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Abstract

Discrete-time discrete-state Markov chain models can be used to describe individual change
in categorical variables. But when the observed states are subject to measurement error.
the observed transitions between two points in time will be partially spurious. Latent
Markov models make it possible to separate true change from measurement error. The
standard latent Markov model is, however, rather limited when the aim is to explain
individual differences in the probability of occupying a particular state at a particular
point in time. This paper presents a flexible logit regression approach which allows to
regress the latent states occupied at the various points in time on both time-constant and
time-varying covariates. The regression approach combines features of causal log-linear
models and latent class models with explanatory variables. An application is presented
in which pupils’ interest in physics at different points in time is explained by the time-

constant covariate sex and the time-varying covariate physics grade.

1 Introduction

Discrete-time discrete-state Markov chain models are well suited for analyzing categori-

cal panel data. They can be used to describe individual change in categorical variables.



However, when the observed states are subject to measurement error. the observed tran-
sitions between two points in time will be a mixture of true change and spurious change
caused by measurement error in the observed states (Van de Pol and De Leeuw. 1986:
Hagenaars, 1992). Therefore, Wiggins (1973) proposed the latent Markov model which
makes it possible to separate true change from measurement error (see also Van de Pol
and Langeheine, 1990). The latent Markov is strongly related to the latent class model
proposed by Lazarsfeld (Lazarsfeld and Henry, 1968).

The standard latent Markov model is, however, rather limited when the aim is to
explain individual differences in the probability of occupying a particular state at a par-
ticular point in time. The only way that observed heterogeneity can be taken into account
is by performing a multiple-group analysis as proposed by Van de Pol and Langeheine
(1990). A disadvantage of multiple-group models is, however, that they contain many
parameters when several explanatory variables are included in the analysis. Moreover.
they can only be used with time-constant covariates, while the availability of information
on time-varying covariates is one of the strong points of longitudinal data. Thus. what
we actually need is a regression model for the latent states that allows to include botl
time-constant and time-varying covariates.

Goodman's causal log-linear model (Goodman, 1973) can be used to specify a regression
model for the observed states. This model, which uses a priori information on the causal
order among a set of categorical variables, consist of a recursive system of logit models
in which a variable that appears as a dependent variable in one equation can be used
as an independent variable in one of the subsequent equations. Goodman’s causal log-
linear model assumes. however, that all variables are observed. Also the latent class
model has been extended to allow for.explanatory variables influencing the latent variable
(Haberman, 1979; Dayton and Macready, 1988). These extended latent class models are.
however, not very well suited for estimating covariate effects when we have data on more
than one occasion.

This paper presents a latent Markov model in which the latent states are regressed
on time-constant and time-varying covariates by means of a system logit models. The
model is an extension of Goodman’s causal log-linear model in that the states occupied at
the different points in time are latent variables instead of observed variables. Moreover,

it extends Haberman’s and Dayton and Macready’s latent class models with explanatory



variables in that it makes it possible to specify an a priori causal order among the variables
included in the model. Hagenaars (1990, 1993) showed how to combine a causal log-linear
model with a latent class model, which led to what he called a modified Lisrel approach
(see also Vermunt 1993, 1994, 1995). Here, it is demonstrated that this modified Lisrel
approach makes it possible to specify latent Markov models with covariates.

Section 2 discusses the manifest Markov model, the latent class model, the latent
Markov model and the multiple-group Markov model. Section 3 presents logit regression
models for latent states using Hagenaars’ extension of Goodman’s causal log-linear models.
Section 4 discusses maximum likelihood estimation of the extended latent Markov models
by means of the EM algorithm and presents the (Em program (Vermunt, 1993) which
can be used for this purpose. An application using data from a German panel study is
presented in Section 5. In this application, pupils’ interest in physics at different points
in time is explained by the time-constant covariate sex and the time-varying covariate

physics grade.

2 Markov models

2.1 Manifest Markov model

Suppose we have repeated observations on a particular categorical or discrete variable.
such as. for instance, marital status, occupational status, the choice among brands. or
the grades in English of pupils. This kind of data. which is generally collected to describe
individual change in the variable concerned, can very well be analyzed by means of Markov
models. When the variable of interest is discrete and when measurements took place at
particular points in time, the models are called discrete-time discrete-space Markov models
(Bishop, Fienberg and Holland, 1975: Chapter 7).

Let T denote the time variable, ¢ a particular point in time, and 7™ the number of
discrete time points for which we have observations, or in other words, the number of
occasions or panel waves. The variable indicating the state that a person occupies at time
point T =t is denoted by Y;, a particular value of Y; by y, and the number of states by
b

For sake of simplicity, it will be assumed that only information on three occasions is

available. or in other words, that 7 = 3. The data can be organized in a three-way



frequency table with observed frequencies ny,,,,. The probability of having }; = y.
Y, = yo, and Y3 = y3 is indicated by 7y 4,y,- SO. Ty, 4,y denotes the probability of
belonging to cell (y1,y2,y3) of the joint distribution of Y7, Y. and Y3.

When specifying a model for 7,,,,,, it is natural to use the information on the time

order, or causal order, among the variables Y;, Y3, and Y3. The most general model for

Tyyyzya 18

Tyiweys = T Tyalys Twalvaye © (1)

Here, 7,, denotes the probability that Y7 = yi, 7,,,, the probability that Y) = y;. given
that Y3 = . and 7, ,, the probability that Y3 = y3. given that Y7 = 3 and Y5 = y».
The model represented in Equation 1 is a saturated model since it contains as many
observed cell counts as parameters.

A Markov model is obtained by assuming that the process under study is without
memory, that is, the state occupied at T' = t depends only the state occupied at T =1—1.
Such a model is sometimes also called a first-order Markov model. The general model given
in Equation 1 is not a first-order Markov model since Y3 does not only depend on Y3, but
also on Y;. Actually, this model is a second-order Markov model because }; depends on
Y,—2. A (first-order) Markov model for 7y, ,,,, can be written as

Tuiava = Ty Tyalys Tyalue - (2)
As can be seen. in this model it is assumed that @, |, 4, = Ty, |y,-
A more parsimonious Markov model can be obtained by assuming the transition prob-

abilities T to be independent of T. This gives a so-called time-homogeneous or

yelye—1
stationary Markov model. The model given in Equation 2 becomes a stationary Markov

model by restricting

Tyalyn = Tyalye -



2.2 Latent class model

Above, it was implicitly assumed that the variable of interest is measured without error.
But, since in most situations such an assumption is unrealistic. it is important to be able
to take measurement error into account when specifying statistical models. The problem
of measurement error has given rise to a family of models called latent structure models.
which are all based on the assumption of local independence. This means that the observed
variables or indicators which are used to measure the unobserved variable of interest are
assumed to be mutually independent for a particular value of the unobserved or latent
variable.

Latent structure models can be classified according to the measurement level of the
latent variable(s) and the measurement level of the manifest variables (Bartholomew. 1987:
Heinen, 1993). In factor analysis, continuous manifest variables are used as indicators for
one or more continuous latent variables. In latent trait models. normally one continuous
latent variable is assumed to underlie a set of categorical indicators. And finally, when
both the manifest and the latent variables are categorical. we have a latent class model
(Lazarsfeld and Henry, 1968; Goodman, 1974; Haberman. 1979).

Suppose we have a latent class model with one latent variable W™ with index w and
three indicators A, B, and C with indices a. b, and ¢. Moreover. let 1" denote the
number of latent classes, and A*, B™, and C'* the number of categories of A. B. and ('.

respectively. The basic equations of the latent class model are

we
Tabe = Twabe (3)
uw=1
where
Twabe = Tw Tajw Tbjw Te|w (4)

Here, Tyqbe denotes a probability of belonging to cell (w,a.b.c) in the joint distribution
including the latent dimension W. Furthermore, 7, is the proportion of the population
belonging to latent class w. The other 7-parameters are conditional response probabilities.

For instance, 7, is the probability of having a value of a on A given that one belongs to
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latent class w.

From Equation 3, it can be seen that the population is divided into 1= exhaustive and
mutually exclusive classes. Therefore, the joint probability of the observed variables can
be obtained by summation over the latent dimension. The classical parameterization of
the latent class model, as proposed by Lazarsfeld and Henry (1968) and as it is used by
Goodman (1974), is given in Equation 4. It can be seen that the observed variables A, B.
and (' are postulated to be mutually independent given a particular score on the latent

variable W.

2.3 Latent Markov model

By combining the Markov model given in Equation 2 and the latent class model given in
Equation 4. one obtains a model which can be used for analyzing change. but in which
the states occupied at different points in time may be measured with error. Tllis model.
which was originally proposed by Wiggins (1973). is called a 17 ent Markov model. Poulsen
(1982). Van de Pol and De Leeuw (1986), and Van de Pol and Langeheine (1990) con-
tributed to its practical applicability.

It is well known that measurement error attenuates the relationships between vari-
ables. This means that the relationship between two observed variables which are subject
to measurement error will generally be weaker than their true relationship. For the anal-
ysis of change. this phenomenon implies that when the observed states are subject to-
measurement error, the strength of the relationships among the true states occupied at
two subsequent points in time will be underestimated, or in other words. the amount
of change will be overestimated. When the data are subject to measurement error. the
observed transitions are, in fact, a mixture of true change and spurious change resulting
from measurement error (Van de Pol and De Leeuw, 1986; Hagenaars, 1992). The latent
Markov model makes it possible to separate true change and spurious change caused by
measurement error.

To be able to formulate the latent Markov model, the notation has to be extended.
Let W, be the latent or true state at T' = t having three indicators which are denoted by
A;, By, and C;. Like above, lower case letters will be used as indices. Assume again that

one has observations for three occasions, that is, T = 3. Note that now the observed



data is organized into a nine-way frequency table with cell counts 14,4, cya565c502650,- The
probability of belonging to a particular cell in the joint distribution of the three latent
variables and the nine indicators is denoted by Ty, a,b, cywsasbycswsaabses - Lhe latent Markov

model for three points in time and three indicators per occasion can be defined as

Twyarbyeywaazbacowaazbscs =  Twy Faywy Tbyfuy ey |wy Tws fwy Taghws Thaluws Tealus

Tawalws; Taalws Thalws Tealuwa - (f

In contrast to the latent class model, it is also possible to estimate a latent Markov model
with only one indicator per occasion. For instance, when we have only A; as indicator for

the latent state W,, the latent Markov model simplifies to

Tuyaywpagwaas  —  Twy Tayjwy Twsluy Taglws Twslus Tasjws - (6)

To identify the parameters of the multiple indicator latent Markov model represented in
Equation 5, it is not necessary to impose further restrictions on the model parameters.
The single indicator latent Markov model can, however, not be identified without further
restrictions (Van de Pol and Langeheine, 1990). The model for three points in time
given in Equation 6 can be identified by assuming the response probabilities to be time-

homogenous, in other words, by imposing the following restrictions

Tayjwy = Taglwe = Taalws

When there are at least four points in time, a latent Markov model with a single indicator

per occasion can also be identified by assuming stationarity.

2.4 Heterogeneity

In most cases, it is unrealistic to assume that the process under study is equal for all
members of the population under study. For instance, males will not have the same
probability of being or becoming employed as females, persons with different educational

levels will have different divorce and married rates, the choice of brand in purchasing a
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particular product will depend on someone’s income, and school grades will depend on
pupils’ social backgrounds. Therefore, it is important to be able to specify latent Markov
models which take observed heterogeneity into account.

Analogous to the extension of latent class analysis for dealing with data on several
subpopulations (Haberman, 1979; Clogg and Goodman, 1984; Hagenaars. 1990). Van de
Pol and Langeheine (1990) proposed multiple-group latent Markov models. These Markov
models involve the inclusion of one additional variable indicating a person’s subgroup
membership. This variable will be denoted by G, with index ¢ and G* categories. In
its most general form, the multiple-group version of the latent Markov model with one

indicator per occasion given in Equation 6 is

—
=1
—

Tgwyaywaagwana — TgTuy, lg Nﬂ]iu'}gﬂu‘glqu ?Tﬂzlll‘gﬂru-‘aln'gg 7'-{:3|u-_—,__r; J

In this model every parameter is assumed to be subgroup specific. Of course. it is possible
to restrict this model by assuming particular parameters to be equal among subgroups. For
instance, in most applications, it will be assumed that measurement error is equal among
subgroups. But, it is also possible to assume the initial distribution or the transition
probabilities to be the same for all subgroups.

Although the multiple-group extension of the latent class model is very valuable, its
applicability is limited in several respects. When applying statistical methods. researchers
are interested in detecting the effects of a number of independent variables, or covariates,
on the phenomenon under study. In the case of latent Markov models. one may be inter-
ested in determining the effect of particular covariates on the initial position and on the
transition probabilities. When using the multiple-group analysis, the only thing that can
be done is crossing all covariates and using this joint covariate as a grouping variable. It
will be clear that this approach is only feasible when the number of cells of joint distri-
bution of the independent variables is not too large, because otherwise a huge number of
parameters has to be estimated.

Another limitation of the multiple-group approach is that it does not allow to make
full use of the dynamic character of the data. A strong point of longitudinal data is that
it does not contain only information on the changes in the dependent variable of interest.

but also in the independent variables. In other words, variables which may influence the



states occupied at the different points in time may be time-varying. It is very difficult to
use such time-varying covariates in multiple-group latent Markov models.

What we actually need to be able to explain a person’s latent state at T = f is a
regression-like model which can deal with both time-constant and time-varying covariates.

The next section presents such a model.

3 Logit regression models

3.1 Causal log-linear models

Several strongly related approaches have been proposed for specifying regression models
in the context of Markov modeling (Spilerman, 1972; Muenz and Rubinstein. 1985; Clogg.
Eliason. and Grego. 1990; Kelton and Smith, 1991). One of these approaches. which can
be used when all variables are categorical, is Goodman’s modified path analysis approach
(Goodman, 1973). Goodman demonstrated how to specify a causal log-linear model for a
set of categorical variables using a priori information on their causal ordering. Because of
the analogy with path analysis with continuous data, he called the model a modified path
analysis approach.
Goodman's approach will be illustrated by introducing a time-constant covariate X\

and a time-varying covariate Z; into the general manifest model described in Equation
1. In its most general form. the modified path model for the relationships among the

variables X, Z;. Y1, Z2. Y5, Z3, and Y3 can be written as

— ]
Trzyyyzayzzawa — T Trzl |x Fy1|1'=1 7"2;|r::1y1 ﬂy2|1=19122r33l131y1 292 ?‘—y.1|f:1!n 2yt (B}

Thus, the joint distribution of the variables, 7zz,y,2,y,205:+ 15 decomposed into a set of
conditional probabilities on the basis of the a priori causal order among these variables.
Note that in this case, the causal order can almost completely be based on the time order
among the variables. Only the order between Z; and }; must determined in another
way. Like the general model given in Equation 1, the above model for 7,z 4, z,y,204, 1 @
saturated model which can be restricted in various ways.

As demonstrated by Vermunt (1994, 1995), the general model given in Equation 8 can

easily be restricted by assuming particular variables to be (conditionally) independent of



some of its preceding variables. Suppose, for instance, that the Markov assumption holds
for the dependent variable Y, that Z is independent of the previous values of the dependent
variable Y, and that there are no time-lagged effects of Z on Y. These assumptions imply

that the general model represented in Equation 8 can be simplified to

i (
Trznyyizoyezavy  — NaTzjr Ty |lzzy Moglezy Myployrza Taaloz =2 Ty |ryaza (9)

When we are not interested in the relationships among the independent variables. it can

also be written as

Trzyyyzayzzaya — Trzzeza Ty len Tyoleyize Tyalryazs - (10)

Note that the Markov assumption, the assumption of non-existence of time-lagged effects
of Z on Y, and the assumption of non-existence of direct effects Y and Z can be relaxed
and therefore be tested.

The structure of the model given in Equation 10 is similar to a manifest version of the
multiple-group latent Markov model given in Equation 7. The main difference is. however.
that the grouping variable is composed of two variables, one of which is time-varying. This
means that one of the two disadvantages of the multiple-group Markov model. namely.
that the grouping variable has to be time-constant, has been overcome. The other weak
point of the multiple-group approach has not been resolved so far since every value of
the joint independent variable still has its own set of initial probabilities and transition
probabilities.

However, Goodman's modified path analysis approach does not only involve specifying
a causal order among the categorical variables which are used in the analysis. but it also
involves specifying logit models for the probabilities appearing at the right hand side of
the general model represented in Equation 8. Vermunt (1994, 1995) showed that it is
also possible to apply the logit parameterization to a restricted model such as the model
given in Equation 10. This means that the conditional probability structure cannot only
be restricted by assuming particular variables to be conditionally independent of other
variables but also by specifying a system of logit models.

Suppose, for instance, that Y; depends on Y;—1. X. and Z;. but that there are no

10



interaction effects. This assumption can be implemented by specifying logit models for

the probabilities 7, |22, s Ty, |2y, 205 a0 Ty |2y, ., appearing in Equation 10, i.e.,

exp (! +uyld + w1 dY)

Y, X )
Zm cxp (“y: + uyz + uyll-'-'ll)

Y Yo X 132 Y; Y5 Z.
axp (W2 Fu2s FaE +ugl)

Y, Y2 X Y2V Yz
Zy: exp (”yg + uyir + Uyly + uyg:zz)
Y- Ya X Y2 Y, Ya Z-
exp (U3 +u2 +u 32 +u,258)

) Ya YaX Y3Y: YaZzt ?
Zm exp (“y; + uyiz + uydy; + “ya‘z:f)

Ty |z

(12)

?r!i'2|’-"y1 z2

(13)

Tyslzyazs

where the u parameters are log-linear parameters which are subject to the well-known
ANOVA-like restrictions. Note that the model described in Equations 10-13 gives just one
of the possible set of restrictions that can be imposed on the general model presented in
Equation 8. It is also possible to specify models containing interaction effects. which relax
the Markov assumption, which contain time-lagged effects of Z on Y . and which contain
direct effects of ¥ on Z.

It is well known that logit models with categorical independent variables are equivalent
to log-linear models in which an effect is included to fix the marginal distribution of the
independent variables (Goodman, 1972; Agresti, 1990). For instance. the logit model given
in Equation 12 is equivalent to the hierarchical log-linear model

108 Mepenys = o+l + U2 + S 422 (1
where 7.y, -y, is an expected cell frequency in the marginal table formed by the variables
X. Y1, Zy, and Y, and agy, s, is the parameter that fixes the marginal distribution of the

independent variables. The probability 7, |,4,,, can simply be obtained from m,y,-,,, by

My 22y,

3
v2lzy 22
Zy; Mzy z2y2

Goodman (1973) presented his causal log-linear model by specifying log-linear models
for different marginal tables, where every subsequent marginal table had to contain. apart

from the dependent variable, all variables of the previous marginal table. More precisely.

11



Goodman's approach involves restricting the general model in Equation 8 by specifying
log-linear models for the marginal frequency tables with expected cells counts m,, m,., .
Mzzyyss Mezyy 22y Mrzyyizzyes Mez gy zayazs s 3N My 209525y, - 1 hese marginal tables can be
used to obtain the probabilities appearing at the right hand side of Equation 8. The way we
specified the Markov model with covariates is slightly different from Goodman’s original
formulation of the causal log-linear model because the logit models were specified for
the probabilities of the restricted model given in Equation 10 instead of the probabilities
of the general model given in Equation 8. The advantage of our approach is that it
is computationally more efficient as a result of a reduction of the dimensionality of the
marginal tables involved in the analysis (Vermunt, 1994, 1995).

It will be clear that the causal log-linear model provides us with a flexible regression
approach which overcomes the limitations of the multiple-group Markov model. How-
ever. in Goodman'’s causal log-linear models it is assumed that all variables are observed,
while we are interested in regressing latent states on previou® latent states. time-constant

covariates, and time-varying covariates.

3.2 Causal log-linear models with latent variables

In the context of latent class analysis, models have been proposed which can be used to
explain class membership by means of a number of observed covariates. Haberman (1979)
parametrized the latent class model as a log-linear model with one or more latent variables.
When using this log-linear latent class model it is straightforward to regress the probability
of belonging to a particular latent class on a set of categorical covariates by means of a log-
linear, or equivalently, a logit model. Dayton and Macready (1988) proposed latent class
models with continuous concomitant variables, in which class membership was regressed
on the covariates by means of a logistic regression model. Van der Heijden. Mooijaart and
De Leeuw (1992) proposed a so-called latent budget model in which a categorical latent
variable is explained by a joint independent variable using a logit model.

These strongly related extensions of the standard latent class model, which are all
based on specifying a logit model for class membership, are, however, not very well suited
to specify logit regression models for repeated observations. What we need here is a

regression modeling approach which, like the above-mentioned latent class models, allows
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to regress a latent variable on a set of covariates, and. like the causal log-linear models
discussed above, allows both the dependent variable and the covariates to change with
time. Such a model can be obtained by combining Goodman’s causal log-linear model
with a latent class model. Hagenaars (1990, 1993) showed how to specify simultaneously
a system of logit equations for a set of causally ordered latent and manifest variables and
a latent class model for the latent variables which are used in the logit models (see also
Vermunt, 1993, 1994, 1995). Because of the analogy with the well-known LISREL model
for continuous data, he called this causal log-linear model with latent variables a modified
Lisrel model. Below, it is shown that this causal log-linear model with latent variables
makes it possible to include covariates into a latent Markov model.

Suppose that we have a Markov model for the latent states 1, having the same struc-
ture as the manifest Markov model for Y; given in Equation 10. Moreover. assume that.
like in the latent Markov model described in Equation 6, each W} has only one indica-
tor, A;. In that case, the probability structure of the causal log-linear model with latent

variables W7y, W5, and W is

Trsywiagzpwpazzawaay  — Nxzyzzza Pwglez Tagun Tws|ew; 22 Tag|wy Twal|ruwypza Taalus (15)

In fact, the only difference with the manifest Markov model given in Equation 10 is that
it contains. apart from a structural part, a measurement part in which the relationships
between the latent states W, and the observed states A, are specified. This measurement
part consist of a set of conditional response probabilities 7,,,,. Note that, like in the
manifest case, the structural part of the model given in Equation 15 is already a restricted
model. In the most general model, the structural part of the model has the same structure
as the model given in Equation 8. The measurement part is restricted as well since it is
assumed that the relationship between W; and A; is independent of X', W;_; and Z,.
This assumption can easily be relaxed, namely by replacing 7q,juw, bY Ta,|zw,_yzeu,- When
using such a general specification of the measurement part of the model, Ty, |ru,_; 2 u,
has to restricted in some way to avoid identification problems. Note that although the
measurement part of the model given in Equation 15 contains only one indicator per
occasion, it is straightforward to specify models that, like the latent Markov model given

in Equation 5, contain several indicators per occasion.

13



As mentioned in the discussion of the latent Markov model. when the model contains
only one indicator per occasion, the response probabilities have to be assumed to be time-

homogeneous, i.e..

Talw = Tajlwy = Tazlwy = Taalws - (16)

Like in the manifest case, the probabilities of the structural part of the model may
be parametrized by means of a logit model. For instance, if for the latent states W we

assume the same kind of model as for the observed states Y; (see Equations 11-13). 7, |5z, -

Twp|owy 22+ AN Ty |z, 2, have to be restricted as follows:
- W Wi X W,z
- N exp (uht + up i +uy21) (17)
twilrzy — - — > . i
1§ Wiy X Wy 2
Zu-‘z exp (uu.-ll + 'ijlr + uu']]:]})
= W Wa X Wi Wz
o - (a4l 4 W (1)
Vug|lzunzy — W Wo X 'ERTE " . -
>, €XP (z.tw; - uu-f;:\ 4+ up2h 44 ) f:{?)
. Wi Wy X Wil Waa
- exp (uw; + Uyr + Uuuy’ + Uit 19
Tws|lzwpza = (19)

W Wa X Wa i, WaZy} |
Zu-‘:\ exp (uu'; + uw;r + u!L’;‘u‘gz 2 = Hu-;_‘_‘::’.?)
Although for the sake of simplicity, only hierarchical log-linear models were presented, it

is also possible to specify non-hierarchical log-linear models.

4 Estimation by means of the EM algorithm

Goodman (1974) showed how to estimate latent class models by means of the EM algorithm
(Dempster, Laird and Rubin, 1977). This algorithm was implemented by Clogg (1977) in
his MLLSA program. Poulsen (1982) was the first one who showed how to obtain maximum
likelihood estimates for the parameters of the latent Markov model by means of the EM
algorithm. More recently, Van de Pol, Langeheine and De Jong (1989) implemented
this algorithm in their PANMARK program which can be used for estimating latent and
mixed Markov models. Hagenaars and Luijkx’ (1990) LCAG program, which can be used
to estimate both standard latent class models and the causal log-linear model with latent
variables discussed above, is based on the EM algorithm as well. More recently. Vermunt

(1993) developed a program called (EM for estimating causal log-linear models with latent
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variables. The { EM program, which is based on the EM algorithm as well. is more efficient
and can therefore handle much bigger problems than LCAG. Moreover, with LCAG only
hierarchical log-linear models can be specified for the various marginal subtables. while
with (EM any type of log-linear model can be specified, including particular types of
log-multiplicative models. Specifying the latent Markov models with time-constant and
time-varying covariates is straightforward by means of (EMm.

Assuming a multinomial sampling scheme, maximum likelihood estimates for the pa-
rameters of the extended latent Markov model described in Equations 15-19 have to be

obtained by maximizing the following log-likelihood function:

TAER TR . T JHE SR e—— (20)
wy wp wa
where ., ay2,0,220, denotes an observed cell count in the cross-tabulation of the observed
variables. The 72,4 2500220, and the above log-likelihood function are sometimes also
called the incomplete data and the incomplete data likelihood. respectively.

The EM algorithm (Dempster, Laird and Rubin, 1977) is a general iterative algorithm
which can be used for estimating model parameters when there are missing data. In
the case of the latent Markov models, the scores on the latent states 117 are missing for
all persons. The EM algorithm consists of two separate steps per iteration cycle: an
E(xpectation) step and a M(aximization) step. In the E step of the algorithm. auxiliary
estimates for the missing data are obtained using the incomplete data and the “current’
parameter estimates, that is, the parameter estimates from the previous EM iteration.

For the model concerned, the E step involves

nr:lw]aizzwzagzgwgua e n.”:zlagz2a323a3 ?rwlw?w‘g rzyayzzazzzay (21}

Here, fizzwyayzwsaszawsas 15 an estimated cell frequency in the table including the latent
dimensions, sometimes also called the completed data. Furthermore, 7., s (r2y0; 23022204
is the probability of having particular scores on the latent variables, given someone’s
scores on the observed variables, calculated using the parameter estimates from the last

EM iteration.

15



The M step involves obtaining maximum likelihood estimates for the model parameters
using the completed data as if it where observed data, that is, maximizing the complete

data log-likelihood function

- B
‘C e n:{‘21 wya)ZauzfizZawsan logﬂ'l‘z] una]IpwedyIawaay ¢ {22]

The simplest situation occurs when no further restrictions are imposed on the (conditional)
probabilities appearing in the model for T;.,u, 4, 2ws0222u0a: described in Equation 15. In
that case, maximum likelihood estimates of the model parameters can simply be obtained

by
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where a *." means that the table with estimated observed frequencies is collapsed over the
dimensions concerned.

Particular (conditional) probabilities can be made equal to each other by means of
a simple procedure proposed by Goodman (1974). For instance. the restrictions on the

response probabilities which are described in Equation 16 can be imposed by

What is actually done is calculating a weighted average of the unrestricted estimates of

the response probabilities. It must be noted that, as demonstrated by Mooijaart and
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Van der Heijden (1992), this simple procedure for imposing equality restrictions among
conditional probabilities does not always work properly because it does not guarantee that
in all situations the probabilities still sum to unity after imposing the equality restrictions
(see also Vermunt, 1995). However, in this case, Goodman’s procedure. which is also
implemented in the above-mentioned MLLSA, PANMARK, and LCAG programs, works
properly.

When logit models are specified for particular conditional probabilities, the M step
is a bit more complicated. The probabilities 7, sz, s Tuy|zw,zps AN Ty [puyz,» Which are
restricted as described in Equations 17-19, can be obtained by estimating the log-linear
models concerned for the marginal tables with estimated cell counts 9,2y« w250, -
and 79zy, 2. Tespectively. For that purpose, standard algorithms for obtaining maxi-
mum likelihood estimates of the parameters of log-linear models can be applied such as
the Iterative Proportional Fitting Algorithm (IPF) and the Newton-Raphson algorithm
(Goodman, 1973; Hagenaars, 1990; Vermunt, 1993, 1995).

In the {EM program (Vermunt, 1993), hierarchical log-linear models are estimated by
IPF and non-hierarchical log-linear models by a variant of the one-dimensional Newton
algorithm as proposed by Goodman (1979). The latter algorithm differs from the well
known Newton-Raphson algorithm in that, like in IPF, parameters are updated subse-
quently instead of updating them simultaneously (Vermunt, 1995). Therefore. the algo-
rithm implemented in the {EM program is actually an ECM algorithm (Meng and Rubin,
1993).

5 Application

5.1 Data

The data which are used to illustrate the extended latent Markov model presented in
the previous sections are taken from a German educational panel study among secondary
school pupils. In this panel study by the Institute for Science Education in Kiel, a cohort
of pupils was followed during their school career and interviewed once a year with respect
to several themes, such as their school grades and their interest in physics and technology.

In the application, the variable interest in physics measured at three points in time

is used as the dependent variable. The observed variable interest in physics at T' = {
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Table 1: Test results for the estimated models

Model X L? df  p(X?) p(L?)
1. Basic (Equations 15-19) 139.45 14294 99  .005  .003
2. Basic + ul Vs 118.35 12727 98 079 025
3. Basic + uliZaWa 4 yWaZoWs 141.35 14069 97 002  .003
4. Basic + uXila 4 XNl 137.99 142.69 97  .004  .002
5. Basic + uZi}z 4 uZ2¥> 140.08 14252 97 003  .002
6. Basic + uli1Zz2 4 y}2Zs 119.28 123.08 97 062  .038
7. Basic + uf1Ws 4 oW1Za 4 W23 9523 10788 96 503 192
8. 7 + time-homogeneous effects 105.38 117.19 102 390 144

is denoted by A;, while the latent variable interest in physics is denoted by 1. Two
covariates are used in the latent Markov models to be specified: the time-constaiit covariate
sex. denoted by X, and the time-varying covariate grade in physics, denoted by Z;. Since
the time-varying covariate Z; represents a pupil’s grade in physics at the end of th-e school
vear preceding the interview date, it can be assumed that Z; influences ;. What we
want to investigate is whether interest in physics at 7' = t depends on interest in physics
at T =1 — 1, on sex, and on grade in physics at T = {.

The total sample size is 541. Because we wanted to avoid sparseness problems to
be able to use the Pearson’s chi-squared statistic and the likelihood-ratio chi-squared
statistic to test the fit of the models to be estimated, the observed variables 4; and Z,
were dichotomized, with the categories ‘low’ and ‘high’. The variable sex has categories
‘girls” and ‘boys’. The total number of cells in the observed table is 27, 128.

The fact that the variables were dichotomized does not mean that these kinds of models
cannot be used with polytomous variables. The problem is that model testing can become
very difficult because of sparseness of the observed frequency table. Although in that case
nested models can still be compared against each other by means of likelihood ratio tests,

models cannot be tested anymore against the data (Haberman, 1977, 1978; Agresti, 1990).

5.2 Results

The test result for the models that were estimated by means of the {EM program are

presented in Table 1. The model selection strategy we followed was starting from a plau-
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sible restricted model and subsequently adding parameters to see whether the fit could be
improved. Model 1, which we called the basic model, is the model described in Equations
15-19. As already mentioned when presenting the causal log-linear model with latent vari-
ables. Model 1 is obtained by imposing some restrictions on the most general model that
is possible. That is, it is assumed that someone’s interest in physics at a particular point
in time (W;) depends only on the interest in physics at the previous occasion (1%_;). on
sex (X). and on the physics grade at the same point in time (Z;). where there are only
two-variable effects. In other words, it contains the Markov assumption, it assumes that
there are no time-lagged effects, and it assumes that the effects of sex and grade are inde-
pendent of the previous interest. Another assumption, which is necessary to make a single
indicator latent Markov model identifiable, is that the measurement error is the same
among time points. And finally. Z, is postulated not to be influenced by the preceding
values of W. Below it is demonstrated how to relax some of these assumption.

As can be seen from the test results. Model 1 does not fit. This indicates that at least
one of its underlying assumptions has to be rejected. In each of the Models 2-6. one of the
above-mentioned assumptions is relaxed. Since Model 1 can be obtained by fixing one or
two log-linear parameters of Models 2-6 to zero, conditional likelihood-ratio test between
Model 1 and Models 2-6 can be used to test the significance of the additional parameters.

Model 2. which contains a direct effect of W'} on W, fits significantly better than Model
1(AL? = 15.67, df = 1, p < .001). This means that the Markov assumption does not hold.
Models 3 and 4 contain three-variable interactions among Z;, W;_;. and W} and among X .
W,_;. and W,, respectively. The conditional tests of Models 3 and 4 against Model 1 show
that neither of these interaction effects are significant: AL? = 2.25, df = 2. p = .345. and
AL? = .25, df =2, p = .882. This means that the effects of grade and sex on interest at
T =t do not depend on the interest at the previous occasion. Model 5, which contains
time-lagged effects of Z on W, does not fit better than Model 1 neither (AL* = 42, df =
2, p = .811). And finally, Model 6 contains an effect of interest at 7' =t — 1 on grade at
T = t. This model that relaxes the assumption that grade is not influenced directly by
interest fits much better than Model 1: AL? = 19.86, df = 2, p < .001.

Summarizing, both the Markov assumption and the assumption that Z; is not influ-
enced by W;_; had to be rejected, while the no three-variable interaction assumptions and

the no time-lagged effects assumption were confirmed. Model 7 contains the additional
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effects that were found to be significant, that is, the effects of W on Wi, of W, on Z,.
and of W; on Z3. As can be see from the test results reported in Table 1, this model fits
the data very well: L? = 107.88, df = 96, p < .192.

Model 7 may still contain more parameters than necessary because so far we did not
impose restrictions on the effects among time points. In Model 8, the effects of W1’_; on
W,. the effects of X on W,, the effects of Z, on W,, and the effect of W, on Z,,; are
assumed to be time independent. These time-homogeneity restrictions do not deteriorate
the fit significantly compared to Model 7: AL? = 9.31, df = 6, p < .157.

Table 2 gives the parameter estimates for Models 7 and 8. The 7,,. are the estimated
parameters of the measurement part of the model. It can be seen that in both models.
the estimated amount of measurement error is negligible since for W, = 1, the probability
that A, = 1 equals 1.000, while for W; = 2, the probability that A; = 2 equals .969. To see
whether the measurement error is significant. a model was estimated which is equivalent
to Model 8 except for the fact that the response probabilities for a correct response were
fix to be equal to zero. This model has an L? of 177.66 with 104 degrees of freedom. Note
that since the parameters are fixed to be equal to their boundary values. it is not allowed
to test this model against Model 8 by means of a likelihood-ratio test. Nevertheless. the
rather similar L? values, 117.19 and 177.66, indicate that interest in physics is measured
without error. However, it is implausible that the variable interest in physics is really
measured without error. Although the results are not reported here. also a number of’
latent Markov models without covariates and with only sex as covariate were estimated
using the same data set. In all these models, the probability of having the same value on
an observed state as on a latent state was around .9 for both latent classes. Thus, what
happens is that the inclusion of the time-varying covariate grade in physics decreases
the amount of ‘measurement error’. The reason for this is probably that in the models
without Z, the ‘measurement error’ also captured unobserved heterogeneity in the states
occupied at the different occasions which disappeared by including Z as a covariate in the
model. This indicates that in latent Markov models with a single indicator per occasion
it is difficult to distinguish measurement error from unobserved heterogeneity. To detect
measurement error it is preferable to use several indicators per occasion since in that case
the relationships among the indicators provide information on the reliability of each of the

indicators.
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Table 2: Estimates of the most important parameters of Models 7 and 8

Parameter Model 7 Model 8

ﬂa|w

Tf][l 1-000 1.000
Ty oz

ul " 261 251
uZis 274 294
Ty |rwy 23

ulp e 423 AT1
wl e 320 251
g 388 294
T |z wa za

uy i W 293 305
ulieWs 551 471
s 142 251
e e 208 294
rzz!-‘“l Wy

Tl 162 180

UL 202 180
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For the structural part of the model, Table 2 reports the two-variable log-linear effects.
Since both the independent variables and the dependent variable appearing in the various
logit equations are dichotomous, these parameters are not difficult to interpret. The
parameters indicate the effects of belonging to category 1 of the independent variable on
the probability of belonging to category 1 of the dependent variable (see Equations 17-
19). By taking twice the reported parameters, one obtains the effect for category 1 of the
independent variable on the log odds of belonging to category 1 rather than category 2 of
the dependent variable. And finally, 4 times the reported log-linear parameter gives the
log odds ratio between categories 1 and 2 of the covariate concerned, within the levels of
the other covariates.

The parameter estimates show that there is a strong dependence among the interest
at subsequent points in time: persons who have a low interest have a high probability
of remaining in the category low interest, while persons who have a high interest have a
high probability of remaining in the category high interest. Also. the second-order Markov
effect from W, on W3 is quiet strong, and it works in the same direction. The fact that.
controlling for W,. W, has a positive effect on W3 means that persons who moved to
another state between T = 1 and T = 2 tend to move back to their position at T' = 1
between T = 2 and T = 3. As can be expected, the effect of the time-varying covariate
grade is positive as well, which means that pupils with higher grades are more interested
in physics than pupils with lower grades. And finally. the effect of sex on the interest at
the different points in time shows that girls are less interested in physics than boys.

Table 2 also reports the effects of W; on Z; and W) on Zs. Note that although the
parameters are not reported here, Models 7 and 8 also contain all interaction terms among
X, Zy. Z, and Z3. The effects of W,_; on Z, indicate that interest has a positive effect
on the grade at the next point in time. This means that interest at 7" = ¢ is not only
influenced directly by interest at T =t — 1, but also indirectly via grade at T = {: Pupils
who are more interested in physics get higher grades in physics and have therefore a high
probability of remaining interested.

In summary, our analysis showed that the first-order Markov assumption does not hold
for pupils’ interest in physics, that there are time-homogeneous effects of the time-constant
covariate sex and the time-varying covariate grade on interest in physics. and that there is

an indirect relationship between interest in physics at subsequent points in time via grade

22



in physics. Moreover, the estimated amount of measurement error in the observed states
is negligible. Since it is implausible that interest in physics is really measured without

error, this may be the result of the fact that only one indicator was used per occasion.

6 Discussion

In this paper, an extension of the latent Markov model was presented. It was shown how to
specify parsimonious logit regression models for the latent states occupied at the different
points in time, in which both time-constant and time-varying categorical covariates can be
used as regressors. In fact, the extension, which is based on the use of the causal log-linear
modeling approach presented by Goodman (1973) and Hagenaars (1990). leads to a model
which is analogous to LISREL models for discrete-time continuous-state panel data.

The causal log-linear modeling framework, which was used to formulate the latent
Markov model with covariates and which is implemented in the ( EAM program. can be
used to extend the model in several ways. One possible extension is to use more than
one indicator per occasion together with a logit parameterization of the conditional re-
sponse probabilities (Formann, 1992, Vermunt, 1995). This makes it possible to specify
measurement models which are discrete approximations of latent trait models (Heinen.
1993, Vermunt and Georg, 1995). In the latent Markov model that was presented. it was
assumed that only the dependent variable is subject to measurement error. However. the
model can easily be extended to deal with measurement error in the covariates as well.
Furthermore. like in the mixed Markov model, an unobserved time-constant covariate can
be included in the model to correct for unobserved heterogeneity (Van de Pol and Lange-
heine. 1990: Vermunt. 1995). Another extension is to use also continuous time-constant
covariates (Vermunt, 1995), but it must be noted that in that case the fit of a model
cannot be tested anymore by means of chi-squared statistics. Although in latent Markov
models it is generally assumed that the measurement error is not correlated among oc-
casions, or, in other words, that the observed states are mutually independent given the
joint latent variable, it is possible to specify models with direct effects between indicators
(Bassi, Croon, Hagenaars, and Vermunt, 1995). And finally, the approach implemented
in { EMmakes it possible to use partially observed data in the analysis and to specify a

model for the mechanism causing the missing data (Vermunt, 1994, 1995).
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There are two main limitations with respect to the use of latent Markov models. First. a
general problem associated with the analysis of categorical data is that when sparse tables
are analyzed. the theoretical \? approximation of the Pearson chi-squared statistic and the
likelihood-ratio chi-squared statistic is poor. Although in such situations the significance
of parameters can still be tested by means of conditional likelihood-ratio tests. the fit of
a model cannot be assessed anymore (Haberman, 1977, 1978; Agresti. 1990). A possible
solution for this problem is to use bootstrap procedures for model testing (Langeheine.
Pannekoek, and Van de Pol, 1995).

A second limitation is that although much bigger problems can be dealt with than the
application that was presented, the size of problems that can be handled with the current
computer capacities is limited. In latent Markov models, the size of a problem depends
mainly on the number of cells of the joint latent dimension since in the E step of the EM
algorithm the contribution to the complete table has to be computed for eac‘h non-zero
observed cell count. When the latent variables are dichotomo® s, depending on the internal
memory of the computer that is used, the current working version of the (EM can deal
with eight to ten panel waves. But when each latent variable has five categories. three
or four waves is the maximum. A possibility to deal with bigger problems may be the
use pseudo-likelihood methods which do not use information on the joint distribution of
all variables included in the analysis but only on some marginal distributions (Westers.

1993).
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