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SUMMARY

The discrete-time version of continuous-time combined model reference adaptive control (CMRAC) is
presented in this paper. A global stability proof of the overall adaptive scheme is given using arguments
similar to those used in discrete-time direct model reference adaptive control (DMRAC) but properly
modified to account for the different structure of CMRAC with respect to DMRAC. ( 1997 by John Wiley
& Sons, Ltd.
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1. INTRODUCTION

The main objective in model reference adaptive control is to reduce the error between the plant
output and the model reference output by adjusting the controller parameters. This can be
accomplished either using plant parameter estimates, i.e. by an indirect technique, or using the
tracking error to directly adjust the controller parameters, i.e. by a direct technique. However, it is
possible to improve the transient behaviour in terms of speed, accuracy and robustness if both
techniques are used together. The difficulty in this case arises from the fact that information
acquired from the two methods has to be suitably combined to guarantee global stability of the
resulting method. This problem has already been resolved by Duarte and Narendra1,2 for the
continuous-time case under ideal conditions (constant parameters, absence of external perturba-
tions and unmodelled dynamics).

In CMRAC the plant parameter estimates and controller parameters are continuously ad-
justed through difference (differential) equations. This avoids algebraic problems arising from the
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certainty equivalence principle (Bezout or Diophantine equation) which require the inversion of
matrices containing parameter estimates.

Furthermore, at any instant of time the controller and identifier parameters are assumed to be
constant, so that a closed-loop transfer function (involving both plant and controller) can be
determined. Deviations of these coefficients from the desired coefficients given by the model
reference transfer function are used to define the closed-loop estimation errors. These errors
provide the connection between the direct and indirect methods and are additionally used in the
adaptive laws.

Some of the previous ideas have also been used in other contexts. In this sense it is important to
mention the works by Kreisselmeier,3,4 where the adaptive control of an unknown continuous-
time plant is discussed and the synthesis of a feedback matrix is realized asymptotically. The proof
of convergence of such a system depends upon the persistent excitation of an external command
signal. In an other context, Kreisselmeier and Smith5 state an interesting method of adaptive
regulation for nth-order plants based on the so-called ‘identification mismatch error’. Recently,
the idea of a dynamical certainty equivalence principle has been discussed by Morse6 and
Ortega.7

The global stability of continuous-time CMRAC has been completely studied.1,2 Owing to the
importance of discrete-time algorithms in digital control a study of the discrete-time version of
continuous-time CMRAC is attempted in this paper. Several conditions for global stability of the
overall scheme are derived under ideal conditions. Some remarks on the robustness of discrete-
time CMRAC are made towards the end.

In order to prove global stability of the overall discrete-time scheme proposed here, some
modifications with respect to continuous-time CMRAC and discrete-time DMRAC have to be
introduced in the design process. For example, an auxiliary signal denoted by G( · ) has to be
introduced in the design of the identifier.

To update the controller and identifier parameters, it is necessary to compute at every instant
of time the maximum eigenvalue of a matrix involving some of the controller parameters. Because
of the structure of such a matrix, the computation turns out to be very easy.

Discrete-time versions of adaptive control schemes are more suitable for implementation in
practice than are the corresponding continuous-time algorithms. However, it is not always true
that discretized versions of continuous-time algorithms work properly using a small sampling
period and approximating time derivatives by differences. Therefore the analysis of the discrete-
time version of CMRAC is done in this paper using some of the ideas contained in continuous-
time CMRAC but also introducing new concepts to provide the scheme with global stability
properties under ideal conditions.

As in the continuous-time case, the persistent excitation conditions needed to provide para-
meter convergence of discrete-time CMRAC are no more restrictive than those obtained for
discrete-time DMRAC. This means that in spite of the increasing number of difference equations
in the overall adaptive scheme, the persistent excitation of CMRAC is similar to that derived for
DMRAC.

2. DISCRETE-TIME COMBINED MRAC

Let us consider an nth-order, discrete-time, linear and time-invariant plant defined as
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For this study it has been found that the most suitable parametrization of the plant is of the
form2
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where the pair (K, l ) is any controllable pair with K3Rn]n an asymptotically stable matrix.8 In
order to make the relationship between the parameters a3Rn, b3Rm and a, b3Rn simple
enough, (K, l) is chosen in the controllable canonical form9
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where I
n~1

denotes the identity matrix of order n!1. With this choice the relationship between
the parameters a, b, a and b is given by the polynomial identity10
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Here K(z)"det(zI!K) is the characteristic polynomial of the matrix K. The polynomial K(z)
can always be factorized as K(z)"K

1
(z)Z

M
(z), with K

1
(z) an arbitrary monic, Hurwitz poly-

nomial of degree n!m.
The control objective is to find a controller such that the plant output ½

1
(k) follows the model

reference output ½
M
(k) when kPR for any bounded reference R(k).

The control law used to achieve the above objective has the same form as in DMRAC, i.e.
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where N
K
3R is an arbitrary constant greater than one. Based on this plant representation, an

identifier of the following form is proposed:
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From (8a) and (8b) it is possible to represent the closed-loop estimation errors in terms of the
parameter errors (controller and identifier parameter errors), so that
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where the plant parameter errors gK
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where ¸~1(z) is a minimum phase, strictly proper, rational function. It is possible to
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Figure 1. Discrete-time CMRAC scheme
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To complete the design procedure, it is necessary to define the way in which the controller and
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adaptive scheme, the identifier adaptive laws are chosen as
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For the sake of simplicity we choose ¼
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2.1. Proof of stability

A stability proof of the adaptive system shown in Figure 1 is given along the same lines as in
discrete-time DMRAC8 and dynamic IMRAC.10 In order to prove that the closed-loop estima-
tion errors and the controller and identifier parameter estimation errors are bounded, a lemma is
first established. Subsequently, a theorem is stated so that it is proved that all the remaining
signals are also bounded and the tracking error (as well as the identification and closed-loop
estimation errors) tends asymptotically to zero.

For notation purposes we define the vectors p, g (k), pL (k)3R2n`2 and /@ (k), u@(k)3R2n and the
function l (k) in the following fashion:

pL (k)"[aL T (k), bK T (k), KK
1
(k), KK

3
(k)]T, p"[aT, bT, K

1
, K

3
]T

g"pL (k)!p"[gTa (k), gTb (k), gK
1
(k), gK

3
(k)]T

/@(k)"[/Th
1
(k), /Th

2
(k)]T, u@ (k)"[»T

1
(k), »T

2
(k)]T

(21)

l(k)"
K

1
K

M

(/T(k)uN (k)#e
3
(k))#t(k)e@

2
(k)!uN T(k)uN (k)e

!
(k)!e@2

2
(k)e

!
(k)

Lemma 1

Let us consider the adaptive system defined in Figure 1, where the identification error e
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Proof of Lemma 1

Let us consider the system S defined by equations (17b), (18) and (20). Let us choose the
Lyapunov function candidate
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p and k are positive real constants, M is a positive definite matrix and q is a vector defined in the
Kalman—Yacubovich lemma for discrete time.11 We will prove inequality (22b) later.

Since » (k) is a Lyapunov function for system S, then 3 (k), h
1
(k), h

2
(k), K

0
(k), K

1
(k) and the

estimates â(k), bK (k), KK
1
(k) and KK

3
(k) are bounded. Therefore assertions (i)— (iii) of Lemma 1 are

demonstrated. From definitions (10) and using (i)—(iii), inequalities (iv)—(vi) are verified. Using
relationships (18) and (20) together with inequalities (iv)— (vi) and using the definition of e

!
(k) from

(17a) and the fact that De
*
(k) D/JD(N

*
(k)) is bounded, it is shown that propositions (vii)—(ix) are

satisfied.
Adding *» (k) given in (22b) for k"0,2 ,R and considering that »(R)!» (0) is finite,

propositions (x)— (xiv) are proved. From (18) and (20) and since assertions (x)— (xiv) are true, it is
shown that inequalities (xv)—(xvii) are verified.

In order to show that (22b) is true, the following reasoning is used.

(a) Compute *» (k) from (22a).
(b) Replace the adaptive laws given by (18) and (20) and use the expressions for the closed loop

estimation errors, identification error and augmented error given by (8b), (14) and (17a)
respectively.

(c) Use the Kalman—Yacubovich lemma given in Reference 11 in the above step.
(d) Replace l(k) from (21).
(e) Use the definition of the factor N

*
(k) given by (19a), i.e.

»M T
1
(k)»M

1
(k))N

*
(k), »M T

2
(k)»M

2
(k))N

*
(k), º1 2

0
(k))N

*
(k)
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to find that

*» (k))
ce2

*
(k)

N
*
(k) A2!

c
K2

M

(1#DK
1
D#K2

M
)B!2 DK

1
D
eTh

1
(k)eh

1
(k)

N
k

A1!
1

N
k
B

!2 DK
1
D
e2K

0
(k)

N
k
A1!

1

N
k
B!

eTh
2
(k)eh

2
(k)

N
L
(k) A2!

1

N
L
(k)

(K2
M
#DK

1
D )B

#

eTh
2
(k)h

2
(k)hT

2
(k)eh

2
(k)

N2
L
(k)

!2c(3T(k)q!kl (k))2!2cp3T (k)M 3 (k)

!ce2
!
(k)C(2!c)e2

2
(k)#A2!c

DK
1
D

K2
M
BuN T (k)u6 (k)D (23)

(f) Considering that DK
1
D)h and in order to keep *» (k))0, then c must satisfy the

relationship (19b). Thus the constant C
1

is positive.
(g) Choosing N

k
'1, the constants C

2
and C

3
are positive.

(h) The matrix h
2
(k) hT

2
(k) can be bounded using its maximum eigenvalue j

M
(k), i.e.

Eh
2
(k)hT

2
(k)E)j

M
(k) (24)

It is important to note that the above condition can be written as

j
M
(k)"trace(h

2
(k)hT

2
(k))"Eh

2
(k)E2"

n
+
i/1

h2
2*

(k)

If we choose N
L
(k) such that

N
L
(k)*1

2
(K2

M
#h#j

M
(k)) (25)

then the constant C
4

is positive. From (19b) it can be seen that the constants C
5

and C
6

are
positive. Thus inequality (22b) has been demonstrated.

From (22b) we can conclude that e2
*
(k)/N

*
(k), 3T(k)M3(k), e2K

0
(k), eTh

1
(k)eh

1
(k), eTh

2
(k)eh

2
(k)/N

L
(k)

and (e
!
(k)u8 (k))T(e

!
(k)uJ (k)) belong to L2 or the signals e

*
(k)/J(N

*
(k)), 3 (k), eK

0
(k), eh

1
(k),

eh
2
(k)/J(N

L
(k)) and e

!
(k)u8 (k) belong to L1; therefore

lim
k?=G

e
*
(k)

J(N
*
(k))

, 3 (k), eK
0
(k), eh

1
(k) ,

eh
2
(k)

J(N
L
(k))

, e
!
(k)uJ (k)H"0 (26a)

It can be shown from (25) that N
L
(k)3L=, since h

2
(k)3L=. From this fact and using (26a), we

get 3h
2
(k)3L1. Therefore all closed-loop estimation errors tend to zero as k tends to infinity, i.e.

lim
k?=

(eh
1
(k), eh

2
(k), eK

0
(k)N"0 (26b)

We still have to prove that the rest of the signals of the adaptive system remain bounded. This
will be done through the following theorem.

Theorem 1

Let us consider the system S described in Lemma 1. Then there exist finite positive real
constants, MyL

1
, M

»
1
, M

»
2
, My

1
, M

u
, Me

*
, Me

!
and Me

#
such that the following inequalities are
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verified:

(i) D ŷ
1
(k) D)Mŷ

1
, (ii) E»

1
(k)E)M

»
1
, (iii) »

2
(k)E)M

»
2
, (iv) Dy

1
(k) D)My

1
,

(v) Du(k) D)M
u
, (vi) De

*
(k) D)Me

*
, (vii) De

!
(k) D)Me

#
, (viii) De

#
(k) D)Me

#

and also

(ix) lim
k?=

(e
*
(k), e

!
(k), e

2
(k), e

#
(k)N"0

Proof of Theorem 1

The overall adaptive system whose stability is to be analysed can be represented by a complex
vector and non-linear difference equation. For convenience, as in discrete-time DMRAC,8 the
analysis will be separated into three parts as shown in Figure 2.

Part I—Plant feedback loop. The plant plus controller can be represented by the set of
equations12

X(k#1)"(A
MN

#b
MN

/T(k)C )X(k)#b
MN

(K*
0
)R (k), u (k)"C X(k) (27a)

where

X (k)"(xT
1
(k), »T

1
(k), »T

2
(k))T3R3n

A
MN

"

A
1

b
1
h*T
1

b
1
h*T
2

0 K#lh*T
1

lh*T
2

lhT 0 "

3R3n]3n, b
MN

"

b
1
l

0

, h
MN

"

hT

0

0

3R3n (27b)

X
1
(k)3Rn is the state of the plant, º (k), ½

1
(k)3R are the plant input and output respectively

and »
1
(k) and »

2
(k) are defined in (5).

The matrix C3R2n]3n is defined as

C"

0 . . 0

. D — — —

. D I
2n

. D

0 D

where I
2n

is the identity matrix of size 2n]2n. R (k) is the reference input, assumed to be uniformly
bounded.

Since (27a) is a linear difference equation with bounded time-varying coefficients and since / (k),
R(k)3L=, then EX(k)E can grow at most geometrically.

Part II—Prefilter. The second part of the system shown in Figure 2 consists of a diagonal
matrix transfer function relating u6 (k) and u(k) as follows:

u6 (k)"¼
M
(z)I

2n`1
u(k) (28)
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where ¼
M
(z) is the model reference transfer function, but in general we only need a minimum

phase asymptotically stable transfer function of relative degree n!m. Here we have to consider
the part corresponding to the generation of e@

2
(k) and e

3
(k), since in our analysis K

1
is unknown

and in general t(k) is different from zero.

Part III—Error model. The last part corresponds to an error model equation whose main
properties are described in References 8, 12 and 13. It consists of a strictly positive real transfer
function ¼

M
(z)¸~1 (z) with an input term (K

1
/K

M
) (/T (k)uN (k)#e

3
(k))#t (k)e@

2
(k) and a feed-

back term u8 T(k)uJ (k)e
!
(k) as shown in Figure 2. Thus the complete adaptive system can be

represented by a vector difference equation of the form (17b).
The state error 3 (k)3R3n is defined as 3 (k)"X(k)!X* (k), where X*(k)3R3n is the ideal state

vector obtained from (27a) when / (k)"0.
To prove that all the adaptive system signals remain bounded, we use reasoning by contradic-

tion. From now on we assume that u (k) and X(k) grow in an unbounded fashion.

(i) Model error (Part III). The error model described by (27a) together with the adaptive laws
(20) is of type III and is analysed in detail in References 8, 12 and 13. The input u6 (k) can be either
bounded or unbounded, but in any case the properties mentioned in References 8, 12 and 13 are
satisfied, in particular

/T(k)uN (k)"o[EuN (k)E] (29a)

*t(k), */(k)P0 when kPR (29b)

(ii) Prefilter (Part II). From equation (28) we have

¼
M
(z)I

2n
u (k)"uN (k)

where the transfer function ¼
M
(z) is of minimum phase and asymptotically stable. Applying the

discrete-time version of Corollary 2 of Reference 14, (28), (29a) and (29b), we have

/T (k)u(k)"o[Eu(k)E
4
] (30)

(iii) Plant feedback loop (Part I). The feedback loop of Figure 2 is described by the difference
equation (27a), where R(k) is uniformly bounded and A

MN
is an asymptotically stable matrix.

Since we are assuming that u(k) is not bounded, from (27a) we can conclude that12

X (k))p
1
D/T(k)u(k) D

4
#p

2
, p

1
, p

2
'0 (31)

From (30) we have that /T (k)u(k)"o[Eu(k)E
4
], and considering (31), we have that

X (k)"o[ECX(k)E
4
])o[EX (k)E

4
]

which contradicts the hypothesis that X (k) is not bounded. Thus we conclude that X (k), u(k),
uN (k) and u8 (k) are bounded. From this result it is easy to show that all the other signals of the
adaptive system are also bounded. Therefore assertions (i)— (viii) of Theorem 1 are true and the
adaptive system is globally stable. The auxiliary error e@

2
(k) defined in (16) can be expressed in the

following manner:

e@
2
(k)"[/T(k)u6 (k)!¼

M
(z)(/T(k)u(k))]!uJ T (k)uJ (k)e

!
(k)

!A
RM (k)eK

0
(k)

N
k

#

»T
2
(k)eh

2
(k)

sgn(K
1
)N

L
(k)

#

»T
1
(k)eh

1
(k)

N
k

B (32)
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Considering (29a), (30) and the fact that u6 (k) and u(k) are bounded, we conclude from (32) that
/T(k)uN (k) and /T(k)u (k) tend to zero asymptotically. Moreover, it was shown in (26b) that the
closed-loop estimation errors as well as e

!
(k) go to zero when k tends to infinity (property (ii) of

error model III given in References 8, 12 and 13). Therefore, from (32), e@
2
(k)P0 when kPR.

From (15b) with e@
2
(k)P0 and e

!
(k)P0 we have

e
#
(k)"

K
1

K
M

¼
M
(z)(/T(k)u(k))

and since /T(k)u(k)P0, then e
#
(k)P0 when kPR. From equation (15a) we conclude that

e
3
(k)PR when kPR. Since e

3
(k) and e@

2
(k)P0 when kPR, from (16) we obtain that e

2
(k)

converges to zero.
In order to prove that e

*
(k)P0, when kPR, we replace the definitions of the closed-loop

estimation errors given by (10) in the output of the identifier given by (9b) to get

½ª
1
(k)"

Kª
1
(k)

K
M

eK
0
(k)R1 (k)#R1 (k)#

Kª
1
(k)

K
M
A1!

1

N
k
B eTh

1
(k)»M

1
(k)#

1

K
M
A1!

K2
M

N
L
(k)B eTh

2
(k)»M

2
(k)

!

eTh
2
(k)h

2
(k)(hT(k)uN (k)#bK T(k)!eTh

1
(k)N~1

k
K

M
N

L
(k)

Expressed in a condensed form, the above equation reads

½ª
1
(k)¢eT(k)Pª (k)¼

M
(z)u(k)#¼

M
(z)R(k) (33)

where

PK (k)"A
Kª

1
(k)

K
M

0 0

0
Kª

1
(k)

K
M
A1!

1

N
k
B I

n
0

!

h
2
(k)K

0
(k)

K
M
N

L
(k)

!

h
2
(k)

K
M
N

L
(k)Ah1 (k)#bK (k)!

eh
1

N
k
B
T 1

K
M
A1!

K2
M

N
k
B I

n
!

h
2
(k)hT

2
(k)

N
L
(k)
B

Using equation (33) and since all components of the vector e(k)P0 as kPR (property (ii) of
error model III given in References 8, 12 and 13), then ½ª

1
(k)P½

M
(k). Since e

#
(k)P0, i.e.

½
1
(k)P½

M
(k), then ½ª

1
(k)P½

1
(k); that is to say, e

*
(k)P0 when kPR. Thus proposition (ix) of

Theorem 1 is true and the theorem is completely proved.

3. COMPUTER SIMULATIONS

In this section a set of simulations of a second-order plant is presented to verify the theoretical
properties of the discrete-time CMRAC scheme.

An unstable second-order plant was simulated to test the CMRAC scheme under ideal
conditions. The difference equation describing the plant is

½
1
(k#2)!0·1½

1
(k#1)!1·56½

1
(k)"0·9(º(k#1)!0·3º(k))
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Figure 3. Combined MRAC for second-order plant and constant reference R (k)"2

Figure 4. Combined MRAC for second-order plant and sinusoidal reference R(k)"2#2sin(k)

where ½
1
(0)"1 and ½

1
(1)"1. The model reference was chosen as

½
M
(k#2)!0·7½

M
(k#1)#0·12½

M
(k)"0·8(R(k#1)!0·5R(k))

where ½
M
(0)"1·1 and ½

M
(1)"1·1. The simulation results are shown in Figures 3 and 4 for

different types of reference. The following numerical values for the parameters and initial
conditions were chosen in all simulation: N

k
"25·0, c"0·3, h

11
(0)"!0·4, h

12
(0)"0·6,

h
21

(0)"!0·5, h
22

(0)"!0·6, K
0
(0)"0·6, â

11
(0)"0·8, â

12
(0)"1·2, bª

11
(0)"0·2,

bª
12

(0)"!0·2, h
11

(1)"!0·4, h
12

(1)"0·6, h
21

(1)"!0·5, h
22

(1)"!0·6, K
0
(1)"0·6,

â
11

(1)"0·8, â
12

(1)"1·2 and bª
11

(1)"0·2.
From the above simulations it can be seen that theoretical results are verified. In particular, in

all simulations, e
#
(k)P0 as kPR without persistent excitation.

An interesting point is that parametric convergence (controller and identifier) is achieved if
only parameter controller convergence is obtained. In fact, let us assume that the persistent
excitation is such that the controller parameter errors are driven to zero. Then, since the
closed-loop estimation errors given by (10) tend to zero, it can be concluded that the plant
parameter errors are also driven to zero. This means that from the persistent excitation viewpoint
the DMRAC and CMRAC schemes are equivalent.
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The CMRAC scheme can also perform well under external perturbations by modifying the
controller as well as the identifier adaptive laws to include four standard modifications. The
general form of the adaptive laws is now

*ga(k)"!c
e
*
(k)»M

2
(k)

N
*
(k)

!K
M

eh
2
(k)

N
L
(k)

!â (k) f (aL )

*gb(k)"!csgn(K
1
)
e
*
(k)»M

1
(k)

K
M
N

*
(k)

!

eh
1
(k)

N
k

!bK (k) f (bK )

*gK
1
(k)"!c

e
*
(k)º1

0
(k)

K
M
N

*
(k)

!

hT
2
(k)eh

2
(k)

N
L
(k)

!Kª
1
(k) f (Kª

1
)

*gK
3
(k)"

eK
0
(k)

N
k

!Kª
3
(k) f (Kª

3
) (34)

*/h
2
(k)"!sgn(K

1
)Ac

e
!
(k)»M

2
(k)

K
M

#

eh
2
(k)

N
L
(k)B!h

2
(k) f (h

2
)

*/h
1
(k)"!c sgn(K

1
)
e
!
(k)»M

1
(k)

K
M

!

eh
1
(k)

N
k

!h
1
(k) f (h

1
)

*/K
0
(k)"!c sgn(K

1
)
e
!
(k)rN (k)

K
M

!

eK
0
(k)

N
k

!K
0
(k) f (K

0
)

*t(k)"!c e
!
(k)e

2
(k)!K

1
(k) f (K

1
) (35)

3.1. Dead-zone modification 15—17

In this case the modified adaptive laws for the identifier and controller have the form indicated
in (34) and (35) with

f (aL )"f (bK )"f (KK
1
)"f (Kª

3
)"0 if De

*
D*P

%0
#d

f (aL )"f (bK )"f (Kª
1
)"f (Kª

3
)"c"0 if De

*
D)P

%0
#d

and

f (h
2
)"f (h

1
)"f (K

0
)"f (K

1
)"0 if De

!
D*P

%0
#d

f (h
2
)"f (h

1
)"f (K

0
)"f (K

1
)"c"0 if De

!
D)P

%0
#d

Where P
%0

is related to the bound of the external perturbation.

3.2. Knowledge of a bound on true parameters18

Let the function f ( · ) be defined as

f (q)"G
(1!EqE/q*

.!9
)2

0

if EqE'q*
.!9

otherwise

where q is a parameter vector and q*
.!9

is an upper bound on its norm.
The modified adaptive laws have the form indicated in (34) and (35) with the function f ( ·) just

defined.
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3.3. ph (k) Modification19

With this modification the identifier and controller adaptive laws have the form indicated in
(34) and (35) with

f (aL )"f (bK )"f (Kª
1
)"f (Kª

3
)"p

*
f (h

2
)"f (h

1
)"f (K

0
)"f (K

1
)"p

#

where p
*
'0, p

#
'0.

3.4. De D h(k) Modification20

The adaptive laws for the identifier and controller are those indicated in (34) and (35), modified
in the following fashion:

f (aL )"f (bK )"f (Kª
1
)"f (Kª

3
)"d

*
De

*
(k) D f (h

2
)"f (h

1
)"f (K

0
)"f (K

1
)"d

#
De

!
(k) D

where d
*
'0, d

#
'0.

Extensive simulations (not shown here for reasons of space) show that CMRAC also performs
well under external perturbations using all the above adaptive laws.

4. CONCLUSIONS

The discrete-time version of CMRAC has been presented. The method uses the direct and indirect
approaches coupled by the closed-loop estimation errors as well as dynamical adjustments of the
control and identification parameters. Ideal conditions for the global stability of CMRAC were
derived which are different from those obtained for the continuous-time case. The robustness of
discrete-time CMRAC was discussed and it was found that modifications of the adaptive laws can
make the algorithm robust with respect to external perturbation.
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