
 

  

 

Aalborg Universitet

Discrete-Time Domain Modelling of Voltage Source Inverters in Standalone
Applications

Enhancement of Regulators Performance by Means of Smith Predictor

Federico, de Bosio; de Sousa Ribeiro, Luiz Antonio ; Freijedo Fernandez, Francisco Daniel;
Pastorelli, Michele; Guerrero, Josep M.

Published in:
I E E E Transactions on Power Electronics

DOI (link to publication from Publisher):
10.1109/TPEL.2016.2632527

Publication date:
2017

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Federico, D. B., de Sousa Ribeiro, L. A., Freijedo Fernandez, F. D., Pastorelli, M., & Guerrero, J. M. (2017).
Discrete-Time Domain Modelling of Voltage Source Inverters in Standalone Applications: Enhancement of
Regulators Performance by Means of Smith Predictor. I E E E Transactions on Power Electronics, 32(10), 8100
- 8114 . https://doi.org/10.1109/TPEL.2016.2632527

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1109/TPEL.2016.2632527
https://vbn.aau.dk/en/publications/a80fbae4-2246-4e12-824f-9d90100e47d5
https://doi.org/10.1109/TPEL.2016.2632527


www.microgrids.et.aau.dk

 
Abstract— The decoupling of the capacitor voltage and 

inductor current has been shown to improve significantly 

the dynamic performance of voltage source inverters in 

standalone applications. However, the computation and 

PWM delays still limit the achievable bandwidth. In this 

paper a discrete-time domain modelling of the LC plant 

with consideration of delay and sample-and-hold effects on 

the state feedback cross-coupling decoupling is derived. 

From this plant formulation, current controllers with wide 

bandwidth and good relative stability properties are 

developed. Two controllers based on lead compensation 

and Smith predictor design, respectively, are obtained. 

Subsequently, the voltage regulator is also designed for a 

wide bandwidth, which permits the inclusion of resonant 

filters for the steady-state mitigation of odd harmonics at 

nonlinear unbalance load terminals. Discrete-time domain 

implementation issues of an anti-wind up scheme are 

discussed as well, highlighting the limitations of some 

discretization methods. Extensive experimental results, 

including a short-circuit test, verify the theoretical 

analysis. 

Index Terms— Current control, voltage control, power 

quality 

I. INTRODUCTION 

HE design of voltage and current regulators for Voltage
Source Inverters (VSIs) intended for standalone 

applications, i.e. islanded microgrids or Uninterruptible Power  
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Supply (UPS) systems, should aim to achieve good 
performance during steady-state and transient conditions. This 
means the system should be operated with wide stability 
margins. The poor dynamics of these regulators are 
responsible for degraded performance of the overall control 
system. Thus effective control design and implementation of 
the regulators is mandatory. In this context, four general 
requirements are usually imposed on any current or voltage 
regulator [1]: i) to achieve zero steady-state error; ii) to 
accurately track the commanded reference and reject any 
disturbance; iii) to widen the closed-loop control bandwidth as 
much as possible to achieve fast transient response; iv) to 
reduce the total harmonic distortion by compensating for low 
order harmonics. Mandatory requirements specifically for AC 
power supply/UPS systems are fault and peak current 
protection [2]. 

A possible design of voltage or current regulators is based 
on Proportional Resonant (PR) controllers in the αβ stationary 
reference frame. This structure is equivalent to two 
Proportional Integral (PI) controllers, one for the positive and 
the other for the negative sequence in the synchronous 
reference frame [3]. Independently of the PR controller 
structure, the effect of delays and voltage coupling in 
standalone applications should be carefully considered in the 
design stage. In particular, as proved in a recent publication 
[4], the coupling between the capacitor voltage and inductor 
current in VSIs with LC output filter, which is usually the case 
in UPS systems [5], degrades the dynamics of the inner 
regulators.  

A possible approach for analysis is based on s-domain 
models, which are useful as they improve the general 
perception of the dynamic behavior of pulse-width modulators 
[6]. Subsequently, the design of the regulators in the s-domain 
is followed by their discretization. However, the mapping 
from the s-domain to the z-domain can introduce some 
discrepancy, depending on the discretization method used [5], 
[7]. On the other hand, the direct design of digital 
compensators in the discrete-time domain provides more 
accuracy, being able to capture the sampling effects. In fact, 
the transformation of the system in the discrete-time domain 
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by means of z-transform or discrete-time modelling in state-
space form allows the sample-and-hold effect and time lag to 
be treated accurately [8]-[11], without the need of using the 
approximated rational transfer functions of the delay [12]. 
Moreover, the methodology presented in [13] allows the 
Cross-Coupled State Equations of a system with coupled 
variables and multiple feedback paths to be derived, following 
a discretization approach. This is the approach to be used in 
order to correctly represent the coupling between the 
controlled states. In general, other advantages can be 
identified for direct design in the z-domain: i) design for direct 
discrete-time pole-placement [14], [15]; ii) improved dynamic 
performance and robustness of the regulators [16], especially 
if the ratio of the sampling frequency to the fundamental 
frequency is low [14] or the current regulator is tuned for a 
very wide bandwidth [17]. Accordingly, z-domain modelling 
is considered convenient for an accurate design. 

Usually, when voltage decoupling is performed, the 
influence of compensating for computation and PWM delays 
on the state feedback decoupling path is not taken into 
account. In fact, in previous works, the decoupling of the 
controlled states does not take into account the effect of 
computation and PWM delays when performed. Specifically, 
state feedback decoupling has often been used for decoupling 
the cross-coupling caused by the implementation of current 
controllers in the synchronous reference frame [1], for 
decoupling the back-emf effect in dc [18] and ac drives [19] 
(resulting in a current control strategy independent of the 
speed), and for decoupling current and voltage states in dc-dc 
converters [20] and UPS systems [4], [21]. Nevertheless, in 
these applications the decoupling is analyzed in the continuous 
time domain. Because the delays introduced by the discrete-
time modelling are not present, the resulting model used to 
design and analyze the inner current loop is simply the model 
of an RL load. This is equivalent to considering the 
decoupling as ideal. Nevertheless, system delays significantly 
degrade the performance of state feedback decoupling. As 
proved in [4], the state feedback decoupling action can be 
improved by leading the capacitor voltage on the state 
feedback decoupling path. Moreover, the possibility to widen 
the current loop bandwidth either by means of a lead 
compensator on the forward path or a Smith Predictor 
structure has not previously been investigated, and is the main 
original proposal of this work. To the best knowledge of the 
authors, no deep analyses in the discrete-time domain have 
been previously provided for these kinds of techniques. As 
will be shown in the paper, both structures allow good 
dynamics properties to be achieved as the controller 
bandwidth is widened. However, the way these techniques aim 
at compensating for system delays is different. Specifically, 
the lead compensator adds an additional degree of freedom to 
the system in order to directly locate the poles of the closed-
loop controller transfer function. On the other hand, the Smith 
predictor structure permits the design of the controller based 
on the un-delayed model of the physical plant by building a 
parallel model which cancels the system delay. As the current 
regulator dynamics are enhanced, the voltage loop dynamics 

are widened as well. In this paper it is shown how an accurate 
modelling of the delay effects in decoupling leads to a better 
control design and dynamics assessment. 

A model in the discrete-time domain which takes into 
account the coupling of the capacitor voltage with the inductor 
current, even if voltage decoupling is performed, is derived 
analytically. This model is shown to better represent the 
physical system being addressed. It is important to note that 
even without the one sample delay introduced by computation, 
the sample-and-hold effect is still present and limits the 
achievable bandwidth, thus reducing the benefits introduced 
by the decoupling. The effect of widening the inner current 
loop bandwidth by means of two techniques based on a lead 
compensator structure and Smith Predictor is proposed. 
Finally, the results obtained for the current loop analysis are 
applied to design the voltage loop, based on the Nyquist 
criterion. A straightforward mathematical formulation to select 
the fundamental integral gain of the resonator by moving the 
zeros of the controller to the real axis is used for practical 
design. 

This work is organized as follows. In Section III the model 
in the discrete-time domain which takes into account the 
coupling of the controlled states is derived. The devised model 
is compared to the simplified formulation based on an RL load 
and the main differences are discussed. In Section IV the inner 
loop current control with state feedback voltage decoupling is 
analyzed. Two techniques aimed to widen the bandwidth of 
the current regulator, based on a lead compensator structure 
and Smith Predictor, are proposed and compared. 
Subsequently, in Section V, a PR voltage controller design is 
proposed based on the design of the current regulator with 
wide bandwidth. Detailed design and tuning is provided 
according to the Nyquist criterion. Moreover, discretization 
issues of an anti-wind up scheme for the voltage regulator are 
analyzed. In Section VI the theoretical solution is supported 
by experimental results, verifying their compliance with the 
IEC 62040 normative for UPS systems. 

II. SYSTEM DESCRIPTION

In standalone applications, the VSI is implemented with an 
LC filter at its output. In general, it operates in voltage control 
mode with the capacitor voltage and inductor currents being 
the controlled states. Fig. 1 shows the block diagram 
representation including a three-phase power converter with 
its inner loops. The inner current loop has to track the 
commands provided by the outer voltage loop and to ensure 
disturbance rejection within its bandwidth [17], [22]. 

The simplified block diagram representation of the closed-
loop system is shown in Fig. 2, where 𝑽𝐶𝛼𝛽∗ = 𝑉𝐶𝛼∗ + 𝑗𝑉𝐶𝛽∗
and 𝑰𝐿𝛼𝛽∗ = 𝐼𝐿𝛼∗ + 𝑗𝐼𝐿𝛽∗  are the voltage and current reference 

vectors and 𝑰𝑜𝛼𝛽 = 𝐼𝑜𝛼 + 𝑗𝐼𝑜𝛽 is the output current vector,

which acts as a disturbance to the system. 𝐺𝑖(𝑧) and 𝐺𝑣(𝑧)
represent the current and voltage regulators transfer functions 
(TF) in the discrete-time domain. There is one sample 
computational delay associated to the implemented regular 
sampled symmetrical PWM strategy, i.e. the time required to 
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compute the duty-cycle control signal [9], [23]. 𝐺𝑑𝑒𝑐(𝑧) is the
TF related to the decoupling of the cross-coupling controlled 
states. The capacitor 𝐶𝑓 = 3𝐶 is the equivalent capacitance of
a Y connection configuration. 
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Fig. 1.  Block diagram of a three phase VSI with voltage and current loops. 
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Fig. 2.  Simplified block diagram of the closed-loop system. 

III. DISCRETE-TIME DOMAIN PLANT MODELLING

As voltage decoupling is performed, higher damping is 
achieved with less overshoot for a given bandwidth [4]. If it 
was possible to exactly decouple (cancel) the capacitor 
coupling, the system would become not dependent on the load 
impedance and the physical plant could be represented by an 
RL load. In this case, the modelling in the discrete-time 
domain is based on the Z-transform of the part of the plant 
related to the inductor current 𝐺𝑝(𝑠) along with the sample-
and-hold effect [10], leading to 𝐺𝑝(𝑧) = 𝑰𝐿𝛼𝛽𝑽𝑖𝛼𝛽 = 𝒁{𝑳{𝐿𝑎𝑡𝑐ℎ}𝐺𝑝(𝑧)} = 

= (1 − 𝑧−1)𝒁 {𝐺𝑝(𝑠)𝑠 } = 1𝑅𝑓 (1 − 𝑒−𝑇𝑠/𝜏𝑝)𝑧−11 − 𝑒−𝑇𝑠/𝜏𝑝𝑧−1 . (1) 

Where 𝑰𝐿𝛼𝛽(𝑧) and 𝑽𝑖𝛼𝛽(𝑧) are the inductor current and
input voltage in the z-domain, respectively; 𝜏𝑝 = 𝐿𝑓/𝑅𝑓 is the
plant time-constant. However, the coupling effect introduced 
by the second-order LC filter cannot be neglected, because of 
computation and PWM delays which are not fully 
compensated for on the state feedback decoupling path. Even 
without the one sample delay introduced by computation, the 
latch interface is still present, not allowing the complete 
decoupling of the controlled states. The effect of capacitor 
voltage in the dynamics should be considered in the design 
stage [24]. For this reason, a model which reflects this effect 
has been developed. The general methodology, here reported, 
is similarly applied in [13]. 

Step 1: Model and derive the Ordinary Differential 
Equations (ODEs) of the system; 

Step 2: Form the Laplace transform of the ODEs including 
the effects of initial conditions; 

Step 3: Form a step input for the latched manipulated input; 
Step 4: Find the continuous time step response solution; 
Step 5: Find the response at the next sampling instant; 
Step 6: Generalize the solution for arbitrary sampling 

instants (𝑘𝑇); 
Step 7: Form eventually the correspondent transfer function 

in the discrete-time domain. 

With reference to Fig. 3 and neglecting the disturbance 𝑖𝑜(𝑡), the ODEs of the system are

{ 
 𝑑𝑑𝑡 𝑣𝑐(𝑡) = 1𝐶𝑓 𝑖𝐿(𝑡)𝑑𝑑𝑡 𝑖𝐿(𝑡) = 1𝐿𝑓 [𝑣𝑖(𝑡) − 𝑅𝑖𝐿(𝑡) − 𝑣𝑐(𝑡)]. (2) 

The equivalent series resistance (ESR) of the filter capacitor 𝐶𝑓 is not considered in the model, since its effect appears far
above the frequency range of concern [25], it is usually small 
and has little effect in dynamics. The system in (2) is 
transformed in the Laplace domain including the effects of 
initial conditions, fundamental to derive the Cross-Coupled 
State Equations. The sample-and-hold effect is modelled as 𝑉𝑖(𝑠) = 𝑣𝑖(𝑡 = 0)/𝑠 (input modelled as steps). In particular
the relationships between the states are 𝑉𝑐(𝑠) = 𝜔𝑛2𝑠2 + 2𝜉𝜔𝑛𝑠 + 𝜔𝑛2 {𝑣𝑖(𝑡 = 0) 1𝑠+ 1𝜔𝑛2 [𝑠𝑣𝑐(𝑡 = 0) + �̇�𝑐(𝑡 = 0)]+ 2𝜉𝜔𝑛 𝑣𝑐(𝑡 = 0)}. 

(3) 

𝐼𝐿(𝑠) = 𝜔𝑛2𝑠2 + 2𝜉𝜔𝑛𝑠 + 𝜔𝑛2 [𝐶𝑓𝑣𝑖(𝑡 = 0)+ 𝐿𝑓𝐶𝑓𝑠𝑖𝐿(𝑡 = 0) − 𝐶𝑓𝑣𝑐(𝑡 = 0)]. (4) 

Where 𝜔𝑛2 = 1𝐿𝑓𝐶𝑓 ;    𝜉 = 12𝜔𝑛 𝑅𝑓𝐿𝑓 = 𝑅𝑓2 √𝐶𝑓𝐿𝑓 . (5) 

Being 𝜔𝑛 the natural frequency of the plant and 𝜉 the
damping factor. Then the inverse Laplace transform is applied 
to (3) and (4). The continuous time step response is 
generalized for arbitrary sampling instants, followed by the 
transformations to the z-domain and αβ stationary reference 
frame. More details are provided in Appendix. The Cross-
Coupled State Equations are thus obtained 𝑽𝑐𝛼𝛽(𝑧) [1 + 𝜔𝑛𝜔𝑑 𝑒−𝜉𝜔𝑛𝑇 sin(𝜔𝑑𝑇 − 𝜙)𝑧−1− 2𝜉𝜔𝑛𝜔𝑑 𝑒−𝜉𝜔𝑛𝑇sin(𝜔𝑑𝑇)𝑧−1]= [1 − 𝜔𝑛𝜔𝑑 𝑒−𝜉𝜔𝑛𝑇 𝑠𝑖𝑛(𝜔𝑑𝑇 + 𝜙)]𝑽𝑖𝛼𝛽(𝑧)𝑧−1+ 1𝐶𝑓𝜔𝑑 𝑒−𝜉𝜔𝑛𝑇 𝑠𝑖𝑛(𝜔𝑑𝑇) 𝑰𝐿𝛼𝛽(𝑧)𝑧−1. 

(6) 
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𝑰𝐿𝛼𝛽(𝑧)𝑽𝑖𝛼𝛽∗ (𝑧)= 11 + 𝜔𝑛𝜔𝑑 𝑒−𝜉𝜔𝑛𝑇 sin(𝜔𝑑𝑇 − 𝜙) 𝑧−1 𝐶𝑓 𝜔𝑛
2𝜔𝑑 𝑒−𝜉𝜔𝑛𝑇𝑠𝑖𝑛(𝜔𝑑𝑇)𝑧−1. (7) 

Where 𝜔𝑑 = 𝜔𝑛√1 − 𝜉2;   𝜙 = 𝑡𝑔−1 (√1 − 𝜉2𝜉 ). (8) 

Moreover, 𝑽𝑖𝛼𝛽∗ (𝑧) = 𝑽𝑖𝛼𝛽(𝑧) − 𝑽𝑐𝛼𝛽(𝑧) is the applied
voltage to the model after the voltage capacitor coupling effect 
in a block diagram representation. It can be clearly seen that 
the model of the RL load in (7) takes into account the effect of 
the coupling with the output capacitor by including Cf.

Lf

iL Cf

Rf io

ei eo

Fig. 3.  Single-phase representation of an LC filter. 
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Fig. 4.  Discrete time block diagram of an LC filter neglecting the disturbance 𝑰𝒐𝜶𝜷(𝒛).
Similarly, the relationship between 𝑰𝐿𝛼𝛽(𝑧) and 𝑽𝐶𝛼𝛽(𝑧),

can be derived. Additional details are provided in the 
Appendix. 𝑽𝑐𝛼𝛽(𝑧)𝑰𝐿𝛼𝛽(𝑧) = 𝑎1 + 𝑎2𝑧−1𝑏1(1 − 𝑧−1). (9) 

Where 𝑎1 = 1 − 𝜉𝜔𝑛𝜔𝑑 𝑒−𝜉𝜔𝑛𝑇 sin(𝜔𝑑𝑇) − 𝑒−𝜉𝜔𝑛𝑇 cos(𝜔𝑑𝑇)𝑎2 = 𝜉𝜔𝑛𝜔𝑑 𝑒−𝜉𝜔𝑛𝑇 sin(𝜔𝑑𝑇) − 𝑒−𝜉𝜔𝑛𝑇 cos(𝜔𝑑𝑇) + 𝑒−2𝜉𝜔𝑛𝑇𝑏1 = 𝐶𝑓 𝜔𝑛2𝜔𝑑 𝑒−𝜉𝜔𝑛𝑇 sin(𝜔𝑑𝑇)
The block diagram in Fig. 4 shows the complete system here 

derived, highlighting (7). The closed-loop frequency responses 
of (1) and (7) with a P controller as current regulator are 
shown in Fig. 5, considering voltage decoupling. The 
parameters used are reported in Table II and Table III. The 
key point is that because of the coupling with the output 
capacitor, which is modelled by (7), a lower gain is achieved 
at low frequencies. This model justifies the higher steady-state 
error observed in both simulation and experiments than with 
the continuous-time model and the discrete-time one based on 
(1). For this reason, the plant model in Fig. 4 should be used to 
design and analyze the system 
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and model based on (7), and a P controller with 𝒌𝒑𝑰 = 𝟓.𝟓𝟒, neglecting the one 
sample delay. 

A. Validation of the Plant Model by Simulation 

The derived model is validated in simulation. With 
reference to Fig. 2, the block diagram representation of an LC 
filter only without the current controller is considered (see Fig. 
6), using the system parameters in Table II. A discrete-time 
sinusoidal input voltage is provided as input to the LC filter 
via a latch interface. For a better understanding, the one 
sample delay is neglected in this test. The simulation is 
performed at no load. To effectively validate (7) and (9), the 
LC filter in Fig. 6 is modelled in two different ways: 

1) by using elementary transfer functions Simulink blocks
for 𝐿𝑓, 𝑅, the integrator terms 1/𝑠 and 𝐶𝑓. The latch
interface is modelled using a Zero-Order Hold block;

2) by replacing 1/(𝐿𝑓 𝑠 + 𝑅𝑓) and the latch interface with
(7). Additionally, 1/(𝐶𝑠) is replaced by (9). This is
equivalent to test the block diagram in Fig. 4.
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Fig. 6.  Block diagram of the physical system. 

The inductor current and capacitor voltage provided by the 
two models are compared. With reference to Fig. 7, there is a 
perfect match at the sampling instants between the inductor 
current provided by the two models. It should be noted only 
model 2) provides access to the inductor current as an internal 
state. This is a key issue for design purposes. With reference 
to Fig. 8, the capacitor voltage simulated using the discrete-
time model (see Fig. 4) is equal (at the sampling instants) to 
the capacitor voltage simulated using the continuous-time 
model. 
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A more rigorous validation is based on applying, in open 
loop, the actual pulse-width modulated voltage provided by a 
three-phase power converter to an LC filter at no load 
conditions. Again, the one sample delay is not included in the 
analysis. In order to mitigate non-linearity effects introduced 
by PWM, the physical parameters in Table I are used to 
perform the simulation. The results are compared with those 
provided by the model based on (7) and (9).  
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With reference to Fig. 9 and Fig. 10, it can be seen the 
average value of the controlled states provided by the two 
models are equivalent. In fact, by using synchronous 
sampling, the average value, mainly of the inductor current, is 
used for control purposes. All these results demonstrate the 
correctness of the devised model, which can be used for 
design purposes. 

TABLE I 
SYSTEM PARAMETERS FOR SIMULATION PURPOSES 

Parameter Value 

Switching frequency 𝑓𝑠 = 10 𝑘𝐻𝑧
Filter inductance 𝐿𝑓 = 1.8 𝑚𝐻
Filter capacitor 𝐶𝑓 = 108 µ𝐹
Inductor ESR 𝑅 = 10 𝛺 

To investigate the effect of the latch interface and one 
sample delay on the closed-loop TF, three different models 
with the inner current loop only and a P controller as regulator 
are considered (see Fig. 11, Fig. 13 and Fig. 15). The 
parameters in Table II and Table III are used for analysis. As 
the latch interface and one sample delay are neglected [see 
Fig. 11(a)], the physical system as seen from the controller 
simplifies to an RL load [see Fig. 11(b)]. This means the state 
feedback decoupling path perfectly cancels out the physical 
coupling of the capacitor voltage. As a consequence, the 
reference current is properly tracked with almost zero steady-
state error (see Fig. 12). On the other hand, as the latch 
interface is included (see Fig. 13) the steady-state error 
between the reference and real inductor current increases (see 
Fig. 14). Given the reference current at f = 50 Hz in α-axis iα∗ = 5 A, the real inductor current is iα = 3.68 A. This meansiα = 0.736 iα∗ , which corresponds to -2.68 dB, in accordance
with the frequency response analysis at 50 Hz of Fig. 5. 
Additionally, with reference to Fig. 15, it can be seen the 
combined effect of the one sample delay and latch interface. 
An even higher steady-state error is observed (see Fig. 16), 
limiting the current loop control bandwidth. As Fig. 13 and 
Fig. 15 implement the plant modelling previously verified in 
Fig. 7 and Fig. 8, it can be concluded that state feedback 
decoupling is far from being ideal. Thus, a design procedure 
based on (7) and (9) provides a more accurate pole placement. 
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IV. CURRENT REGULATOR DESIGN

Since voltage and current regulators are built in a cascade 
control configuration, serial tuning can be used for design 
purposes. For this reason, the loop characterized by the fastest 
dynamics is the first to be designed according to system 
requirements [26]. The proportional gain kpI of the current
regulator is selected to achieve the desired bandwidth (𝑓𝑏𝑤),
which in principle has to be much wider than the outer loops 
[27]. The reason is to avoid interactions between the outer and 
the inner loops. Moreover, the closed-loop controller 
bandwidth is mainly limited by the computation and PWM 
delays [15]. This limitation is overcome by implementing 
techniques aimed at compensating for the system delays. In 
this work, it is shown that the current control bandwidth can 
be designed for a third of the sampling frequency with wide 
stability margins, either by means of a P controller + Smith 
predictor or a P controller along with a lead compensator 
structure. The physical and control parameters for the current 
loop used both in simulation and in laboratory tests are 
presented in Table II and Table III. 

TABLE II 
SYSTEM PARAMETERS 

Parameter Value 

Switching frequency 𝑓𝑠 = 10 𝑘𝐻𝑧
Filter inductance 𝐿𝑓 = 1.8 𝑚𝐻
Filter capacitor 𝐶𝑓 = 108 µ𝐹
Inductor ESR 𝑅 = 10 𝛺 
Linear Load 𝑅𝑙 = 68 Ω 𝐶𝑁𝐿 = 235 µ𝐹 

Nonlinear load 𝑅𝑁𝐿 = 155 Ω 𝐿𝑁𝐿 = 0.084 𝑚𝐻 

TABLE III 
CURRENT REGULATOR PARAMETERS 

Parameter Value 

Proportional gain w/o lead 𝑘𝑝𝐼 = 5.54 

Proportional and lead gains 
@𝜔𝑛𝐶𝐿 = 4800𝜋 rad/s, 𝜉𝐶𝐿 = 0.707, 𝑓𝑏𝑤 = 3.1 kHz 

{𝑘𝑝𝐼 = 11.56𝑘𝐿 = 0.559
Proportional gain with Smith Predictor 

@𝑓𝑏𝑤 = 3.1 kHz
𝑘𝑝𝐼 = 14.62 
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A simple P controller for the inner current loop, with a 
decoupling TF 𝐺𝑑𝑒𝑐  (𝑧) = 1 (see Fig. 2) and the discrete-time
model based on (7) are considered, as shown in the block 
diagram of Fig. 17. 
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Fig. 17.  Block diagram for design the inner current loop, including the lag 
introduced by computational delay. 

The closed-loop TF of the inner current loop in Fig. 17 is 𝑰𝐿𝛼𝛽(𝑧)𝑰𝐿𝛼𝛽∗ (𝑧) = 𝑘𝑝𝐼𝑏𝑧2 − 𝑎𝑧 + 𝑘𝑝𝐼𝑏, (10) 

Where 𝑏 = 𝐶𝑓 𝜔𝑛2𝜔𝑑 𝑒−𝜉𝜔𝑛𝑇 𝑠𝑖𝑛(𝜔𝑑𝑇);𝑎 = −𝜔𝑛𝜔𝑑 𝑒−𝜉𝜔𝑛𝑇𝑠𝑖𝑛(𝑤𝑑𝑇 −𝜙). For the system parameters in Table II, the root locus is 
shown in Fig. 18. It can be stated that, because of the delay, 
there is a limitation in the gain to achieve system dynamics 
with enough damping. There are two poles and just one 
variable (𝑘𝑝𝐼) which can change their locations. It is clear that
it is not possible to place the roots at any desired location. The 
designed gain to achieve a damping of 𝜉 = 0.707 is 𝑘𝑝𝐼 =5.54, as presented in Table III. 

0 0.2 0.4 0.6 0.8 1
Real Axis (sec. 

-1
)

0

0.8

0.4

-0.4

-0.8

Im
a

g
. 

A
xi

s 
(s

ec
. 

-1
)

0.1 /T

0.2 /T

0.3 /T

0.4 /T

0.1 /T

0.2 /T

0.3 /T

0.4 /T

0.7

0.5

0.3

0.1

0.9

s: 0.447

Mp: 4.33%
x: 0.707

kp: 5.54

Mp: 46%
x: 0.24

kp: 11.58

Fig. 18.  Root locus of open loop TF in Fig. 17 including the lag introduced by 
PWM update. 

To widen the system bandwidth and still achieve a 
reasonable damped closed-loop response, it is possible to 
design a lead compensator as shown in Fig. 19, also referred to 
as ‘Delay prediction and Feedback’ [15]. 
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Fig. 19.  Block diagram for design the inner current loop, including the lag 
introduced by computational delay, and the model of the lead compensator. 

The closed-loop TF becomes 𝑰𝐿𝛼𝛽(𝑧)𝑰𝐿𝛼𝛽∗ (𝑧) = 𝑘𝑝𝐼𝑏(𝑧 + 𝑘𝐿)(𝑧 − 𝑎) + 𝑘𝑝𝐼𝑏, (11) 

where kL is the lead compensator gain. The poles of this TF
must satisfy the relationship 

𝑧2 − (𝑝1 + 𝑝2)𝑧 + 𝑝1𝑝2= 𝑧2 + (𝑘𝐿 − 𝑎)𝑧 − 𝑘𝐿𝑎 + 𝑘𝑝𝐼𝑏, (12) 

where p1, p2 are the desired pole locations, defined as𝑝1,2 = 𝑒−𝜉𝜔𝑛𝐶𝐿𝑇𝑠[cos (𝜔𝑑𝐶𝐿𝑇𝑠) ± 𝑗𝑠𝑖𝑛(𝜔𝑑𝐶𝐿𝑇𝑠)],    𝜔𝑑𝐶𝐿= 𝜔𝑛𝐶𝐿√1 − 𝜉𝐶𝐿2 . (13) 

Solving the system leads to { 𝑘𝐿 = 𝑎 − (𝑝1 + 𝑝2)𝑘𝑝𝐼 = (𝑝1𝑝2 + 𝑘𝐿𝑎)/𝑏. (14) 

For the case 𝜔𝑛𝐶𝐿 = 2𝜋2400 𝑟𝑎𝑑/𝑠 and 𝜉𝐶𝐿 = 0.707, the
poles are located at 𝑝1,2 = 0.166 ± 𝑗0.301 and the bandwidth
of the system is 𝑓𝑏𝑤 = 3.1 𝑘𝐻𝑧. The controller and lead
compensator gains are presented in Table III. The resulting 
root locus with the lead compensator is shown in Fig. 20. The 
poles locations are more on the left compared to the previous 
case in Fig. 18, which means the system is faster [13]. 
Therefore, the proposed technique provides a wider bandwidth 
for the same damping factor. 
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Fig. 20.  Root locus of open loop TF in Fig. 19 including the lag introduced by 
PWM update, with the lead compensator: 𝑘𝐿 = 0.561.

As shown in Fig. 21, the system with the lead compensator 
is much more damped around the desired bandwidth. 
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The sensitivity to changes in the plant parameters is 
investigated. The system is less sensitive to variations of the 
ESR of the inductor (see Fig. 22) than to changes in the 
inductance value. The eigenvalue migration as the inductance 
value changes is shown in Fig. 23. 
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Fig. 23.  Eigenvalue migration as a function of variation in 𝐿 = 0.9 𝑚𝐻 →2𝐿𝑟𝑎𝑡𝑒𝑑 = 3.6 𝑚𝐻. 

Another technique aimed at widening the bandwidth of the 
current regulator while still achieving good dynamic 
properties is based on the Smith Predictor structure [28]. The 
basic idea is to build a parallel model which cancels the 
system delay (see Fig. 24). In this way, the design of the 
controller can be performed using the un-delayed model of the 
plant. Robustness issues must be considered with this method. 
If there is any model error, especially in the delay itself, the 
Smith predictor can degrade the system performance. These 
aspects are verified in the experiments by changing the 
predicted values of the plant and computation delay. 
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Fig. 24.  Block diagram for design the inner current loop, including the lag 
introduced by computational delay, and the model of the Smith Predictor. 

The root locus of the system is shown in Fig. 25. In detail, 
the closed-loop pole corresponding to 𝑓𝑏𝑤 = 3.1 𝑘𝐻𝑧 is
highlighted and the correspondent gain is reported also in 
Table II. Since the un-delayed model of the plant is 
considered, the design is made for a first-order system. 
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Fig. 25.  Root locus of open loop TF in Fig. 24 including the lag introduced by 
PWM update, with the Smith Predictor. 

For the same damping the system response can be made 
faster than the model with the lead compensator, as can be 
seen by the step response in Fig. 26. 
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Fig. 26.  Step response with the lead compensator (𝑘𝐿 = 0.561) and the Smith 
predictor for 𝑓𝑏𝑤 = 3.1 𝑘𝐻𝑧. 

V. VOLTAGE REGULATOR DESIGN 

The voltage regulator is based on PR controllers with a lead 
compensator structure. The inner current loop is based on a P 
controller, e.g. employed in [29], [25], along with Smith 
Predictor. The addition of resonant filters provides a good 
steady-state tracking of the fundamental component and 
mitigates the main harmonics associated to nonlinear loads. 
The gains of the system are selected to provide also a good 
dynamic response when the system is tested according to the 
requirements imposed by the normative for islanded systems. 
The voltage regulator TF is 𝐺𝑣(𝑠) = 𝑘𝑝𝑉 + ∑ 𝑘𝑖𝑉,ℎℎ=1,5,7

𝑠 cos(𝜑ℎ) − ℎ𝜔1sin (𝜑ℎ)𝑠2 + (ℎ𝜔1)2 . (15) 

The proportional gain 𝑘𝑝𝑉 determines the bandwidth of the
voltage regulator. In order for the cascaded loops to be 
effective, the inner current loop time constant should be lower 
than that of the voltage loop by one fourth up to one tenth 
[30]. As the effects of the delays are well compensated with 
the proposed P + Smith predictor for the inner controller, high 
bandwidth with wide stability margins is achieved. This 
allows the selection of a low outer over inner bandwidth ratio. 
According to [30] the minimum ratio is chosen and thus the 
voltage regulator is designed for around 700 Hz of bandwidth. 
The phase-leading angles at each harmonic frequency are set 
such that the trajectories of the open loop system on the 
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Nyquist diagram, with the PR regulators at fundamental, 5th 
and 7th harmonics, guarantee a sensitivity peak 1/𝜂 lower than 
a threshold value [31]. In this work the threshold has been set 
to 𝜂 = 0.6 at no-load condition. After calculating the phase-
leading angles, the fundamental resonant gain 𝑘𝑖𝑉,1 is selected
in order to have a fast response to changes in the fundamental 
component. Equation (15) can be rewritten just for the 
resonant controller at fundamental, leading to the second-order 
system 

𝐺𝑣(𝑠) = 𝑘𝑝𝑉 𝑠2 + 𝑘𝑖𝑉,1𝑘𝑝𝑉 cos(𝜑1)𝑠 + [𝜔12 − 𝑘𝑖𝑉,1𝑘𝑝𝑉 ω1sin (𝜑1)]𝑠2 + 𝜔12 . (16) 

According to Evans root locus theory, the open loop poles 
move towards the open loop zeros when the loop is closed. 
For this reason, the pair of zeros of the PR controller in (16) is 
moved as furthest as possible from the right half plane. This 
corresponds to the critically damped solution of the numerator 
equation, such that the pair of zeros of Gv(s) is coincident. As
a consequence, kiV,1 can be designed according to𝑘𝑖𝑉,1 ≥ 𝐾 2𝑘𝑝𝑉ƺ𝑐𝑟𝑖𝑡𝜔1cos(𝜑1) . (17) 

Where the lower bound of the inequality refers to 𝐾 = 1, 
with the damping factor ƺ𝑐𝑟𝑖𝑡 = 1. For the phase-leading angle
at fundamental frequency 𝜑1 = 3.3°, the gain is 𝑘𝑖𝑉,1 = 126.
The upper bound is set by 𝑘𝑖𝑉,1 values which do not
significantly degrade the relative stability of the closed-loop 
system. 

The harmonic resonant gains are selected to have reduced 
transient oscillations [32], as well as to fulfill the requirements 
set by the IEC 62040 standard for UPS systems (see Table IV) 

TABLE IV 
VOLTAGE REGULATOR CONTROL PARAMETERS 
Parameter Value 

Proportional gain 𝑘𝑝𝑉 = 0.2 

 @50Hz 𝑘𝑖𝑉,1 = 126 𝜑1 = 3.3° 
Integral gains 
and lead angles 

@250Hz 𝑘𝑖𝑉,5 = 15 𝜑5 = 37° 
@350Hz 𝑘𝑖𝑉,7 = 15 𝜑7 = 44° 

In Fig. 27 the Nyquist diagram of the system in Fig. 2 with 
the parameters of Table III is shown. The inverse of the 
sensitivity peak, i.e. 𝜂, is almost equal to 0.8 at no-load 
condition with all the harmonic resonators activated. It should 
be noted the harmonic resonators at 5th and 7th do not intersect 
the unit circle since the voltage loop bandwidth is set much 
higher than the highest harmonic order of the resonant filters. 
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A. Anti-wind up scheme 

A discrete anti-wind up scheme must be implemented to 
avoid the saturation of the integral term in the voltage 
regulator. No anti-wind up scheme is needed for the current 
loop since a P controller is used as regulator. The anti-wind up 
scheme, which is based on a feedback implementation of 
inverse dynamics [33], is shown in Fig. 28 [28]. 
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Fig. 28.  Anti-wind up scheme based on a feedback implementation of 
inverse dynamics. 
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Fig. 29.  Anti-wind up implementation in the discrete-time domain during 
normal operation. 

This technique allows the states with bounded signals to be 
driven in any condition, i.e. also during demanding transients. 
This represents a major advantage compared to usual anti-
wind up implementations, e.g. the frozen scheme [15]. 

According to [28], the controller 𝐶(𝑠) should be: i) 
biproper, i.e. zero relative degree between the TF numerator 
and denominator, and ii) minimum phase. If this is the case, 
the controller can be split into a direct feedthrough term (𝐶∞)
and a strictly proper transfer function 𝐶̅(𝑠)𝐶(𝑠) = 𝐶∞ + 𝐶̅(𝑠). (18) 

For the particular case of an ideal PR controller 𝐶∞ = 𝑘𝑝𝑉;        𝐶̅(𝑠) = 𝑘𝑖𝑉,1 𝑠𝑠2 + 𝜔𝑜2. (19) 𝐶(𝑠) = 𝑘𝑝𝑉 + 𝑘𝑖𝑉,1 𝑠𝑠2 + 𝜔𝑜2. (20) 

In normal operation (𝑢𝑚𝑖𝑛 < �̂�(𝑡) < 𝑢𝑚𝑎𝑥), the closed-loop
TF (within the dotted line in Fig. 28) is equal to 𝐶(𝑠). During 
saturation, the input to the controller states is bounded. 

As the anti-wind up scheme is implemented in the discrete-
time domain, the following implementation issue, not 
recognizable in the s-domain, must be considered. In general, 
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the discrete-time implementation of the feedback path in 
normal operation (without the saturation block) takes the form 
in Fig. 29. If 𝑏0 ≠ 0, an algebraic loop arises, which means
that this anti-wind up strategy cannot be implemented in real 
time. This is directly related to the discretization method used 
for 𝐶̅(𝑠).

A possibility to avoid the algebraic loop can be to use as 
discretization methods Zero-Order Hold (ZOH), Forward 
Euler (FE) or Zero-Pole Matching (ZPM), which assure 𝑏0 = 0. As an example, the TF in the feedback path in Fig. 28
takes the form in Table V for ZPM and Impulse Invariant. 
This latter cannot be used otherwise an algebraic loop arises, 
even though it is usually recommended for direct 
implementations [7]. 

TABLE V 
DISCRETIZATION OF THE FEEDBACK PATH IN THE ANTI-WIND UP SCHEME OF 

FIG. 28  
Method Value 

Impulse 
Invariant 

−𝑘𝑖𝑉,1𝑘𝑝𝑉 𝑇𝑠 cos(𝜑1) +𝑘𝑖𝑉,1𝑘𝑝𝑉 𝑇𝑠cos (𝜑1 −𝜔1𝑇𝑠)𝑧−1[𝑘𝑝𝑉 + 𝑘𝑖𝑉,1𝑇𝑠 cos(𝜑1)] − [2𝑘𝑝𝑉 cos(𝜔1𝑇𝑠) + 𝑘𝑖𝑉,1𝑇𝑠 cos(𝜑1 − 𝜔1𝑇𝑠)]𝑧−1 + 𝑘𝑝𝑉𝑧−2
Zero-Pole  

Matching 
−𝑘𝑖𝑉,1𝑘𝑝𝑉 𝐾𝑑𝑧−1 + 𝑘𝑖𝑉,1𝑘𝑝𝑉 𝐾𝑑𝑒tan(𝜑1)𝜔1𝑇𝑠𝑧−2𝑘𝑝𝑉 − [2𝑘𝑝𝑉 cos(𝜔1𝑇𝑠) − 𝑘𝑖𝑉,1𝐾𝑑]𝑧−1 + [𝑘𝑝𝑉 − 𝑘𝑖𝑉,1𝐾𝑑𝑒tan(𝜑1)𝜔1𝑇𝑠]𝑧−2

In case FE is used as discretization method, the performance 
of the voltage controller is degraded since zero steady-state 
error is not achieved [7]. This can be seen in Fig. 30, where 
the frequency response of the controller discretized with these 
methods is shown. The gain at the resonant frequency is no 
more infinite if FE is used as discretization method. 
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Fig. 30.  Frequency response of the resonant controller using ZOH, ZPM and 
FE. 

The resulting implementation with ZOH or ZPM avoids 
wind-up after saturation and algebraic loops, without losing 
any basic feature of the PR control during normal operation. 

Moreover, in order to get an even more damped step 
response during transients [5], which corresponds to a lower 
gain at the resonant frequency, the following implementation 
is proposed. Firstly, the coefficients 𝑎1 and 𝑎2 are determined
by discretization of [𝐶(𝑠)−1 − 𝑘𝑝−1 ], using ZOH for
discretization in order to get an implementation which avoids 
algebraic loops. Then, the closed-loop TF of the system in Fig. 
29 is derived 𝑈(𝑧)𝐸(𝑧) = 𝑘𝑝𝑉(1 + 𝑎1𝑧−1 + 𝑎2𝑧−2)1 + (𝑎1 + 𝑏1𝑘𝑝𝑉)𝑧−1 + (𝑎2 + 𝑏2𝑘𝑝𝑉)𝑧−2. (21) 

After discretization, some errors arise at the resonant 
frequency. For this reason, the 𝑏1 and 𝑏2 coefficients should
be re-calculated such that the inverse dynamics 
implementation matches the desired resonant frequency (𝑎1 + 𝑏1𝑘𝑝𝑉) = −2 cos(𝜔1𝑇𝑠) ;  (𝑎2 + 𝑏2𝑘𝑝𝑉) = 1. (22) 

This implementation provides zero steady-state error and a 
damped response after transients. 

In the next section, the robustness of the controllers 
designed is verified via extensive experimental results 
performing step responses and step load changes with resistive 
and nonlinear loads. 

VI. EXPERIMENTAL RESULTS

The power system of Fig. 1 was tested to check the 
theoretical analysis presented. For this purpose, a low scale 
test-bed has been built using a Danfoss 2.2 kW converter, 
driven by a dSpace DS1006 platform. The LC filter 
parameters and operational information are presented in Table 
II. In all the tests voltage decoupling is performed as shown in
Fig. 2. 

In order to compare the current loop performance 
with/without lead compensator schemes and Smith Predictor 
in terms of dynamic response, a step change of the inductor 
current is performed. In order to achieve approximately zero 
steady-state error with different control structures, the 
reference is multiplied by a constant, which is equivalent to 
multiply by a gain the closed-loop TF of the inductor current. 
It should be noted that the dynamics of the system with the 
current loop only, i.e. voltage loop disabled and the current 
reference is generated manually, are not affected by this gain, 
which is also significantly lower as the bandwidth is widened. 
For the case with the proportional gain only (see Fig. 17), the 
step response is degraded as kpI is increased [see Fig. 31(a)
and Fig. 31(b)]. This result also shows that due to additional 
losses the setup has more damping than expected. In Fig. 
31(b) the step response is even less damped and more 
oscillatory for kpI = 11.58. It is clear that there is a limitation
in the achievable bandwidth due to the system delays. 

If the control structure with a lead compensator is used (see 
Fig. 19), the bandwidth can be widened in comparison to the 
case with just a P controller for the same kpI value, without
degrading the dynamic performance. The step response for fbw = 3.1 kHz, to which corresponds kpI = 11.58, is less
oscillatory than the result in Fig. 31(b), as shown in Fig. 32(a). 
The step response is even faster if the Smith predictor, 
designed for the same bandwidth, is used to perform the test 
[see Fig. 32(b)]. The main reason is due to the fact that the 
Smith predictor produces a system similar to a first order one. 
These results are in accordance with the step responses shown 
in Section IV in Fig. 26. 
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Fig. 31.  Step response, reference (5 A/div), real (5 A/div) and inductor current 
error (2 A/div) (α-axis), time scale (200 µs/div): (a) P controller, 𝑘𝑝𝐼 = 5.54; 
(b) P controller, 𝑘𝑝𝐼 = 11.58. 
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Fig. 32.  Step response, reference (5 A/div), real (5 A/div) and inductor current 
error (2 A/div) (α-axis), time scale (200 µs/div): (a) P controller + lead 
compensator, 𝑘𝑝𝐼 = 11.58, 𝑘𝐿 = 0.561; (b) P controller + Smith Predictor, 𝑘𝑝𝐼 = 12.6. 

The sensitivity to changes in the predicted parameters values 
is verified. For this purpose, the predicted inductor value 𝐿𝑆𝑃 is
set twice than the rated value [see Fig. 33(a)]. The predicted 
ESR of the inductor 𝑅𝑆𝑃 is increased by ten times [see Fig.
33(b)]. The Smith Predictor is almost insensitive to changes in 𝑅𝑆𝑃, while is more dependent on 𝐿𝑆𝑃. Nevertheless, even with
huge variations in these parameters, the step response has an 
acceptable behavior. The predicted computation delay 𝑇𝑑𝑆𝑃 is
changed to 0.5𝑇𝑠 and 2𝑇𝑠, as can be seen in Fig. 33(c) and Fig.
33(d). The system becomes more oscillatory during transients, 
in particular if 𝑇𝑑𝑆𝑃 is higher than the real computation delay.
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Fig. 33.  Sensitivity analysis on predicted plant values for the Smith predictor - 
reference (5 A/div), real (5 A/div) and inductor current error (2 A/div) (α-axis), 
time scale (200 µs/div): (a) 𝐿𝑆𝑃 = 1.2𝐿𝑆𝑃,𝑟𝑎𝑡𝑒𝑑; (b) 𝑅𝑆𝑃 = 10𝑅𝑆𝑃,𝑟𝑎𝑡𝑒𝑑; (c) 𝑇𝑑,𝑆𝑃 = 0.5𝑇𝑑,𝑆𝑃,𝑟𝑎𝑡𝑒𝑑; (d) 𝑇𝑑,𝑆𝑃 = 2𝑇𝑑,𝑆𝑃,𝑟𝑎𝑡𝑒𝑑. 

A P controller with Smith Predictor is chosen because 
computation and PWM delays are well-known deterministic 
parameters in this application and hence, it can be concluded 
that this current controller is feasible to be used as inner current 
loop. For this reason all the following results (from Fig. 34 to 
Fig. 38) regarding the voltage loop are obtained with voltage 
decoupling, P + Smith Predictor as current regulator and the 
anti-wind up scheme proposed in the previous section. The 
parameters of the system are presented in Table II. In Fig. 34(a) 
a 100% linear step load change is shown, using just the 
regulator at the fundamental frequency. The results obtained 
are compared to the envelope of the voltage deviation vdev as
reported in the IEC 62040 standard for UPS systems [see Fig. 
34(b)]. It can be seen that the system reaches steady-state in 
less than half a cycle after the load step change. The dynamic 
response is within the limits imposed by the standard. 
Moreover, the dynamics of the inductor current in α-axis are 
shown in Fig. 34(c). These last data have been recorded in 
dSpace ControlDesk scopes and then plotted in Matlab. Since 
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the capacitor voltage is sinusoidal, the inductor current is 
slightly distorted even in case a linear load is supplied. 
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Fig. 34.  Linear step load changing (0 – 100%): (a) reference (200 V/div), real 
(200 V/div) and capacitor voltage error (50 V/div) (α-axis), time scale (4 
ms/div); (b) Dynamic characteristics according to IEC 62040 standard for 
linear loads: overvoltage (𝑣𝑑𝑒𝑣 > 0) and undervoltage (𝑣𝑑𝑒𝑣 < 0); (c) 
reference, real and inductor current error (α-axis). 

A diode bridge rectifier with an LC output filter supplying 
a resistive load is used as nonlinear load. Its parameters are 
presented in Table II. A 100% nonlinear step load change is 
performed with and without the harmonic compensators (HC) 
tuned at the 5th and 7th harmonics. The results are in accordance 
with the standard IEC 62040 even for linear loads, as can be 
seen in Fig. 35(b) and Fig. 36(b). The correspondent inductor 
current in α-axis for the test performed without HC is shown in 
Fig. 35(c). A similar trend for the inductor current is achieved 
with the HC activated. It is evident in Fig. 36(b) that the 
benefits of using the harmonic compensators are in a lower the 
steady-state error 
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Fig. 35.  Nonlinear step load changing (0 – 100%) without HC: (a) reference 
(200 V/div), real (200 V/div) and capacitor voltage error (50 V/div) (α-axis), 
time scale (10 ms/div); (b) Dynamic characteristics according to IEC 62040 
standard for linear and nonlinear loads: overvoltage (𝑣𝑑𝑒𝑣 > 0) and 
undervoltage (𝑣𝑑𝑒𝑣 < 0); (c) reference, real and inductor current error (α-axis). 
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Fig. 36.  Nonlinear step load changing (0 – 100%) with HC at 5th and 7th 
harmonics: (a) reference (200 V/div), real (200 V/div) and capacitor voltage 
error (50 V/div) (α-axis), time scale (10 ms/div); (b) Dynamic characteristics 
according to IEC 62040 standard for linear and nonlinear loads: overvoltage 
(𝑣𝑑𝑒𝑣 > 0) and undervoltage (𝑣𝑑𝑒𝑣 < 0). 

To verify the attenuation of triplen harmonics, a 100% 
nonlinear unbalance (one phase open) step load change is 
performed, using the harmonic compensator at the fundamental 
frequency only. The response is again in the boundaries 
imposed to linear loads [see Fig. 37(a)]. The FFT results in Fig. 
37(b) show the mitigation of the 3rd harmonic component by a 
large extent, even with just the resonator tuned at the 
fundamental frequency. These results show the benefits of 
widening the bandwidth for the voltage loop, which can be 
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achieved with the design of the inner current loop based on 
Smith predictor. 
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Fig. 37.  Unbalance nonlinear step load changing (0 – 100%): (a) Dynamic 
characteristics according to IEC 62040 standard for linear and nonlinear loads: 
overvoltage (vdev > 0) and undervoltage (vdev < 0) without HC; (b) FFT of 
the capacitor voltage. 

In order to show the performance of the anti-wind up 
implementation, a saturated control action (current reference) 
along with results of a step change from rated load to overload 
conditions and vice versa are shown in Fig. 38(a) and Fig. 
38(b). The current limiter is set to 8 A as well as the saturation 
blocks in the anti-wind up scheme. It can be noted the output of 
the integral is bounded because of the anti-wind up scheme 
implemented. 

va 

iα 

vInt,output

(a) 

vInt,output va 

iα 

(b) 
Fig. 38.  Linear step load changing (100% - 950% and viceversa) - integral 
output (100 V/div), real capacitor voltage (200 V/div) and real inductor current 
(5 A/div) (α-axis), time scale (20 ms/div): (a) from rated load (68 Ω) to 
overload conditions (7.2 Ω); (b) from overload conditions (7.2 Ω) to rated load 
(68 Ω). 

VII. CONCLUSIONS

Recent approaches in the control of power converters 
working in standalone applications have proved that state-
feedback decoupling allows better dynamic response to be 
achieved. In this context, the model derived directly in the 
discrete-time domain permits a clear representation of the 
limitations in dynamics introduced by computation and PWM 
delays when state feedback voltage decoupling is performed. 
The simulation results validate the discrete-time model 
developed, which allows access to the internal states of the 
system. In order to enhance the current controller dynamics, a 
P controller with a lead compensator and Smith Predictor 
structure are implemented and compared. The implementation 
based on Smith Predictor has been shown to provide the 
fastest response to changes in the reference inductor current, 
allowing the current loop bandwidth to be widened while still 
preserving good dynamic properties. The wider inner current 
control bandwidth permits the bandwidth of the voltage loop 
to be increased. A systematic design methodology based on 
the Nyquist criterion allows the fundamental integral gain 
value to be identified by means of a straightforward 
mathematical relationship. As the dynamics of the voltage 
loop are faster, an anti-wind up scheme becomes even more 
important. The proposed design in the discrete-time domain of 
the anti-wind up scheme based on a feedback implementation 
of inverse dynamics avoids algebraic loops, which could arise 
depending on the discretization method employed. 

The overall design provides good performance both in 
steady-state and transient conditions. More specifically, the 
requirements during the transient, imposed by the UPS 
standard IEC 62040, are verified according to the design 
proposed for the current and voltage regulators. Moreover, 
when a balanced or even unbalanced nonlinear load is 
supplied, the dynamic response is within the standards 
imposed to linear loads with just the compensator tuned at 
fundamental frequency. 

APPENDIX 

In this section the derivation of the first Cross-Coupled State 
Equation is provided, following the step-by-step methodology 
provided in Section II. Moreover, the derivation of the transfer 
function 𝑽𝐶𝛼𝛽(𝑧)/𝑰𝐿𝛼𝛽(𝑧) is provided.

Eq. (6) is derived as follows. Firstly, the Inverse Laplace 
Transform applied to (3) leads to 

𝑣𝑐(𝑡) = [1 − 1√1 − 𝜉2 𝑒−𝜉𝜔𝑛𝑡 sin(𝜔𝑑𝑡 + 𝜙)] 𝑣𝑖(𝑡 = 0)
+ 𝑣𝑐(𝑡 = 0)𝜔𝑛2 −𝜔𝑛2√1 − 𝜉2 𝑒−𝜉𝜔𝑛𝑡 sin(𝜔𝑑𝑡 − 𝜙)+ 2𝜉𝜔𝑛 𝑣𝑐(𝑡 = 0) 𝜔𝑛√1 − 𝜉2 𝑒−𝜉𝜔𝑛𝑡 sin(𝜔𝑑𝑡)+ �̇�𝑐(𝑡 = 0)𝜔𝑛2 𝜔𝑛√1 − 𝜉2 𝑒−𝜉𝜔𝑛𝑡 sin(𝜔𝑑𝑡). 

(A.1) 

Accordingly, the response in the next sample time is 
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𝑣𝑐(𝑇) = [1 − 1√1 − 𝜉2 𝑒−𝜉𝜔𝑛𝑇 sin(𝜔𝑑𝑇 + 𝜙)] 𝑣𝑖(𝑡 = 0)− 𝜔𝑛𝜔𝑑 𝑒−𝜉𝜔𝑛𝑡 sin(𝜔𝑑𝑇 − 𝜙)𝑣𝑐(𝑡 = 0)+ 2𝜉𝜔𝑛𝜔𝑑 𝑒−𝜉𝜔𝑛𝑇 sin(𝜔𝑑𝑇)𝑣𝑐(𝑡 = 0)+ 1𝜔𝑑 𝑒−𝜉𝜔𝑛𝑇 sin(𝜔𝑑𝑇)�̇�𝑐(𝑡 = 0). 
(A.2) 

The solution at a generic sample instant is 𝑣𝑐(𝑘𝑇) = [1 − 1√1 − 𝜉2 𝑒−𝜉𝜔𝑛𝑇 sin(𝜔𝑑𝑇 + 𝜙)] 𝑣𝑖((𝑘 − 1)𝑇)− 𝜔𝑛𝜔𝑑 𝑒−𝜉𝜔𝑛𝑡 sin(𝜔𝑑𝑇 − 𝜙)𝑣𝑐((𝑘 − 1)𝑇)+ 2𝜉𝜔𝑛𝜔𝑑 𝑒−𝜉𝜔𝑛𝑇 sin(𝜔𝑑𝑇)𝑣𝑐((𝑘 − 1)𝑇)+ 1𝜔𝑑 𝑒−𝜉𝜔𝑛𝑇 sin(𝜔𝑑𝑇)�̇�𝑐((𝑘 − 1)𝑇). 
(A.3) 

This equation cannot be written in transfer function format 
due to the term �̇�𝑐((𝑘 − 1)𝑇). However, being �̇�𝑐((𝑘 −1)𝑇) = 1𝐶𝑓 𝑖𝐿((𝑘 − 1)𝑇), this model with cross-coupling can

be written as 𝑣𝑐(𝑘𝑇) = [1 − 1√1 − 𝜉2 𝑒−𝜉𝜔𝑛𝑇 sin(𝜔𝑑𝑇 + 𝜙)] 𝑣𝑖((𝑘 − 1)𝑇)− 𝜔𝑛𝜔𝑑 𝑒−𝜉𝜔𝑛𝑡 sin(𝜔𝑑𝑇 − 𝜙)𝑣𝑐((𝑘 − 1)𝑇)+ 2𝜉𝜔𝑛𝜔𝑑 𝑒−𝜉𝜔𝑛𝑇 sin(𝜔𝑑𝑇)𝑣𝑐((𝑘 − 1)𝑇)+ 1𝐶𝑓𝜔𝑑 𝑒−𝜉𝜔𝑛𝑇 sin(𝜔𝑑𝑇)𝑖𝐿((𝑘 − 1)𝑇).
(A.4) 

By substituting for the z operator in the discrete-time domain 
and by transforming to the αβ stationary reference frame leads 
to 𝑽𝑐𝛼𝛽(𝑧) [1 + 𝜔𝑛𝜔𝑑 𝑒−𝜉𝜔𝑛𝑇 sin(𝜔𝑑𝑇 − 𝜙)𝑧−1 − 2𝜉𝜔𝑛𝜔𝑑 𝑒−𝜉𝜔𝑛𝑇sin(𝜔𝑑𝑇)𝑧−1]= [1 − 𝜔𝑛𝜔𝑑 𝑒−𝜉𝜔𝑛𝑇 sin(𝜔𝑑𝑇 + 𝜙)] 𝑽𝑖𝛼𝛽(𝑧)𝑧−1+ 1𝐶𝑓𝜔𝑑 𝑒−𝜉𝜔𝑛𝑇 sin(𝜔𝑑𝑇) 𝑰𝐿𝛼𝛽(𝑧).

(A.5) 

A similar mathematical development can be performed to 
derive (7), starting from (4). Solving the coupling equations 
(6) and (7), yields to the independent TF 𝑽𝑐𝛼𝛽(𝑧)𝑽𝑖𝛼𝛽(𝑧) = 𝑎1𝑧−1 + 𝑎2𝑧−21 + 𝑏1𝑧−1 + 𝑏2𝑧−2 (A.6) 

where 𝑎1 = 1 − 𝜉𝜔𝑛𝜔𝑑 𝑒−𝜉𝜔𝑛𝑇 sin(𝜔𝑑𝑇) − 𝑒−𝜉𝜔𝑛𝑇 cos(𝜔𝑑𝑇)𝑎2 = 𝜉𝜔𝑛𝜔𝑑 𝑒−𝜉𝜔𝑛𝑇 sin(𝜔𝑑𝑇) − 𝑒−𝜉𝜔𝑛𝑇 cos(𝜔𝑑𝑇) + 𝑒−2𝜉𝜔𝑛𝑇𝑏1 = −2𝑒−𝜉𝜔𝑛𝑇 cos(𝜔𝑑𝑇); 𝑏2 = 𝑒−2𝜉𝜔𝑛𝑇
Similarly, starting from (6) we can achieve the transfer 

function 𝑰𝐿𝛼𝛽(𝑧)/𝑽𝑖𝛼𝛽(𝑧) already including the output voltage
feedback, i.e. 𝑽𝑐𝛼𝛽(𝑧)𝑰𝐿𝛼𝛽(𝑧)𝑽𝑖𝛼𝛽(𝑧) = [𝐶𝑓 𝜔𝑛2𝜔𝑑 𝑒−𝜉𝜔𝑛𝑇 sin(𝜔𝑑𝑇)] (𝑧−1 − 𝑧−2)1 − 2𝑒−𝜉𝜔𝑛𝑇 cos(𝜔𝑑𝑇) 𝑧−1 + 𝑒−2𝜉𝜔𝑛𝑇𝑧−2. (A.7) 

The derivation of (A.7) is necessary to obtain the transfer 
function 𝑽𝑐𝛼𝛽(𝑧)/𝑰𝐿𝛼𝛽(𝑧). In fact, by considering (A.6) and
(A.7), the relationship between 𝑰𝐿𝛼𝛽(𝑧) and 𝑽𝑐𝛼𝛽(𝑧) can be
derived as 𝑽𝑐𝛼𝛽(𝑧)𝑰𝐿𝛼𝛽(𝑧) = 𝑽𝑐𝛼𝛽(𝑧)𝑽𝑖𝛼𝛽(𝑧) ⋅ 𝑽𝑖𝛼𝛽(𝑧)𝑰𝐿𝛼𝛽(𝑧). (A.8) 
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