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Abstract 

The theory of fractional calculus goes back to the beginning of the theory 
of differential calculus but its inherent complexity postponed the application of 
the associated concepts. In the last decade the progress in the areas of chaos 
and fractals revealed subtle relationships with the fractional calculus leading to 
an increasing interest in the development of the new paradigm. In the area of 
automatic control preliminary work has already been carried out but the proposed 
algorithms are restricted to the frequency domain. The paper discusses the design 
of fractional-order discrete-time controllers. The algorithms studied adopt the 
time domain, which makes them suited for z-transform analysis and discrete-time 
implementation. The performance of discrete-time fractional-order controllers 
with linear and nonlinear systems is also investigated. 
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1. Introduction

Fractional calculus is a natural extension of the classical mathematics. In 
fact, since the beginning of the theory of differential and integral calculus, math­
ematicians such as Euler and Liouville investigated their ideas on the calculation 
of non-integer order derivatives and integrals. Nevertheless, in spite of the work 
that has been done in the area, the application of fractional derivatives and in­
tegrals (FDis) has been scarce until recently. In the last years, the advances in 
the theory of chaos revealed relations with FDis, motivating a renewed interest in 
this field. The basic aspects of the fractional calculus theory and the study of its 



properties can be addressed in references [1-5] while research results can be found 
in [6-13]. In what concerns the application of FDI concepts we can mention a 
large volume of research about viscoelasticity/damping [14-32] and chaos/fractals 
(33-36]. However, other scientific areas are currently paying attention to the new 
concepts and we can refer the adoption of FDis in biology [37], electronics (38]. 
signal processing [39-41], system identification (42], diffusion and wave propaga­
tion [43-46], percolation [47], modeling and identification [48-51], chemistry [52], 
irreversibility [53] and control [54-61]. Inspired by the fractional calculus several 
researchers on automatic control proposed algorithms based on the frequency [54-
55] and the discrete-time [60-61] domains. This work is still giving its first steps
and, consequently, many aspects remain to be investigated. This paper analyses
several approaches to implement FDis in discrete-time control systems and, in
this line of thought, the paper is organized as follows. Sections two and three
analyze the frequency-domain and the discrete-time approximations to FDis, re­
spectively. Based on the proposed discrete-time FDI approximation, sections four
and five investigate the performance of fractional order algorithms with linear and
nonlinear control systems, respectively, from a stability and robustness point of
view. Finally, section six draws the main conclusions.

2. Frequency-domain approximation to fractional-order derivatives

In order to analyze the frequency-based approach to D0 (0 < a < 1), based
on the Fourier definition of a FDI, F{Dicp} = (±jw)°F{cp}, Re(a) > 0, let us
consider the recursive circuit represented on Figure 1 such that (54]: 

n R;, Ci 1 = L Ii , R;,+1 = -, ci+1 = -,
i=l 

f � 
(1) 

where � and f are scale factors, I is the current due to an applied voltage V and 
R;, and Ci are the resistance and capacitance elements of the ith branch of the
circuit. 

The admittance Y(jw) is given by:

y ·w = 
I(jw) 

= 
� jwCEi .. (J ) V(jw) � jwCR + (�E)' {2) 

Figure 2 shows the asymptotic Bode diagrams of amplitude and phase of 
Y(jw). The pole and zero frequencies (wi and wi) obey the recursive relationships:

{3) 

From the Bode diagram of amplitude or of phase, the average slope m' can be 
calculated as: 
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Figure 1: Electrical circuit with a recursive association of resistance and capaci­
tance elements. 

, loge 
m=----log e + log 'f/ (4) 

The fractional order of the frequency response is due to the recursive nature 
of the circuit. In fact , the admittance Y(jw) follows the recursive formula: 

Y (!:!..) = !Y(w)
.,,e e 

with solution in accordance with (4) (where w is a scale factor): 

Y(w) = \J!("w)-m', m' = loge
J log e + log 'f/ 

(5) 

(6) 

Consequently, the circuit of Figure 1 represents an approach to D0
, 0 <

a < 1, with m' = a, based on a recursive pole/zero placement in the frequency 
domain. 

As demonstrated in [54], a second aspect of FDI algorithms can be illustrated 
through the elemental control system represented in Figure 3, with open-loop 
transfer function G(s) = Ks-0 (1 <a< 2) in the forward path. The open-loop 
Bode diagrams (Figure 4) of amplitude and phase have a slope of -20a dB/dee

and a constant phase of -a 1r /2 rad, respectively. Therefore, the closed-loop 
system has a constant phase margin of 1r(l - a/2) rad, that is independent of 
the system gain K. Likewise, this important property is also revealed through the 
root-locus depicted in Figure 5. In fact, when 1 < a < 2 the root-locus follows 
the relation 1r - 1r /a = cos-1( , where ( is the damping ratio, independently of 
the gain K.

In conclusion, the Laplace/Fourier definition for a derivative of order a E C

is a 'direct' generalization of the classical integer-order scheme with the multi­
plication of the signal transform by the s/jw operator. In what concerns au-
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Figure 2: Bode diagrams of amplitude and phase of Y (jw). 
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Figure 3: Block diagram for an elemental feedback control system of fractional 

order a.

201oa10IOU,,)I arg(O(iw)) 

OH
logw '" Joa"' 

Figure 4: Open-loop Bode diagrams of amplitude and phase for a system of 

fractional order 1 < a < 2. 
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Figure 5: Root locus of a control system of fractional order 1 < a < 2. 

tomatic control theory this means that frequency-based analysis methods have 
a straightforward adaptation to FDis. Nevertheless, this approach has several 
drawbacks because the implementation of FDis based on the Laplace/Fourier 
definition adopts the frequency domain and requires an infinite number of poles
and zeros obeying a recursive relationship [54]. In a real approximation the finite 
number of poles and zeros yields a ripple in the frequency response and a limited 
bandwidth. Moreover, the digital conversion of the scheme requires further steps 
and additional approximations making difficult to analyze the final algorithm. 
The method is restricted to cases where a frequency response is well known and, 
in other circumstances, problems occur for its implementation. 

3. Fractional-order discrete-time control algorithms

Based on the concept of fractional differential of order a, the Griinwald­
Letnikov definition (7) of a derivative of fractional order a of the signal x(t), 
D0 [x{t)], leads to the expression (8): 

(7) 

0 • [ 1 � 1c r(a + 1) ( >] 
D [x(t)] � l� ha t:o{-1) I'(k + l)I'{a - k + 1) x t - kh ' (8) 

where r is the gamma function and h is the time increment. This formulation 
inspired a discrete-time FDI calculation algorithm (60, 62], based on the approx­
imation of the time increment h through the sampling period T, yielding the 
equation in the z domain: 



Q -[1 00 (-l) kr(a+l)_kl -(1-z-1) 0 

Z {D [x(t)]} - Ta];, k!r(a _ k + l) z X(z) - T X(z),

where X(z) = Z {x(t)}. 

{9) 

A real implementation of (9) corresponds to an-term truncated series {another form of the "short-memory" principle [57, 59]) given by: 
Z {D0 [x(t)]} � 

[ 1 00 {-l) kr(a+l) -k] {(1-z-1) 0 } 

� TQ E k!r(a _ k + 1) z X(z) = Trunen T X(z). {10)

Nevertheless, the properties of this and other approaches must be further studied and, bearing these facts in mind, in the sequel we analyze several discrete­time approximations to FD1s. We start by considering the well-known s � zconversion schemes {also called analog to digital open-loop design methods) of Euler (or first backward difference), Tustin (or bilinear) and Simpson [63]. Note that the Griinwald-Letnikov approach (9) is similar to the Euler scheme. In our study we shall adopt for D0 expressions that are the generalization to non­integer exponents of these conversion methods as represented in Table I. The fractional-order conversion schemes lead to non-rational z-formulae. Therefore, in order to get rational expressions we expand them into Taylor series and the final algorithm corresponds to an-term truncated series. These three approximations and the corresponding Taylor truncated series have distinct properties that must be analyzed before getting jnto a control system implementation. For example, the log-log chart of Figure 6 shows the amplitude absolute values of the Taylor series coefficients versus the term order when approximating the a = ! derivative:
Table I: Discrete-time conversion schemes 

Method s � z conversion Taylor series 
Euler Grunwald- s0 � [t(l -z-1] 0

(� )
a [1 - az-1 + o(�!l)z-2 ... ]Letnikov 

Tustin Sa,.... [2 (l-z-1] 0"' '1' l+z-1 (t) 
0 [1 - 2az-1 + 2a 2z-2 .. ·]

Simpson Sa� [3 (l+z-l)p-z-l)]oT l+4z- +z-2 (J )
0 [1-4az-1 + 2a(4a + 3)z-2 .. ·]
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Figure 6: Amplitude of the Taylor series coefficients versus the term order when 
approximating the Di with the Griinwald-Letnikov, 'Tustin and Simpson algo­
rithms. 

Griinwald-Letnikov: Z { n![x(t)]} � 

[ rr (1 1 -1 1 -2 1 -3 5 -4 1 -5 )] ( ) 
� VT - 2

z 

- Bz - 16 z 128 z 256 z · · · X z · (11)

Tustin: Z { n! [x(t)]} � 

� { � [(1 -z-1) + �(z-2 -z-3) + ;(z-4 - z-5) •• ·]} X(z). (12)

Simpson: Z { Di [x(t)]} � 

� [ � ( 1 - 2z-1 + 5z-2 -l6z-3 + 
1�5 

z-4 -177z-5 • ·-)] X(z). (13)

For simplicity, in the chart the gains of the approximations are not represented. 
Analyzing the results we conclude that: 

• While an integer-order derivative implies simply a finite series, the fractional­
order derivative requires an infinite number of terms. This means that inte­
ger derivatives are 'local' operators in opposition with fractional derivatives
that have, implicitly, a 'memory' of all past events.



• The 'memory'property of the fractional derivatives is highlighted when westudy the magnitude of the series coefficients. For comparison purposes in
Figure 6 it is also plotted the coefficients of a geometric series having thethree initial terms similar to those of the Tustin series, that is:
Geometric: 1 - z-1 + !z-2 - lz-3 + lz-4 - 1�z-5 - • · • = �+!=!.

The term coefficients of the geometric series decay rapidly while those of the Tustin approximation for the fractional-order derivative have a constant diminishing. Therefore, FDis have a kind of logarithmic-time memory that gives a higher importance to past events. 
• The Tustin and Simpson approximations n! seem problematic. In the firstcase, the coefficients decay with the term order but they appear in pairs ofsimilar magnitude. Therefore, a series truncation of even or odd order willreveal distinct characteristics and, consequently, poor convergence proper­ties. The Simpson approach requires a series with increasing coefficientsshowing, clearly, convergence problems.
The alternative of the FDI 'direct' implementation in the z-domain (the so­called discrete-time system design method) leads to poor results. For an open-loop system with transfer function G(s), a first-order sample/hold and a D0(0 <a< 1)controller, we get: 

Z {D0 [x(t)]} = 

z [sa:G(s)] X(z).
Z [1-es-•T G(s)] 

For example, with G(s) = -f,r it yields: 
z(4..) Z {D0 [x(t)]} = 

z (1-:-•T 1) X(z)
s s2' 

(14) 

- [ 2 (1- z-1)2 (1 + 21-a:z-1 + 3I-a:z-2 + .. ·)] X(z). (15)Tl+0r(2 - a) 1 + z-1
Adopting a= ! in (16), for comparison purposes, the Taylor series expansion results: 

Z { n! [x(t)]} � { / [ 1 - (3 - V2)z-1 + (4 + v3 - 3V2)z-2 - .. ·]} X(z). {16)
T2..fi 

The series coefficients diminish very slowly showing convergence problems that were confirmed in the z-domain root-locus. Moreover, for a different transfer 



function G ( s) we need to recalculate the expressions in (16) and ( 17). Therefore, 
this method will not be considered in the next section, where the properties of 
Table I formulae will be further analyzed from a control system perspective. 

4. Performance of FDI approximations in linear control systems

A mass M with a time delay TD may be considered as a simple prototype
system. Therefore, in order to study the performance of the FDI approximations 
in control algorithms we adopt a system with transfer function: 

e-sTn
G(s) =

Ms2 . 

{17) 

An important property to be tested in the FDI approximations for control consists 
in the stability of the resulting closed-loop system. 

Figure 7 shows the root-locus, in the z domain, for the three FDI schemes 
when implementing a Di controller, without any series truncation, for the case 
of M = 1 and TD = 0 in {18).

For an infinite series the Griinwald-Letnikov algorithm seems inferior while 
the Simpson method looks preferable. However, for a 5th order series truncation 
we get the results of Figure 8. As pointed out in the previous section, the 
Griinwald-Letnikov algorithm is 'robust' in what concerns the series truncation 
while the root-locus reveals increasing stability problems when passing to the 
Tustin and Simpson schemes. In fact, this conclusion can be confirmed tacking 
other values of a in the control algorithm and analyzing both the root-locus and 
the time responses. 

A second aspect to be tested from the control viewpoint is the controller 
performance when confronted with system parameter deviations. Therefore, in 
Fir;ure 9 we compare the system time response with a Griinwald-Letnikov-based 
D2 control algorithm for time delays of TD = 0 sec and TD = 0.1 sec. The 
sampling period is T = 0.1 sec and the controller gain is K = lOT!. Moreover, 
in order to analyze the response for distinct series truncation orders, namely for 
n= 3, 4 and 5. 

Clearly, the higher the order of the series truncation the oetter the system 
performance and the closer the system response with and without time delay 
in the loop. It should be pointed out that the adoption of a Di controller is 
just for comparison purposes and, in fact, the development of systematic design 
procedures for FDI-based algorithms is currently under investigation. 
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Figure 7: Root-locus for G(s) = e-sTv /M s2 (M = 1, Tv = 0) under the control 

of a infinite series nt algorithm based on the approach of Griinwald-Letnikov, 
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Figure 9: Time response for G( s) = e-sTn/Ms2 (M = 1,TD = 0 and TD = 
0.1) under the control of a Griinwald-Letnikov-based approximation of n! with 
truncation orders of n = 3, 4 and 5. 
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Figure 10: An! controller for a system with a mass Mand a nonlinear actuator. 

5. Performance of FDI approximations in nonlinear control systems

In order to investigate the robustness of the FDI-based control algorithms we
introduced a nonlinear block in the forward path (Figure 10) and a system with 
a mass M.

Four different phenomena in the actuator are considered for this system: sat­
uration (slope µ = 1, l:l. = 1), deadzone (slope µ = 1, A = 0.1), hysteresis (slope 
µ = 1, A= 0.1) and relay (, = 1) with the characteristics depicted in Figure 11. 
In all the cases, the parameters adopted in the experiments are K = lOTi, M=l 
and a sample and hold time T=0.1. 

Figure 12 shows the linear system response (i.e. without the nonlinear block), 
for a unity step input and a nth order (1 < n < 7) approximation ton! according 
with (10). It is clear that the higher the order of the approximation the better 
the response. 

The robustness of the fractional algorithm over classical control actions is 
highlighted in the presence of a nonlinear actuator. Figure 13 shows that the 
response for the FD! controller with n = 1 is very sensitive to the saturation effect 
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Figure 11: Nonlinear phenomena at the actuator: saturation (µ = 1, ll. - 1), 
deadzone (µ = 1, A= 0.1), hysteresis (µ = 1, A= 0.1) and relay ('Y = 1). 
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Figure 12: Linear system response for a n - 1, · · ·, 7 order truncation series
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approximation of D 2. 



Figure 13: System response with saturation, for an= 7 order truncation series 
approximation of D ! . 

while for higher values of n becomes more stable. In the same line of thought, 

Figures 14, 15 and 16 reveal that then= 7 truncation order approximation to 

the D ! controller is robust for a large range of nonlinear phenomena. By other

words, we get a better approximation to the fractional-derivative the higher the 

order of series truncation. In this line of thought, for comparison, the charts 
depict also the systems responses for n = oo. Nevertheless, from the perspective 

of controller performance, the tuning of K, n and a require an optimization which 
will depend on the system dynamics. A systematic procedure for the algorithm 

design in the presence on non-linear phenomena needs still further research. 

6. Conclusions

The recent progress in the area of chaos reveals promising aspects for future 

developments and application of the theory of fractional calculus. In the area of 
automatic control some preliminary work has been proposed but the algorithms 

are restricted to the frequency domain. In this paper several methods for the 
discrete-time FDI approximation were presented and compared. The new algo­

rithms adopt the time domain, making them well adapted for z-transform analysis 

and computer calculation. The properties of the Griinwald-Letnikov, Tustin and 

Simpson schemes are studied in terms of robustness and system stability, revealing 

that the first approach is preferable. For a simple prototype system the control 

algorithms based on the fractional-order concepts are simple to implement and 

reveal good robustness. 
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Figure 16: System response with relay, for an = 7 order truncation series ap­
proximation of D112
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