
  

 

 

Tilburg University

Discrete-time discrete-state latent Markov models with time-constant and time-varying
covariates

Vermunt, J.K.; Langeheine, R.; Bockenholt, U.

Publication date:

1995

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Vermunt, J. K., Langeheine, R., & Bockenholt, U. (1995). Discrete-time discrete-state latent Markov models with
time-constant and time-varying covariates. (WORC Paper / Work and Organization Research Centre (WORC);
Vol. 95.06.013/7). Unknown Publisher.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 25. Aug. 2022

https://research.tilburguniversity.edu/en/publications/0e2ba76e-d3f2-435f-a861-e39e6810b22e


9585
1995
14 i~uiNiu~iiu~uiNUiHUMU~iuu



Discrete-time discrete-state latent Markov models
with time-constant and time-varying covariates

Jeroen K. Vermunt, Rolf Langeheine and Ulf Bdckenholt

WORC PAPER 95.06.01317

Paper presented at the 9th European Meeting of the Psychometric Society,
July 4-7, 1995, Leiden.

June 1995

WORC papers have not been subjected to formal review or approach.
They are distributed in order to make the results of current research
available to others, and to encourage discussions and suggestions.



D K.U.B.
BIBLtOTHEEK

I 71LBURG



ACKNOWLEDGEMENT

Paper presented at the 9th European Meeting of the Psychometric Society,
July 4-7, 1995, Leiden. The contribution of Vermunt to this paper is in the
context of the WORC Research Programme 'Analysis of Social Change (P7-
O1).



Discrete-time discrete-state latent Nlarlco~- models witli
time-constant and time-var~~ing covariates

Jeroen ~i. Vermunt
WORC. Tilburg University, The Netherlands

Rolf Langeheine
Institute for Science Education, Universit~. of Iiiel

Ulf Bbckenholt.
Department of Psvcholog~-, Llniversity of Illinois, tlrbana~ Champaign

Key words: panel analysis, categorieal data, measurement error, time-z~aryiny coz~ariatES.

log-linea.r models, logit models, modified ~ath analysis approach, latent class analysis,

latent ltlarkov models, naodified Lisrel approach. E11I alqorithin

Abstract

Discrete-time discrete-state Markov chain models ca~n be used to describe indieidual change

in categorical variables. But when the observed sta~tes are subject to measurement error.

the observed transitions between two points in time will be pa.rtiall~. spurious. La.tent

Markov models make it possible to separate true change from measurement error. The

standard latent Markov model is, however, ra.ther limited ~~.hen the aim is to e~plain.

individual differences in the probabilit,y of occupying a particular state at a particular

point in time. This paper presents a fle~:ible logit regression approach ~~-hich allows to

regress the la,tent states occupied at the various points in time on both time-constant and

time-va.r~.ing covaria.tes. The regression approach combines feat.ures of ca.usal log-linear

models and latent class models with explanatory variables. An applica.t.ion is presented

in which pupils' interest in physics at different points in time is explained bv the time-

constant cova.riate se~ and the~ time-varying covariate physics grade.

1 Introduction

Discrete-time discrete-state Markov chain models are well suit.ed for anal~-zing cat.egori-

cal panel data. They can be used to describe individual cha.nge in categorical va.riables.
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However, whe~n the observed states are subject to measurement error, the observed tran-

sitions between two points in time will be a mixture of true change and spurious change

caused bv measurement error in the observed sta~tes (Va.n de Pol and De Leeu~~-. 19tiG;

Hagenaars, 1992). Therefore, Wiggins (1973) proposed the la.tent A~larko~. mode] which

makes it. possible to separate true cha~nge from measurement error ( see also Van de Pol

and Langeheine, 1990). The latent Markov is strongly related to the latent class model

proposed by Lazarsfeld ( Lazarsfeld and Henry, 1968 ).

The standard latent Markov model is, however, rather limited when the aim is to

explain individual diíferences in the probability of occupying a particular state a.t a par-

ticular point in time. The only way that observed heterogeneity ca.n be taken into a~ccount

is by performing a multiple-group a.nalysis as proposed by `-an de Pol and Langeheine

(1990 ). A disa.dvantage of multiple-group models is, however, t11at they contain manv

para.meters when several explanatory variables are included in tlie analysis. I~loreover.

they can only be used with time-constant covariates, while the ava.ila.i,~ilit}- of information

on time-varying covariates is one of the strong points of longitudinal data. Thus, what

we actually need is a. regression model for the la.tent states that a.llows to include botli

time-constant a.nd time-varying covariates.

Goodman's causal log-linear model ( Goodman, 19ï3) can be used t o specif~~ a regression

model for the observed states. This model, which uses a priori informat.ion on the ca.usal

order among a set of categorical variables, consist of a recursive s`-stem of logit models

in which a variable that appears as a dependent variable in one equation can be used

as an independent variable in one of the subsequent equations. Goodman's causal log-

linear model assumes, however, t.ha~t all variables a.re observed. Also the latent class

model has been extended to a11ow. for.explanatory variables influencing the latent variable

(Haberman, 19ï9; Dayton and Macready, 1988). These extended latent. class models are.

however, not very well suited for estimating covariate effects when we ha.ve da.ta on more

than one occasion.

This paper presents a latent Markov model in which the latent. states are regressed

on time-constant and time-varying covariates by means of a system logit models. The

model is an extension of Goodman's causal log-linear model in that the states occupied at

the different point.s in time are latent variables instead of observed variables. 1`Ioreover,

it extends Haberman's and Dayton and Macready's latent class models w-itli explanatory
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variables in tha~t it makes it possible to specify an a~ priori causal order a-mong the variables

included in the modeL Hagenaars (1990, 19M) showed how to combine a causal log-linear

model with a latent class model, which led to what he called a modified Lisrel approach

(see also Vermunt 1993, 1994, 1995). Here, it is demonstrated that this modified Lisrel

approach makes it possible to specify latent Markov models ~~-ith cova.riates.

Section 2 discusses the manife~st Markov model, the latent. class model, the latent

Markov model and the multiple-group Markov model. Section 3 presents logit regression

models for latent states using Hagenaars' e~tension of Goodman's ca.usal log-linear models.

Section 4 discusses ma~cimum likelihood estima.tion of the e~t.ended latent 1~~Iarkov models

by means of the EM algorithm and presents the i~EM program ( Vermunt, 1993 ) which

can be used for this purpose. An applicat.ion using data from a German panel stucl~- is

presented in Section 5. In this application, pupils' interest in ph~-sics at different points

in time is eaplained b~- the time-constant covariate se1 and tlie tiine-var~-ing covariate

ph~-sics grade.

2 Markov models

2.1 Manifest Markov model

Suppose ~~.e have repeated observa.tions on a particular ca~tegorical or discrete variable.

such as, for instance, marital status, occupationa~l status, the choice among brands, or

the gra.des in English of pupils. This kind of data, which is generall~- collected to describe

individual change in the variable concerned, can very well be analti.zed b~- means of Alarko~-

models. ~~-hen the variable of interest is discre~te and when measurements took place at

particular points in time, the models are called discrete-time discret.e-space A~larkov models

( Bishop, Fienberg and Holland, 19 ï5: Chapter ï).

Let T denote the time variable, t a particular point in time, and T' the number of

discrete time points for which we have observations, or in other words, the number of

occasions or panel waves. The variable indicating the state that. a person occupies a.t time

point T- t is denoted by ~~t, a particular value of Yt by yt, and the number of sta.tes b~-

I''.

For sake of simplicit}~, it will be assumed that only information on three occasions is

available, or in other words, that T' - 3. The data can be organized in a three-~~-av
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frequency table with observed frequencies ny,yzy~. The probabilit~- of ha~~ing S'i - y~.

}z - y2, and ~3 - y3 is indicated by ~y,yzy3. 50, ~ry,y~y,, denotes the probabilit~' of

belonging to cell (yi, y2, y3) of the joint distribution of ~~í, ~ z, and ~ 3.

~~'hen specifying a model for ~ry,yzy~ it is na.tural to use tlie information on the time

order, or causal order, among the variables ~i ,`r 2, and ~ 3. The most general model for

Ti y~ y2y,~ 1S

~yi Y2yJ - ~yl ~y2lyl ~Y3IY1 y2 '

Here, ry, denotes the probability that h~ - y~, Tyz~y, the probabilit~~ that ~'1 - yz. given

tbat ~~i - yi, and Ty3ly,yz the probabilit~' that ~~3 - y3. given that ~ i- yi and l~~ - yz.

The model represented in Equation 1 is a sa.turated mode] since it coutains as rnanv

observed cell counts as parameters.

A Markov model is obtained b~- assuming that the process under stud~~ is ~~-ithout

memor~', that is, the state occupied at T- t~ depends onl~' the state occupied at T- 1- 1.

Such a model is sometimes also called a first-order ?~Zarkov model. The general model given

in Equa~tion 1 is not a~ first-order Markov model since ~-3 does not onl~- depeud on }"z, but

also on Yi. Actuallv, this model is a second-order Marko~' niodel because ~t depends on

~t-z. A(first-order) 1`larkov model for ry,y2y, caai be ~~-ritten as

~Yl y2ys - Tyl ~Y2 Iyl Ty3 I y2 '

As can be seen. in this model it is assumed that ry~~y,yz -~ry,ly,.

A more parsimonious Ma.rkov model can be obtained b~- assuming tlie transition prob-

a.bilities ~ry,~yt-, to be independent of T. This gives a so-called time-homogeneous or

stationary Markov model. The model given in Equation 2 becomes a stationarv hZarkov

model b,y restricting

~y2 ~Y1 - ~y3 ~y2 '
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2.2 Latent class model

Above, it wa~s implicitly assumed that the va.ria.ble of interest is measured ~ti-ithout error.

But, since in most. situat.ions such an assumption is unrealistic, it is important to be able

to take measurement error into account when specifying statistica.l models. The problem

of ineasurement error has given rise to a family of models ca,lled latent structure models.

which are all based on the assumption of local independence. This means that t.he obser~-ed

varia.bles or indicators which are used to measure the unobserved variable of interest ar~~

assumed to be mutuall}~ independent. for a particular ~~alue of the unobser~-ed or latent

variable.

Latent structure models can be classified a~ccording to the measurement le~.el of the

latent variable( s) and the measurement level of the manifest variables ( Bart holome~~~, 19~ ~:

Heinen, 1993). In factor anal~-sis, continuous manifest variables are used as indicator~ for

one or more continuous latent. va-riables. In latent trait models. nornlall~. one continuou~

latent ~-ariable is assumed to underlie a. set of categorical indicators. And fina11~., ~t.hen

both the manifest and the latent ~-ariables are categorical. ~~~e ha~.e a latent class model

( Lazarsfeld a~nd Henry, 196g; Goodma~n, 19 i-1; Haberman, 19 ï9).

Suppose ~~~e have a latent class model with one latent ~.ariable 11- ~~.itli index cr and

three indicators A. B, and C w'ith indices a. b, and c. hloreorer. let it" denote the

number of latent classes, and A', B`, and C' the number of categories of :-1. B. and C'.

respecti~~el~-. The basic equa.tions of the la~tent class model are

[t
rabc

u~-1

~~.here

Twabc ,

~wabc - 7f~ 7ra~u~ 7fb~~, 7fc~~, (d)

Here, ~ru,ab~ denotes a probability of belonging to cell ( w, a. b, c) in the joint distribution

including the latent dimension 1~'. Furthermore, ~rw is the proportion of the population

belonging to latent class w. The other ~r-parameters are conditional response proba.bilities.

For instance, ~ra~,~, is the probability of having a value of n on A gi~~en that one belongs to
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latent class u~.
From Equation 3, it can be seen tha.t the population is divided into i~l'' elhausti~-e and

mutually- esclusive classes. Therefore, the joint proba.bility. of tlie observed ~-ariables can

be obtained by~ summation over the latent dimension. The classical parameterization of

the latent class model, as proposed by Lazarsfeld and Henry- (196~) a.nd as it is used b~-

Goodman (19ï-1), is given in Equa~tion 4. It ca~n be seen that the observed variables ,4, B.

and C are postula.ted to be mutually independent given a particular score on the la.tent

variable il'.

2.3 Latent Markov model

By- combining the 1~~larkov model given in Equation 2 and the latent class model gi~-en in

Equa.tion 4, one obtains a. model which can be used for analy.zing cliange. but i~i ~~~hich

the states occupied at different points in time may be measured ~4-ith error. Tl~iis model.

which was originally. proposed by- ~~'iggins (19ï 3), is called a 1' ent Alarkov model. Poulsen

(19~2). ~'an de Pol and De Leeuw (198G), and Van de Pol and Langeheine ( 1990) con-

tributed to its practical applicability-.

It is well known that mea~surement error attenuates the relationships bet~~-een vari-

ables. This means that the relationship between two observed variables ~~-hich are subject

to measurement error will genera.lly- be weaker than their true relationship. For the anal-

y-sis of change. this phenomenon implies that when the observed states are subject to

measurement error, the strength of the rela.tionships among the true stat.es occupied at

two subsequent points in time ~~.ill be underestimated, or in other ~t-ords, the ainount

of change will be overest~imated. When the da~ta a.re subject to measurement error, the

observed transitions are, in fact, a mi~aure of true change and spurious change resulting

from measurement error (Van de Pol and De Leeuw, 198G; Hagena.a.rs, 1992). The lat.ent

Marl:ov model makes it possible to separate true change ancí spurious cha.nge caused by-

measurement error.

To be able to formula.te the latent Markov model, the notation has to be e~tended.

Let íl't be the latent or true state at T- t having three indicators which are denoted b}-

At, Bi, and Ct. Like above, lower case letters will be used as indices. Assume a.gain that

one has observations for three occasions, that is, T' - 3. Note that no~~- the observed
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data is organized int.o a nine-wa}~ frequency ta~ble with cell counts ~za,b,c,azb~c,a,.b„-,,. The

probabilit~ of belonging to a particular cell in the joint distribution of the three latent

variables and the nine indica.tors is denoted b~- ru,,o,b,c,u.2a,b2c,u~,.a,.t,,,c~,. The latent ~larko~.

model for three points in time and three indicators per occasion can be defined as

~w~ a 1 b~ cl w2 a z bz czwgagbe c3 - ~uh ~ai ~u'i ~bi ~u'~ ~ci ~wi ~u'2 ~u'i ~a2 ~u'2 ~bz~u'2 ~~'z ~u'z

~u'3Iti'2 ~a3lu'3 ~63 ~w'~ T c3 ~u'3
.

In contrast to the latent class model, it is also possible to estimate a latent l~~Zarkov model

with onlv one indicator per occasion. For instance, when we have onl`- :It as indicator for

the latent state i~'t, the latent Markov model simplifies to

Ti u,, a, u~z az wg a~ - ~u'i ~a1~wl~u!2~u'1
Tiaz~ur2Tiu,,lu,z 7ia,lu~, .

To identif~- the pa.rameters of the multiple indicator la.tent 1~larkov model represented iii

Equation 5, it is not necessar~~ to impose further restrictions on the model parameters.

The single indicator la.tent Ma~rkov model ca.n, however, not be identified without further

restrictions (Van de Pol and Langeheine, 1990). The model for three points in time

given in Equation 6 can be identified by assuming the response proba,bilities to be time-

homogenous, in other words, bv imposing the following restrictions

~a1~w1 - ~a2~U.~~2 - ~a.3~u~ ~

When there are at least four points in time, a latent Marko~- model with a single indicator

per occasion can also be identified by assuming stationarity.

2.4 Heterogeneity

In most cases, it is unrealistic to assume that the process under studti- is eqsal for all

members of the population under study. For instance, males will not hawe the sa~me

probability of being or becoming employed as females, persons with different educational

levels will have different divorce and married rates, the choice of brand in purchasing a



particular product will depend on someone's income, and school grades ~~~ill depend on

pupils' social backgrounds. Therefore, it is important to be able to specif}- latent Alarko~-

models which ta.ke observed het.erogeneity into account.

Analogous to the estension of latent. class a~nalysis for dealing ~~~ith data oii several

subpopulations (Haberman, 1979; Clogg and Goodman, 1984; Hagena-ars. 1990). Van de

Pol a.nd La.ngeheine (1990) proposed multiple-group latent A4arkov models. These 1`larko~-

models involve the inclusion of one additional variable indicating a person's subgroup

membership. This variable will be denoted by G, with inde~ y and G' categories. In

its most general form, the multiple-group version of the la.tent Alarkov model ~ti-ith one

indica.tor per occasion given in Equation (i is

~yu~~ a ~ u~2 a 2 u.~, a 3 ~9~u~1~9 ~ai~u'19Tu'2~u'19 ~ap~u~2y~2vp,~cc?y ~u~,~~.r~,g .

In this model ever}~ parameter is assumed to be subgroup specific. Of course. it is pos~iblc~

to restrict this model b~~ assuming particular parameters to be eyual among subgroups. F~or

instance, in most a:pplications, it will be~ assumed that measurement error is equal among

subgroups. But, it is also possible to assume the initial distribution or the t.ransition

probabilities t.o be the same for a11 subgroups.

Although the multiple-group ettension of the latent class model is ver~- valuable, its

applicabilit~~ is limited in several respects. When applving statistical met~hods, researchers

are interested in detecting the effects of a number of independent va.riables. or covariates.

on the phenomenon under stud~~. In the case of la.tent I~Iarkov models, one ma~. be inter-

ested in determining the efiect of particular cova~ria.tes on the initial position and on t.he

transition probabilities. ~~~hen using .t.he multiple-group anal~ais, the onl}- thing that can

be done is crossing all covariates and using this joint covariate as a grouping varia.ble. It

will be clear that. this approach is only feasible when the number of cells of joint distri-

bution of the independent variables is not too large, because other~~-ise a huge number of

para.meters has to be estimated.

Another limitation of the multiple-group approach is that it does not allo~,~. to make

full use of the dvnamic character of the data. A strong point of longitudinal da.ta is that

it does not contain onl~- information on the changes in the dependent variable of interest.

but also in the independent va.riables. In other words, variables which ma~- influence the
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states occupied at the different points in time mav be time-var~.ing. It is ver}~ difficult to

use such time-var~~ing covariates in multiple-group latent 1,4arkov models.

V~'hat we actuallti~ need to be able to e~plain a person's latent state at T- t i5 a

regression-like model ~~~hich can deal with both time-const.ant and tinie-var~-ing co~.ariates.

The neat section presents such a model.

3 Logit regression models

3.1 Causal log-linear models

Severa.l stronglti- rela.t.ed approa.ches have been proposed for specif}~ing regression models

in the coirtelt of Markov modeling (Spilerman. 19ï2; h7uenz and Rubinstein. 19ti.~; C'logg.

Eliason. and Grego, 1990: Iielton and Smith, 1991). One of tllese approaches, ~~-hicl~ can

be used when all variable~s are categorical, is Goodman's modified patli analvsis approach

( Goodman, 19 i3). Goodman demonstrat.ed ho~~~ to specif~. a causal log-linear model for a

set of categorical variables using a priori information on their causal ordering. Because of

the analogt~ with path anal~-sis ~eith continuous data, he called the model a modified path

anal`-sis approach.

Goodman's approach will be illustrated b~- introducing a time-constant covariate -l

a-nd a time-var~-ing covariate Zt into the general manifest model described in Equation

1. In its most general form, the modified path model for the relationships aiiiong the

variables -~~, Z~, ~'~, Zz. ~2, Z3, and ~3 can be written as

TT-1 :J] -2y2-'3,43 - T ~T ~~1 ~T ~1J1 ~T-"1 ~~2 ~~~1 zJ1 ~y2 ~~~1 ~J1 42 T-" ~T-12J1 -2 42 T V2 ~x-1 ~J] -? U1-3 ' ` ~ ~

Thus, the joint distribution of the variables, ~r~zjy,~2y2z3y~, is decomposed into a set of

conditional probabilities on the basis of the a priori causal order among these variables.

Note tha.t in this case, the causal order can almost completelti. be based on the tirne order

among the variables. Only the order between Zt and ~t must determined in anot.her

wa~.. Like the general model given in Equation 1, the above model for rT-,y,tizyz-,,,, is a.

saturated model which can be restricted in various wa`a.

As demonstrated b~- Vermunt (1994, 1995), the general model given in Equa,tion 8 can

easil~~ be restricted b}- assuming part.icular variables to be (conditionall~~) independent of
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some of its preceding variables. Suppose, for insta.nce, tha.t the Alarko~- assumption hold,

for the dependent variable I', that Z is independent of the previous va.lues of the dependent

variable ~', and that there are no t.ime-lagged effects of Z on I'. These assumpt.ions impl}-

that the general model represented in Equa.tion 8 can be simplified to

TT~lyl-2y2-3y3 - TT ~~1~~T ~y1~TZ1 ~-2~xz] TY2~Tylz2 Tz?,~rw~:2 Ty~~.Ty~:g .

V~'hen we are not interested in the rela.tionships among the independent variables. it cau

also be written as

~T-1 1l1 -'2y4 ~3 zJ3 - TT~1 -2:3 T?I1 ~T~1 ~y2 ~Ty1 -2 Ty3 ~a~y, ~,,,
. (10)

l~ote that the 1~larkov assumption. the assumption of non-e~istence of time-lagged effects

of Z on S', and the assumption of non-ekistence of direct effect.s ~~ and Z can be rela~ed

and therefore be tested.

The structure of the model given in Equation 10 is siniilar to a manifest version of the

multiple-group latent ?~larkov model given in Equation ~. The main difference is, ho~~-ever.

that the grouping variable is composed of two variables, one of ~~~hich is time-var~-ing. Tliis

means that one of the two disadvantages of the multiple-group A'Iarkov model. namel~..

that the grouping variable has to be time-constant, has been overconie. Tl~ie other ~~-eak

point of the multiple-group approach has not been resolved so far since ever~- value of

the joint independent va.riable still has its own set of initial probabilities and transition

probabilities.

However, Goodman's modified path analysis approach does not onl~. im~olve specif~-ing

a causal order a.mong the categorical variables which are used in the anal~~sis. but it also

involves specifying logit models for the probabilities appearing at. the right hand side of

the general model represente~d in Equation 8. Vermunt (1994. 1995) showed that it is

also possible to apply the logit pa.rameterization to a restricted model such as the model

given in Equation 10. This means that the conditional probability structure ca,nnot onl~~

be restricted by assuming particular variables to be conditionally independent of other

variables but also by specifying a system of logit models.

Suppose, for instance, that Ií depends on ~t-i. X. a~nd Zi, but that there are no

10



interaction effects. This assumption can be implemented bv specif~.ing logit uiodel5 í~~i~

the probabilities ~ryl~~~l, ry2~~y1~2, and ry3~~y24z appearing in Equation 10, i.e..

Ty] ~~'~1

~y2 ~Tyl -2 -

~y3~xy2~s -

E'J{p (uy] ~ uyla ~ 2(y~i Z

~5 ~'í -~ )'1 Z]
~y, eXP (~yl ~ uy1T ~ ~y1-1

exp (ut2 ~ u~~2a ~ u}2t1 f ut2Z2~y2 y2.T' y2 y] y2 -2

}~2 ~~2-~ }~2~~1 ~~2Z2
~y2 ekP uy2 f uy2r f u'y2y1 ~ uyz-2

exp (ut~~ ~ ut~`~x ~ u3's~~2 f ut~s~~~yg ygr y3yz ys-~

~` ~ ~'3 ~ 3 i ~'3 )"2 )"~ Z~
~Ly~ ehP ~iJ3 } utJ3T ~ ~y3y2 ~ uy,zg

~ti.here the u para~meters are log-linear parameters which are subject to ihe ~~-ell-kno~ti.n

.A1'0~"~-like restrictions. Note that the model described in Equations 10-13 gives just onc~

of the possible set of restrictions that can be imposed on the general niodel presented iii

Equation ~. It is also possible to specif~~ models conta.ining interaction effects. ~~~hicl~ rela~

the Markov assumption, which contain t,ime-lagged effects of Z on )-, aiid ~~~hicli contain

direct effects of I' on Z.

It is well kno~~-n tha.t logit models with categorical independent ~~ariables are equivalent

to log-linear models in which an efiect. is included to fix the iuarginal distribution of tlie

independent va.ria.bles ( C~oodman, 19i2; Agresti, 1990 ). For instance, t-he logit model given

in Equation 12 is equivalent to the hierarchical log-linear model

lop~ ~n - a , f ut2 f u}~2~ f u~~2}~1 ~ u~~2z~ -b ~y1 -2 y2 T2J1 -2 yz y2 ~T ~J'2 y1 iJ2 -?

where ~i~.zy,~2y2 is an expected cell frequency- in the margina~l table formed b~~ the va~ria-bles

Jti .~~i , Z2, and ~~2, and ary, ~2 is the pa~rameter that fixes the marginal distribution of the

independent variables. The probabilit~~ ~ry2~~y,z2 can simpl~- be obta-ined from ~~~sy,-2y2 b~.

~y2 ~ry] Z2
mTy] -'2 y2

Ly2 mxy] Z2y2

Goodman (1973) presented his causal log-linear model by specifying log-linear models

for different marginal tables, where every subsequent marginal table had to contain, apart

from the dependent variable, all variables of the previous marginal table. I`lore precisel~-.
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Cáoodman's approach involves restricting the general model in Equation ~ bv specifying

log-linear models for the ma.rgina.l frequency tables with expect.ed cells counts ~~z,., nt~.L, .

771z-~ y ~ , 172s,1 yi -2 ~ ~2T~1 TJl zzY2 ~ m xtii yi ~zy2~~ ~ alld 972z~~ y~ ~2y2-3Y~ . TheSe Inarglllal tableS Can bP

used to obtain the proba.bilities a.ppearing at the right ha.nd side of Equation ~. The way ~ti-P

specified the Markov model wit.h covariates is slightl,y difl'erent from Cioodman's original

formulation of the causal log-linear model because t11e logit models were specified for

the probabilities of the restricted model given in Equation 10 instead of the proba.bilities

of the general model given in Equation S. The advanta,ge of our approach is tha.t it

is computa.t.ionally more efficient as a result of a reduction of the dirnensionality of the

marginal tables involved in the ana.lysis ( Vermunt, 1994, 1995 ).

It will be clear that the causal log-linear model provides us with a flexible regression

approach which overcomes the limita~tions of the multiple-group Alarkov model. Ho~i--

ever, in Goodman's causal log-linear models it is assumed that all variables are obser~-ed,

~~.hile we are interested in regressing latent states on previou' latent states, time-const~ant

covariates, and time-varying covariates.

3.2 Causal log-linear models with latent variables

In the context of latent class analysis, models have been proposed ~~~hich can be used to

explain class membership by means of a number of observed covariates. Haberman (1979 )

parametriaed the latent class model as a log-linear model wit.h one or more latent ~.a.riables.

V~'hen using this log-linear latent class model it is stra-ightforward to regress the probabilit~.

of belonging to a particula.r la.tent class on a. set of categorica-1 covariates b}- means of a log-

linear, or equivalently, a~ logit model. Dayton a~nd 1~lacready (19g~) proposed latent class

models with continuous concomitant variables, in which class membersliip ~~.as regressed

on the covaria.tes by means of a logistic regression model. Van der Heijden. Mooija.art and

De Leeuw (1992) proposed a so-called latent budget model in which a categorical la.tent

variable is explained by a joint independent variable using a, logit model.

These strongly related extensions of the standard latent class model, which are all

based on specifying a logit model for class membership, are, however, not very well suited

to specify logit regression models for repeated observations. VVhat we need here is a

regression modeling approach which, like the above-mentioned latent class models, allows
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t,o regress a latent variable on a set of covariates, and, like the causa.l log-linear models

discussed above, allows bot.h the dependent variable and the covariat.es to change witl~

time. Such a model ca.n be obt.ained b`. combining Goodma.n~s causal log-linear model

with a latent class model. Hagenaars (1990, 1993) showed ho~~~ to specify- simultaneousl~-

a sy.stem of logit equations for a set of causally ordered latent a.nd ma.nifest variables and

a~ latent class model for the latent variables which are used in the logit models (see also

Vermunt, 1993, 1994, 1995). Because of the analogy with the well-known LISREL model

for continuous data, he called this causal log-linear model with la.tent va.riables a modified

Lisrel model. Below, it is sho~a.n that this ca-usal log-linear model with latent variables

makes it possible to include covariates into a la.tent Marko~~ model.

Suppose that we have a Markov model for the latent. states i~t't having the same struc-

ture as the manifest Markov model for ~~t given in Equa~tion 10. AZoreover. assume that.

like in the latent Markov model described in Equation G, each i~i-r has onl~~ one indica-

tor, At. In that case, the probability- structure of the causal log-linear ruodel ~~.ith latent

variables l~i'i, I~i'z, and ti'3 is

TSL~2c~~alz2v,~2a2,3u~3ag - ~rz~z .' Tu~1~~.-, ~a.,~u~1 Tu,~2~ru'i~l Taz~ti~z ~u~~~au~2~s Ta~~u~.~ -( lr~)

In fact, the only~ difference with t.he manifest ~larkov model given in Equation 10 is that

it contains, apart from a structural part, a measurement part in ~~~hich the relationships

between the latent states T~i't and the observed sta.tes Ar a.re specified. This measureinent

part consist of a set of conditional response probabilities ro~~~~.~. IVote that, like in the

manifest case. the structural part of the model given in Equation 15 is already- a restricted

model. In the most genera~l model, the structural part of the rnodel has the sa~me structure

as the model given in Equation 8. The measurement part is restricted a.s well since it is

assumed that. the relationship between i~f~t and At is independent of .I , hl't-~ and Zi.

This assumption can easily be relaxed, namely by~ replacing ra~~~,~ by~ ra~~~,~.~-12~u,~. ~~~hen

using such a general specification of the measurement pa.rt of the model, ra~~TU,~-~-~,~,~

has to restricted in some wa.y to avoid identification problems. Note tha.t. although the

measurement part of the model given in Equation 15 contains only~ one indicator per

occasion, it is straightforward to specify models that, like the latent h~larkov model given

in Equation 5, contain several indica.tors per occasion.
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As tnentioned in the discussion of the latent 1`7arkov model. ~~-hen the niodel contain~

onlv one indicator per occasion, the response probabilities hase to be assumed to be time-

homogeneous. i.e..

T~alu~ - ra,lu~~ - ~a~lu~~ - rQ3~u,~ .

Like in the manifest case, the probabilities of the structural pa.rt of t11e model ma,v

be parametrized bv means of a logit model. For instance, if for the latent states ii'~ ~~~e

assume the same kind of model as for the observed states I~í ( see Equations 11-13 ). ~~,,, ~~,ti, .

~ru,2~~u,jz2, and r~,z~TU,2,3 have to be restricted as follows:

~~,i ~zwi

~ll~2 ~~~'I ~2

~wa ~~u~2 -s

e!~p ~uu~~i ~- 21u1i~~~ ~ 21u1~~2~ ~

C tt-, tt~, .a iti., z, ~.
~ u~~ e~p uu'i f v.v,~ ~ f 2~~,~,i -i

tt~~ titi-2x ji~~t~"~ 1~"~zze~p ~21u,2 ~ Tl~~2z ~ 1Lu~2~,~ ~ [lxu?z? ~

~` ct~2 Í~~2.a t~-2ii-, ii~?a2
L~w2 eXp ~41~'2 ~ uu'2a' ~ YLii'2u7 ~ llii'z-1

11'~ t4~'~.~ li'~ It'2 l1'~ Z~
2?~p ~2Lu„~ ~ Uu,~~ ~ Y[u,~'ii,2 ~ 2(ei~~,c~ ~

~ p~ i1~~ L1',~ l1'~li'z 11~Z~.~
u„ e.l" 41 u~~ ~ uw3 z~ ~ uzi., u.z ~'(( t~., ,,

Although for the sake of simplicitti., on1~- hierarchical log-linear model, were presented. it

is also possible to specif~- non-hierarchical log-linear models.

4 Estimation by means of the EM algorithm

Goodman (19 ï~) showed ho~~- to estima.te la.tent class models b~~ means of the E~1 algorithm

( Dempster, Laird and Rubin, 19 ïï). .This algorithm was implemented b~~ Clogg (19i ~) in

his MLLSA program. Poulsen (1982) was the first one who showed ho~ti- to obtain ma,timum

likelihood estimates for the parameters of the latent Markov model b}~ means o~ the EA1

algorithm. More recentl~., Van de Pol, Langeheine and De Jong (1989) implemented

this algorithm in their PANMARIi program which can be used for estimating latent and

mi~ed Markov models. Hagenaars and Luijkh' (1990) LCAG program, which can be used

to estimate both standard latent class models and the causal loalinear model with latent

variables discussed above, is based on the EM algorithm as well. ?~-lore recentl~.. Vermunt

(1993 ) developed a program called L~EA1 for estimating causal log-linear models ~~.ith latent
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~.ariables. The FE~11 program, which is based on the EA~1 algorithn~i as well, is more efficient

a.nd can therefore handle much bigger problems than LCAC;. hloreo~.er. ~~~itli LC'AC: onl~-

hierarchical log-linear models can be specified for the various marginal snbtables. ~~-hile

~~-ith iE~tl anv t`.pe of log-linea.r model can be specified, including particular t~-pes of

log-multiplicati~-e models. Specifying the latent Marko~~ models ~~-ith time-constant aicd

time-~-arying covariates is straightforward b~~ means of ~E~ii.

Assuming a multinomial sampling scheme, matimum likelihood estimates for the pa-

rameters of the extended latent Markov model described in Equations 15-19 ha~~e to be

obtained b}~ rna,rimizing the following log-likelihood funct.ion:

~ - nr~,a,z2azL~.ag log
L

Trz,u~,a,z2u~2a.2zgu,~a.~. .

u~, ,u~2.u ~,

where n~.L,Q,t2Q2~,~, denotes an observed cell count in the cross-tabulation of tlie ob,er~~ecl

~.ariables. The ~as~,a1~zaz,~a,, and the above log-likelihood function are soinetimes al~o

ca~lled the incomplete data and the incomplete data likelihood. respecti~-el~-.

The EI~~7 algorithm ( Dempster, Laird and Rubin, 19 ii) is a general iterati~-e algorit hin

which can be used for estimating model parameters when there are missing data. ln

the case of the latent I~7arkov models, the scores on the latent states I~T'r are missing for

all persons. The EI`1 algorithm consists of two separat.e steps per iteration c~.cle: an

E(~pect,ation) step and a M(a:umiza.tion) step. In the E step of the algorithni. ausilia~~~-

estimates for the missing data are obt.ained using the incomplete data and tlie 'current'

pararneter estimates, that is, the parameter estimates from the pre~-ious Ei~I iteration.

For the model concerned, the E step involves

12T~,u1,Q,z2.u~2a2z~w3a3 - TZxz,a,z2a2zga3 ~u~,u~2u„I.zz,a,vza2s~a~ .

Here, nr,,~~,ajz~u,~azz3w3a3 is an estimated cell frequency- in the table including the latent

dimensions, sometimes also called the completed dat.a. Furthermore, ~,1,,u,2u,,,~T~,Q,~2o2Z,~„

is the probability of having particular scores on the latent ~.ariables, given someone's

scores on the observed variables, calculated using the parameter estimates from the last

EM iteration.
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The A7 step involves obtaining maximum likelihood e~stimates for the model paraineter~

using the completed data as if it where observed data, tha.t is, ma.~imizing the complete

dat.a log-likelihood function

.
- n2zlw7a~z2u,2a2z3w2a3 OgTrtlu~la,s2u~2a2z3u~ga3 -

The simplest situation occurs when no further restrictions are imposed on the ( conditional )

probabilities appearing in the mode] for rT~,u.,a,:2u,2a2~„~.,a,, described in Equation 1 ~. In

tha.t case, maximum likelihood estimates of the mode] parameters can simpl~. be obta~ined

b~-

7r~.,, ~2,s

T~u.~ ~2z,

~a, lu~~

7ï u'2 ~r~y'1 -'2

Ta2~~'2

~u~~ ~ru~2 z~

~a3~u'3

1azz~..z2. -~a.

17 ..........

~7r.u~, . t2 u~z ....

1Lz.u 1 .z2.....

11.....u,~za2...

17.....w2.... ,

12]7....ur2.X3wg.

nr....u~2.z~,..

1]........u~wa~.

11........ tl~g .

where a`.' means that the table ~~.ith estimated obser~-ed frequencies i; collapsed o~-er the

dimensions concerned.

Particula.r (conditional) probabilities can be made equal t.o each other b~~ mea.ns of

a simple procedure proposed by Goodman (1974). For instance, the restrictions on the

response probabilities which are described in Equation 16 can be imposed b}-

n..u~lal...... ~ n.....w2a2... ~ ~........u~sa.

~..u.~i....... ~ n.....wy.... ~ n........w3.

Wha~t is actuall~~ done is calculating a weighted average of the unrest.ricted estimates of

the response probabilities. It must be noted that, as demonstrated b~- ?~looijaa.rt. and
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Van der Heijden (1992), this simple procedure for imposing equalit~~ restrictioii; among

conditional probabilities does not always work properl}' because it does not guarantee that

in all situations the probabilities still sum to unit~- after imposing the equalit~- retitrictions

(see also Vermunt, 199.5). However, in this case, Goodman~s procedure, w~hich is also

implemented in the above-mentioned MLLSA, PANMARIi, and LCAG prograrus, w~orks

properl}~.

When logit models are specified for particular conditional proba.bilities, the 1~1 st.ep

is a bit more complicated. The probabilities ~r~,~ ~~,, , Twz ~zw,, ,z , and ~u,z ~~.~,,z,~ , which are

restricted as described in Equations 1 ï-19, ca.n be obt.ained b~- estimating t.he log-linear

models concerned for the marginal tables with estima.ted cell counts ~i~1-L,~~~,, ~i~z~~~,t2u~.,.

and TSa~.u,2~~u.,. respectivel`-. For tha.t purpose, standard algorithms for obtaining ma~i-

mum likelihood estimates of the parameters of log-linear models can be applied sucli as

tlie Iterative Proportional Fitting Algorithm (IPF) and the Newton-Raphson algoritlim

( Goodman, 19ï3; Hagenaars, 1990; Vermunt, 1993, 1995 ).

In t.he L~E,M11 program ( Vermunt, 1993 ), hierarchica.l log-linear models are estima.t.ed b~-

IPF and non-hierarchical log-linear models by- a variant of the one-diinensional New.ton

algorithm as proposed bv Goodma~n (19 ï9). The latter a~lgorit hm differs from the well

know~n Newton-Raphson algorithm in that, like in IPF, parameters are updated subse-

quentl~~ instead of updating them simultaneously ( Vermunt, 1995 ). Therefore, t,he algo-

rithm implemented in the L~EA9 program is actually an ECh1 algorithm (I`leng and Rubin.

1993 ).

5 Application

5.1 Data

The data which are used to illustrate the e~aended latent )t2arkov model presented in

the previous sections are taken from a German educational panel study among se.condar~-

school pupils. In this panel study by the Institute for Science Educa.tion in Iiie1, a cohort

of pupils was followed during their school career and interviewed once a year wit.h respect

to several themes, such as their school grades and their interest in ph}.sics and t.echnolog`-.

In the application, the variable interest in physics mea~sured at three~ points in time

is used as the dependent variable. The observed variable interest in ph~~sics at T- t
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Table 1: Test result.s for the estimated models

IV1ode1 L' ~1 ~(~.~) ~~(L-')
1. Basic (Equations 15-19) 139.4:ï 142.94 99 .OO:i .003

2. Basic ~ u~~'u~' 118.35 127.2i 98 .0 ï 9 .015

3. Basic ~- u~~'~~'~ ~- uu~~t~uW3 141.35 140.69 9ï .002 .003

4. Basic -}- uiWw~ -~ uz~~u~;.' 13 ï.99 142.69 9ï .004 .002

5. Basic -}- u?'W2 f u?W3 140.08 142.52 9ï .003 .002

6. Basic ~ uu~~'.Z2 ~ u~:~,Z3 119.28 123.08 9ï .062 .03ti

7. Basic ~ ull~~'W3 -}- uw~',~~ ~- uw2?3 95.23 10ï.88 96 .503 .192

8. ï-F time-homogeneous effects 105.38 11 ï.19 102 .390 144

is denoted by- At, while the latent variable interest in physics is denoted b~- i["~. T~ti-o

covariates a.re used in the latent. Markov models to be specified: the time-constaiit co~-ariate

sex, denoted by. .k , and the time-varying covariate grade in 1.'~y-sics, denoted by. Zt. Since

the time-vary-ing covariate Zt represents a pupil's grade in ph~-sics at the end of t.he school

~.ear preceding the interview date, it can be assumed that Zt influences ll~r. ~~-hat ~ti-e

want to investigate is whe~ther interest in phyaics at T- t dependn on interest in phy~sics

at T- t- 1, on sel, and on grade in phy~sics at T- t.

The total sample size is 5-11. Because we wanted to avoid sparseness problemti to

be able to use the Pea-rson's chi-squared statistic a.nd the likelihood-ra.tio chi-squared

statistic to test t.he fit of the models to be estimated, the observed variables .~lt and Zt

~~~ere dichotomized, with the categories `low' and `high~. The variable sel has categories

'girls' and `boys'. The total number of cells in the observed ta.ble is 2`, 125.

The fact that the variables were dichotomized does not mean that these kinds of models

cannot be used with polytomous variables. The problem is tha.t. model testing can become

very- dif~icult because of sparseness of the observed frequency table. Although in tha.t ca.se

nested models can still be compared against each other by means of likelihood ra.tio tests,

models ca.nnot be tested anymore against the data ( Haberman, 19ï ï, 19ï8; Agresti, 1 J90 ).

5.2 Results

The test result for the models that were estimated by means of the i~EA7 progra-m are

presented in Table 1. The model selection strategy we follo~~~ed ~~-as starting from a plau-
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sible restricted model and subsequentl~~ adding para.meters to see ~~~hetlier the fit coulcl be

improved. Model 1, which we called the basic model, is the model described in Equation5

15-19. As alread~- mentioned when presenting the ca.usal log-linear inodel w~ith la~tent ~-ari-

ables, Model 1 is obtained bti. imposing some restrictions on the most geiieral model that

is possible. That is, it is assumed that someone's interest in physics at a particular point

in time (I~~~t) depends onl~~ on the interest in physics at the previouti occasion (It-t-~ ), on

sea (-~ ), and on the physics grade at the same point in time ( Zt ), where there a.re onl}~

two-variable effects. In other words, it contains the Markov assumption, it assumes that

there are no time-lagged effects, and it assumes that the efiects of sex and grade are inde-

pendent of the previous interest. Another assumption, which is necessar~- to make a single

indicator latent Markov model identifiable, is that. the measurement error is the sanie

among tirne points. And finally, Zt is postulated not to be influenced b~- the precedinK

~~alues of il'. Below it is demonstrated ho~~- to rela~ some of these assumption.

As can be seen from the test results, Model 1 does not fit. This indicates that at least

one of its underl~-ing assumptions has to be rejected. In each of the ~~Iodels 2-(i. one of tlie

abo~.e-mentioned a~ssumptions is relaxed. Since Mode] 1 can be obtained b~ filing one or

t~~~o log-linear parameters of Models 2-G to zero, conditional likelihood-ratio tetit bet~~-eeii

1`~1ode1 1 and AZodels 2-G can be used t,o test the significance of the additional paraiueters.

1~Iode1 2, which contains a direct effect. of lt'i on it'3, fits significantl~. better than ?~lodel

1(~Lz - 15.G~. df - 1, p C.001). This means that the Ma-rkov assumption does not hold.

Models 3 and ~ contain three-variable interactions a.mong Zt, l~i'r-i. and it-t and among A",

ii't-i, and Lí't, respectively. The conditional t.ests of Models 3 and -t against Model 1 sho~c

that neit.her of these interaction effects a-re significant: ~Lz - 2.25. df - 2. p- .3-15. and

,~LZ -.ZS, df - 2, p-.~~2. This means that. the effects of grade and sez on interest at

T- t do not depend on the interest at the previous occasion. Model 5, which conta~iu5

time-la.gged effects of Z on Yt', does not fit better than Model 1 neither (.,L2 - .-12, df -

2, p-.~11). And finall~~, Model 6 contains an effect of interest at T- t- 1 on. grade at

T- t. This model that relaxes the assumption that grade is not influenced directl~. b~~

interest fits much better than Model 1: OL2 - 19.86, df - 2, ~ G.001.

Summarizing, both the Markov assumption and the assumpt.ion tha.t Zt is not influ-

enced b~~ N't-i had to be rejected, while the no three-variable interaction assumptions a~nd

the no time-la~gged effects assumption were confirmed. Model i contains the additional
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effects that were found to be significant, tha~t is, the effects of 1!'i on I~i'3. of l~l"~ on Zz.

and of Yl'z on Z3. As ca~n be see from the test results reported in Table 1, this model fits

the data verv well: L~ - 107.58, df - 96, p~ C .192.

Model ï mat~ still contain more parameters than necessar~. because so far we did not

impose restrictions on the efFects among time points. In Model R, t.he effects of 1~'t-i oii

i~t't, the effects of 1f on j~'t, the effects of Zt on Lt't, a.nd the effect of l~~t on Zr~i are

assumed to be time independent. These time-homogeneity restrictions do not. deteriorate

the fit significantly compared to Model ï: OL2 - 9.31, df - G, 2~ C.15 í".

Table 2 gives the pa.rameter estimates for Models ~ and ~. The ~ra~2~, are the estimat.ed

parameters of the measurement part of the model. It can be seen tliat. in both models.

the estimated amount of ineasurement error is negligible since for l~l'f - 1, the proba.bilitv

t.ha.t At - 1 equals 1.000, while for 1~'t - 2, the proba.bilit`- that rlt - 2 equals .9G9. To see

whether the measurement error is significant, a model wa~s estimated which is equivalent

to 1`Zodel 8 except for the fa-ct that the response proba~bilities for a correct response were

fix to be equal to zero. This model has a.n L~ of 1ii.6G ~~'ith M-1 degrees of freedom. ?~~ote

that since tlie pa.rameters are fixed to be equal to their boundar~- values. it is not allowed

to test this model a.gainst Model ~ b~~ means of a likelihood-ratio test. Nevertheless. tlie

rather similar L~ values, 11 i .19 and 1 i i .6G, indica.te that. interest in ph~-sics is measured

without error. However, it is implausible that the va~riable interest in ph~~sics is reall~-

measured ~a.ithout error. Although t.he results are not report.ed here, also a number of

latent Markov models without covaria.tes and with only~ sex as cova.riate were estimated

using the sa-ine data set. In all these models, the proba.bilit~- of ha.ving the same value on

an observed state as on a. latent state was around .9 for both latent classes. Thus, what

ha.ppens is that the inclusion of the time-varying covariate grade in ph~~sics decreases

the amount of `measurement error'. The reason for this is proba.bl~- that in the models

without Z, the `measurement error' also captured unobserved heterogeneity in the sta.tes

occupied at the difFerent occasions which disappeared b,y including Z as a covaria.te in the

model. This indicates that in latent Markov models with a. single indicator per occasion

it is difficult to distinguish measurement error from unobserved heterogeneity. To detect

measurement error it is preferable to use several indicators per occasion since in tha.t case

the relationships among the indicators provide information on the reliabilit~~ of each of t.he

indicators.
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Table 2: Estimat,es of the most important para.meters of I~'fodels ~ and 8

Pa.rameter Model ï Model 8

~a ~~,

~212

1.000 1.000

.9G9 .9G9

.2G1 .251

ui1 ~i.' .2ï4 .29~1

7f~,2 ~~..u,i z2

uii ~ ii"2 .423 .4 ï 111

u11i~~2 .320 .251

ulili2 .38~ .29-1

~u~~~x~~,u,2~~.

ui~~' ~~~~~ .293 .305ii

u~~~ ~~3 .551 .4 r 1

uil~ ~ .1~2 .251

uii ti~~ ~ .208 .29~

~z2 ~azi wi

uii' z~ .162 .180

~z3 ~~zl z2ti-'2

uti~.2Z' .202 .180ii
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For the structural part of the model, Table 2 reports the t~~~o-variable log-linear efl'ects.

Since both the independent varia~bles and the dependent variable a~ppearing in the various

logit equa.tions are dichotomous, these pa~rameters are not difficult to interpret. The

parameters indicate the efl'ects of belonging to ca.tegor}- 1 of the independent variable oii

the probabilitv of belonging to category 1 of the dependent variable ( see Equat ions 1 ~-

19). By t.aking twice the reported para.meters, one obtains the effect for categor~. 1 of the

independent variable on the log odds of belonging to category 1 rather than ca.tegor~~ 2 of

the dependent variable. And finall`-. 4 times the reported log-linear paramet,er gives the

log odds ratio between categories 1 and 2 of the covariate concerned. ~~~itliin t.he levels of

the other covariates.

The parameter estimates sho~~~ that there is a strong depencíence aniong the interest

at subsequent points in time: persons who have a low interest have a high probabilit~~

of remaining in the category low interest, while persons ~~.ho have a higli interest ha~.e a

high probabilit~- of remaining in the categor~- high interest. Also, the second-ordc~r ~Iarko~-

effect from i~i'i on l~'3 is quiet strong, and it works in the same direction. The fact ihal.

controlling for 1~'2. 11'i has a positive effect on 1~I-3 means that persous ~~~ho moved to

another state between T- 1 and T- 2 tend to move back to their position at T- 1

between T- 2 and T- 3. As can be e~pected, the efFect of the time-var}-ing co~-ariate

grade is positive as well, ~ti-hich means that pupils with higher grades are more interested

in ph~-sics than pupils with lower grades. And finall~.. the effect of sel o~l the interest at

the different points in time shows that girls a.re less interested in ph~-sics than bo~-s.

Table 2 also reports the effects of hi'i on Zz and i~t'z on Z3. ~ote that although the

parameters are not reported here, IVZodels ï and 8 also contain all interaction terms amoiig

.~ , Zl . Z2 and Z3. The effects of ll't-1 on Zt indicaxe that interest has a positi~-e efFect

on the grade at the neat point in time. This means that interest at T- t is not onl~.

influenced directly by interest a.t T- t- 1, but also indirectl~~ via grade at T- 1: Pupils

who are more interested in physics get higher grades in ph`-sics and have therefore a high

proba.bilit~. of remaining interested.

In summar~~, our anal,y-sis showed that the first-order 1~~larkov assumption does not hold

for pupils' interest in physics, that there are time-homogeneous efiects of the time-constant

covariate seY and the time-varying covariate grade on interest in ph~.sics, and that there is

an indirect relationship between interest in physics at subsequent points in time via grade
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in physics. Moreover. the estimated amount of ineasurement error in the observed sta.tes

is negligible. Since it is impla.usible that interest in phVsics is reall~- measured ~~~ithout

error, this ma~~ be the result of the fact that onlti. one indicator ~ti-as used per occasion.

6 Discussion

In this pa.per, an extension of the latent Markov model was present:ed. It ~ti~as sho~~~n ho~~. to

specif~- parsimonious logit regression models for the latent sta.t.es occupied at the different

points in time, in which both time-constant and time-varying categorical covariates can be

used as regressors. In fact, the extension, which is based on the use of the causal log-linear

modeling approach presented b~~ Goodman (19ï3) and Hagenaars (1990 ), leads t.o a model

~~~hich is analogous to LISREL models for discrete-time continuous-state panel data.

The causal log-linear modeling framework, which was used to formulate the latent

?~Zarko~~ model ~eith covariates and which is implernented in the ~F3I program. can be

used to est~end tlie rnodel in se~~eral ways. One possible eltension is to use more tlian

one indicator per occasion together with a logit pa.rameterization of the conditional re-

sponse probabilities (Formann, 1992, Vermunt, 1995). This ma~kes it possihle to specif~~

measurement models which are discrete approximat.ions of latent trait. models (Heinen.

1993. Vermunt and Georg, 1995). In the latent Marko~- model that was presented, it ~~-as

assumed that. onl~- the dependent variable is subject to n:easurement error. Ho~4.e~.er. the

model can easil~- be extended to dea~l with measurement error in the co~-ariates as ~ti~ell.

Furthermore, like in the miaed Marko~. model, an unobser~.ed time-constant co~-ariate can

be included in the model to correct for unobser~~ed heterogeneit}. (~'an de Pol and Lange-

heine. 1990: Vermunt. 1995). Another extension is to use also continuous titne-constant

covaria-tes ( Vermunt, 1995), but it must be noted tha.t. in that. case the fit of a model

cannot be tested anymore by means of chi-squared statistics. Although in latent Marko~-

models it is generally assumed that the measurement error is not correlated among oc-

casions, or, in other words, that the observed states are mutually independent given the

joint latent variable, it is possible to specify models with direct effects between indicators

(Bassi, Croon, Hagenaars, and Vermunt, 1995). And finally, the approach implemented

in iE~lmakes it possible to use partially observed data- in the a~nal~~sis and to specif}- a~

model for the mechanism causing the missing data (~~érmunt, 199-1, 1995).
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There are tw-o main limitations with respect to the use of lat.ent 1`~Iarkov models. I'irst, a

general problem a~ssociated with the analysis of categorical data is that w.hen spa.rse tables

are anal}-aed, the theoretical ~~ approrimation of the Pearson chi-squared statistic and the

likelihood-ratio chi-squared statistic is poor. Although in such situations tlie significance

of parameters can still be tested b~~ means of conditional likelihood-ratio tests, the fit of

a model cannot be assessed anymore (Haberma.n, 19 ii, 19iS; Agresti. 1990 ). A possible

solution for this problem is to use bootstrap procedures for model t.esting ( Langeheine.

Pannekoek, and Van de Pol, 1995).

A second limitation is that although much bigger problems can be dealt ~.ith than tlie

applica.tion tha.t was presented, the size of problems that. can be ha.ndled with the current

computer capacities is limited. In latent I~~Zarkov models. the siae of a problem depends

mainl~. on t.he number of cells of the joint latent dimension since in the E step of the E?~I

algorithm the contribution to the complete ta~ble has t.o be cotnputed for each non-aero

obser~-ed cell count.. When the la.tent variables a.re dichotome'.~, depending on the internal

memor~~ of the computer that is used, the current working version of the ~EA1 can dea]

with eight to t.en panel waves. But when ea.ch latent variable has five categories, three

or four ~~~aves is the maximum. A possibilit~- to deal ~.ith bigger problenis mav be the

use pseudo-likelihood methods ~~~hich do not use information on the joint distribution of

all variables included in the anal~-sis but onl~- on some marginal distributions (~~~'esters,

1993 ).
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