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Discrete time domain modeling 
and design of current mode 
controlled flyback LED driver
Marn‑Go Kim 

In this paper, modeling for a current mode controlled (CMC) flyback LED driver with a stabilizing ramp 
is performed in a step-by-step procedure. Discrete time state equations for the system are derived and 
linearized with respect to a steady-state operating point. At this operating point, the switching control 
law, the condition that determines the duty ratio, is also linearized. In the next step, a closed-loop 
system model is derived by combining the two models of the flyback driver and the switching control 
law. The root locus analysis in the z-plane is used to investigate the characteristics of the combined 
linearized system and obtain design guidelines for feedback loops. The feasibility of the proposed 
design is confirmed through the experimental results for the CMC flyback LED driver.

In recent years, light emitting diode (LED) lighting becomes increasingly popular owing to the advantages of its 
high luminous efficacy, environmental friendliness, long lifespan, and fast response1. The brightness of an LED 
is mainly controlled by the forward current of the LED supplied by a current converter. Due to the manufactur-
ing tolerance of forward voltage and internal resistance of individual LEDs, accurately controlling the forward 
current is an important issue. Therefore, it is necessary to control the current to get the brightness of the LEDs 
precisely2–4. A lot of work has been done recently for the applications of power LEDs, including rectification with 
a high-power factor5–11 and current balancing between LED strings12–14.

Several small-signal model approaches have been attempted to characterize current-mode controlled convert-
ers. A low-frequency average approach was proposed in15. The modulator model is derived from the perturbation 
of an equation for the average inductor current in steady-state. This model has gained wide acceptance owing to 
its simplicity. However, one general limitation of the averaging model is its inability to predict high-frequency 
small-signal dynamics near half of the switching frequency. Discrete-time models16 can accurately predict the 
response at high frequencies, but provide little design insight due to their complex formulas based on numeri-
cal techniques. So far, when modeling the behavior of the modulator, it has been assumed that the operation of 
the control signal vc in the output feedback loop is much slower than the switching operation. This approach is 
suitable for voltage regulating converters because a low-pass filter is added in the output.

Current control is required to accurately maintain the brightness of the LEDs. The control signal vc in the 
output feedback loop of the current controlled converter is fast. Therefore, it cannot be regarded as a constant over 
a switching period. This is because a low-pass filter for the feedback output current is not necessarily required. In 
the current regulating converter, the instantaneous control signal vc in the output feedback loop must be used to 
model the behavior of the modulator. In order to improve the characteristics of the LED driver, an optimal design 
of the circuits in the feedback loops is required. However, very little research has been done in this area17–21.

In this paper, modeling and analysis of the CMC flyback LED driver shown in Fig. 1 is performed using a sys-
tematic modeling technique22–25. The root locus analysis in the z-plane is utilized to derive the stability boundary 
as a function of D. Design guidelines for feedback loops such as stabilization ramp slope and integrator gain are 
presented in a step-by-step process. In particular, this paper reveals for the first time that the proportional gain 
of the proportional-integral (PI) error amplifier in the output current feedback loop is not related to the dynamic 
characteristics of the CMC flyback LED driver. This is because, when the switch is on, the output current of the 
flyback converter is 0, so the slope change of the control signal by the output current does not occur. The validity 
of the proposed analysis and design is confirmed through transient response experiments.
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Modeling of CMC flyback LED driver
The following assumptions are utilized to perform the discrete time domain model:

–	 The flyback converter is operating in continuous conduction mode (CCM),
–	 All switches are ideal,
–	 The loading effect on the power stage by the feedback loop is negligible,
–	 The input and output voltages are DC.

Discrete‑time state equations.  The switch-on state is initiated when a clock signal is applied to the Set 
input of the PWM modulator. The switched-on state ends when the sum of the stabilization ramp Me and the 
inductor current sense signal Rsis reaches the control signal vc.

The duty ratio dk is determined when the two comparator inputs are equal as follows

where ik is the primary inductor current at the beginning of the k-th cycle, Me is the external ramp slope added 
for stabilization, and m1 is the positive slope of inductor current when the power switch is ON.

In Fig. 2, the inductor current can be expressed in the discrete time domain by the equation

where ik+1 is the primary inductor current at the end of the k-th cycle, and m2 is the negative slope of inductor 
current when the power switch is OFF.

As the error amplifier circuit of the output current feedback loop, a PI compensator is used as shown in Fig. 3. 
The capacitor voltage of the error amplifier can be written in the discrete time domain by the equation

(1)Rs(ik +m1Tsdk)+MeTsdk = vc|t=tk+Tsdk

(2)ik+1 = ik +m1Tsdk −m2Ts(1− dk)

Figure 1.   Constant-frequency CMC flyback LED driver with stabilization ramp.

Figure 2.   Key typical waveforms of Fig. 1.
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where Rso =
RoKf

ns
, iavg ,k =

1
Ts

∫ tk+1
tk

iodt , ns is the turns ratio of output current sense transformer, Kf  is the output 
current feedback gain and Ro is the output current sense resistor.iavg ,k , which is the average output current of 
k-th cycle, can be calculated as

where n is the turns ratio of the flyback transformer.
Since io is 0 for tk ≤ t < tk + Tsdk , the control signal vc at the moment of switching can be represented as

where the P gain kp is R2R1 and the I gain ki is 1
R1C1

 . When vr is constant, the slope of the control signal at the switch-
ing moment is not affected by kp.

Equilibrium state.  Setting m1 = M1 , m2 = M2,dk = D,ik+1 = ik = I , vk+1 = vk = V  , iavg ,k = Iavg 
iavg,k = Iavg iavg,k = Iavg , and vr = Vr , the following steady-state conditions can be obtained from (2) and (3):

where D =
Vo/n

Vi+Vo/n
 , M1 = Vi/L and M2 =

Vo/n
L .

Using (4), the average output current Iavg at equilibrium state can be written as

Linearization.  Equations (2) and (3) can be expressed concisely as

The switching control law can also be expressed from Eqs. (1) and (5) as

Linearizing Eq. (8a) with respect to the operating point gives

(3)
vk+1 = vk +

1

C1

tk+1
∫

tk

(vr − Rsoio)

R1
dt

= vk +
RsoTs

R1C1

(

vr

Rso
− iavg ,k

)

(4)iavg ,k =
1

n
{ik +m1Tsdk −m2

Ts(1− dk)

2
} · (1− dk)

(5)
vc|t=tk+Tsdk = vr +

R2

R1
vr + vk +

1

C1

tk+Tsdk
∫

tk

vr

R1
dt

= vr + kp · vr + vk + kiTsdk · vr

(6a)M1TsD = M2Ts(1− D)

(6b)Iavg = Vr/Rso

(7)Iavg =
1

n

[

I +M1TsD −
M2Ts(1− D)

2

]

(1− D) =
Vr

Rso

(8a)ik+1 = f1[ik , vk , dk , vr]

(8b)vk+1 = f2[ik , vk , dk , vr]

(9)f3[ik , vk , dk , vr] = 0

(10)δik+1 =
∂f1

∂ik
|∗ · δik +

∂f1

∂vk
|∗ · δvk +

∂f1

∂dk
|∗ · δdk +

∂f1

∂vr
|∗ · δvr

Figure 3.   PI error amplifier in the output feedback loop.
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where
∂f1
∂ik

|∗ = 1, ∂f1
∂vk

|∗ = 0 , ∂f1
∂dk

|∗ = (M1 +M2)Ts =
Vi+Vo/n

fsL
,

∂f1
∂vr

|∗ = 0.
Using steady-state conditions, linearizing Eq. (8b) with respect to the operating point also gives

where
∂f2
∂ik

|∗ = −kiTsRso(1− D)/n,
∂f2
∂vk

|∗ = 1,
∂f2
∂dk

|∗ = −kiTs ·
Rso
n [

(

M1Ts +
M2Ts
2

)

· (1− D)− Vr
Rso

· n
1−D ],

∂f2
∂vr

|∗ = kiTs.
Linearizing the switching control law in Eq. (9) can be derived as

where
∂f3
∂ik

|∗ = 1, ∂f3
∂vk

|∗ = − 1
Rs

,∂f3
∂dk

|∗ = M1Ts +
MeTs
Rs

− KiTs ·
Vr
Rs

∂f3
∂vr

|∗ = −(1+ kp + kiTsD)/Rs.

Combination of state equations and control law.  Equation (12) can be used to derive the following 
form for the linearized control law:

where
K1 =

1

M1Ts+
MeTs
Rs

−kiTs ·
Vr
Rs

,K2 = −K1

Rs
, and

Substituting (13) into (10) and (11) yields the following closed-loop system:

where  δXk+1 = [δik+1δvk+1]
T  ,  δXk = [δikδvk]

T  .  A =

[

a11 a12
a21 a22

]

 ,  B =

[

b1
b2

]

,a11 = 1− (M1 +M2)Ts·

K1 = 1−
Vi+Vo/n

fL
· K1 , a12 = −(M1 +M2)Ts · K2 =

Vi+Vo/n
fL · K1

Rs
, a21 = −kni ·

Rso
n
(1− D)+ kni ·

Rso
n

[

Vi+0.5Vo/n

fL
· (1− D)− Vr

Rso
· n

1−D

]

· K1 , a22 = 1− kni
Rs

· Rso
n · [

Vi+0.5Vo/n
fL · (1− D)− Vr

Rso
· n
1−D ] · K1 , b1 =

−(M1 +M2)Ts · K3 =
Vi+Vo/n

fL ·
(

1+ kp + kniD
)

· K1

Rs
,b2 = kni −

kni
Rs

· Rso
n

·

[

Vi+0.5Vo/n

fL
· (1− D)− Vr

Rso
· n

1−D

]

·
(

1+ kp + kniD
)

· K1 , K1 =
1

M1Ts
· 1

1+Sr−kni ·
Vr
Rs

· 1
M1Ts

 , Sr = LMe
RsVo/n

· D
(1−D) = Sro ·

D
(1−D)D =

Vo/n
Vi+Vo/n

kp =
R2
R1

, 

(11)δvk+1 =
∂f2

∂ik
|∗ · δik +

∂f2

∂vk
|∗ · δvk +

∂f2

∂dk
|∗ · δdk +

∂f2

∂vr
|∗ · δvr

(12)
∂f3

∂ik
|∗ · δik +

∂f3

∂vk
|∗ · δvk +

∂f3

∂dk
|∗ · δdk +

∂f3

∂vr
|∗ · δvr = 0

(13)δdk = −K1 · δik − K2 · δvk − K3 · δvr

K3 = −
1+ kp + kiTsD

Rs
· K1

(14)δXk+1 = A · δXk + B · δvr

Figure 4.   Effect of kp on the control signal vc : �vc = kpRsoio.
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kni = kiTs =
Ts

R1C1
 , fs = 1

Ts
 , Rso =

RoKf

ns
 . Sro is the ratio of the external ramp slope to the off-time current slope 

multiplied by Rs.

Design guidelines
kp independent of the location of the eigenvalues.  In system Eq.  (14), the terms of matrix A are 
independent of kp . So kp does not affect the characteristics of the system. Figure 4 shows the effect of kp on the 
control signal vc . When kp is present, it causes a change in the control signal. Proportional gain kp relates to the 
change of the control signal �vc when the switch is off, but does not affect the slope of the control signal when 
the switch is on. In other words, the small signal dynamics and stability related to the slope of the control signal 
at the switching moment are not affected by the resistor R2 . Therefore, it is desirable to remove R2 from the error 
amplifier, resulting in kp = 0 . This is because a large kp may cause the error amplifier to malfunction.

The eigenvalues of matrix A corresponding to the poles of the system are calculated to analyze the dynamics 
of the entire system. The eigenvalues of A are the solutions of

where I is the unit matrix.

Selection of Sro.  Sro Is the normalized slope of external ramp. As is well known, the current mode control is 
unstable in CCM when the duty cycle is greater than 0.5. A compensation ramp is added to avoid this problem. 
In the control strategy, the slope of the external compensation is constant. To ensure the stability of the control 
loop, the slope of the external ramp should be at least 50% of the downward slope of the inductor current26

(15)det(zI− A) = 0

(16)Sro ≥ 0.5

Figure 5.   Root locus in the z-plane when varying Sro for kp=0, kni=0.003, and D = 0.75.

Figure 6.   Root locus in the z-plane when varying kni for kp=0, Sro = 1.5 and D = 0.55.



6

Vol:.(1234567890)

Scientific Reports |         (2023) 13:6340  | https://doi.org/10.1038/s41598-023-33162-7

www.nature.com/scientificreports/

The root locus obtained by varying the Sro value for kp = 0 and kni = 0.003 is shown in Fig. 5. As Sro increases 
from 0.5 to 1, the transient response of inductor current which is dominated by �1 changes from underdamping 
to the fastest response. This is because the eigenvalue �1 shifts to the center of the unit circle. When Sro is greater 
than 1, the transient response of inductor current is overdamped. Selecting Sro slightly greater than 1 causes the 
closed-loop system to be slightly overdamped without oscillation. On the other hand, the eigenvalue �2 , which 
dominates the dynamic performance of the slower integrator state, is fixed near the unit circle. Choosing an Sro 
slightly greater than or equal to 1 can provide a good transient response.

Selection of kni.  Next, the root locus is obtained by changing kni for Rs = 0.25� , Rso = 3�, vr = 2.5V , 
Ts = 10µs , L = 310µH , Sro = 1.5 , n = 1, Vo = 30V , and D = 0.55. Figure 6 shows the root locus obtained by var-
ying the integral gain kni value for kp = 0 . When the I gain kni of the error amplifier changes from 0 to 0.025, the 
system response changes from overdamping to critical damping. The system responds faster because the slower 
eigenvalue �2 shifts towards the center of the unit circle. When kni is greater than 0.025, the transient response is 
underdamped and oscillations occur. Choosing a kni greater than 0.071 makes the closed loop system unstable.

Figure 7 shows stability boundary and critical gain curve of kni as a function of D. When all eigenvalues of a 
system are within the unit circle, the stability of the system is assured. This region is when kni is between 0 and 
the stability boundary. Selecting an integral gain greater than the boundary can cause the system to be unstable. 
This unstable area is grayed out. It is recommended to design the integral gain so that the system response is 
critical damping. When the two poles coincide, i.e. �1=�2 , the system response is critically damped. We can plot 
the critical gain with a dashed line between the underdamped and overdamped regions by using the condition

(17)(a11 + a22)
2 − 4(a11a22 − a12a21) = 0

Figure 7.   Theoretical stability boundary and critical gain curve of kni as a function of D when kp = 0.

Figure 8.   Experimental prototype circuit of CMC flyback LED driver with stabilization ramp.
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Experimental evaluation
For evaluation through experiments, a prototype converter circuit was implemented as shown in Fig. 8. The 
components and parameters of Fig. 8 are listed in Table 1. Switching is constant at 100 kHz frequency. CS3842 is 
used as the control IC. The output voltage is approximately 30 V (3.0 V × 10 LEDs in series). In the datasheet of 
CS3842, the OSC peak-to-peak swing �V is 1.8 V27. The rising slope of OSC is Me = �V/Ts = 1.8× 105 . For 
the operating point and system parameters, Sr0 is LMe

RsVo
× R12

R11
=310X10−6×1.8X105

0.25×30 × R12
R11

= 7.44× R12
R11

 . To design Sr0 
to be 1.5, slightly greater than 1, the values of R11 and R12 are chosen to be 50 kΩ and 10 kΩ, respectively. In the 
datasheet27, the Sense signal should be limited to within 1 V. The maximum value of OSC voltage is 2.8 V. If the 
maximum value of the primary-side inductor current is set to 3.5A, the maximum value of the Sense signal is 
max

(

OSCX 1
5 + Rsis

)

XSF =
(

2.8X 1
5 + 0.25X3.5

)

XSF = 1V . So, SF is 0.7. In Fig. 8, the Sense signal can be derived 
as OSC · R12R13

R12+R13
/(R11 +

R12R13
R12+R13

)+ Rsis ·
R11R13
R11+R13

/(R12 +
R11R13
R11+R13

) . Therefore, R11R13R11+R13
/(R12 +

R11R13
R11+R13

) = SF ≈

0.7. Substituting R11 = 50k� and R12 = 10k� into this equation gives R13 = 50k�.
When the integral gain kni is multiplied by the scale factor (SF), the characteristics of the real system become 

the same as the theoretical analysis20. So, the actual integral gain k′ni in the output feedback loop becomes kniXSF . 
In the experimental circuit, the output signal of the error amplifier is reduced by 1/3 by the voltage divider resis-
tors. So, the designed integral gain in the output feedback loop k′ni is 13 × Ts

R
′

1C
′

1

 . Setting C′

1 = 47nF gives 

kni =
k
′

ni
SF = 1

0.714X3 ×
10−5

R
′

1X47X10
−9

 = 0.0993X10
3

R
′

1

.
In the experiment, 10 LEDs were connected in series to provide a load voltage of about 30 V. Figure 9 shows 

a picture of the implementation hardware. As shown in Fig. 10, the LED current iL , the output of the error ampli-
fier COMP, and the transformer secondary current io are measured for the starting transient when the integral 
gain is changed. The overall response time is faster as the integral gain varies from 0.0083 to 0.027. An optimal 
transient response is measured when kni is 0.027, that is, near the point �1 = �2 . By changing the integral gain to 
0.055, the transient response of the system exhibits slight oscillations. Increasing kni to 0.1 results in an unstable 
system with pole locations outside the unit circle. At kni = 0.1 , the pole positions in the z-plane are 0.9± j0.87 . 
The z-plane pole positions are expressed as the s-plane pole positions as follows28: z = esTs |s=σ±jw = eσTs/±wTs

_
 

= 1.25/±0.768
_

 . Since wTs=0.768, the closed-loop oscillation frequency is fosc = 0.768
2πTs

= 0.122fs . So, the oscillation 

Table 1.   Components and system parameters used in the experiment.

fs 100 kHz C
′

1
47 nF

D 0.55 S1 IRF640

L 310 µH D1 MBRF10100CT

Rs 0.25 Ω LEDs SZ5-W0-M0-00

Vo 30 V Load current 833 mA

Ro 150 Ω R11 50 kΩ

n 1 R12 10 kΩ

ns 50 R13 50 kΩ

Kf 1 Vi 25 V

Sro 1.5 Control IC CS3842

Figure 9.   Photo of the experimental implementation.
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period becomes 1
fosc

= 8.2Ts ≈ 82µs , which is consistent with the measured unstable waveform as shown in 
Fig. 10d. The observed experimental results show excellent agreement with the root locus analysis. Figure 11 
shows the simulated waveforms using the PSIM simulation program when the integral gain of the error amplifier 

Figure 10.   Start-up responses when the integral gain kni changes, (a) kni ≈ 0.0083

(

R
′

1 = 12k
)

, (b) 

kni ≈ 0.027(R
′

1 = 3.7k) , (c) kni ≈ 0.055

(

R
′

1 = 1.8k
)

, and (d) kni ≈ 0.1

(

R
′

1 = 1k
)

. Vertical scale: top traces-
load current iL(0.5 A/div.); middle traces-error amplifier output voltage COMP (2 V/div); bottom traces- 
transformer secondary output current io (1 A/div).
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is changed. The soft start time simulation of the COMP signal is omitted. The experimental points of the two 
analysis planes are shown in Fig. 12. Comparison between the proposed design and the previous design5 is shown 
in Table 2. The typical efficiency of this flyback LED driver with an output power of 25 W is over 90%.

Figure 11.   Simulated waveforms at start-up, (a) kni ≈ 0.0083

(

R
′

1 = 12k
)

, (b) kni ≈ 0.027(R
′

1 = 3.7k) , (c) 

kni ≈ 0.055

(

R
′

1 = 1.8k
)

, and (d) kni ≈ 0.1

(

R
′

1 = 1k
)

. Vertical scale: top traces-load current iL(0.5 A/div.); 
middle traces-error amplifier output voltage COMP (2 V/div); bottom traces- transformer secondary output 
current io (1 A/div).
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Conclusion
A sequential process of modeling for a CMC flyback LED driver with a stabilizing ramp is proposed. Discrete 
time equations representing the behavior of the CMC flyback converter are derived. Then these equations are 
linearized with respect to the steady-state operating point. At the moment of switching, the control law is also 
linearized with respect to the operating point. In the next step, a linearized CMC flyback LED driver with a 
stabilizing ramp is derived by combining the two models of a linearized flyback converter and a linearized 
switching control law.

The inner feedback loop uses a current mode controller with ramp compensation slope. A PI compensator is 
used as an error amplifier in the output feedback loop. Here is a suggested step-by-step procedure for selecting 
feedback loop gains such as slope ratio and integral gain in the output feedback loop. First, Sr0 is chosen to be 1 
or a slightly greater value. Second, kp is set to zero. The integral gain kni is designed to be close to the critical gain 
obtained using (17). Third, the maximum value of the comparator input voltage requires a limit27. To accommo-
date this, SF is calculated. This SF is less than 1. The actual integral gain k′ni is calculated by multiplying kni by SF.

Figure 12.   Experimental points: (a) pole locations in the z-plane and (b) representations in the kni versus D 
plane.

Table 2.   Comparison between proposed and previous current-mode controller designs.

Proposed design Previous design ref. 5

Discrete time domain design Continuous time domain design

Simultaneous error amplifier and current-loop designs Error amplifier design after designing current loop

Constant slope compensation Variable slope compensation

Internal ramp compensation signal OSC of CS3842
used for the current loop

External exponential ramp compensation signal
used for the current loop

Simple hardware implementation:
3 resistors for the current loop, and 1 resistor and 1 capacitor for the 
error amplifier

Complex hardware implementation:
2 transistors, 2 diodes, 7 resistors and 3 capacitors for the current 
loop, and 1 opamp, 6 resistors and 3 capacitors for the error amplifier
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Using the step-by-step procedure described above, the design engineer can easily select the appropriate feed-
back gains for a well-characterized system. The proposed control can be implemented with a very simple com-
pensation circuit. The validity of the proposed design is confirmed through the presented experimental results.

Data availability
All data generated or analysed during this study are included in this published article.
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