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We establish a link between metastability and a discrete time-crystalline phase in a periodically driven
open quantum system. The mechanism we highlight requires neither the system to display any microscopic
symmetry nor the presence of disorder, but relies instead on the emergence of a metastable regime.
We investigate this in detail in an open quantum spin system, which is a canonical model for the exploration
of collective phenomena in strongly interacting dissipative Rydberg gases. Here, a semiclassical approach
reveals the emergence of a robust discrete time-crystalline phase in the thermodynamic limit in which
metastability, dissipation, and interparticle interactions play a crucial role. We perform numerical
simulations in order to investigate the dependence on the range of interactions, from all to all to short
ranged, and the scaling with system size of the lifetime of the time crystal.
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Introduction.—Time crystals have been introduced as an
intriguing nonequilibrium phase of matter [1] in which time-
translation symmetry is spontaneously broken [2–5]. The
first proposal by Wilczek [2] has triggered an intense debate
[6,7], which culminated in a series of counterexamples and
no-go theorems [8–10] concerning their realization in
equilibrium. The search for time crystals then turned to
nonequilibrium systems. In this context, periodically driven
(“Floquet”) quantum systems [11–13] have played a major
role. Indeed, it has been shown that a new phase of matter,
called discrete time crystal (DTC), may emerge under
periodic driving [1,14–31]. In such cases, with T being
the period of the driving, the discrete time-translation
invariance under t → tþ T may be spontaneously broken,
with observables exhibiting subharmonic responses, i.e.,
oscillating with a period that is an integer multiple of T.
Several efforts have been directed to the study of DTCs

in nondissipative quantum systems [15–21,24,25,29–31].
Here, since in principle the driving would eventually heat
the system to infinite temperature thereby destroying the
crystalline order, the presence of disorder and localization
is often seen as an essential requirement to prevent this
from happening and to obtain a DTC that survives
asymptotically [15–17,22,23,25,32–37]. Alternatively,
DTC order can be sought as a transient feature emerging
in a prethermal regime [26,27,29,38–41]. A relevant issue
concerning the realization of DTCs has been their fragility
upon the coupling to an external environment [22,23,42].
Nonetheless, an interesting approach has turned this per-
spective around, showing that appropriately engineered
dissipation can instead represent a resource for harnessing
and tuning the properties of quantum systems [43,44]. This

has motivated a recent interest in the possible emergence of
time crystals in dissipative quantum systems [26,45–50].
In this Letter, we establish a link between metastability in

open quantum systems [51,52] and DTCs. This provides a
simple and generic mechanism (see Fig. 1) for the emer-
gence of a DTC under periodic driving, which does not
hinge upon the presence of either disorder or of any
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FIG. 1. DTC in a metastable open quantum system. (a) The
phase space of the system is divided into two basins of attraction
(bright and dark areas), associated with two stationary states, ρss1
(blue dot) and ρss2 (red dot), respectively. The combination of an
appropriate transformation [LðRÞ] and dissipative dynamics [Lð0Þ]
during a time interval T maps one of the stationary state into the
other one. The repetition of this composed transformation makes
the state oscillate with a doubled period 2T. (b) Time-evolution of
a typical observable in the DTC phase. Here, we show the
expectation value of SxðtÞ as a function of time t for a dissipative
Rydberg gas (see text for details). The period of oscillations is
twice the one of the driving (with shaded areas corresponding to

different basins of attraction). Here, Ωð0Þ
x ¼ 0.7 Γ, V ¼ 12 Γ,

Δð0Þ ¼ −3.5 Γ, T ¼ 2 Γ−1, and tR ¼ 10−2 Γ−1.
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manifest symmetry of the generator of the time evolution.
To illustrate this mechanism, we employ an example taken
from the physics of dissipative Rydberg gases [53–64].
This system displays a stationary-state phase transition in
sufficiently large dimensions [62,65,66]. The concomitant
closing of the spectral gap leads to metastability. We
discuss in detail a protocol for achieving a DTC and
investigate its stability as well as its lifetime.
DTCs from metastability.—We consider a general

Markovian open quantum systems with N degrees of
freedom (e.g., spins) whose dynamics is governed by the
quantum master equation (QME) ∂tρ ¼ Lð0Þ½ρ� [67], with
Lð0Þ½ρ� ¼ −i½Hð0Þ; ρ� þD½ρ�. Here, Hð0Þ is the system
Hamiltonian while D describes Markovian dissipation.
We denote the eigenvalues of the “superoperator” Lð0Þ by
fλk; k ¼ 1; 2;…g and order them by decreasing real
part, i.e., ReðλkÞ ≥ Reðλkþ1Þ. The (complete) positivity
and trace-preserving properties of Lð0Þ guarantee that
λ1 ¼ 0. Its associated right eigenmatrix ρss represents the
stationary state of the dynamics, i.e., Lð0Þ½ρss� ¼ 0 [67],
which we assume to be unique at any finite size N < ∞.
In the following, we focus on systems with vanishing
gap for N → ∞, displaying metastable behavior [51,52].
Specifically, we require that, for some choice of
the parameters of Lð0Þ, λ2 ∈ R and λ2 → 0 while
lim infN→∞jReðλ3Þj > 0. This leads to a separation of
timescales for large N. Indeed, defining τm¼1=jReðλmÞj,
one can distinguish three different regimes. For t≲ τ3 there
is a transient dynamics strongly depending on the initial
state. For t≳ τ2 the system instead approaches stationarity
and its state converges to ρss. Under our assumptions, one
can find a third time frame, τ3 ≪ t ≪ τ2, which defines a
so-called metastable regime: here, the dynamics can be
effectively reduced to a space spanned by the eigenspaces
of λ1 and λ2. Denoted by R2 (L2) the right (left) eigenmatrix
of Lð0Þ corresponding to λ2, this means that ρðtÞ¼
eL

ð0Þt½ρð0Þ�≈ρssþc2eλ2tR2, with c2¼Tr½ρð0ÞL2�=Tr½L2R2�
the component of the initial state over R2 [51,52]. The
dynamics in the rhs takes place in this reduced space and it
can be described in terms of classical jumps between the
two extreme metastable states (EMSs) ρ̃1 ¼ ρss þ cmax

2 R2

and ρ̃2 ¼ ρss þ cmin
2 R2, with cmax

2 (cmin
2 ) the maximum

(minimum) eigenvalue of L2 [51,52]. In the thermody-
namic limit (N → ∞) the gap closes (λ2 → 0), determining
a phase transition between two phases characterized by
the properties of the two EMSs. At the transition point, the
system becomes bistable and the two phases coexist on
equal terms. Individual quantum trajectories will asymp-
totically approach either one or the other EMS, identifying
the corresponding basin of attraction (BOA). Importantly,
on timescales t ≪ τ2 (and N large enough), the system
tends to behave as if it were in a bistable regime [51,52].
The EMSs can therefore be approximately regarded as two
effective stationary states.

As sketched in Fig. 1(a), this phenomenology can be
exploited to engineer a DTC. The key step consists of
identifying a second dynamics, generated, e.g., by a
Lindbladian LðRÞ, which maps ρ̃1 to the BOA of ρ̃2 and
vice versa in a given time tR. Fixing a period T > tR such
that T − tR ≫ τ3, one can define the dynamics via

LðtÞ ¼
�
LðRÞ for mT ≤ t ≤ mT þ tR
Lð0Þ for mT þ tR < t < ðmþ 1ÞT ; ð1Þ

withm ∈ N. For simplicity, we assume that the system starts
from one of the two EMSs (say, ρ̃1). For t ≥ 0 the dynamics
is clearly T periodic, but the state of the system will instead
evolve with doubled period 2T, which is the hallmark of a
DTC. The underlying mechanism can be understood in a
pictorial way from Fig. 1(a). By assumption, applying LðRÞ
to ρ̃1 for tR will bring the system into the BOA of ρ̃2. The
subsequent action of Lð0Þ for a time ≫ τ3 will bring the
system to itsmetastable regime and therefore close to ρ̃2 after
the first driving periodT. The second application ofLðRÞwill
then displace the state into the BOA of ρ̃1 and the second
instance of Lð0Þ will bring it back (close to) ρ̃1, closing the
cycle at time 2T. The repetition of these four steps will then
reproduce the same physics, leading indeed to a 2T-periodic
dynamics and to the emergence of DTC order.
Dissipative Rydberg model.—To test the general mecha-

nism outlined above, we use a spin model for a dissipative
Rydberg gas [54,55,68], which we briefly introduce here
[69]. It consists of N atoms on a lattice whose ground state
is coupled to a high-energy (Rydberg) level by a laser with
Rabi frequency Ωx and detuning Δ. Two atoms populating
simultaneously the Rydberg level feature a strong and long
range dipole-dipole interaction. Employing an effective
spin-1

2
description and denoting with j↓i (j↑i) the

ground (Rydberg) state, the Hamiltonian of the model
[54,57,61,71,72], in the rotating-wave approximation [73],

is Hð0Þ ¼ P
N
k¼1½Ωð0Þ

x σxk þ Δð0Þnk� þ
P

N
k≠p Vkpnknp. Here,

k and p are site indices, σμkðμ ¼ x; y; zÞ denote the Pauli
matrices acting on the kth spin, nk ¼ ðIk þ σzkÞ=2 is the
Rydberg number operator, and Vkp describes two-body
interactions between the kth and pth atoms. The finite
lifetime of the Rydberg level, due to spontaneous emission
at rate Γ, is introduced via a dissipative term D½ρ� ¼
Γ
P

N
k¼1 ½σ−k ρσþk − 1

2
fσþk σ−k ; ρg�, with σ�k ¼ ðσxk − iσykÞ=2.

The dissipative Rydberg model, whose density matrix ρ
obeys the QME ∂tρ ¼ Lð0Þ½ρ� ¼ −i½Hð0Þ; ρ� þD½ρ� [67],
displays a bistable behavior at the mean-field level
[57,60,61,71]. This regime is associated with the coexist-
ence of two phases of an underlying first-order phase
transition [62,66], which has also been observed exper-
imentally [58]. The uniform mean-field equations of
motion [57,61,71]—see Eq. (3) below and Ref. [69]—
are defined in terms of the expectation values Sμ ¼ hσμki
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and n ¼ hnki, where the site index k is dropped assuming
translational invariance. In an extended region of parameter
space, a slice of which [at Δð0Þ fixed] is enclosed by the
gray contour in Fig. 2(a), these equations feature two stable
asymptotic solutions, Mss

i ¼ ðSxi ; Syi ; Szi Þði ¼ 1; 2Þ, which
will play the role of the EMSs ρ̃1 and ρ̃2. Outside this
region, the stationary values are unique. In any given slice
of parameter space, the bistable mean-field region (if
present) is delimited by two spinodal lines coalescing into
a critical point [61,69]. A first-order line, passing through
the critical point, is present within the latter, whereMss

1 and
Mss

2 can be related via an emergent Z2 symmetry [61,74].
The exploitation of an emergent, rather than manifest,
symmetry to engineer a DTC differs from the majority of
earlier works, which assumed the latter as a necessary
requirement [15,17–19,23,29,30,46]. Note that a seeming
exception to this statement can be found in Ref. [49]. Here,
period doubling in two-time correlation functions of a
dissipative and periodically driven asymmetric double-well
potential has been observed. However, this behavior
does not survive, for general initial states, in single-time
observables.
Implementation of the DTC protocol.—To implement the

time-dependent protocol described in Eq. (1), we make the
Rydberg model Hamiltonian explicitly time dependent:
HðtÞ¼P

N
k¼1½ΩxðtÞσxkþΩyðtÞσykþΔnkðtÞ�þ

P
N
k≠pVkpnknp,

where the parameters ΩðtÞ≡ fΩxðtÞ;ΩyðtÞ;ΔðtÞg, with
(complex) Rabi frequency ΩxðtÞ þ iΩyðtÞ and detuning
ΔðtÞ, are T-periodic functions:

ΩðtÞ ¼
�
ΩðRÞ for mT ≤ t ≤ mT þ tR
Ωð0Þ for mT þ tR < t < ðmþ 1ÞT ; ð2Þ

with Ωð0Þ ¼ fΩð0Þ
x ; 0;Δð0Þg and ΩðRÞ ¼ fΩðRÞ

x ;ΩðRÞ
y ;ΔðRÞg

two sets of constants. The mean-field equations of
motion corresponding to a generic set of constants Ω ¼
fΩx;Ωy;Δg are

_Sx ¼ 2Ωyð2n − 1Þ − ΔSy − VnSy − Γ
2
Sx

_Sy ¼ −2Ωxð2n − 1Þ þ ΔSx þ VnSx − Γ
2
Sy

_n ¼ ΩxSy −ΩySx − Γn;

ð3Þ

where we introduced the effective interaction coupling
V ¼ 2N−1P

k≠pVkp. Equation (3) can then be straightfor-
wardly generalized to the periodically driven case simply
by updating the parameters in time according to the rules
defined in Eq. (2).
The next step is to define the rotational dynamics LðRÞ

consistently with our requirements, i.e., such that it con-
nects the BOAs of Mss

1 and Mss
2 . Instead of attempting to

formally map out the latter two, we take a more intuitive
approach: since the stationary solutions are defined in terms
of two vectorsMss

1 andMss
2 , we look for a global rotationU

exchanging their respective directions and for a regime
where this is sufficient to map a stationary state into the
BOA of the other. By defining the versors mss

i ¼
Mss

i =jMss
i j, U can be described as a rotation by π

around their bisecant. In the spin representation, U ¼
exp ½−iðπ=2ÞPkσk · d�, where σk ¼ ðσxk; σyk; σzkÞ and d ¼
ðdx; dy; dzÞ is defined such that D ¼ mss

1 þmss
2 and

d ¼ D=jDj. We then choose ΩðRÞ in such a way that the
noninteracting part of the HamiltonianHðRÞ would perform
precisely the rotation U in a time tR, namely
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FIG. 2. (a) Mean-field phase diagram of the normalized Fourier component f2, evaluated numerically over K ¼ 30 periods, as a

function ofΩð0Þ
x and V. The region delimited by the two gray lines corresponds to the bistable regime, with the dark zone associated with

the DTC phase and the bright one to the normal phase. The result suggests that f2 vanishes continuously at the right boundary, whereas it

undergoes a discontinuous jump at the left one. (b) Density plot of jλ2j−1 as a function of Ωð0Þ
x and V0 for the Rydberg fully connected

model. Lines denote the corresponding mean-field bistability region for comparison. (c) Stroboscopic time evolution of SxðtÞ for a
system of N ¼ 28 (blue), N ¼ 20 (green), N ¼ 12 (orange) particles, and Ωð0Þ

x ¼ 0.7 Γ, V0 ¼ 6 Γ. At t ¼ 0 the system is in the state
with all spins pointing down in the z direction and the transformation parameters are obtained from Eq. (4) with V ¼ V0. Red dashed
lines represent a fit of the stroboscopic data for N ¼ 28 with the functions g�ðtÞ ¼ a� be−t=τDTC . Inset: lifetime of the DTC oscillations,
τDTC, extracted from the stroboscopic dynamics of Sx=y=zðtÞ as a function of N. In this range of N its functional behavior is well captured
by the power law τDTCðNÞ ∼ Nα, with α ≈ 0.5. In all panels, Δð0Þ ¼ −3.5 Γ, T ¼ 2 Γ−1, and tR ¼ 10−2 Γ−1.
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ΩðRÞ
x ¼ πdx

2tR
; ΩðRÞ

y ¼ πdy
2tR

; ΔðRÞ ¼ πdz
tR

: ð4Þ

Clearly, this does not guarantee that each stationary state is
mapped in the other’s BOA; however, the effectiveness of
this choice can be verified a posteriori and it works for a
wide range of parameter values. Notice that tR can be freely
tuned to be small so that interactions and dissipation have
negligible effects.
We remark that demanding each stationary state to be

mapped by exp½LðRÞtR� into the BOA of the other is a much
looser requirement than demanding the exact mapping
between the two stationary state solutions, i.e., Mss

1 →
Mss

2 and vice versa. Hence, imperfections in the rotation
procedure will not be relevant as long as its end points
[squares in Fig. 1(a)] are in the correct BOA. Indeed, the
subsequent evolution, for times t ≫ τ3, guarantees that the
state is driven again close to the desired stationary point.
This clearly adds to the robustness (or rigidity) of the DTC
phase in the proposed mechanism.
In Fig. 1(b), we show the typical 2T-periodic evolution

of an observable in the DTC phase of the mean-field
equations [Eq. (3)]. The stationary phase diagram in the

Ωð0Þ
x − V plane, obtained via numerical solution of the same

equations, is instead displayed in Fig. 2(a). The colored
area corresponds to the bistable region of the mean-field
model, where a DTC can be constructed via our procedure.
As an order parameter, we consider a normalized
Fourier component f2¼jFð1=2Þj2=Pj∈ZjFðj=KÞj2, where
Fðj=KÞ¼ð1=KTÞR twþKT

tw dτSxðτÞe−ð2πj=KTÞτ with the wait-
ing time tw long enough to avoid the transient part of the
dynamics, K an integer ≫ 1 and j ∈ Z. With our specific
choice of LðRÞ, DTC order is indeed displayed over a finite
region of the parameter space. We also studied the robust-
ness of the DTC phase against fluctuations of the para-

meters of the rotation, for instance ΩðRÞ
x;y ðεÞ ¼ ΩðRÞ

x;y þ εΩðRÞ
x;y

with jεj < 1. The DTC remains stable over a reasonably
wide range of ϵ ∼ 0.1.
Finite-size systems.—We now turn to the case of finite-

size systems to explore how the DTC phase emerges as the
number of spins N is increased. First, we focus our
attention on a fully connected model with Vkp ¼
V0=N ∀ k; p, which is expected to match the mean-field
predictions in the thermodynamic limit. With this choice of
the interactions, the model becomes permutationally sym-
metric [76,77], and one can study its dynamics in the totally
permutationally symmetric subspace [78]. In Fig. 2(b) we
display the inverse gap τ2 ¼ 1=jReðλ2Þj in the same range
of parameters used in panel (a) for a system of N ¼ 28

spins. The dark zone shows a closing of the gap of Lð0Þ,
which nicely fits with the mean-field bistable region.
Within the same region, τ2 increases with N, whereas
outside it seems to converge to a size-independent value. In
the same range of parameters, jReðλ3Þj does not strongly

depend on N, leading to the emergence of a metastable
regime for large enough N. In Fig. 2(c) we show the
stroboscopic dynamics of SxðtÞ (collecting data points only
every period T) generated by the fully connected model,
where we set the parameters of LðRÞ to the mean-field ones.
Here, a DTC phase emerges only at short times and
eventually dies out exponentially fast. The typical lifetime
of the oscillations τDTC, however, increases with the system
size, consistently with the expectation that the fully con-
nected model should reproduce the mean-field results in the
thermodynamic limit.
Finally, we briefly turn to a finite-dimensional case.

Since the phase transition in the model we have considered
has a lower critical dimension of 2 [60,61], it would be
clearly ideal to simulate a large two-dimensional lattice.
This is beyond current numerical capabilities. Hence, we
focus instead on an accessory feature of our mechanism,
i.e., that there should be a correlation between the spectral
gap jλ2j and the lifetime of the DTC, τDTC, which is in
principle observable in one dimension as well. In Fig. 3 we
report results for a one-dimensional nearest-neighbor case
(Vkp ¼ V0δp;k�1), which can be efficiently investigated by
employing a time-evolving block-decimation algorithm
[79–81]. As in the previous case, the stroboscopic dynam-
ics of a typical observable displays an oscillatory behavior
with period 2T and amplitude decaying exponentially in
time. The comparison between τDTC and jλ2j up to N ¼ 32
highlights the emergence of the expected correlation in a
short-range system: the smaller the gap becomes, the longer
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FIG. 3. Lifetime τDTC of the oscillations with period 2T as a
function of N in a 1D Rydberg gas with nearest-neighbor
interactions extracted from the stroboscopic dynamics of
Sx=y=zðtÞ. The state at t ¼ 0 is with all spins pointing down in
the z direction, while the transformation parameters are given by
Eq. (4) with dx ¼ 0.1387, dy ¼ 0.6824, and dz ¼ −0.7177. The
black dashed line represents the asymptotic value of τDTC
obtained by fitting with the function gðNÞ ¼ a − b=Nc. Inset:
gap jλ2j as a function of N associated with the Lð0Þ dynamics of
the main panel. Data points are obtained by fitting the long-time
decay of SxðtÞ with an exponential decay ∝e−λ2t. The black
dashed line is the asymptotic value obtained by a fit with gðNÞ as
before. Here, Ωð0Þ

x ¼ Γ, V0 ¼ 1.6 Γ, Δð0Þ ¼ −3.5 Γ, T ¼ 2 Γ−1,
and tR ¼ 10−2 Γ−1.
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the DTC structure survives; at the scale where one saturates
to a finite value, the other saturates as well. This supports
the conjecture that metastable open quantum systems with a
closing gap develop, under appropriate periodic driving,
DTC phases also in low dimensions.
Conclusions.—We have discussed a general mechanism

for engineering a DTC in driven open quantum systems
subject to metastability. This requires neither disorder nor
explicit symmetries, although the phase transition associ-
ated to the closing of the gap may display an emergent one.
We have shown the emergence of a DTC order in a specific
case taken from the physics of dissipative Rydberg gases.
This, in turn, means that Rydberg systems may represent
in the future an interesting platform for the study of
dissipative DTC phases.
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