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Discrete temporal solitons along a chain of nonlinear coupled
microcavities embedded in photonic crystals
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We demonstrate that spatiotemporal discrete solitons are possible in nonlinear photonic crystal structures.
Analysis indicates that these states can propagate undistorted along a series of coupled resonators or de-
fects by balancing of the effects of discrete lattice dispersion with material nonlinearity. In principle, these
self-localized entities are capable of exhibiting very low velocities, depending on the coupling coefficient among
successive microcavities. This class of solitons can follow any preassigned path in a three-dimensional envi-
ronment. © 2002 Optical Society of America
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Photonic crystals are artificial microstructures in
which the refractive index is periodically modulated
at a length scale comparable to the wavelength of
operation.1,2 For specific crystal configurations, this
index periodicity can lead to a complete photonic
bandgap (in a certain range of frequencies), thus in-
hibiting wave propagation in all three directions.1 As
noted in several studies, the presence of gaps in
the macroscopic dispersion relation of such periodic
structures introduces novel features that one can
exploit to control the propagation of light. In this
respect, photonic crystals are highly promising in
terms of integrating useful optical components such
as waveguides, couplers, cavities, and filters on the
same substrate.2

Recently, a new type of optical waveguide that
involves a periodic sequence of coupled high-Q reso-
nators was proposed.3,4 In such a system, wave-
guiding is accomplished via light hopping or tunneling
among successive microcavities that effectively act as
defects within the crystal. Interestingly, this process
has much in common with electronic transport in
crystalline solids when it is described within the so-
called tight-binding approximation.3 – 7 Optical wave
propagation in both linear and x �2� nonlinear cou-
pled-resonator optical waveguides has also been
investigated.8,9 Of course, like any other wave-
guide, including those in photonic crystals,10 coupled-
resonator optical waveguides are dispersive elements
and can thus cause signif icant pulse broadening
during propagation. These group-velocity dispersion
effects are of course expected to be more pronounced
for relatively short pulses (i.e., when the pulse occupies
only a few cavities). Therefore, it will be of interest
to find ways to counteract dispersive effects in such
systems.

In this Letter we show that spatiotemporal discrete
solitons can propagate undistorted along a chain of cou-
pled nonlinear high-Q cavities or defects that are em-
bedded in a photonic crystal structure. Such states
are possible as a result of the balance between the ef-
fect of discrete lattice dispersion with that of material
nonlinearity. These self-localized entities are capable
of exhibiting very low group velocities, depending on
the coupling strength among successive microcavities,
and in principle they can remain immobile like frozen
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bubbles of light. In addition, this class of solitons can
be effectively navigated along any preassigned path
in a three-dimensional environment. Methods of opti-
mizing their transport efficiency when they encounter
sharp bends are also discussed.

We begin our analysis by considering a periodic
sequence of identical coupled high-Q microcavities
or defects, similar to that shown schematically in
Fig. 1. In principle, these defects can confine light in
either two- or three-dimensional geometries, provided
that they are surrounded by an appropriate photonic
bandgap structure.2 The distance between successive
resonators (or primitive cells) is D, and the material
is taken here to be Kerr nonlinear. Furthermore,
we assume that each cavity–defect is single mode,11

oscillating at an eigenfrequency v0. The electromag-
netic mode of each resonator in isolation is given by
E � E0�r�exp�2iv0t� and H � H0�r�exp�2ivot�, where
E0�r� and H0�r� represent the cavity eigenmodes. Ev-
idently, because of proximity, f inite coupling exists
between successive defects. To describe this cou-
pling process as well as the effects arising from non-
linearity, we derive the nonlinear equations of motion,
using the Lorentz reciprocity theorem. To do so, let
us assume that the presence of the other cavities
near a particular site perturbs the total permit-
tivity from e to e0. In general, the perturbed fields
E0 � E0

0�r, t�exp�2iv0t� and H0 � H0
0�r, t�exp�2iv0t�

obey = 3 E0
0 � m0�iv0H0

0 2 ≠H0
0�≠t� and

= 3 H0
0 � e0�2iv0E0

0 1 ≠E0
0�≠t�. By applying the

divergence theorem to the quantity = ? �E0
� 3 H0

0 1

E0
0 3 H0

�� and by using Maxwell’s equations, we
obtain the Lorentz reciprocity relation:

Fig. 1. Array of microcavities or defects embedded in
a photonic crystal structure. The distance between
elements is D.
© 2002 Optical Society of America



April 15, 2002 / Vol. 27, No. 8 / OPTICS LETTERS 569
~
ZZ

ds ? �E0
� 3 H0

0 1 E0
0 3 H0

��

�
ZZZ

dv
∑
iv0�e0 2 e�E0

0 ? E0
� 2 e0E0

� ?
≠E0

0

≠t

2m0H0
� ?

≠H0
0

≠t

∏
. (1)

Since E0 and H0 represent bound modes that vanish at
infinity, the surface integral of Eq. (1) is equal to zero.
Next, we express the perturbed fields as a time-vary-
ing superposition of the cavities’ bound states, e.g.,
E0

0�r, t� �
P

am�t�E0m and H0
0�r, t� �

P
am�t�H0m,

where the eigenfunctions E0m � E0�r 2 rm� and
H0m � H0�r 2 rm� are localized at the lattice points.
If, in Eq. (1), we let E0 � E0n and H0 � H0n, and
keeping in mind that the material is Kerr nonlinear
�n2 � n0

2 1 2n0n2jEj2�, we obtain the discrete non-
linear evolution equations:

i
dan

dt
1

X
cmnam 1 gjanj

2an � 0 , (2)

where the linear coupling coeff icients cmn are

cmn �
v0

RRR
dv�e0 2 e�E0n

� ? E0mRRR
dv�m0jH0nj2 1 ejE0nj2�

(3)

and the self-phase modulation strength, g, is given by

g �
2n0n2e0v0

RRR
dvjE0nj

4RRR
dv�m0jH0nj2 1 ejE0nj2�

. (4)

If we now consider only nearest-neighbor interactions
(as, for example, in a straight chain of resonators),
Eq. (2) takes the form

i
dan

dt
1 Dvan 1 c�an11 1 an21� 1 gjanj

2an � 0 . (5)

Dv � cmm represents a small shift in the eigenfre-
quency v0 that arises from the presence of neighboring
cavities. As a result, the effective eigenfrequency of
each resonator in this chain is v0

0 � v0 2 Dv. In ad-
dition, c � p�2tc (in inverse time units) is the coupling
strength between successive sites, where tc is the time
required for one cavity to completely couple its energy
to its neighbors (in the linear regime). Note that the
linear part of Eq. (5) is in agreement with the results
of a recent study concerning coupled defects in photonic
crystals.12

Equation (5) describes the evolution dynamics of the
optical field in a nonlinear chain of resonators or mi-
crocavities. The equation has the form of a discrete
nonlinear Schrödinger equation that is known to ex-
hibit discrete soliton (DS) solutions. It is noteworthy
that, so far, in nonlinear optics the only other system
that happens to support (spatial) DS states is that of
nonlinear waveguide arrays.13 However, unlike their
spatial cousins,13,14 the DSs reported here are by na-
ture spatiotemporal entities. The dispersive proper-
ties of this lattice become apparent if one considers
the linear dispersion curve of Eq. (5). This curve can
be obtained by use of the discrete plane-wave solution,
exp�i�Vt 2 Kxn��, at low amplitudes, where xn � nD
and V and K are its angular frequency and wave num-
ber, respectively. In this case, one readily f inds that
V � 2c cos�KD� 1 Dv, which, in turn, describes the
photonic band structure of this lattice within the Bril-
louin zone.

In general, Eq. (5) does not exhibit closed-form
solutions. Yet, in two limiting cases (for broad
and highly localized pulses), this equation can be
accurately treated analytically. For example, for
broad enough solitons, the so-called long-wavelength
approximation can be employed. In this case, to
understand better how these discrete solitons can
propagate in a nonlinear resonator array let us as-
sume that the discrete amplitudes an can be written
as an � Fn exp�iqn 1 it�Dv 1 2c cos�q���, where
q represents a phase difference among successive
microcavities. If the optical f ield varies slowly
from site to site (long-wavelength approximation),
then one can use a Taylor series expansion, i.e.,
Fn61 � F 6 DFx 1 �D2�2�Fxx, where x denotes a
continuous coordinate along the resonator chain and
F is now a continuous envelope encompassing the
discrete field distribution. Substituting these expres-
sions into Eq. (5), we obtain a nonlinear Schrödinger
equation:

i
µ

≠F

≠t
1 ne

≠F

≠x

∂
1 cD2 cos�q�

≠2F

≠x2 1 gjFj2F � 0 ,

(6)

where ne � 2cD sin�q� is the wave’s group velocity in
this system. The traveling soliton solutions of Eq. (6)
are readily found to be

F � F0 sech
µ
x 2 net

x0

∂
exp�imt� . (7)

In Eq. (7), F0 represents the peak amplitude of this
traveling soliton and x0 is its spatial width, also
related to its pulse width t0 via x0 � net0. Further-
more, F0

2 � 2cD2 cos�q��gx0
2 and m � cD2 cos�q��x0

2.
Equation (7) clearly demonstrates that spatiotemporal
DSs can indeed propagate at a group speed ne in
lattices of nonlinear coupled defects or resonators.
These entities are possible as a result of the balance
between the effects of nonlinearity and that of tem-
poral dispersion that arises from the linear coupling
among discrete sites. The optical field profile of
such a moderately conf ined discrete soliton is shown

Fig. 2. Temporal discrete soliton propagating along a non-
linear chain of coupled resonators at a group speed ne.
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Fig. 3. Three-dimensional pathway of coupled resonators.

schematically in Fig. 2. The soliton eigenvalue m

in Eq. (7) represents an important quantity, since
it relates the carrier frequency vc of the exciting
laser to the rest of the soliton parameters, i.e.,
vc � v0 2 Dv 2 cD2 cos�q��x0

2. Thus, given vc and
x0, the discrete phase shift q as well as the other
soliton parameters can be uniquely determined. In
principle, the soliton group velocity ne can be very low
for very small coupling coefficients or for q � 0, p. If
the phase shift is q � 0, the group velocity is nc � 0,
and thus the DS becomes in essence immobile (frozen
light). However, for 0 # q # p�2, when the lattice dis-
persion is anomalous �cD2 cos�q� . 0� this DS propa-
gates at ne � 2cD sin�q�. For q � p, the dispersion is
normal (for c . 0), and thus immobile staggered dark
solitons are expected to exist.15 Similarly, when the
nonlinearity of the chain is of the defocusing type, dark
solitons are allowed at q � 0 and staggered bright
solitons are expected to exist at the end of the Brillouin
zone16 �q � p� when again c . 0. The regime close
to q � p�2 is also of interest, since to f irst order the
dispersion is close to zero, thus allowing dispersion
management as well as dispersion-free propagation in
the linear regime.17 In addition to the weakly or mod-
erately localized DS states as approximately described
by Eq. (7), other considerably more confined solutions
of Eq. (5) are also known to exist. This latter type
of DS is associated with nonlinear defect states that
have altogether different transport properties because
of Peierls–Nabarro effects. In this case, the discrete
field distribution (in self-focusing systems with q � 0)
has approximately the form an � a0 exp�2jnjD�x0�.

Finally, we would like to mention that this class of
solitons can be navigated along any preassigned path
in a three-dimensional environment. This could oc-
cur, for example, in a three-dimensional chain of non-
linear coupled resonators (completely surrounded by
a photonic crystal), as depicted in Fig. 3. As shown
in Refs. 18 and 19, ref lection losses in such a discrete
system arise when the soliton traverses a sharp bend.
This is because the f inite coupling strength k between
the two sites around the corner plays an important role
in this process. Yet these bending losses can be essen-
tially eliminated by appropriately engineering the cor-
ner site of the bend. Following the analysis in Ref. 18,
these losses are eliminated by slightly detuning the
corner site by an amount DV in the effective eigen-
frequency of the resonator according to

DV

c
� 2

µ
2k

c

∂ ∑
1 1

k

c
cos�q�

∏

�1 2 �k�c�2�
. (8)

The required detuning DV at the corner can be ob-
tained by changing either the dimensions or the index
composition of the microcavity.

In conclusion, we have shown that temporal discrete
solitons can propagate along a chain of nonlinear
coupled resonators or defects that are embedded in a
photonic crystal structure. This class of solitons can
effectively follow any preassigned path in a three-
dimensional environment.

This work was supported by the U.S. Army Re-
search Off ice through a Multidisciplinary University
Research Initiative, by the National Science Founda-
tion, and by the Pittsburgh Supercomputing Center.

References

1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
2. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Pho-

tonic Crystals: Molding the Flow of Light (Princeton
U. Press, Princeton, N.J., 1995).

3. N. Stefanou and A. Modinos, Phys. Rev. B 57, 12127
(1998).

4. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, Opt. Lett.
24, 711 (1999).

5. M. Bayindir, B. Temelkuran, and E. Ozbay, Phys. Rev.
Lett. 84, 2140 (2000).

6. M. Bayindir, B. Temelkuran, and E. Ozbay, Phys. Rev.
B 61, R11855 (2000).

7. M. Bayindir and E. Ozbay, Phys. Rev. B 62, R2247
(2000).

8. S. Mookherjea and A. Yariv, Opt. Express 9, 91 (2001),
http://www.opticsexpress.org.

9. Y. Xu, R. K. Lee, and A. Yariv, J. Opt. Soc. Am. B 17,
387 (2000).

10. M. Notomi, K. Yamada, A. Shinya, J. Takahashi,
C. Takahashi, and I. Yokohama, Phys. Rev. Lett. 87,
253902 (2001).

11. P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Phys.
Rev. B 54, 7837 (1996).

12. A. L. Reynolds, U. Peschel, F. Lederer, P. J. Roberts,
T. F. Krauss, and P. Maagt, IEEE Trans. Microwave
Theory Tech. 49, 1860 (2001).

13. D. N. Christodoulides and R. I. Joseph, Opt. Lett. 13,
794 (1988).

14. H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R.
Boyd, and J. S. Aitchison, Phys. Rev. Lett. 81, 3383
(1998).

15. R. Morandotti, H. S. Eisenberg, Y. Silberberg, M. Sorel,
and J. S. Aitchison, Phys. Rev. Lett. 86, 3296 (2001).

16. Y. S. Kivshar, Opt. Lett. 14, 1147 (1993).
17. H. S. Eisenberg, Y. Silberberg, R. Morandotti, and

J. S. Aitchison, Phys. Rev. Lett. 85, 1863 (2000).
18. D. N. Christodoulides and E. D. Eugenieva, Opt. Lett.

26, 1876 (2001).
19. D. N. Christodoulides and E. D. Eugenieva, Phys. Rev.

Lett. 87, 233901 (2001).


