gauge field will be in general massive massive if we have

a non-trivial first Chern class of the Up1q bundle. However, in the presence of multiple

massive Up1q gauge fields appropriate linear combinations of them, which belong to the

kernel of the massive matrix, can remain massless Up1q fields.5

In the case of the symmetric example with two Up1q factors, Up1q1 and Up1q2, it

is evident that a gauge boson associated with a symmetric linear combination, Up1q1 `
Up1q2, remains massless, while the orthogonal one, associated with the anti-symmetric

linear combination, Up1q1 ´ Up1q2, becomes massive. Thus, even though the geometry

under stable degeneration indicates two Up1q factors in Heterotic theory, the Stückelberg

mechanism ensures that only a symmetric combination of two Up1q gauge fields remains

massless. It is this latter one, which is identified in the Heterotic/F-theory duality.

3.3.2 Higgsing of symmetric U(1) model

The symmetric Heterotic model with ZQ discrete symmetry can be obtained from the one

with symmetric Up1q gauge symmetry factors, by Higgsing the latter model with the matter

5For further details, see, e.g., [21]. For similar computations, see, e.g., [37], where also the case of

multiple Up1q’s is systematically discussed.
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fields, φ1 and φ2. Due to the symmetry structure of the model we conjecture that the φ1

and φ2 have integer charge Q under charged under Up1q1 and Up1q2, respectively:

Up1q Up1q
φ1 Q 0

φ2 0 Q

After having acquired non-zero vacuum expectation values, these field break the symmetry

down to ZQ ˆ ZQ.

In particular, the two Higgs fields can be represented as

φ1 “ pV1 ` β1qeiα1g, φ2 “ pV2 ` β2qeiα2g, (3.3)

where V1 and V2 are the respective vacuum expectation values, α1 and α2 are real fields

and are identified with the Goldstone axions, while β1 and β2 are the Higgs fields.

In this representation the covariant kinetic energy terms for the matter fields φ1 and

φ2 take the form:

L1 “
2

ÿ

i“1

|Vi ` βi|2g2pBµαi ´ QAiq2 `
2

ÿ

i“1

pBµβiq2. (3.4)

Note that this Lagrangian has a manifest discrete gauge symmetry ZQ ˆ ZQ.

However, due to the Stückelberg mechamism as discussed in 3.3.1, the anti-symmetric

combination of the gauge fields A´ ” 1?
2
pA1 ´ A2q acquires the mass. The contribu-

tion (3.1) to the effective Lagrangian can schematically written as:

L2 “ M2pBµb ´ A´q2, (3.5)

where b is an axion field, associated with the expansion of the Kalb-Ramond field B2

and M sets the mass scale. It is this term that manifestly breaks the anti-symmetric

combination of discrete symmetry factors, i.e. ZQ´
, while the symmetric combination, i.e.

ZQ`
, is preserved.

By introducing the redefined fields

A1{2 “ 1?
2

pA` ˘ A´q , α1{2 “ 1?
2

pα` ˘ α´q (3.6)

and for simplicity setting Higgs fields β1{2 “ 0 the sum of (3.4) and (3.5) reads:

L “ 1

2
V 2
1 pDµα` ` Dµα´q2 ` 1

2
V 2
2 pDµα` ´ Dµα´q2 ` M2

s pDµbq2, (3.7)

where the covariant derivatives are explicitly given as follows

Dµα˘ :“ Bµα˘ ´ QA˘ , Dµb “ Bµb ´ A´ . (3.8)

It is evident from (3.7) that the effective theory has only one discrete gauge symmetry factor

ZQ`
, which is a symmetric combination of the two ZQ ˆZQ, while the anti-symmetric one

is not present in the effective theory.
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We have therefore demonstrated in the field theory that the Higgsing of a Heterotic

model with two symmetric Up1q’s leads to a Heterotic model with two symmetric ZQ,

however due to the Stückelberg mechanism only the symmetric combination of the two ZQ

is present in the effective theory. It is this surviving discrete symmetry that is matched

via Heterotic/F-theory duality onto the F-theory discrete symmetry. Note that this field

theory Higgsing mechanism on the Heterotic side parallels the one on the F-theory side,

where only the massless Up1q is visible and gets broken to ZQ via Higgs mechanism.

This provides an independent verification of why the anti-symmetric combination of

the discrete symmetry factors is not present in the effective theory. In addition, we present

for the concrete examples in section 4 an additional geometrical argument which has been

first given in [38] and is reviewed in detail in subsection 4.2.1. As further elaborated at

that place, it explains that the elimination of the anti-symmetric combination of gauge

factors in comparable set-ups is due to orbifold singularities of the Heterotic K3 surface.

In the case of examples where the two Up1q factors do not appear in a symmetric way,

we expect that one particular linear combination of two Up1q gauge bosons becomes mas-

sive, while the orthogonal one is massive. However, determination of the Stückelberg mass

terms of the form (3.1) would require a detailed calculation for specific Heterotic compacti-

fication on elliptically fibered Calabi-Yau threefold Z3 and the calculation of charges of the

matter fields responsible for Higgsing to a model with discrete symmetry. Consequently, in

this case the origin of the single discrete gauge symmetry factor would be a specific linear

combination of the two discrete symmetry factors.

4 Examples

In this section, we apply the methods from the previous section to construct two examples

which realize the discrete symmetries Z2 and Z3 within the Heterotic string. For this pur-

pose, we use mirror pairs of K3 surfaces which are elliptically fibered and we promote them

to mirror pairs of Calabi-Yau three-folds. In conclusion, we find that the six-dimensional

perturbative gauge group associated to one geometry is given as the commutant of the

perturbative gauge group of the dual Calabi-Yau within the group E8 ˆ E8. As has been

pointed out in detail in section 3.3.1, it is important to stress that under Heterotic/F-

theory duality only massless gauge degrees of freedem are matched. Thus, there appears

sometimes just the symmetric combination of certain gauge factors.

For the Z2-model, we start with an elliptic K3 surface X2 that has E7 ˆ E7 ˆ SUp2q ˆ
SUp2q gauge symmetry. Its mirror X̃2 is also elliptic and has gauge symmetry Up1q where

the Up1q originates from an additional section. As a next step, we promote the mirror pair

X2, X̃2 of K3 surfaces to a mirror pair of three-folds, named X3, X̃3. Here, X̃3 exhibits

a two-section, which originates from the former two sections in X̃2, that have been glued

together, and indicates a Z2-symmetry. In addition, there are two non-perturbative SUp2q
factors.

The construction of the Z3-model is quite parallel to the first one, but it does not

exhibit any non-perturbative factors in constrast to the former one.
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Figure 1. The polytope on the right is ∆˝ and provides the ambient space for X2, with gauge

symmetry
`

E7 ˆ E7 ˆ SUp2q ˆ SUp2q
˘

{Z2. The ambient space of the elliptic fiber (the zero plane)

is marked by the black points. The polytope on the left shows the dual polytope ∆ where the

symplectic cut is performed, providing the dual polytopes of the half K3 surfaces X˘
2
. The yellow

and blue points give the affine Dynkin diagram of E7. The latter are inherited by the half K3

surfaces X˘
2
, respectively. The purple point corresponds to an SUp2q gauge group which also

appears in both half K3 surfaces X˘
2

after the stable degeneration limit. Orange points mark inner

points of the facets. The dual polytope ∆ on the left provides the ambient space for the mirror K3

X̃2. Note that the semi-stable degeneration of the mirror elliptic K3 X̃2 is obtained by performing

a symplectic cut along the zero plane marked by the black points on the polytope ∆˝ on the right.

4.1 The model with Z2 gauge symmetry

As outlined above, we start with a K3 surface that exhibits
`

E7 ˆE7 ˆ SUp2q ˆ SUp2q
˘

{Z2

gauge symmetry and use its mirror dual to construct a Heterotic compactification with

discrete gauge symmetry Z2. We start by constructing a pair of dual polytopes p∆˝,∆q.
Here, ∆˝ is the ambient space of the K3 surface with gauge symmetry

`

E7 ˆE7 ˆ SUp2q ˆ
SUp2q

˘

{Z2.

4.1.1 The geometry with gauge symmetry
`

E7 ˆ E7 ˆ SUp2q ˆ SUp2q
˘

{Z2

A very familiar geometry to this one has already been studied in [21] and we refer to that

discussion for some of the details. Its polytope ∆˝ is given by the convex hull of the points

p´2, 1, 0q , p0, 1, 0q , p2,´3, 4q , p2,´3,´4q , (4.1)

while the dual polytope ∆, leading to the geometry with a bi-section is specified by the

points

p´2,´1, 0q , p0,´1, 0q , p1, 1, 0q , p0,´1,´1q , p0,´1, 1q , (4.2)

and is shown in figure 1. As a first step, we assign the following coordinates to the points

of ∆˝

p´2, 1, 0q ÞÑ y1 , p2,´3, 0q ÞÑ y2 , p0, 1, 0q ÞÑ y3 ,

p2,´3, 1q ÞÑ Ũ , p2,´3,´1q ÞÑ Ṽ . (4.3)

Here Ũ , Ṽ parameterize the base P1 of the fibration, while y1, y2, y3 are coordinates of the

fiber ambient space Pp1,1,2q{Z2.
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Using equation (2.4), we find that X2 the general K3 is defined by the equation

χ∆˝ : a1y
4
1 ` a2y

2
1y

2
2 ` a3y

4
2 ` a4y

2
3 ` a5y1y2y3 “ 0 . (4.4)

Here, the coefficients read in terms of Ũ , Ṽ as follows

a1 “ a11 ,

a2 “ a21Ũ
2Ṽ 2,

a3 “ a31Ũ
5Ṽ 3 ` a32Ũ

4Ṽ 4 ` a33Ũ
3Ṽ 5,

a4 “ a41 ,

a5 “ a51Ũ Ṽ . (4.5)

One observes that there are two sections located at y2 “ 0 and are given by

a11y
4
1 ` a41y

2
3 “ 0 . (4.6)

Thus we confirm that χ∆˝ defines an elliptically fibered K3.

In fact, a similar K3 surface has already been investigated in [21]. To make contact

with that description, we transform the constraint (4.4) into a hypersurface within the

ambient space P1 ˆ Bl1P
p1,1,2q. The coordinate transformation

y1 ÞÑ px31x2UV q 1

4 , y2 ÞÑ px1x32U´3V ´3q 1

4 , y3 ÞÑ x3pUV q 1

2 , pŨ , Ṽ q ÞÑ pU, V q
(4.7)

maps (4.4) onto

s1x
3
1x2 ` s2x

2
1x

2
2 ` s3x1x

3
2 ` s4x1x2x3 ` s5x

2
3 “ 0 . (4.8)

Here, one has

s1 “ a11UV, s2 “ a21UV, s3 “ a31U
2 ` a32UV ` a33V

2, s4 “ a51UV, s5 “ a41UV.

(4.9)

This geometry also has two sections given by rx1 : x2 : x3s “ r0 : 1 : 0s and rx1 : x2 :

x3s “ r1 : 0 : 0s. It should also be stressed that the construction relies on the fact that

we have admitted a fiber ambient space different from Pp1,2,3q given by Pp1,1,2q{Z2. After

a transformation into Weierstrass normal form, it becomes transparent that these two

sections map onto the zero section and a torsional section of order two, respectively. From

the discriminant of the Weierstrass normal form (A.4), one also easily reads off again that

there are two E7 as well as two SUp2q singularities. In figure 1 we see the affine Dynkin

diagrams of the gauge factors of the singular fibers. Note that there is only the non-affine

Dynkin diagram visible for the SUp2q factor, as the additional affine node corresponds to

a non-toric divisor. Thus, the full gauge group is given by
`

E7 ˆ E7 ˆ SUp2q ˆ SUp2q
˘

{Z2.

As described in detail in [21], the stable degeneration limit decomposes (4.9) into two

half K3 surfaces X`
2 , X´

2 . Both, X`
2 , X´

2 , inherit an SUp2q ˆE7 singularity, as well as the

torsional section of order two.
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These findings can be checked by the computation of the rank of the Picard lattice

rkPicpX∆˝q. We find:

rkPicpX∆˝q “ 35 ´ 3 ´ 1 ´ 14 ` 1 “ 18 . (4.10)

This accounts for the class of the fiber, the one of the base as well as sixteen excep-

tional divisors of the corresponding gauge group. This, again, confirms the result that the

additional section is torsional.

In summary, one expects that the dual geometry should give rise to a Z2 symmetry.

This will be the next step of our analysis. As discrete symmetries arising as from a Higgsed

Up1q symmetry are visible only in six dimensions6 in the F-theory description, one needs

to fiber the K3 manifold X2 over another P1. X3 is the resulting K3 fiber threefold, where

the two SUp2q singularities are promoted to a curve of SUp2q singularities resulting in

only one SUp2q factor in six dimensions. As argued in [38] and further elaborated on in

subsection 4.2.1, that accounts to an identification of the two SUp2q factors such that only

their diagonal combination survives.

4.1.2 The dual geometry with a fiber ambient space Pp1,1,2q

To continue the study of the geometries, we now turn to the analysis of ∆. Here we assign

the following coordinates to the points (4.2)

p´2,´1, 0q ÞÑ x1 , p´1,´1, 0q ÞÑ x4 , p0,´1, 0q ÞÑ x2 ,

p1, 1, 0q ÞÑ x3 , p0,´1,´1q ÞÑ U , p0,´1, 1q ÞÑ V . (4.11)

Using equation (2.4), we find that X̃2 the general K3 is defined by the following

equation

χ :“ s1x
4
1x

3
4 ` s2x

3
1x2x

2
4 ` s3x

2
1x

2
2x4 ` s4x1x

3
2 ` s5x

4
2

`s6x1x2x3x4 ` s7x
2
1x3 ` s8x

2
2x3 ` s9x

2
3x4 “ 0 . (4.12)

Here, the si take explicitly the form

s1 “ s11 ,

s2 “ s21U
2 ` s22UV ` s23V

2,

s3 “ s31U
4 ` s32U

3V ` . . . ` s35V
4,

s4 “ s41U
6 ` s42U

5V ` . . . ` s47V
6,

s5 “ s51U
8 ` s52U

7V ` . . . ` s59V
8,

s6 “ s61U
2 ` s62UV ` s63V

2,

s7 “ s71 ,

s8 “ s81U
4 ` s82U

3V ` . . . ` s85V
4,

s9 “ s91 , (4.13)

6However, it is important to stress that there are also discrete symmetries in eight dimensions. In that

case, the discrete becomes apparent from the Tate-Shafarevich group of the K3 surface and can be identified

by discrete holonomies in a circle reduction to seven dimensions. We would like to thank our referee for

illuminating remarks on that point. See also [39–41] for related discussions.
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where the sij are complex numbers. Thus we confirm that χ∆˝ defines an elliptically fibered

K3 X̃2. One notices that the above geometry has two sections which are given by x1 “ 1,

x2 “ 0, leading to the equation

s11 ` s71x3 ` s91x
2
3 “ 0 , (4.14)

which is solvable over C. In other words the two sections are located at

S1{2 “
”?

2s91 : 0 : ´s71 ˘
b

s271 ´ s11s91

ı

. (4.15)

In addition, the study of the Jacobian reveals that there are no further gauge symme-

tries. This is confirmed by the dimension of the Picard lattice. Indeed, an application of

formula (2.5) reveals that

rkPic “ 7 ´ 3 ´ 1 ´ 1 ` 1 “ 3 , (4.16)

which accounts for the base and the class of the elliptic fiber and the additional section.

The stable degeneration limit is as in reference [21] defined by a symplectic cut along

the px, y, 0q-plane within the coordinate system defined by (4.1); it gives two polytopes ∆`

and ∆´. These polytopes determine two toric varieties pPΣ` ,L`q, pPΣ´ ,L´q together with
line bundles L˘. A general zero section of the line bundle L` in PΣ` defines a rational

elliptic surface X̃`
2 ; similarly, a general section of the line bundle L´ defines a rational

elliptic surface X̃´
2 in PΣ´ .

However, it is crucial to note that the appropriate coordinates in the dual fans are

p´2,´1, 0q ÞÑ x1 , p´1,´1, 0q ÞÑ x4 , p0,´1, 0q ÞÑ x2 ,

p1, 1, 0q ÞÑ x3 , p0, 0,´1q ÞÑ λ`, p0,´1, 1q ÞÑ V , (4.17)

for Σ` and

p´2,´1, 0q ÞÑ x1 , p´1,´1, 0q ÞÑ x4 , p0,´1, 0q ÞÑ x2 ,

p1, 1, 0q ÞÑ x3 , p0, 0,`1q ÞÑ λ´, p0,´1,´1q ÞÑ U , (4.18)

for Σ´.

Then, if we denote by vj P N the lattice point associated to each xj , the general section

of the line bundle L˘ in PΣ˘ are:

χ` “
ÿ

j

ź

mPP`

aPx
xvj ,P`y`1

j V xp0,´1,1q,P`y`1pλ´qxp0,0,´1q,P`y (4.19)

and

χ` “
ÿ

j

ź

mPP´

aPx
xvj ,P´y`1

j U xp0,´1,´1q,P´y`1pλ`qxp0,0,`1q,P´y. (4.20)

In summary, one obtains two constraints for the two rational elliptic surfaces X̃˘
2 (half

K3 surfaces).

χ` :“ s`
1 x

4
1x

3
4 ` s`

2 x
3
1x2x

2
4 ` s`

3 x
2
1x

2
2x4 ` s`

4 x1x
3
2 ` s`

5 x
2
1x3x

2
4

`s`
6 x1x2x3x4 ` s`

7 x
2
1x3 ` s`

8 x
2
2x3 ` s`

9 x
2
3x4 “ 0 ,

χ´ :“ s´
1 x

4
1x

3
4 ` s´

2 x
3
1x2x

2
4 ` s´

3 x
2
1x

2
2x4 ` s´

4 x1x
3
2 ` s´

5 x
2
1x3x

2
4

`s´
6 x1x2x3x4 ` s´

7 x
2
1x3 ` s´

8 x
2
2x3 ` s´

9 x
2
3x4 “ 0 , (4.21)
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where

s`
1 “ s11 ,

s`
2 “ s21U ` s22λ

`,

s`
3 “ s31U

2 ` s32Uλ` ` s33λ
`2

,

s`
4 “ s41U

3 ` s42U
2λ` ` . . . ` s44λ

`3
,

s`
5 “ s51U

4 ` s52U
3λ` ` . . . ` s55λ

`4
,

s`
6 “ s61U ` s62λ

`,

s`
7 “ s71 ,

s`
8 “ s81U

2 ` s82Uλ` ` s83λ
`2

,

s`
9 “ s91 . (4.22)

The coefficients for χ´ are obtained analogously. In particular, one immediately notices

that one obtains the correct number of “layers” (i.e. slices parallel to the x–y-plane) that

are required to obtain an E7 background bundle according to the results of [20].

We close this section by noting that our geometry under consideration has two sections

which lead to an additional Up1q symmetry. However, from an F-theory point of view, it

is expected that discrete symmetries become manifest only in six dimensions. Thus, as a

final step of our analysis, we compactify our geometry further to six dimensions.

4.2 The six-dimensional geometry

As a next step, we investigate a six-dimensional set-up. We want to construct a Calabi-

Yau threefold X̃3 which is fibered by the elliptic K3 surface X̃2. For this purpose, we

take the direct product of our ambient space (4.2) with another P1. The vertices of the

four-dimensional polyhedron ∆4 read:

p´2,´1, 0, 0q , p1, 1, 0, 0q , p0,´1,´1, 0q , p0,´1, 1, 0q , p0, 0, 0, 1q , p0, 0, 0,´1q . (4.23)

In addition, the vertices of the dual four-dimensional polyhedron ∆˝
4

p2,´3,´4, 1q , p´2, 1, 0, 1q , p2,´3, 4, 1q , p0, 1, 0, 1q , (4.24)

p2,´3,´4,´1q , p´2, 1, 0,´1q , p2,´3, 4,´1q , p0, 1, 0,´1q . (4.25)

By comparing to the Kreuzer-Skarke list [42], one finds that hp1,1qpX∆4
q is five, where χ∆4

denotes the three-fold given as a section of the anti-canonical bundle of the toric ambient

space specified by ∆4. In particular, χ∆4
takes the same form as (4.12) and (4.13), where

the sij now depend on the two additional P1 coordinates rS : T s. Thus,

sij “ sij1S
2 ` sij2ST ` sij3T

2. (4.26)

Clearly, the two sections defined by (4.14) are no longer well-defined in six-dimensions and

form a bi-section. We can still perform a semi-stable degeneration with the methods of [21]

and find the Heterotic K3 dual. In addition, one finds two SUp2q-singularities located at
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s91 “ 0 which becomes apparent from the explicit equation for the determinant (A.4).

As these extend along the Heterotic K3, these contributions to the gauge group are non-

perturbative in nature. Summarizing, one finds that the six-dimensional gauge group G is

given by

G “ Gpert ˆ Gnon-pert “ Z2 ˆ
`

SUp2q ˆ SUp2q
˘

. (4.27)

This matches hp1,1qpX∆4
q “ 5, which corresponds to two classes of P1 ˆP1, the class of the

bi-section and the two resolutional divisors of the SUp2q singularities. We also note that

the location of the two SUp2q factors are precisely the points where the two leaves of the

bi-section glue together.

In conclusion, we obtain a perfect match of the six-dimensional perturbative gauge

groups of the mirror dual geometries in terms of commutants within E8 ˆ E8. For the

explanation, why there is however only one Z2-factor, we refer to the following sub-section.

4.2.1 Comparing field theory and geometry

Finally, we comment on the appearance of only one Z2-factor in six dimensions although

there are two background bundles with structure group
`

E7 ˆ SUp2q
˘

{Z2. Thus, naively,

one might expect the appearance of an Z2 ˆ Z2 gauge symmetry. From a field theory

perspective, this puzzle gets re-solved by viewing the discrete symmetry as a higgsed version

of Abelian groups as explained in detail in section 3.3.2. In particular, if one turns off the

coefficient s1, the fiber ambient space changes from Pp1,1,2q into Bl1P
p1,1,2q. The latter

one gives rise to an additional section, such that there are two Up1q-background bundles

which are symmetrically embedded into the two E8-factors. As analyzed in [21, 38], upon

commutation, these background bundles give rise to two Up1q gauge symmetries. One

linear combination of these two Up1q-factors turns out to be massive, while the orthogonal

linear combination of Up1q-factors is massless. Only the massless factor is seen on the

F-theory side and it is this massless Up1q that is higgsed to a discrete symmetry Z2.

This discussion is related to the appearance of only one SUp2q-factor in six dimensions

of the threefold X3, of section 4.1.1, which is in fact the mirror dual geometry 4.2 of the

threefold X̃3 with Z2 symmetry considered above in 4.2. From an algebraic point of view,

the two loci of SUp2q singularities get promoted to a curve of SUp2q singularities in six

dimensions. A field theory interpretation of this phenomenon has been given in [38]. Here,

the K3 surface acquires orbifold singularities at the locations where it hits the SUp2q locus.
Thus, in order to give an interpretation of centralizing a group action that corresponds to

the gauge group E7 ˆ E7 ˆ SUp2q, one has to include an exchange of the SUp2q subgroups

of E8 ˆ E8 in the monodromy of the two bundles around the orbifold points [38]. It is

expected that a similar argument should also hold true in the Z2 case considered above.

4.3 The model with Z3 gauge symmetry

The construction of the example with discrete Z3 gauge symmetry parallels the example

with Z2 gauge symmetry and we therefore keep the discussion brief. This time we start

with a geometry that has gauge symmetry
`

E6 ˆ E6 ˆ SUp3q ˆ SUp3q
˘

{Z3.
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Figure 2. The polytope on the left shows the ambient space whose associated hypersurface leads

to the Z3-geometry. The polytope on the right provides the ambient space with gauge symmetry
`

E6 ˆ E6 ˆ SUp3q ˆ SUp3q
˘

{Z3. The zero plane along which the symplectic cut is performed is

marked by the black points. The yellow and blue points give the affine Dynkin diagram of E6.

The latter are inherited by the half K3 surfaces χ˘, respectively. Beige-coloured points are on the

invisible facets of the polytope. In particular, the two points on the invisible edge correspond to

the Dynkin diagram of SUp3q which is inherited by both half K3 surfaces. Finally, orange points

mark inner points of the facets and the purple point marks the inner point of the polytope.

4.3.1 The geometry with
`

E6 ˆ E6 ˆ SUp3q ˆ SUp3q
˘

{Z3 gauge symmetry

We start again with a pair of dual polytopes p∆˝,∆q. ∆˝ gives rise to a K3 surface with

gauge group
`

E6 ˆ E6 ˆ SUp3q ˆ SUp3q
˘

{Z3, while ∆ gives rise to a K3 surface with fiber

ambient space given by P2. ∆˝ is given by the convex hull of

p2,´1, 0q , p´1, 2, 0q , p´1,´1, 3q , p´1,´1,´3q , (4.28)

while ∆ is given as the convex hull of

p´1,´1, 0q , p1, 0, 0q , p1, 1, 0q , p0, 1, 0q , p´1,´1, 1q , p´1,´1,´1q . (4.29)

The two polytopes are displayed in figure 2. Assigning coordinates as

p´2, 1, 0q ÞÑ y1 , p2,´3, 0q ÞÑ y2 , p0, 1, 0q ÞÑ y3 ,

p2,´3, 1q ÞÑ Ũ , p2,´3,´1q ÞÑ Ṽ , (4.30)

an application of formula (2.4) reveals that the hypersurface equation for χ∆˝ is given as

χ∆˝ : a1y
4
1 ` a2y

2
1y

2
2 ` a3y

4
2 ` a4y

2
3 “ 0 . (4.31)

The coefficients read as follows

a1 “ a11 ,

a2 “ a21Ũ
2Ṽ 2,

a3 “ a31Ũ
5Ṽ 3 ` a32Ũ

4Ṽ 4 ` a33Ũ
3Ṽ 5,

a4 “ a41 . (4.32)

The rank of the Picard lattice is found to be hp1,1qpX∆˝q “ 18 which accounts for two E6

singularities (to be more precise, its exceptional divisors), two SUp3q singularities, the class
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of the fiber as well as the base. In addition, the Mordell Weil group equals Z3. Thus, the

full gauge group is given by
`

E6 ˆ E6 ˆ SUp3q ˆ SUp3q
˘

{Z3.

Again, after the compactification to six dimensions, the two SUp3q singularities merge

into a curve of SUp3q singularities. From the field theory perspective, it is again the

symmetric combination of the two SUp3q factors which survives in this limit.

4.3.2 The dual geometry with fiber ambient space P2

We analyse the dual geometry by assigning the following coordinates to the points (4.2)

p´1,´1, 0q ÞÑ x1 , p1, 0, 0q ÞÑ x2 , p0, 1, 0q ÞÑ x3 ,

p´1,´1, 1q ÞÑ U , p´1,´1,´1q ÞÑ V . (4.33)

In this way, one obtains the following hypersurface constraint:

χ :“s1x
3
1`s2x

2
1x2`s3x1x

2
2`s4x

3
2`s5x

2
1x3`s6x1x2x3`s7x

2
2x3`s8x1x

2
3`s9x2x

2
3`s10x

3
3 “0 .

(4.34)

Here, the si take explicitly the form

s1 “ s11U
6 ` s12U

5V ` . . . ` s17V
6,

s2 “ s21U
4 ` s22U

3V ` . . . ` s25V
4,

s3 “ s31U
2 ` s32UV ` s33V

2,

s4 “ s41 ,

s5 “ s51U
4 ` s52U

3V ` . . . ` s55V
4,

s6 “ s61U
2 ` s62UV ` s63V

2,

s7 “ s71 ,

s8 “ s81U
2 ` s82UV ` s83V

2,

s9 “ s91 ,

s10 “ s10 . (4.35)

A closer inspection of this geometry reveals that there are apart from the zero section two

further linear independent sections, which is confirmed by the computation of hp1,1qpX2q.
In fact, these three sections will glue into a tri-section, once one compactifies further down

to six dimensions. We demonstrate that using the Hirzebruch surface F0 as the base of

the fibration. To be more concrete, the vertices of the four-dimensional polyhedron are

given by

p´1,´1, 1, 0q , p´1,´1,´1, 0q , p1, 0, 0, 0q , p0, 1, 0, 0q , p0, 0, 0, 1q , p0, 0, 0,´1q . (4.36)

In contrast to the other example, there are no further non-perturbative enhancements, such

that the gauge group is given by G “ Z3.
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5 Concluding remarks

In this note we have presented core steps in the understanding of discrete symmetries

within the Heterotic/F-theory duality. We propose that for mirror pairs of Calabi-Yau

manifolds the gauge group of one geometry is given by the commutant of the gauge group

of the dual geometry within E8 ˆE8. (However, as explained in detail in section 3.3.1, only

massless gauge fields are matched under Heterotic/F-theory duality, such that sometimes

only a symmetric combination of certain gauge factors appears.) Our analysis is based on

a two-pronged approach. On the one hand, we have proposed concrete constructions of

background bundles whose structure group is given as the commutant of a discrete group

within E8. On the other hand, our analysis relies on the field theory investigation of

Higgsing of Heterotic compactifications that exhibit Up1q symmetries. For the latter ones,

we have restricted ourselves to examples where the Up1q symmetry originates from Up1q
background bundles that are symmetrically embedded into both E8 factors. In this way

there are two Up1q factors out of which the antisymmetric linear combination is massive

due to Stückelberg mechanism in six dimensions, while the symmetric linear combination

remains massless. It is the massless Up1q which is spontaneously broken to the discrete

symmetry which is to be identified with the F-theory side.

In addition, we are able to shed light on the conjecture made in [12, 34, 35] con-

cerning general F-theory compactifications. It states that mirror symmetry restricted to

the elliptic/genus-one fiber exchanges fibrations with multi-sections and geometries that

exhibit torsional sections. This is expected from the dual Heterotic side as follows. The

commutant of a discrete symmetry D within E8 takes the form G{D, where G is a group

of ADE type. Using our proposal, which relies on the interpretation of mirror symmetry

for K3 surfaces in terms of othogonal lattices [20], we can translate this phenomenon to

the exchange of gauge group and structure group on the Heterotic side. In these terms, it

is natural that a multi-section of order |D| gets exchanged with a torsional factor of the

Mordell-Weil group of type D.

There are many interesting directions this work should be extended to. It would

be desirable to be able to compute charges of matter fields and masses of gauge fields

explicitly in the six-dimensional effective theory on the Heterotic side. This would require

a deeper understanding of the mathematical structure of the appearing bundles and the

computation of their Chern classes. Furthermore, it would be interesting to prove the

mirror symmetry conjecture, which could propably be done building on the results of

Belcastro and Dolgachev [43, 44].
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A Weierstrass normal forms

In this appendix, we summarize the Weierstrass normal form of the most general quartic

in Pp1,1,2q as well as that of the most general cubic in P2. We use the following convention

for the Weierstrass normal form

y2 “ x3 ` fx ` g , (A.1)

where the discriminant is given by

∆ “ 4f3 ` 27g2. (A.2)

A.1 The quartic

The most general quartic quartic with coordinates rx1 : x2 : x3s P Pp1,1,2q is given by

χ : s1x
4
1`s2x

3
1x2`s3x

2
1x

2
2`s4x1x

3
2`s5x

4
2`s6x

2
1x3`s7x1x2x3`s8x

2
2x3`s9x

2
3 “ 0 . (A.3)

The Weierstrass normal form has been determined in, e.g., [12, 45] and is given as

f “ 1

48

`

´ s47 ` 8s6s
2
7s8 ´ 16s26s

2
8 ` 48s5s

2
6s9 ´ 24s4s6s7s9 ` 8s3s

2
7s9 ` 16s3s6s8s9

´ 24s2s7s8s9 ` 48s1s
2
8s9 ´ 16s23s

2
9 ` 48s2s4s

2
9 ´ 192s1s5s

2
9

˘

,

g “ 1

864

`

s67 ´ 12s6s
4
7s8 ` 48s26s

2
7s

2
8 ´ 64s36s

3
8 ´ 72s5s

2
6s

2
7s9 ` 36s4s6s

3
7s9 ´ 12s3s

4
7s9

` 288s5s
3
6s8s9 ´ 144s4s

2
6s7s8s9 ` 24s3s6s

2
7s8s9 ` 36s2s

3
7s8s9 ` 96s3s

2
6s

2
8s9

´ 144s2s6s7s
2
8s9 ´ 72s1s

2
7s

2
8s9 ` 288s1s6s

3
8s9 ` 216s24s

2
6s

2
9 ´ 576s3s5s

2
6s

2
9

´ 144s3s4s6s7s
2
9 ` 864s2s5s6s7s

2
9 ` 48s23s

2
7s

2
9 ´ 72s2s4s

2
7s

2
9 ´ 576s1s5s

2
7s

2
9

` 96s23s6s8s
2
9´144s2s4s6s8s

2
9´1152s1s5s6s8s

2
9´144s2s3s7s8s

2
9`864s1s4s7s8s

2
9

` 216s22s
2
8s

2
9 ´ 576s1s3s

2
8s

2
9 ´ 64s33s

3
9 ` 288s2s3s4s

3
9 ´ 864s1s

2
4s

3
9 ´ 864s22s5s

3
9

` 2304s1s3s5s
3
9

˘

,

∆ “ ´ 1

16
s29p . . . q . (A.4)

We note that there is a factor of s29 that splits off the remaining polynomial. This is the

origin of the non-perturbative SUp2q2 factor as discussed in 4.1.2.

A.2 The cubic

The most general quartic quartic with coordinates rx : y : zs P Pp2q is given by

a1x
3 `a2x

2y`a3xy
2 `a4y

3 `a5x
2y`a6xyz`a7y

2z`a8xz
2 `a9yz

2 `a10z
3 “ 0 . (A.5)
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Its Weierstrass normal form reads explicitly

f “
´

´ a4
6

` 24a10
`

2a2
3
a5 ´ 6a2a4a5 ` 9a1a4a6 ` 2a2

2
a7 ´ a3pa2a6 ` 6a1a7q

˘

` 8a2
6
pa5a7 ` a3a8 ` a2a9q ´ 24a6pa4a5a8 ` a2a7a8 ` a3a5a9 ` a1a7a9q

` 16
`

´ a2
3
a2
8

` 3a2a4a
2

8
` a2a3a8a9 ´ a2

2
a2
9

` a5a7pa3a8 ` a2a9q

´ a2
5
pa2

7
´ 3a4a9q ` 3a1pa2

7
a8 ´ 3a4a8a9 ` a3a

2

9
q
˘

¯

,

g “
ˆ

216a2
10

`

´ a2
2
a2
3

` 4a3
2
a4 ´ 18a1a2a3a4 ` a1p4a3

3
` 27a1a

2

4
q
˘

´ a6
6

` 12a4
6
pa5a7 ` a3a8 ` a2a9q ´ 36a3

6
pa4a5a8 ` a2a7a8 ` a3a5a9 ` a1a7a9q

´ 24a2
6

`

2a2
3
a2
8

´ 3a2a4a
2

8
` a2a3a8a9 ` 2a2

2
a2
9

` a5a7pa3a8 ` a2a9q ` a2
5
p2a2

7
´ 3a4a9q

´ 3a1pa2
7
a8 ` 9a4a8a9 ` a3a

2

9
q
˘

` 144a6

´

a2
2
a7a8a9 `

`

a1a5a
2

7
` a2

3
a5a8

` a3a7pa2
5

´ 5a1a8q
˘

a9 ` a2pa5a27a8 ` a3a7a
2

8
` a3a5a

2

9
` a1a7a

2

9
q

` a4
`

a2
5
a7a8 ´ 6a1a7a

2

8
` a5pa3a28 ´ 5a2a8a9 ´ 6a1a

2

9
q
˘

¯

` 8

ˆ

72a1a3a
2

7
a2
8

` 8a3
3
a3
8

` 108a1a
2

4
a3
8

´ 108a1a3a4a
2

8
a9 ´ 27a2

1
a2
7
a2
9

` 72a1a
2

3
a8a

2

9

` 8a3
2
a3
9

` 108a2
1
a4a

3

9
` 4a3

5
p2a3

7
´ 9a4a7a9q ´ 3a2

5
p4a3a27a8 ` 9a2

4
a2
8

` 4a2a
2

7
a9

´ 6a3a4a8a9 ` 9a2
3
a2
9

´ 24a2a4a
2

9
q ´ 3a2

2
a8

`

9a2
7
a8 ` 4a9p´6a4a8 ` a3a9q

˘

´ 6a2
`

2a2
3
a2
8
a9 ` 3a1a8a9p´a2

7
` 6a4a9q ` 6a3pa4a38 ` a1a

3

9
q
˘

´ 6a5a7

´

2a2
3
a2
8

` a2a3a8a9 ` a2p´3a4a
2

8
` 2a2a

2

9
q ` 3a1

`

2a2
7
a8 ´ a9p9a4a8 ` a3a9q

˘

¯

˙

` 36a10

ˆ

´ 8a3
3
a5a8 ` 12a2

4
p2a3

5
´ 9a1a5a8q ` 2a7

`

´ 12a1a2a6a7 ` 12a2
1
a2
7

` a2
2
pa2

6
` 8a5a7q ´ 4a3

2
a9

˘

` a3
`

6a1a7p3a2
6

´ 4a5a7q ` 4a2
2
pa7a8 ` a6a9q

´ a2pa3
6

` 20a5a6a7 ´ 36a1a7a9q
˘

´ 3a4

´

8a2
2
pa6a8 ` a5a9q ` a1p5a3

6
´ 12a5a6a7

` 36a1a7a9q ` 4a3
`

2a2
5
a6 ´ 3a1a6a8 ´ 3a5pa2a8 ` a1a9q

˘

` 2a2
`

´ 3a5a
2

6
` 4a2

5
a7

´ 6a1pa7a8 ` a6a9q
˘

¯

` 2a2
3

´

8a2
5
a7 ` a5pa2

6
` 2a2a9q ` 2

`

a2a6a8 ´ 6a1pa7a8 ` a6a9q
˘

¯

˙̇

.

(A.6)

Using these explicit expressions for f and g, one can construct the discriminant (A.2),

however, in contrast to the quartic, it does not enjoy any particular factorization properties.
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[14] M. Cvetič, R. Donagi, D. Klevers, H. Piragua and M. Poretschkin, F-theory vacua with Z3

gauge symmetry, Nucl. Phys. B 898 (2015) 736 [arXiv:1502.06953] [INSPIRE].

[15] C. Mayrhofer, E. Palti, O. Till and T. Weigand, Discrete gauge symmetries by Higgsing in

four-dimensional F-theory compactifications, JHEP 12 (2014) 068 [arXiv:1408.6831]

[INSPIRE].

[16] C. Mayrhofer, E. Palti, O. Till and T. Weigand, On discrete symmetries and torsion

homology in F-theory, JHEP 06 (2015) 029 [arXiv:1410.7814] [INSPIRE].

[17] L.B. Anderson, J. Gray, N. Raghuram and W. Taylor, Matter in transition,

JHEP 04 (2016) 080 [arXiv:1512.05791] [INSPIRE].

[18] R. Friedman, J. Morgan and E. Witten, Vector bundles and F-theory,

Commun. Math. Phys. 187 (1997) 679 [hep-th/9701162] [INSPIRE].

[19] P.S. Aspinwall and D.R. Morrison, Nonsimply connected gauge groups and rational points on

elliptic curves, JHEP 07 (1998) 012 [hep-th/9805206] [INSPIRE].

– 23 –

http://dx.doi.org/10.1016/0550-3213(96)00369-0
https://arxiv.org/abs/hep-th/9603161
https://inspirehep.net/search?p=find+EPRINT+hep-th/9603161
https://doi.org/10.1007/JHEP10(2012)128
https://arxiv.org/abs/1208.2695
https://inspirehep.net/search?p=find+EPRINT+arXiv:1208.2695
http://dx.doi.org/10.1103/PhysRevD.88.046005
https://arxiv.org/abs/1303.5054
https://inspirehep.net/search?p=find+EPRINT+arXiv:1303.5054
https://doi.org/10.1007/JHEP06(2013)067
https://arxiv.org/abs/1303.6970
https://inspirehep.net/search?p=find+EPRINT+arXiv:1303.6970
https://doi.org/10.1007/JHEP11(2015)204
https://arxiv.org/abs/1507.05954
https://inspirehep.net/search?p=find+EPRINT+arXiv:1507.05954
https://doi.org/10.1007/JHEP03(2014)021
https://arxiv.org/abs/1310.0463
https://inspirehep.net/search?p=find+EPRINT+arXiv:1310.0463
https://doi.org/10.1007/JHEP08(2014)132
https://arxiv.org/abs/1401.7844
https://inspirehep.net/search?p=find+EPRINT+arXiv:1401.7844
https://arxiv.org/abs/1404.1527
https://inspirehep.net/search?p=find+EPRINT+arXiv:1404.1527
https://doi.org/10.1007/JHEP12(2014)156
https://arxiv.org/abs/1406.5180
https://inspirehep.net/search?p=find+EPRINT+arXiv:1406.5180
https://doi.org/10.1007/JHEP01(2015)142
https://arxiv.org/abs/1408.4808
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.4808
https://doi.org/10.1007/JHEP11(2014)125
https://arxiv.org/abs/1408.6448
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.6448
http://dx.doi.org/10.1016/j.nuclphysb.2015.07.011
https://arxiv.org/abs/1502.06953
https://inspirehep.net/search?p=find+EPRINT+arXiv:1502.06953
https://doi.org/10.1007/JHEP12(2014)068
https://arxiv.org/abs/1408.6831
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.6831
https://doi.org/10.1007/JHEP06(2015)029
https://arxiv.org/abs/1410.7814
https://inspirehep.net/search?p=find+EPRINT+arXiv:1410.7814
https://doi.org/10.1007/JHEP04(2016)080
https://arxiv.org/abs/1512.05791
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.05791
http://dx.doi.org/10.1007/s002200050154
https://arxiv.org/abs/hep-th/9701162
https://inspirehep.net/search?p=find+EPRINT+hep-th/9701162
https://doi.org/10.1088/1126-6708/1998/07/012
https://arxiv.org/abs/hep-th/9805206
https://inspirehep.net/search?p=find+EPRINT+hep-th/9805206


J
H
E
P
0
6
(
2
0
1
7
)
1
5
6

[20] P. Berglund and P. Mayr, Heterotic string/F theory duality from mirror symmetry,

Adv. Theor. Math. Phys. 2 (1999) 1307 [hep-th/9811217] [INSPIRE].
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