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Abstract In this paper, we introduce a novel discrete

chaotic map named zigzag map that demonstrates excellent

chaotic behaviors and can be utilized in truly random

number generators (TRNGs). We comprehensively inves-

tigate the map and explore its critical chaotic characteris-

tics and parameters. We further present two circuit

implementations for the zigzag map based on the switched

current technique as well as the current-mode affine

interpolation of the breakpoints. In practice, implementa-

tion variations can deteriorate the quality of the output

sequence as a result of variation of the chaotic map

parameters. In order to quantify the impact of variations on

the map performance, we model the variations using a

combination of theoretical analysis and Monte-Carlo sim-

ulations on the circuits. We demonstrate that even in the

presence of the map variations, a TRNG based on the

zigzag map passes all of the NIST 800-22 statistical ran-

domness tests using simple post processing of the output

data.

Keywords Truly random number generator �
Current-mode circuits � Switched-current technique �
Variability � Discrete-time chaotic maps � Tent map

1 Introduction

Chaos is a non-periodic, long-term non-predictive behavior

that can be generated by certain nonlinear dynamical sys-

tems [1]. The chaotic systems are inherently deterministic

given the initial state of the system. The chaotic behavior is

a result of the exponential sensitivity of the system to the

initial state that can not be exactly determined in practice.

Chaotic waveforms have been extensively used in various

research areas including biology for the modeling of the

behavior of human organs [2], telecommunications for the

modulation of the signals, chaotic oscillators, and chaotic

encryption of the data [1, 3, 4], and cryptography for the

security of the system [5].

Cryptography serves as the security block for the

transmission of a message in the presence of eavesdrop-

pers [5]. The security of a cryptographic system relies on

the security of the truly random number generator

(TRNG). A TRNG is capable of producing uncorrelated

and unbiased binary sequences through a nondeterministic

and irreproducible process [6]. Many practical crypto-

graphic systems use a pseudo-random number generator

(PRNG) as their random bit generator. PRNG is a

deterministic system that produces a periodic limited-

length binary sequences using a much shorter seed [5].

The period of the generated sequence grows exponentially

with the length of the seed. The output of the PRNG with

length much less than one period demonstrates random

behavior in terms of bias and correlation between the

generated bits. However, the entropy of any sequence
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generated using a PRNG is limited to the entropy of the

seed sequence by the data processing theorem [7]. Con-

sequently, a truly random seed maximizes the entropy of

the sequence. Furthermore, the seed has to be periodically

changed to keep the system secure. The large period of

PRNG requires a large amount of storage capacity and

redundant circuitry that makes PRNGs ineffective for

high speed low cost cryptosystems [5].

Software programs have been used for the implemen-

tation of TRNGs, such as time interval between keystrokes

or mouse movements, system clock, content of input–out-

put (I/O) buffers, and operating system values such as

network statistics [5, 8]. Similar to most PRNGs, software

based TRNGs generate output data using computer, which

is in a large but finite number of states resulting in a

pseudo-random output sequence [5]. In order to enhance

the quality of these TRNGs, a complex combination of

different sources of randomness should be used. This

combination is practically inefficient, slow, and non-

integrable.

On the other hand, hardware based TRNGs utilize

inherent randomness of circuitry. The high entropy TRNG

can be generated by the inherent randomness of the natural

phenomena such as, the thermal and shot noise of the

analog circuitry and the frequency instability (phase noise)

of oscillators [5]. Noise is presented in electronic circuits

and it is also an important parameter in designing ampli-

fiers and RF/analog systems [9–16]. Direct amplification of

the thermal noise of a resistor followed by a sampling stage

seems to generate random sequences. However, this

structure can not be used in integrated circuits due to the

sensitivity to deterministic environmental variations such

as power supply signals [17]. Most of the existing TRNGs

are based on oscillator jitter, which is the variation of low-

to-high and high-to-low transition points of the oscillator.

If a low frequency oscillator with high jitter is used to

sample the output of a high frequency oscillator, a random

sequence can be obtained. Intel and Via use this structure

in their security platforms [18, 19]. However, the bit rate of

a jitter-based random bit generator is limited to about

100 kbps [20], which is not suitable for high speed cryp-

tosystems. The use of continuous-time chaotic systems has

been recently proposed for the generation of random

numbers [21]. However, these methods suffer from the

high correlation between the generated bits resulting in

complicated post-processing of the generated bits. There-

fore, these methods are not efficient in practice due to the

sensitivity to the deterministic environmental variations

that deteriorates the quality of the output random bit

streams. In conclusion, these methods are not efficient in

practice due to the sensitivity to deterministic environ-

mental variations that deteriorates the quality of the output

random bit streams.

A discrete-time chaotic map, formed by the iteration of

the output value in a transformation function, can be used

for the generation of random numbers. Simple piecewise

affine I/O characteristics have been extensively used for the

generation of random bits, e.g., the Bernoulli map [6] and

the tent map [22]. The entropy source of a chaotic map is

the inherent noise of the system, which is amplified in the

positive gain feedback loop by the iteration of the output

signal in the map function [6]. The output of the system

will be unpredictable after a few first output samples.

Pipelining multiple stages of the chaotic map circuit can

increase the overall open loop gain of the system. The

increased open loop gain can reduce the number of bits that

need to be discarded in the beginning of the sequence due

to the small inherent noise of the system. Pipelining mul-

tiple stages of the chaotic map circuit can also increase the

speed of the whole system while contributing to the ran-

domness and therefore improving the quality of the gen-

erated bits. The output of each stage is connected to the

input of the successive stage. High Speed, capability of

integration, and the high quality of the generated bits make

the discrete-time chaotic maps excellent candidates for

high speed embeddable random number generators. Dis-

crete-time chaotic TRNGs are much faster than the jitter

based TRNGs. The high speed of these systems mainly

owes to the circuit implementation and the pipelined

structure, which can increase the output bit rate. The

capability of being integrated is another important positive

point for this kind of TRNGs.

Imperfections in practical implementation of TRNGs,

so-called non-idealities, result in bias and correlation in the

generated binary sequence of a truly random bit sequence.

Hence, the post processing of the output data is required to

improve the statistical characteristics of the bit sequence.

Neumann [23], SHA-1 [24], and SHA-2 [25] are the most

widely used post-processing algorithms. All of these

methods suffer from the trade off between bit-rate and the

entropy of the generated binary sequence. Theory suggests

that the knowledge of the non-ideality of the chaotic map

can improve the efficiency of the post processing unit

[26–28]. NIST 800-22 statistical test suite is a standard

evaluation tool for the examination of the quality of the

generated bit stream [29]. This test can only prove that a large

binary sequence is not random if it fails the tests. This test

suite can not be used for the evaluation of the true random-

ness of the binary sequence. It is impossible to analytically

prove the truly randomness of a sequence of data.

The practical application of both the tent map and the

Bernoulli map can be hindered by noise and implementa-

tion errors, where they are unable to maintain the state of

the system confined in the map [6]. In the preliminary

version of this work [30] , we proposed zigzag map as a

modification to the tent map that would make it robust to
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implementation variations and presented a very basic

implementation. The zigzag map is interchangeable with

the tent map in practice while solving the confinement

problem. In this paper, we present two implementations for

the zigzag map based on the switched current technique as

well as the current-mode affine interpolation of the

breakpoints for high speed applications. The current mode

circuits are capable of producing high gain, less distortion,

and high speed compared to voltage mode circuits. Less

sensitivity to switching noise and process variations are

other benefits of the current mode circuits. The effect of

process variation on the parameters of the chaotic map is

explored and a set of Monte Carlo simulations is used to

quantize the map non-idealities. The second circuit dem-

onstrated less sensitivity to process variations. The post-

processing of the output data of a non-ideal map passes the

randomness test suite.

This paper is organized as follows. In Sect. 2, the

practical problems of the Bernoulli and tent maps are

pointed out. Then, we present the zigzag map and inves-

tigate its chaotic characteristics. In Sect. 3, we explain the

feasibility of implementation of the presented zigzag map.

The deviation of the circuit I/O characteristic from the

desired map deteriorates the quality of the output random

bit sequences. This effect is modeled and analyzed in Sect.

4. The generated sequence is fed to a post-processing unit

and validated against NIST 800-22 randomness test suite.

Section 6 concludes the paper.

2 Discrete-time chaotic map TRNGs

2.1 Common discrete-time chaotic maps

Discrete-time chaotic maps are a subclass of discrete-time

nonlinear dynamical systems that can exhibit chaotic

behaviors that are formed by the iteration of the output of

the system into the system in every time step. A chaotic

map is deterministic. If the initial state of a deterministic

system is exactly known, the output behavior can be pre-

dicted exactly. Impossibility of exact knowledge of the

initial state in practice is the reason of the chaotic behavior.

Bernoulli and tent maps are two most commonly used

discrete-time chaotic maps. The Bernoulli shift map,

shown in Fig. 1(a), is a piecewise affine map that exhibits

chaotic behavior. A 0 is generated if xn \ 1/2 and a 1 is

generated if xn [ 1/2. The probability of all transitions are

equal to 1/2 regardless of the current state of the system. A

pipelined ADC is used for practical implementation of the

Bernoulli shift map. The I/O characteristic of a pipelined

ADC is shown in Fig. 1(b). In practice, this map suffers

from not being able to confine the output sequence in the

chaotic region of (-1, 1). If for any reason the input value

becomes slightly greater than 1 or less than -1, the output

stream gets out of the map and will never return back to the

map. Decreasing the slope from 2 and using 1 1
2
-bit ADC

are the most widely solutions used to overcome this

problem [6, 31], which results in very complicated

structures.

The tent map, shown in Fig. 1(c), also exhibits chaotic

behavior [22, 32]. This system has been proved to be

asymptotically stable with a uniform density distribution. 0

is defined as (0, 1/2) and 1 is defined as (1/2, 1). The

proposed structures are sensitive to implementation varia-

tions [33]. A tailed tent map was presented in [33], which

has a uniform density distribution. However, the process of

generating bits from the tailed tent map is not straightfor-

ward. However, the post-processing required to compen-

sate for non-idealities can result in complicated circuitry or

reduced output bit-rate.

2.2 Presented zigzag map

We introduce a novel discrete chaotic map and call it the

zigzag map, shown in Fig. 1(d). It is notable that the output

values of the zigzag map will alternate between positive

and negative values. We will show later that the alternation

between positive and negative values will be helpful in the

presence of implementation non-idealities. As shown in

Fig. 1(d), the tent map and the zigzag map have outputs

that are equal in absolute value due to the symmetry but the

output values alternate between positive and negative

values in the zigzag map. Thus, the absolute value of the
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Fig. 1 a The Bernoulli shift map. b Practical implementation of the

Bernoulli shift map using a pipelined ADC. c The tent map. d Our

presented discrete chaotic map, called zigzag map
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generated output stream is the same for both maps. In other

words, if x1, x2 and x3 are three successive outputs of the

tent map, the outputs of the zigzag map will be given by

x1, - x2 and x3. Generation of bits from this map is

straightforward. |xn| \ 1/2 represents 0 and |xn| [ 1/2 rep-

resents 1. The generalized zigzag map can be defined as

xnþ1 ¼
�mðxn þ 2

jmjÞ �1\xn� � 1
jmj

mxn � 1
jmj\xn� 1

jmj
�mðxn � 2

jmjÞ 1
jmj\xn� 1

8
><

>:
; ð1Þ

where m is a real number and m 2 ð�3; 3Þ: In this equation,

m = -2 represents the zigzag map. This formulation can

be used to find the bifurcation diagram of the presented

chaotic map with respect to the bifurcation parameter

m (Fig. 2). A bifurcation diagram can be used to identify

the chaotic behavior of a system. It can represent the

possible steady state values of a dynamical system as a

function of the bifurcation parameter.

Without loss of generality, the initial state of the system

has been assumed to be a slightly positive number, i.e.,

x0 = 0?. We start analyzing the diagram from larger val-

ues of m�m = 3 is a critical point in the diagram. This case

is at the verge of instability, since the system can be driven

out of the map. In 2 \ m \ 3, the system is chaotic and

stable. Chaos can be observed for 1 \ m \ 2. Since the

initial state of the system has been assumed to be positive,

the output value is confined to positive values. If the sys-

tem gets out of the positive region and goes into the

negative region it will get trapped in the negative region.

For |m| \ 1, no chaotic behavior is observed. The output of

the system will ultimately settle in zero. -2 \ m \ -1 is

also a chaotic region for the system. The output in this

region alternates between positive and negative values.

Note that there is no asymptotic density distribution since

for odd and even time steps, the output values are in the

positive and negative regions, respectively. In other words

lim fnðxÞ does not exist as n!1: The bifurcation diagram

of the tent map is the same as given here for 0 \ m \ 2.

3 Switched-current circuit implementation

for the zigzag map

Current mode circuits have recently attracted great atten-

tion [34]. The signal is represented by current of branches

instead of voltage of the nodes in the traditional voltage-

mode circuits. Reduced distortion, high gain, low input and

high output impedances, high speed, less sensitivity to

switching noise and better ESD immunity are other

excellent characteristics of current mode circuits that

makes them one of the best candidates in the future tele-

communications, analog signal processing, multiproces-

sors, and high speed computer interfaces [34].

In order to consider the effect of inter-die (different

devices in one chip) or intra-die (among devices on various

chips) variations, we design a current mode circuit with

low sensitivity to the process variations. The symmetric

double break point current mirrors are less sensitive to the

process variations compared to other implementation of

piecewise linear I/O current characteristics [35]. If we

combine two different double break point circuits together,

we can expect the I/O characteristic curve, shown in

Fig. 1(d). One of the current mirrors is implemented by

NMOS transistors, while for the sake of symmetry the

other one is implemented by PMOS transistors. The double

break point current mirrors do not accumulate errors

originated from process variations. It is straightforward to

design a desired piecewise linear I/O curve with this cir-

cuit. The preprocessing part of the circuit consists of two

track and hold stages that enable the iteration of the output

into the system.

The upper side of the circuit, shown in Fig. 3(a), can

generate the double break point current mirror with the

gain of 4, while the gain of the lower part is 2. Adding

the output current of this two structures, we can generate

the zigzag map by the I/O characteristic of the presented

circuit. I1, I2, and I3 are the current sources connected to

the upper and lower side, discerning by an extra p and n

index for upper (PMOS) and lower (NMOS) circuits,

respectively. The values of these current sources are as

follows:

0 1 2 3-1-2-3

m

-1

1

x 0

0.2

0.4

0.6

0.8

-0.2

-0.4

-0.6

-0.8

m=-1 m=-2 m=-3

Fig. 2 Bifurcation diagram for the zigzag map with bifurcation

parameter m, used in (1). The generalized zigzag map with three

different values of m (-1, -2, and -3) is shown in the inset
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I1p ¼ x; I2p ¼ 2x; I3p ¼ 0;

I1n ¼ 2a; I2n ¼ 2xþ a; I3n ¼ 2a:
ð2Þ

The I/O characteristics for x = 3.6 lA and a = 0.5 lA

as an example is shown in Fig. 3(b).

The reference current sources are implemented with

resistors whose thermal noise can increase the randomness

and uncertainty of the system.

Another common method to generate discrete chaotic

maps is based on the current-mode affine interpolation of

the breakpoints [36]. This can be implemented by the affine

interpolation of the value at the breakpoints [36]. In this

method, any affine partition of the map is implemented

using one elementary block based on the detection of the

breakpoints. Therefore, it is straight-forward to find out

whether the output value is within a certain affine partition

of the map. In order to obtain the open-loop characteristic

function of the circuit, the output of the circuit was con-

nected to a matched load with the same impedance as the

input impedance of the circuit. The simulations were car-

ried out with CADENCE in IBM 0.13 lm technology. In

Fig. 3(b), the I/O characteristic of the first circuit obtained

by simulation is shown. x and a are two parameters in the

map, highlighted in Fig. 3(b). ±2x is the required distance

for the map. a is the extra length in the positive and neg-

ative side of the map. a = 0 can cause a trap point at zero,

(a)

(b)

Fig. 3 a The double breakpoint

current mirrors for the

generation of the I/O current

characteristic of the zigzag map.

b The I/O current characteristic

of the implemented circuit with

the parameters (x = 3.6 lA and

a = 0.5 lA)
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while considering non zero a can remove this state from the

system and the possibility of trapping in the zero can be

zero. The causes of slight changes in the simulation results

will be taken into account in the next section. We per-

formed HSPICE simulations in IBM 0.13 lm technology

for the second circuit. The resulting I/O current charac-

teristics of the circuit is shown in Fig. 4. The small vari-

ations of the map compared to the ideal map will be

explained in the next section.

Four of the above maps are pipelined in a feedback loop.

The noise floor of the analog circuits will set the initial

state of the system that results in the non-predictive

behavior of the system after a few first outputs. The

inherent noise of the system is really small. However, first

m runs of the system amplify the noise to a detectable

range. If the gain of the open loop system is A, we should

discard first m bit of the output stream given by

m = logA(P0/N), where P0 and N are the detecting power

and noise power, respectively. A single stage of the system

has a gain 2 and the whole system has a gain of 16. The

number of bits that need to be discarded from the beginning

of the output sequence will be about 20.

By investigating the transient response of both circuits

with an input current pulse, we demonstrated that at the

worst case the output would settle within 1 % of its final

value in less than 12.5 and 15 ns for switched current

circuit and interpolation of the values at breakpoints cir-

cuit, respectively.

4 Modeling the impact of implementation variations

This section is divided into two parts. In Subsect. 4.1, we

derive the impact of the variations of the physical

parameters of the presented circuit as non-idealities of the

chaotic map. In Sect. 4.2, we investigate the transition

matrix of the underlying Markov process in the presence of

variations in the parameters of the chaotic map. We also

quantify the bias and correlation in the output bit sequence.

4.1 The main causes of non-ideality in the presented

circuit

The circuit is based on the switched current technique.

Hence, the process, voltage and temperature (PVT) varia-

tions mainly impact two different parts of the circuit,

namely the sources of currents that are the current mirrors

and the current limiter stages.

In a current mirror, the current I that is supposed to

mirror Is, source current, is designed using the ratio of the

width of transistors W2/W1. The current in a MOS transistor

in saturation region is given by

I ¼ 1

2
lCox

W

L
ðVGS � VthÞ2ð1þ kVDSÞ: ð3Þ

This suggests that

I2

I1

¼ W2

W1

L1

L2

1þ k2VDS2

1þ k1VDS1

: ð4Þ

Since we are not designing in deep sub micron processes,

we can neglect the effect of variations in k. We can

approximate the variation in different process and VDS

provided that the changes compared to the parameters are

negligible. Hence,

I2

I1

� W2

W1

1þ 2jDW j þ 2jDLj þ 4
jDVthj

Vgs � Vth
þ 2

kjDVDSj
1þ kVDS

� �

;

ð5Þ

where DW ;DL;DVth; and DVDS are the variation in width,

length, threshold voltage, and the drain-source voltage of

the transistors, respectively. If the VDS changes are large,

we should compensate that by further tuning of the width

of the transistors. We need to investigate the worst-case

variations. The impact of variations in VDS and Vth is in the

range of 1% which can be ignored compared to other

parameters [37, 38]. Thus, the inner die variations for width

of two different transistors in the current mirror will play

the dominant role in altering the gain of the current mirror

topology. The standard deviation of the variations are

around 5 % [38–41].

The current limiter can not exactly provide the desired

fixed current due to the output resistance of the transistors.

This non-ideality results in a small variation in the slope in

the I/O characteristic of the circuit, which is proportional to

k and the bias current of the circuit. While we can reduce

this effect by further tuning of the width of transistors, the

variation is inevitable.

Fig. 4 The expected zigzag map (dashed line) and resulting I/O

current characteristic of the zigzag map of the implemented circuit

(solid line) based on the current-mode affine interpolation of the

breakpoints with the parameters (x = 3.6 lA and a = 0.5 lA)
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4.2 Investigating the effect of map non-idealities

on bias and correlation of output data sequence

We first consider a map with symmetric slope variation as in

Fig. 5(a, b). We later extend to the non-symmetric case when

we study the impact of post-processing. As discussed earlier,

the ideal zigzag map has the same functionality as the tent

map except for the alternations of the output between posi-

tive and negative values. Due to the symmetry in the map

function and the bit generation process, the non-ideal maps

can be analyzed using the maps shown in Fig. 5(c, d). Since

the latter are easier to work with, we use them for the rest of

the derivations. Note that without loss of generality, every

chaotic map can be scaled to (-1, 1). We assume the slope

(gain) in the rising part of the map to be 2(1 ? dg1) and the

gain in the falling part to be -2(1 ? dg2). The non-ideal map

function NðxÞ : ð0; 1Þ ! ð0; 1Þ is thus given by

NðxÞ ¼
2ð1þ dg1Þx x\xb

1� 2ð1þ dg2Þðx� xbÞ x [ xb

(

: ð6Þ

where xb is abscissa of the boundary between rising and

falling sections and is

xb ¼
1

2ð1þ dg1Þ
: ð7Þ

Note that our analysis of the symmetric non-ideal map is also

valid for the non-ideal tent map. In this map, bit 0 or 1 is

generated if x 2 ð0; xbÞ or x 2 ðxb; 1Þ; respectively.

Throughout our analysis, we assume that variations are

small, and we use first-order approximations for dg1 and dg2.

This assumption is valid according to our analysis of the

process variations in the current mirrors. Accordingly, xb can

be easily shown to be

xb �
1

2
ð1� dg1Þ: ð8Þ

Let d0 be the ordinate of the end point of the map with

abscissa x = 1, which is given by

d0 ¼ �ðdg1 þ dg2Þ: ð9Þ

The impact of xb and d0 is illustrated in Fig. 6(a). The

analysis of the two cases of d0 [ 0 and d0 \ 0 is slightly

different. First, consider Fig. 5(c), i.e., d0 [ 0. We want to

find a good approximation for the asymptotic probability

distribution f(x) in the map. We approximate f(x) using a four

step distribution, as shown in Fig. 5(e). Let fu denotes the

approximate probability density at x = 1. According to the

Frobenius–Perron operator, the distribution in (0, d0) can be

given by

f0 ¼
1

2
f0 ¼ 0: ð10Þ

We can calculate the distribution in (d0, 2d0), f1, as

f1 ¼
1

2
f0 þ

1

2
fu ¼

1

2
fu: ð11Þ

Finally, the probability distribution for (2d0, 4d0), f2, can

also be calculated using the same approach to be

f2 ¼
1

2
f1 þ

1

2
fu ¼

3

4
fu: ð12Þ

The probability distribution in (4d0, 1) is approximated

using f0. Now, f0 can be calculated by noting that the

probability distribution integrates to unity, i.e.,
R

f ðxÞdx ¼
1: Thus,

fu ¼
1

1� 2d0

� 1þ 2d0: ð13Þ

The results of simulation are provided in Fig. 7(a–c) for

different values of d0. We can see that our approximate

model captures the impact of the variations even for fairly

large values of d0.

The case of Fig. 5(d), i.e., d0 \ 0, can be analyzed

similarly. The four step density distribution is shown in

Fig. 5(f). We derive the distribution in (0, |d0|) as

(a) (b)

(c)

(e) (f)

(d)

Fig. 5 The zigzag map with a fixed offset. The slope variations for

a negative and b positive changes. The equivalent tent map for the

(a) and (b) are shown in (c) and (d), respectively. The probability

density function as a function of the chaotic map parameter for (c) and

(d) is depicted in (e) and (f), respectively
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f0 ¼
1

2
f0 þ

1

2
fu þ

1

2
fu ¼ 2fu: ð14Þ

The probability distribution in (|d0|, 2|d0|), i.e., f0, the

probability distribution in (2|d0|, 4|d0|), i.e., f1, and the

distribution in (|4d0|, 1), i.e., f2, can be calculated in a

similar way. Therefore, f1 ¼ 3
2

fu and f2 ¼ 5
4

fu: Finally, we

have

fu ¼
1

2ð1� d0Þ
� 1þ 2d0: ð15Þ

In the case of d0 \ 0, we have fu \ 1, i.e., the value of f(x)

for x & 1 is less than unity. Again, the simulation results

presented in Fig. 7(d–f) show good agreement between the

presented model and simulation results.

We model the bit generation process using a Markov

chain as demonstrated in Fig. 6(b). The transition

probabilities of the map can be derived by integration of

the probability distribution of the map to form the transi-

tion matrix of the Markov chain as

Pð0j0Þ ¼
R xt1

0
f ðxÞdx

R xb

0
f ðxÞdx

;Pð1j0Þ ¼
R xb

xt1
f ðxÞdx

R xb

0
f ðxÞdx

;

Pð0j1Þ ¼
R 1

xt2
f ðxÞdx

R 1

xb
f ðxÞdx

;Pð1j1Þ ¼
R xt2

xb
f ðxÞdx

R 1

xb
f ðxÞdx

;

ð16Þ

where xt1 and xt2 are the points whose ordinates are equal to

xb and are shown in Fig. 5(a, b).

We use our approximate model for the evaluation of the

integrals. First, we derive p and q. i.e., P(0|0) and P(1|1).

For fairly small variations (|d0| \ 1/16), the three regions

f0, f1 and f2 lie in (0, xt1). This is indeed the region of

interest for our purposes. We derive the transition proba-

bilities as functions of dg1 and dg2. p and q are given by

p ¼ Pð0j0Þ ¼ 1

2
þ 3

2
dg1 þ 2dg2;

q ¼ Pð1j1Þ ¼ 1

2
� 1

2
dg2:

ð17Þ

Thus far, we derived the transition probabilities of the

underlying Markov chain in (16). Next, we demonstrate

that these can actually be used to derive the bias and

correlation in the output bit sequence of the truly random

number generator [42]. It is straightforward to show that

the bias is

b ¼ 1

2
� Pð0Þ

�
�
�
�

�
�
�
� ¼

1

2
� Pð1Þ

�
�
�
�

�
�
�
� ¼

jp� qj
2� p� q

: ð18Þ

Further, k1 = |p ? q - 1| is the second eigenvalue of the

transition Matrix. It can be shown that the correlation

(a) (b)

Fig. 6 a The impact of variations on the zigzag map characteristics.

b The states of the Markov chain for truly random number generation

(a) (b) (c)

(f)(e)(d)

Fig. 7 The probability distribution function of the non-ideal system for different slope variations of a ?1.25 %, b ?2.5 %, c ?5 %, d -1.25 %,

e -2.5 %, and f -5 %. The thick solid line demonstrates the presented model and the thin solid line represents the simulation results
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between the bits in the output sequence decays exponen-

tially with their distance as 2-cn, where c = -log2(k1).

Note that if dg1 = dg2 = 0, we will have p ¼ q ¼ 1
2

and

thus there is no bias (b = 0) and no correlation ðc ¼ 1Þ in

the output sequence.

5 Post processing

We performed an extensive set of Monte Carlo simulations

with HSPICE to determine the impact of process variations

on the slope of I/O characteristic curve. The absolute value

of the slope, characterized by m, should be 2 for the pre-

sented chaotic map. Monte Carlo simulation technique uses

different randomly chosen values for the transistor

parameters with a defined Gaussian distribution. We

assume that the transistor parameter values are normally

distributed and uncorrelated with a standard deviation of

2 %, which is within the range of predicted values for

current and future process technologies. Monte Carlo

simulations demonstrate that the second circuit is less

sensitive to process variations; therefore we use this circuit

for the rest of this paper. By inspecting the variation of

different linear pieces of the I/O characteristic curve as the

objective of this Monte Carlo simulation, we investigate

that the variation in slopes are less than 4 %. To be more

accurate, the standard deviation of the slopes are less than

2, 4, and 1 % for the first, second, and third linear pieces,

respectively.

Due to imperfections in practice, the existence of cor-

relation and bias is inevitable that can be removed with

post-processing unit. Von-Neumann, SHA-1, and SHA-2

post-processing algorithms are the most widely algorithms

in practice and have proved to be effective in removal of

the bias and correlation [21, 43, 44]. In Von-Neumann

algorithm, the sequence is divided into the blocks of length

two. Every 01 and 10 are considered 0 and 1, respectively,

while 00 and 11 are discarded. This results in a variable bit-

rate that is not desired. SHA-1 and SHA-2 algorithms are

proper for removing the correlation and bias from the bit

streams. Although these methods are effective, the imple-

mentation requires FPGA or complex hardware configu-

rations. The sequences of data should pass through the

post-processing stage mainly because of inherent non-ide-

alitiy factors in process or circuit.

Our post-processing module is based on the method

proposed by Addabbo et. al. [45]. The method relies on two

main facts. First, bits that are located further apart from

each other have less correlation. The correlation approa-

ches 0 as the distance of the bits approaches infinity. The

other fact is that XOR of two independent biased sequence

will result in a sequence with less bias. See [46] for details.

The debiasing block, shown in Fig. 8, consists of a shift

register of length l and an XOR gate. zn-l, which is the

output of time n - l is XORed with din(n) which is the

input of time n. l must be large enough so that zn and zn?l

are almost uncorrelated. In practice, l can be efficiently

chosen by using the estimations made in the last sections.

This has been proved to remove the bias of the output

sequence in steady state. The decorrelation block is used to

remove the correlation of the bits with a distance of kl.

Note that we take the number of stages of shift register

l and the number of stages of the map m to be prime with

respect to each other, (m, l) = 1. This will reduce greatly

the correlation between bits of distance kl, where k is not a

multiplicand of l. The presented TRNG is robust to process

and circuit variations, which provides simple post-

processing stage compared to other chaotic maps used in

TRNGs.

The output bit streams of the ideal and non-ideal I/O

characteristics are tested in NIST 800-22 test suite and the

results are presented in Table 1. As listed in the table,

before post-processing, the generated bits fail some of the

tests but after passing through post-processing unit the

generated bits pass all the tests.

In the generation of the random bits, we consider the

worst case scenario, which consists of four stages with

similar Iout/Iin characteristics. In practice, these four stages

are not exactly the same, therefore, the mismatch can

enhance the quality of random output sequence. Utilization

of four stages can also increase the total bit rate by

Clk

din

DebiasingBlock

DecorrelationBlock

dout

Register

D0(n)

Iin
T/H

Iout
Clk

D1(n+1) D2(n+2) D3(n+3)

D
F

F

Shift Register

DFF

Fig. 8 The overall implementation of the presented TRNG with four

pipelined chaotic maps. The post processing unit can remove the

correlation and bias of the bit shuffled streams with decorrelation and

debiasing blocks, respectively

Analog Integr Circ Sig Process (2012) 73:363–374 371

123



multiplying the internal clock (track and hold clock) of the

system by the number of cascading stages. The output bits

of all stages go to a 4 bit register, known as bit shuffling

[47]. The uniformity of the output bit stream is more than

the inputs. The output of the register feed to the post

processing unit.

The presented chaotic map can generate random bits,

which have lower sensitivity to the circuit parameter fluc-

tuations caused by process variation or circuit element

mismatches. In addition to low power consumption

(1.42 mW), the presented circuit can operate in clock fre-

quencies as high as 10 MHz with the overall bit rate of

40 Mbps. To calculate the worst case power consumption

of the circuit, we calculate the average power consumption

of the circuit with different input currents. Due to ran-

domness and chaotic behavior of the presented chaotic

map, the probability of the system to be in any point in the

steady state is the same.

6 Conclusion

In this paper, we presented a TRNG based on a novel

discrete-time chaotic map, namely the zigzag map, that is

capable of being used in high speed embedded crypto-

graphic systems. The proposed map proved to be chaotic

and has been implemented by switched current technology.

The random bits are generated due to the transition among

different points of the chaotic map. Pipelining four stages

in a positive feedback loop, we can amplify the inherent

noise of the system within a detectable range, which results

in random number generation. A modeling methodology

has been developed to predict the performance of the

system in the presence of non-idealities. Non-ideality

sources are modeled and their effect on the performance of

the output binary sequence (correlation and bias) has been

studied. The non-ideal binary stream has been fed to a post

processing module to increase the quality of the random

digits. The presented system has been demonstrated to

generate random bits that pass the NIST 800-22 test suite.
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