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Summary.  - Single step discrete time Galerkin methods for the mixed initial-boundary value 

problem ]or the heat equation are studied. Two general theories leading to error estimates are 

developed. Among the examples analyzed in the application of these theories are methods in 

which the related quadratic ]orm is required to be de/inite only on the subspace el approximating 

]unctions and two classes containing methods o] arbitrary given order el accuracy, one requiring 

saris]action el certain boundary conditions by the elements o] the subspace, the other making 

no such requirements. 

1. - Introduct ion .  

The purpose of this paper is to continue the line of investigation of our previous 

paper [3]. There we considered the initial boundary value problem for the heat equa- 

tion in a cylinder under homogeneous boundary conditions. The methods studied 

consist in diseretizing with respect to time and solving approximately the resulting 

elliptic problem for fixed time by least squares methods similar to those of B~,A~sLE 

and SG~Tz [2]. The approximating functions in the least squares method were 

n o t  required to satisfy prescribed homogeneous boundary conditions so that  the 

methods were applicable to domains of general shape. 

Here we abstract the essential features of [3] into a general theorem (Theorem 1) 

which can be applied to extend results of [3] to a class of single time step methods 

which include methods of arbitrary given order of accuracy. 

In P~IcE and VARGA [7] and DOUGLAS and DUPO~T [4] the initial-boundary 

value problem is approximated instead by first projecting into a finite dimensional 

space of approximating functions in the space variables, keeping the differentiation 

with respect to time. In order to estimate the error, an auxiliary approximation to 

a related elliptic problem is utilized. This technique makes it possible to make less 

stringent approximation assumptions of the approximating spaces than in Theorem 1. 

Our second theorem (Theorem 2) takes advantage Of the features of this method. 

In doing so we notice that  a certain related quadratic form in this case need be 

definite only on the subspace of approximating functions. This allows us to include 

among our examples an extension to the parabolic case of a method for treating 

Dirichtet's problem due to NITSCHE [6]. 

(*) Entrata in Redazione il  19 settembre 1972. 

(**) Sponsored by the United States Army under Contract No.: DA-31-124-AR0-D-462. 
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The aim of each of our two theorems is to provide simple sufficient conditions 

on single step discrete time Galerkin methods which lead to error estimates. Some 

of the examples which we then study satisfy the conditions of Theorem 1, some satisfy 

those of Theorem 2 and some fall into both categories. :Neither of the two theorems 

is stronger than the other. 

An outline of the paper is as follows. In the next section the problem to be studied 

is defined precisely and certain related technical lemmas are given. In Sections 3 

and 4 the two general theorems are presented and proved. Section 5 contains some 

technical estimates concerning the consistency of the Galerkin equations with the 

initial boundary value problem, which are needed in the applications. Sections 6, 

7 and 8 present the various examples. In Section 6 we study methods which require 

that  elements of the subspace in which we seek the approximations satisfy certain 

homogeneous boundary conditions. Utilizing such subspaces, methods of arbitrarily 

high order of accuracy are constructed. In  Section 7 some methods in which the 

subspaces need not satisfy the above mentioned boundary requirements are shown 

to fit into the theories of Sections 3 and/or 4. Here methods are described for which 

the related quadratic forms are definite only on the approximating subspaces. The 

final section is devoted to least squares methods. The purely implicit method of [3] 

is contained here as a special case and Theorem 2 is seen to yield some new error 

estimates for tha t  method. Again methods are constructed with arbitrarily given 

order of accuracy but  without requiring prescribed boundary conditions to be satisfied 

by the approximating functions. 

Throughout this paper, C and e will denote positive constants, not necessarily 

the same at different occurrences. 

2 .  - P r e l i m i n a r i e s .  

Let 12 be a bounded domain in Euclidean N-space R ~ with C ~ boundary 212. 

We shall use the following notation for inner products and norms in the real func- 

tion spaces L~(12) and L~(~12), respectively, namely 

w) =fv(x) (x)dx, Ilvl! = (v, 

(v ,w>=fv(x)w(x)ds,  = 

0~ 

Other norms will be distinguished by use of subscripts. In particular we shall use 

the norm in HS=  W~(12) for s a positive integer, 

( z i1  It') 

We shall also frequently use the Dirichlet form 

Ox-  
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We shall consider the approximate solution of the following mixed init ial-boundary 

value problem for u----u(x, t), namely  

(2.1) 

(m2) 

(2.3) 

~----~- = A ~  - -  i=1 ~-~X ~ in f2 X (0, T] 

u = 0 on ~/2 X [0, T] ,  

u(x,  O) = v(x) in /2. 

T ~ O ,  

We associate with this problem the eigenvalue problem 

(2.4) A(v q- 2(p : 0 in /2, ~v : 0 on 3~Q, 

about  which the following is well-known. 

L~,lv/2~A 2.1. - The eigenvalue problem (2.4) admits  a nondecreasing sequence 

{2~}~ ° of positive eigenvalues (which tend to q-co  with m) and a corresponding 

sequence (~o~)~ ° of eigenfunctions which const i tute  an orthonormal basis in L~(/2); 

every v e L ~ ( / 2 )  m a y  be represented as 

(2.5) v(x) = ~ ,~.,~,~(x) , 
~ 'a=l  

and Parseval 's  relation 

v,. : (v, %.),  

oo 

(v, w) = ~ v~w~ , v~ = (v, ~ )  , w~,--- (w, ~.~) , 

holds. 

In  the sequel we shall often work with the eigenfunction expansions of functions 

veZ~(/2); v~, will t hen  wi thout  explicit mention,  as in (2.5), denote (% ~,,), and 

will denote ~ .  

¢/$ 

r a = l  

For  s non-negative,  l e t / t "  be the  subspace of Z~(/2) defined by  the norm 

and let / ~ - - - ~ / - t L  l~otice in part icular  that for each m, ~ / t ~ .  
,>o 

The spaces/~" for s a non-negative integer can also be characterized as follows: 

L E n A  2.2. - For  s a non-negative integer, 

I : t ' : ( v ; v ~ t t ' , A ~ v = O  on ~Q for j <  ~s}. 
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In  particula.r~ 

/ : / ~=  (v; v~C~(~),  A~v=O on ~Q for all ~}. 

PJ~ooF. - We shall first prove t h a t  ii v ~ H  ~ and J r = 0  on ~.Q for j <  {s 

then  re/:/~. For  s-----1 we have easily for v~ Co(~2), 

and hence 

~.~vm = (v, ) ~ % ~ )  = - -  (v,  Acpm) = - -  ( A v ,  q ~ ) ,  

m, m 

and since Co(~  ) is dense in the  subspace {v; v ~ H  ~, v-----O on 8D} of H x, this 

proves the  result  for s----1. For  s - = 2 p + l  we have by  the result  for s = l ,  

q) 2 ~ 2 ~ +  1 q)2 mttYm ) 11 ll~ .... = ~  ~ - , ~ = ~ ; ~ A  v , ~ -  '~ 
m m 

= ~ : ~ ( ( - A > ~ v ,  v~) ~ = D ( A %  d ~ ) <  co.  
m 

For  s = 2p finally we have 

l l ~ l l i , = Z  z ~  - Z ( ~ ,  ~ 

We now prove the opposite inclusion. Consider the case s-----2p and let g be 

any  linear combinat ion of finitely ma.ny of the eigenfunctions %~. Then  b y  the  

above computat ion,  

On the other  hand,  by  a well-known a priori inequal i ty  for the elliptic operator  A~, 

we have,  since A~== 0 on ~Q for j < p,  

Since the ~ are dense in /12v we conclude 

and hence /~zv c H 2v. Since 

I{v/f.,~<c{/~{{~,~, ve /Y 2~, 

/ 'V I {A%]~C,{I I{H"~, J< P,  

and the  A ~  vanish on ~.Q we conclude tha t  this holds for AJv also. The proof 

for odd s is similar. 
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For  the mixed in i t ia l -boundary value problem we have the  following well-known 

result :  

L ] ~ f A  2.3. - : F o r  v s L ~ ( t ~ ) t h e  problem (2.1), (9.2), (2 .3)admi ts  a unique solu- 

t ion in/:/co for t > 0 which can be represented  as 

(2.6) u(x, t) = (.E(t)~,)(x) = ~ exp [-- t2,~]v,,%~(x). 

The solution operutor  is bounded in /:/~ for any  s>~O, 

(2.7) llE(t)vll~.< tlv]i~, veH~, 

~ad for 0 < s  < l  there  is a constant  C such tha t  

(2.8) llE(t)vil~<¢t-½(~-~)llvl]~,, v d : l  ~. 

PI~ooF. - Obviously,  (2.6) defines for v ~_L~(/2) a solution which is in ~J[~* for 

t > 0. The inequalit ies (2.7) and  (2.8) follow from 

( ~  ~,~ exp [ -  ~,~t]v,~) <c t  (Z °t½(~-"t l~]]~ . i]E(t)vllh ~ = z ~ ~ ½ -½(l-s) 2s vz  ~½ _ 
"-~?~--ml - -  

where 

C = sup ~½a-~) exp (-- v).  

The uniqueness follows by  the s tandard  energy iden t i ty  

d 
fl~1J, = -2D(u ,  u). 

We note  for la ter  use the  following: 

L E n A  2.4. - :For any  s~>0, 

II (F,(t) - - I ) v  ll~, <tIlvtt~,+,, 

P~ooF. - We have 

which proves the  lemma.  

As will be described in the  subsequent  sections, the  approximate  solution of (2.1), 

(2.2), (2.3) will be obta ined by  first discretizing in some way  the equat ion (2.1) in 

s z ~ ½ _  
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t ime  using a t ime  s tep k. I n  each ins tance  this will in t roduce an elliptic problem 

depending on the  p a r a m e t e r  k. An a p p r o x i m a t e  solution of this  elliptic p rob lem 

will t hen  be sought  in a finite dimensional  space Sh depending on a small  pa rame te r  h 

which can be though  of as an  analogue of the  mesh-wid th  in the  finite difference 

theory.  We shall  in t roduce the ~( mesh-ra t io  ~ ~ = k/h 2 and always assume below 

t h a t  i t  is kep t  cons tan t  as h and  k t end  to zero. 

I n  addi t ion  to  the  norms  defined above  in H '  a n d / ~  we shall  use the  following 

norms in which the der iva t ives  are weighted depending on their  order, namely  

and  

lal~<s 

llv I1~ = (X (:[ -+- k ~ , ) ' ~ )  ~ • 
m 

In the  same way  as above,  since k/h ~ is cons tant ,  these norms are equivalent ,  uni- 

fo rmly  in h, for s an  in teger  and  v a/~8. The la t t e r  no rm is again  defined for s 

not  necessari ly an integer.  For  different h the corresponding spaces H~ contain the  

same elements  bu t  the i r  t t f lbe r t  space s t ruc tures  are different.  The sa.me holds f o r / ~ .  

We  shall  need the following in terpola t ion  lemma.  

LEPTA 2.5. -- L e t  O<sl<s<s2. Then  there  is a cons tan t  C such t h a t  if A is 

a bounded  l inear  m a p p i n g  from/~8~ into  a no rmed  l inear  space 3? wi th  

t hen  

II ~ v l l ~  <A min( I]vI]ht,, M, Ilvllh~,) , 

II ~VLo < CAhqvlt~,. 

PaooF. - Le t  M be such t ha t  k~M<l<ktlM+ 1. Sett ing 

M 

~(x) = ~ v ~ ( x ) ,  
m = l  

we obta in  

< CA{ 5, (k;~)~°v~,~ + (1 + Z~.~),lv~ ~. 
~ - - 1  m = M + l  

Since 

~8'4T* ~ for  ~ 4 1  
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i t  follows t h a t  

- m = l  , 

which proves the lemma. 

We shall now introduce our assumptions on the finite dimensional spaces Sa 

which we will use. Le t  0 < a < v  and let  he > O. We say t h a t  the  family {S~} = 

= {Sa;O < h  < he}, of finite dimensionM subspuces of L~(~) belongs to So, , if for each 

h, S ~ c H  ~ and  if there  is a cons tant  C such tha t  for  v~I:P,  

(2.9) inf []v - -  g[[sg~< Ch~]Iv[]~,. 
geSa 

The p roper ty  (2.9) is shared by  ma n y  of the families of pieeewise polynomial  spaces 

which have  recent ly  been employed in Galerkin or finite e lement  investigations. 

We now prove  u lemma which affirms t h a t  the  es t imate  (2.9) gem-.ralizes to  laxge 

ranges of the  parameters :  in previous papers  this s tronger condit ion has often been 

made  an assumption.  

L ~ A  2.6. - I f  {S~} ~8~,, t hen  for 0 ~ < ~ < ~  and ~ < a  there  is a constant  C 

such tha t  for v e / ~  o, 

z ~ n  

P~ooF. - Le t  P~,a be the  or thogonal  project ion in H~ onto  S h. Then  b y  assumption 

]I (I  - -  .P~,a)v II.g -~ inf  ]Iv - g I]~g < inf ]Iv - g [[s~ < Ch~ ]I v [[h" • 
g~St, z~S~ 

On the  other  hand,  since I - - P ~ ,  h has norm 1 in H~, 

II ( I -  P~)vIt.z < llvlI.~ < olivll~Z. 

The result  now follows by  Lemma 2.5. 

Let ~,~ be the subclass o~ 8o,~ such that for { S ~ } ~ , ~ ,  S ~  ° for all h. 
By Lemma  2.2 this means  tha t  for v e S h ,  we have A i v :  0 on 0/2 for j <  ½~. 

We recoil the  following t race  inequal i ty  (cf. e.g. L e m m a  4.1 of [3]). 

L E ~ A  2.7. - There is a positive cons tant  C such t h a t  for a n y  e > 0 and v e i l  ~, 

A consequence which will be f requent ly  used below is the  inequal i ty  

hl~I+½1D~v I <~ ClIvt t~l+l,  v e H  I~t+l . 
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3. - Basic  convergence theory for Galerkin methods.  

We shall now introduce the  genera.1 form of the G~lerkin equat ions which we 

shall t reat .  Le t  h, k be small posit ive numbers  und assume as before tha t  t hey  are 

t ied together  by  the relat ion kh - ~  -- constant .  Although in the sequel ]¢ is com- 

pletely determined by  h and conversely, we shall find it  suggestive to keep both  

these parameters ,  with k denoting the t ime step and h the mesh width in space. 

For  each h, k let  there  be given two bil inear forms A~(~, ~), B~(~ 9) and a finite 

dimensional subspace S~ of L~(.Q). We shall consider approximations U~(x) e S~ 

of u(x, n~) = E(nk)v, at t imes t=nk~ n =  1~ 2, ..., defined b y  

(3.1) 
A~(U,+~, Z) : B~(U., g), Z e S t .  

If  (w~}~ ~ is a basis in the finite dimensionul space Sn, the problem of finding w 

for given v such t ha t  

(3.2) Ak(w, Z) ---- B~(v, 7~), Z ~ Sn, 

~h 

can nlso be formula ted  as the problem of finding w = ~ ~o ~  such t h a t  (~1, -.., ~v,) 

is the  solution of the finite l inear sys tem of equat ions 

(3.3) ~ gjA~(eoj, (9~) =- Bk(v, coz) , 1 ---- 1, ..., .LYe. 

We shall now make a number  of assumptions about  the bilinear forms and the 

subspaces which will m~ke it  possible to affirm tha t  the  procedure  (3.1) defines a 

uniquely determined sequence U~(x), n = 0, 1, 2, .... These assumptions will relate  

the  Galerkin equations to the original mixed in i t ia l -boundary value problem and 

be such t h a t  U,(x) and  u(x, nk) m a y  be compared.  

Assumptions about An, Bk and S~. There exist  non-negat ive integers a, b~ # and v 

such t ha t  

(i) A~(~, 9) is the inner  product  in a Hi lber t  space JC~ in L~(D) and containing 

/ ~  and $1,, and there  exists a constant  C such tha t  for ~eJe~  n H a, 

where a~(?) = A~(?, ~v) ~. 

(ii) B,(q~, ~) is defined on (Jekw/~ s) ×;~k and for ~, ~ ,e .~ , ,  

IB~(~, V')t < a~(q~)a~(,p). 
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(iii) The Galerkin equat ions (3.2) are satisfied by  the exact  solution of the 

differential  equat ion with accuracy # in the sense tha t  for b<~s<~2#q-2 there  is a 

constant  C such t ha t  for v e / t  ~ and ~oeJe~, 

]Ak(ECk)v, ~p) - -  Bk(v, ~o)[ ~< Ch ~ llv I[h.ak(~o}. 

(iv) The family  {Sh} belongs to 8~.~. 

The inequMity in (ii) can be considered as a s tabil i ty p roper ty  and (iii) expresses 

the consistency of the discretization in t ime. In  applications A,  will be ~ differential 

form and  the  pa ramete r  a corresponds to its order. The presence of the pa ramete r  b 

is re la ted  to  the  final est imates  when the initiM da ta  possess minimal  regular i ty  

properties.  The parameters  # and v describe the max imum accuracy obtainable  for 

smooth ini t ial  data.  

We shall now est imate  the error in the 3e~-norm. To this end we s tar t  with some 

simple consequences of the above assumptions.  

Pl~O~'OSIT%O?¢ 3.1. - The Galerkin equat ions (3.2) admi t  for given v e/:/~U J~, a 

unique solution w ---- E,~v ~ S~. l%r v e ~ ,  

PnOOF. - The existence and uniqueness follow at  once from the  fact  t h a t  the 

ma t r ix  (A~(o)j, oh) ) in (3.3) is posi t ive definite. Wi th  Z =  w =  E~,v we obtain  by  (3.2), 

a~(w)'- = B~(v, w) <.<aa(v)a~(w) , veJC~,  

which implies the  inequal i ty .  

Wi th  this nota t ion,  the approximate  solution of our problem at  t ime t =  nk 

is u .  = ~ v .  

PI~OPOSl:TION 3.2. -- :For v ff/rtrbk)3(~ the Galerkin equations over Je~, 

(3.~) A ~ ( w , . ~ ) = B d v , . y ) ,  ~ 5 e ~ ,  

admit  a unique solution w = ~],v ~3e~. 

P~ooF. - For  v eJ¢ ,  (or/:P) it follows from (ii) (or (iii)) t ha t  B,(% ~o) is a bounded 

linear funct ional  on Je,.  Hence by  the I~iesz representa t ion theorem there  is a 

w--=/~kv e~ such t ha t  

A~(w, ~p) = B~(v, ~ ) ,  ~ ~ J G .  

We shall th ink  of E~ as the exact  solution operator  of the t ime discrete problem. 

I t  is re la ted to  E~a in the following way:  



12~ JAI~ES H.  B R A ~ L E  - VZDAI~ Tgo~r~,E: Discrete time Galerkin methods~ etc. 

PKOPOSITIO~ 3.3. - Le t  P~ be the  or thogonal  project ion in ~ k  onto Sa. Then 

E ~  = PhE~. 

P~ooF. - This follows a t  once b y  the  fac t  t h a t  b y  (3.2) and  (3A:), 

Ak(Ek~v- -E~v ,  Z) = O, Z e S h .  

P~OPOSITIO~ 3.4. - There  is a cons tan t  C such t h a t  

a~((z--P~)v)<Vh~llvll;, +eR ~. 

P~ooF. - B y  assumpt ions  (i) and  (iv) we have  

ak((I - -  P~,)v) = inf ak(v - -  )~) < C inf I[v - -  • ]l,~ < Ch: I]v like. 
ZeS~ ZeSh 

P~oPosITxo~ 3.5. - For  b < s < m i n ( 2 / z  ÷ 2, v) there  is a cons tan t  C such tha t  

a~(E~v--E(~)+) <Ch~tlvflh., v e n : .  

P~ooy.  - B y  the  t r iangle  ineqnali ty,  using Proposi t ion 3.3 and  the  fac t  t h a t  P~ has 

no rm I in ;E~ we obta in ,  

<~((~- P~)E(k)+) + ~((B(~)-/~)v). 

For  the  first t e r m  we have  b y  Proposi t ion  3A and L e m m a  2.3~ 

and the consis tency condit ion (ii) implies for the second t e r m  

Hence  the  resul t  follows. 

We  can now s ta te  an4  prove  the  basic  error es t imate .  

T~EO~E~ 1. - Assume t h a t  the conditions (i), (ii), (iii) and  {iv) are satisfied and  

let  s>b.  Then there  is a cons tan t  C such t h a t  wi th  ~ - -~min(2#~v- -2 ) ,  

a ~ ( ~ - ~ ( ~ ) v )  < c log iIvil~, ~ ' ,  

where ~:,q is the  Kronecker  delta.  
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P]~oo~. - We have using the  s tabi l i ty  of E ~  in JE~ (Proposit ion 3.1), 

n--1 n - 1  

~ ( ~ -  E(~k)~) < 2 ~(E~;'-~(~--  ~(~)) E(~)~) < 2: .~ ( (~ - -  ;~(~))~(~)v). 
i=0 ~=0 

For  the  t e rm  wi th  j = 0 we have  b y  Proposi t ion 3.5, 

For  the  te rms  with j > 0 we have  using Proposi t ion 3.5 (with s----0 ~ 2) and 

L e m m a  2.3, 

n--1 n-I 

Z ~ ( (E~-  ~(k))E(jk)@ < ekt~o 2 II~(jk)v 11~o+, < 
i=1 5=I 

< ch0{  5 II ,II ., 
i=1 

The result  now follows since 

n - 1  

t=1  

C, s > Q ,  

C logn,  s = Q, 

C k  -(~-s)/2 , 0 < s <  ~. 

4. - The stationary projection method.  

The resul t  in Sect ion 3 is in a certain sense non-opt imal  wi th  respect  to  the  ap- 

proximat ion;  in order  to  obta in  a 0-th order  result  we have to employ u fami ly  of 

subspaces in some $a,,. wi th  v > 0  -~ 2. This loss of O(h -~) ~- O(k -1) -~ O(n) stems 

f rom the  summat ion  wi th  respect  to  j in the proof above.  We shall present  below an 

a l ternat ive  t r e a t m e n t  which, when applicable, avoids this loss. 

The main  point  in this more refined analysis is to  add the following fifth condi- 

t ion  in which we in t roduce 

G~(v, Z)----A~(v, )~)--B~(v, 9~). 

The condit ion is then  the following: 

(v) For  given v e /~  ~ the  equat ions  

(4.1) G~(w - -  v ,  Z) = 0 ,  Z ~ S~, 

have a unique solution w = Qav ~ Sa and there  are positive constants  ~o and C such 

9 - A n n a l i  d i  M a t e m a t i c a  
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t ha t  the linear operator Qa thus defined sutisfies 

ll(z- 

~ot ice  thut ,  by  the stabil i ty reqmrement ,  G~(v, v)>~O. In  the case tha t  G,(% ~2) 

is symmetr ic  and positive definite, Q~ is the orthogonal projection onto Sa in the 

t t i lbert  space 9~ defined by  the inner product  G~,(% ~p). In  this case (v) means tha t  

the orthogonal projection with respect to 9~ has a specific approximation property 

also in J~:. In  most examples below Qa will be optimal with respect to J ~  which will 

mean n --~ 0. In  one case (Section 8) we are only able to establish (v) with ~o -~ ½. 

The equation in (v) is related to the s ta t ionary  version of the Gulerkin equation. 

In the t rea tment  below it turns out tha t  as we add condition (v) some of the 

other conditions may  be reluxed in tha t  some of the estimates only need to be valid 

on the subspaces S~ rather  than  on the whole Hilbert  space J ~ .  There will in fact be 

examples in what  follows in which this  is impor tan t  so t ha t  the basic theory does 

not  apply but  the present does. 

We now present the al ternat ive conditions. 

(i') There is a t t i lber t  space ~ in L~(~2) and c o n t a i n i n g / ~  and  Sa such tha t  

A~(~, y) is defined on 5 ~ × S a ,  is symmetric  on Sa×S~, and there is a constant  

such tha t  for ~ ~ S~, 

where again a~(?)----A~(% q~)½~ and such tha t  for F e J ~ H  ~, 

(ii') Bk(~, y~) is defined on (Je~W/t ~) ×S~ and there is a constant  C such tha t  

l 
(iii') For  b < s < 2 # ÷ 2  there is a constant  C such thu t  for v e I t  b, yJeS~, 

IA~(E(k) v, V)--B~(v, ~)] • Ch~]Ivlth,a~(~f). 

Clearly~ if (i), (ii), (iii) are satisfied then  (i'), (ii'), (iii') hold with the same JC,. 

We notice tha t  with the same proof us before we have the following: 

PI~OPOSITION 4.1. - Under the new assumptions, the Galerkin equations (3.2) 

define for given v e/J~ w JC~ a uniquely determined w = E~veS~ where again Eka 

is a linear operator, and  for veSa,  

ak(E~h v) < ak(v) . 
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This inequal i ty  expresses the  s tabi l i ty  in the subspace of the discrete solution 

operator  bu t  will not  be explici tely used in the error  analysis. We notice t h a t  the 

exact  solution operator  E~ of the t ime discrete problem has no analogue in the new 

theory .  

We can now s ta te  and prove the  main  resul t  of this section. 

TKEO~E~ 2. -- Assume tha t  the conditions (i'), (ii'), (iii'), (iv) and  (v) are satisfied 

and let  s>b .  Then there  is ~ cons tan t  C such tha t  for v e I ~ ' ,  

P~oo~. - Set 

~, = E ( @ ) v ,  G = ~'£~ 

We shall write e~ in the  form 

e~ = G + ~ ,  with 

so t h a t  

and e . - -  % -  Un. 

G = ( I -Q~ , )u , , ,  

Notice  t ha t  ~.  ~ Sh and  t ha t  ~. satisfies 

(4:.2) G ( G ,  Z ) =  o for 

B y  the consistency condit ion (iii') and the 

(4.3) IAk(et+ x , Z) - -  Bk(e~, Z)[ < ChS' II uj II~.~ak(z). 

Using (4.2) it follows in par t icular  t h a t  

Z e S t .  

Galerkin equations we have for 

IAk%+1, Z)--G%, Z) + G ( G 1 - 4 ,  z)l < ~÷~ll~1]~,,÷~a~(z), 

and hence with Z :  fl~+l using the  first inequal i ty  in (ii'), 

By  the stabil i ty assumption in (ii') and (v) this implies ~fter cancellation of ak(fl~+~), 
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Using Lemmas 2.4 and 2.3 we obtain for j >0 ,  0~s<~4-2, 

II (E(~) -- z) ~ }l~, < k it~(j~)v llh,+~ < ~k(J~> -C'+ 2- '~ {Iv it~. 

Applying the same argument to the last term in (4.4) and summing over j we obtain 

for n > l ,  s>0~ 

n-1 ~-1 } 
a,~(,,;,) < a,,(w) + O h'-'°k ~ (i~) -('+~-~)~ + h~,',~ ~ (ik)-~,'+~-')/~ t[vll~,< 

( i=1 J=l 

<~(~,) + c log + [ ~id ] {Jvll~,. 

To estimate a~(~) consider (4.3) with j = 0. Since eo = 0 we obtain easily for 

b<sl<2# 4- 2, 

~bk(~]l) < ~{ 11 $1 t l~  4- hsztiVi[~'l} = 0{ [I ( I - -  qh)~61 [t~ -F hSz [Iv ills,} . 

By assumption (v) this implies for b<s~<2/~ 4- 2, 0<s.~<~, 

,~k(v~) < o{h'-"°{l~(k)~ti~e + h" lt~'{{~,.} 

< C{h',- ' .  1[ ~' II ~,,~ + h" II ~' {1~,.} • 

Altogether we obtain for s>b, 

On the other hand, by (v) we have for n>l, O<s4u, 

< ¢~ . . . .  (n#)-~'-" /~ II~'ll~. < Oh'-' .  tt~'ll~,, 

and hence finally for s>b, n > l ,  

fle.I{~< {I&ll~,0+ l iv . ] i~<c  log + k ~.~fl ] 

which completes the proof. 
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5.  - S o m e  c o n s i s t e n c y  e s t i m a t e s .  

We shall prove here ~ lemm~ which will be used in establishing the consistency 

est imates  in ~11 the  examples below. 

L ] ~ A  5.1. - Le t  r ( v ) ~  b(~)/a(~) be a ra t ional  funct ion with 

a(z) = a f t  ~, b(T) := ~ b~z j , 
~=o ~=o 

such tha t  

(i) 

a~:/:O, b~:/:O, ao = bo -= :l , 

a(~) > 0,  tr(~)[ 4 1  for l" > O, 

and for s o m e / , > 1  with # -~ l> f l ~  

(ii) 

Then  for v, w E / ] ~  

(5.~) 

(5.2) 

r(z) = exp [-- z] q- 0(~ ~+1) as z --> 0 .  

Lla(--kA)E(k)v--b(-- ld)vJl  <Ch~llv[]ir, 2fi<s-<2/z T ~, 

I(~(- k~)E(k)v-- b(-- k~)v~ w) l < Ch ~ ]iv I]~(~(-- k~)w, w)~, 

max (2fl-- ~, 0) < s  ~ 2 #  + 2. 

PROOF. - We have,  with the nota t ion  of Section 2, 

tta(- kA)B(k)v--b(-- kA)v [l 2 = Y (a(k~m)exp [-- kZ~] 2 2,  

(a(~  k d ) E ( k ) v - -  b (~  kA)v, w) = ~ (a(k2,~) exp [-- kZ~] - -  b(k)~))v,,w~ , 
g~  

and  

( ~ ( -  k~)w, w) = Z ~ ( ~ ) ~  • 
m 

The first result  therefore follows f rom the  inequal i ty  

[a(z) e -~ - -  b(~)[ < [a(r,) (e-* --r(~))  ] < CT", 

since hence wi th  a : s/2, 

~ > 0 , .  f l < a < # + l ,  
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The second result follows similarly from 

l a ( w ) a ( e - ' - r ( ' c ) ) l < c ¢  ' , max(fl--½~,O)<c~<#+Z. 

A special set of rational functions satisfying the assumptions of Lemma 5.1 is 

formed by the diagonal and subdiagonal Pad6 approximations of e -~ (cf. [8]). These 

are defined by 

b~(~) 
r,~(~) a~(~)  ' 

where 

T~ ~ X a~flj T ~ a~(T) --~=o (0~ + fi)! ~ ! (0~-- J)! ,=0 ' 

b~(~-) =2;~:o (~ + #)! J! (# _ "j)! (--  ~:)' = ~: b~¢~ T' . ¢ = o  

The Pad6 approximations are the most accurate approximations of e -~ near the 

origin with given degrees of a and b. The assumptions of Lemma 5.1 are satisfied 

for fi<c~ with #---- ~ q- ft. Further, 

(5.3) 

~nd 

(5.4) b ~ j = ( - - 1 ) ' G ~ ¢ O  , O<j<~, .  fl=o~. 

6. - Some methods with subspaces satisfying prescribed boundary conditions. 

]Ve shall introduce here a class of methods which illustrates the results in Sections 3 

and 4. The class witl contain methods of arbitrary order of accuracy but the high 

order of accuracy will be achieved in the examples of this section only for subspaees 

which satisfy quite restrictive boundary conditions. 

We begin with a particular case, namely the methods analyzed by DO~TaLAS 

and DTg:PO~: [4]. Set 

A~(% ~) = (% ~) ÷ skD(% ~), 

B~(% W) = @, ~) - -  [1 - -  ~) kD(% V),  

where ~>½ and let JC k be the completion of Co(Q ) with respect to the norm 

G(?) = AT~(~, ~)½. Obviously 
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The Hilber t  space J~: contains the same functions a s / t ~  and we therefore assume 

(S~} e 8~,, so tha t  in par t icular  the elements of Sa vanish on ~r2. Hence conditions (i) 

and (iv) are satisfied with a----1. B y  Cauchy~s inequal i ty  we have, since ~>  ½, 

IB~(q~, Y~)l < IIwIl" ll~fll ~- ~dcD(q~, ~)½D(~p, ~)½ <a~(q~)a~(~) , 

so t h a t  (ii) holds wi th  b :  ! for u ¢ l ,  and  b :  0 for u =  1. 

To see t h a t  Theorem I applies i t  remains only to  consider the  consistency con- 

dit ion (iii). For  v, ~2~I:i ~ we have b y  integrat ion b y  par ts ,  since the  functions 

vanish on ~9, 

A ~ ( E ( ~ ) v ,  ,~) - -  B~(~, ~,) = 

= + 

= 

= ( ( ~ -  ~ ) ~ ( k ) ~ -  (~ + (~ - ~) ~ )  ~, @ 

Hence applying Lemma  5.1 with 

(6.1) r(l:) - -  

w e  obtain 

1 -- (i -- ~) 

1 - ~ z v  

IAk(E(k)v, ~) - -  Bk(v, Y~)I < Ch8 IIv [Ii~ ~a~(V) , b<s<2~-~ 2, 

where # - ~ 2  if u : ½  and ~u-~l  otherwise. In  par t icular  for ~ ½  and  v----6, 

Theorem 1 gives 

Ch'llvl[~.  , s > 4 , 

1 
[]Ehv --E(nk)vII~2< Oh' log ~ I[~]lh,, 

Ch'lIvl]~, 1 < s < 4 .  

In  order to apply  Theorem 2 we choose the same ;E~ as above. The conditions 

(i'), (ii'), (iiit), (iv) are then  satisfied as before wi th  the  appropr ia te  parameters .  We 

now tu rn  to  condit ion (v). The bil inear form G~(q~, ~ ) ~  kD(~, ~2) is here positive 

definite so t h a t  the  equat ions  (4.1) have  a unique solution w ~ Q~ve S~. We have 

wi th  gk(~) = Gk(?, ?)½, 

(6.2) g~((I-Q,)v) < c in~ [Iv- zIIh~< c~IIvll~, 1<s<~. 
ge~h 

In  order to  es t imate  @~ ( I - -Q~)v  in JE~ it  remains to es t imate  @ in L~(Y2). For  

this  purpose we use a technique due to I~icsc~E [5]. Le t  w e / ~  be defined as the 
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solution of the  Dir ichlet  problem 

(6.3) 

Then 

- - A w = ~ i n  ~2, w = O  on ~ 9 .  

lI~lt ~ = - (~, Aw)  = D(~ ,  w ) .  

By the definition of ~ we have 

D(~, Z) ---- k-lG~(~ Z) : 0, Z ~ S~ , 

so t ha t  with z-=Q~w and ~ =  (I--Q~)w, 

(6.4)  !i~It ~ = D ( ~ ,  ( 1 - -  Q~)w) < ~h-~g~(~)g~(~). 

l~ow by  (6.2) and a s tandard  a priori es t imate  for the  solution of (6.3), 

:Itence by  (6.~), 

This proves tha t  (v) is satisfied with v0--= 0. 

In  part icular ,  Theorem 2 wi th  ~----½, v----4 now gives 

Vh'HvIp~,, s > 4 ,  

IiE£v--E(nk)v]t~< Ch" log-~ Ilvllh,, 

¢h ' ] [v l l~ ,  1 < s < ¢ .  

lqotice the reduct ion from v : 6 to  v = 4 in the  approximabi l i ty  assumptions for 

the  subspaces. Hence  in this  case Theorem 2 is s tronger t h a n  Theorem 1. 

The preceding exampl% as ment ioned abov% corresponds to the  ra t ional  func- 

t ion (6.1). For  the purpose of including examples of higher order accuracy we shall 

now construct  Galerkin methods  based on more general  ra t ional  functions.  

To this end let  r (v ) - -  b(r)/a(~:) be a ra t ional  funct ion s~tisfying the assumptions 

of Lemma 5.1. Define for v, w~I~ ~, 

A~(v, w)= (a(--kA)v, ,v) = ~a~(- -k )~(~v ,  w).  
~ 0  

By  integrat ing by  par ts  we find because of the boundary  condit ions 

(A~v, w) = (A~v, A~w) , - -  (A~+Iv, w) --- D(AJv, A~w) , 
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so tha t  Ak is symmetric.  In terms of the coefficients of the eigenfunction expansions 

of v and  w we have 

A,(v ,  w) = 5` , 
~Tb 

and it  follows tha t  ak(~) is a norm equivalent  (uniformly in k) to  t ha t  in / ~ .  

We now choose JCk to be the completion of /:/~ with respect to ak(~). Assuming 

{Sh} ~ 8~,,, the conditions (i) and (iv) are then  satisfied with a =  a. 

Similarly, for v, w e /~  ~ we define 

m 

and make the obvious extension to /t~×/:/~ with b - ~ m a x ( 2 f l - - ~ , 0 ) .  

tha t  (ii) holds with this b since by  the assumption (i) of Lemma 5.1, 

5, b(k;L) < ]Bk(v, w)I --- ,, ]= ~ r(kk~) 

m 

I t  follows 

The consistency requirement (iii) is also satisfied as expressed by (5.2) of Lem- 

ma 5.1 and hence we m a y  apply Theorem 1 with the appropriate choice of parameters. 

The present Gaterkin method can be thought  of as consisting of solving approx- 

imately  at  each t ime step an elliptic problem of the form 

a(--kzt)w= b(--kA)v in t~, 

A~w:O for j < ~  on ~/2; 

the exact  solution operator of this problem defines the operator Ek appearing in the 

theory in Section 3. 

We shall now consider the application of Theorem 2. We have already t reated 

the case ~--~1 above so t ha t  we shall assume below tha t  ~.>2. Choosing J¢~ and (S~} 

as above, the assumptions (i'), (ii'), (iii') and (iv) arc again valid with the same para- 

meters as before. We now turn  to condit ion (v). Set 

g(~)=a(v)--b(z)=5`g~TJ, 

where the degree of g is at  most  ~ and  where gl = 1 by Lemma 5.1, (i), (ii). We 

shall first make the following addit ional  assumption, namely  

(6.5) g(T) > 0 for z > 0 ,  and  g, ve 0.  
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By  this assumption,  

(6.7) 

(6.8) 

Define ~o by  

T~a(.~) < ¢g(~:)2, T > O. 

By  (6.5) the bi l inear form 

G~(v, w ) :  (g(--kzJ)v, w) = ~g(ki~m)v,,wm 
?n 

is positive definite on I:I% Let  Q~ be the project ion onto S~ defined by  the inner product  

G~(v, w). In  order to prove condit ion (v) with Vo----0 we want  to prove tha t  

(6.6) ~ ( ( I - -Q~)v )  < Oh" tI~, tlh'. 

Notice tha t  with ( I - - Q ~ ) v =  ~ we have by  definition 

Gk(~, )~) = 0, g e S~, 

g , (~)=O,(~ ,~)½<Cinf  iIv--ziih~<Ch~iivIth,, , < s < v .  
xeSn 

a ( k ~ )  ~ .  

Since a/g is bounded at  infinity, ~e/ : /s  when ~e/~8. Set t ing ~ (I--Q~)~ we 

obtain by  (6.7) and Cauchy's inequal i ty  

(6.9) ak(~)~: G~(~, ~) -~ G~(~, ~) <g~(~)g~(~) . 

Using (6.8) with s ~ :¢ we have b y  our assumption (6.5), 

so tha t  by  (6.9) and (6.8) with s : v, 

~(~) < Cg~(~) < Ch ~livti~ , 

which completes the proof of (6.6). 

We sh~ll now show tha t  under  an addit ional  assumption on {S~} we can relax the 

condition 7 -~ degree g = degree a ---- a. We now only  assume 

g ( z )>O  for z > O ,  
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and make the <( inverse ,> assumption 

(6.1o) II z II~ < ell zI l~ ,  

We clearly have 

Z ~ S  h . 

(i + T)~'< 0(1 + g(T)), 

~ ~ = ( ~ - Q ~ ) ~ .  

We have 

(6.13) 

In fact, let ~, ~f and ~ be defined by  

(6.12) 

We shall first prove 

II (s - Q~)v iI < Ch ~ Ii v II ~ . 

and by (6.12) with s = 7, 

I t  follows from (6.13) and (6.12) that  

(6.14) It'll <~ Ggk(~) < CY]Ivlii~ ~ • 

Notice that  this did not require any inverse assumption. 

We have for g e Sa, 

a~( q - Q ~ ) v )  < a ~ ( v -  Z) + a ~ ( z - Q , v )  , 

Let Qh be, as befor% the projection with respect to the inner product Gk(v , w)  

and notice that  by  Lemma 2.6, 

and it follows that 

't~ll~<c(llv~t + a ( v ) ) ,  v ~ H ~ ,  

and hence by the inverse assumption (6.10), 

(6.11) IlZtih~< C(IIzJI + a ( z ) ) ,  z e s h  • 
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and by (6.11), 

so that  

% ( z - Q h  v) < ¢llX--Qh Vlli~ < ~(tlx-Q:II + gk(;i--Qhv)} < 

< C(tl (I--Qh)v [[ ÷ gk((I--Qh) v) + [l v --  gllh;}, 

a~(~) < C I inf I]v -- Z I[~ + ]]vll + gk(v)} < CM I[v llh~, 
t Z~S~ 

from (iv) and (6.14). This proves that  (v) holds. 

The diagonal and subdiagonal Pad4 approximations are special cases of rational 

functions satisfying the assumptions of Lemma 5.1 and therefore Theorem 1 applies 

to all of these. In particular, this means that  the class of methods so characterized 

contains methods of arbitrarily high order of accuracy. The following two Pad4 

approximations correspond to # = 3 and # =  4, respectively: 

1 - (1/3) 

r2~(v) -~ 1 + (2 /3)  T + (1/6)  z~ '  
r ~ ( ~ )  = 1 - (1 /2)  ~ + (1 /12)  ~ 

1 -{- (1/2) ~ + (1/12) ~ "  

The application of Theorem 2 is again possible by (5.3), (5.Q and (6.5) for all sub- 

diagonul and odd order diagonal Pad6 approximations. With an inverse assumption 

also the even order diagonal Pad6 approximations are included in the above theory. 

In the special case r2~ the inverse assumption (6.10) takes the form 

7. - Some methods using subspaces without prescribed boundary conditions. 

We shall describe here some methods which are based on work in the elliptic 

case by NITSCgE [6] and B~A~BLE and NITSC~E [1]. In the first method we shall 

present a second order scheme in time in which we require the family of subspaces 

to satisfy inverse assumptions. For this method only Theorem 2 applies since AT0 

will be definite only on the subspace. A similar fourth order method is then introduced. 

Finally, a second order method is described which does not require inverse and 

boundary condition assumptions. 

For ~, ~ E H  ~ and ? positive we define 

We shall consider a family of subspaces (Sh} e 8e,~ for which the following inverse 

assumption holds: There is a constant C0 independent of h such that  

(7.1) ~z 
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Setting 

( ), dn(~0) = D(% ~) + h Fn + h-~l~[* ' 

we have the following: 

LEzv_UA 7.1. - Under the assumption (7.1) there is a constant  )~o such tha t  for 

Y)Yo,  N~, is positive definite on Sh; more precisely, for fixed ~>~o,  there are con- 

s tants  e and  C with  

ca~(z)<2v,(z, z)~<¢a~(z), z e s t .  

P~ooF. - The inequali ty on the left follows from (7.1) and tha t  on the right from 

Cauchy's inequali ty (ef. NITSCHE [6]). 

We shall consider the Galerkin equations 

k .y:,(cr +~ + v'., z) 

tha t  is, we take 

= 0 ,  z e S h ;  

/¢2V 

k 
B~(% V') = (~, V') - ~  -Y:,(q~, ~o). 

We shall see t ha t  in this case Theorem 2 applies. By  Lemma 7.1, Ak is positive 

definite on ~q~ and  

Let  Jek be the I t i lbert  space obtained by completing C~(~) with respect to the norm 

llVbe~= (1Jell ~ + ~a~(v)~) *. 

As aa  immediate  consequence of Lemma 7.1, 

ctlzll~<~k(z) < ollzlt~, z e & .  

One easily proves by  Lemma 2.7 t h a t  

In  particalar~ N~ contains H 2 and hence also S~. For  % ~ o e ~  one has from the 

definitions, 
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and hence (i'), (ii'), (iv) are all satisfied with ~ =  b : 2. Consider now the con- 

sistency condition (iii'). We have af ter  integrat ion b y  parts  and using the boundary  

conditions, for v e / t~ ,  V ~ S~, 

~ ( v ,  ~) = - (~v, ~), 

and hence for such functions v and % 

IA~(E(k)v, y~)~B~(% ~)l= ((E(k)--I)v--~(E(k) ÷ I)A% ~) << 

, 2 < s < 6  

with the last est imate following fi'om Lemma 5.1. That  (iii') is satisfied with 

b ~/~----2 now follows since hrr is positive definite on h~ and hence 

( 
We finally tu rn  to  the approximat ion proper ty  (v). We have the following result  

of NI~SC~]~ [6] : 

L E n A  7.2. - For  v e / :P given, the equations 

(7.2) G (  ~ - w ,  z ) =  o,  ze ,v~,  

admit  a unique solution w = Q~v ~ S~ and 

In this case we have 

~ ( ~ ,  ~) = k2¢~(q~, ~) ,  

so tha t  the equat ion in condit ion (v) is exact ly  (7.2). Hence the conclusion of 

Lemma 7.2 implies tha t  (v) holds wi th  ~o = 0 and hence Theorem 2 applies. For  

s > 4 ,  v =  4 the result  is 

For  the purpose of describing also a four th  order me thod  similar to  the second 

order method  just  in t roduced we shall employ in addi t ion to the  bilinear form 

7qr(~, ~) also 

Y~} + yh-3<q~, yJ> \ 8n 
f 
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We shall assume this time tha t  {Sa} ~8~,~ with , .>4 and that  the following inverse 

assumptions hold, namely in addition to (7.1), 

(7.3) 

and 

(7.4) II~xll <Coh-~-o(x, x?, x ~ .  

We have the following lemma: 

LEI~A 7.3. - Under the assumption (7.3) there is a Yo such that  for X>Yo, 

M r is positive definite on S~; more precisely, for each Y>Yo there are positive con- 

stants e and C with 

Dn l <Mv(Z'%)÷<C ll~zIl + h-~lzl 4- hn an , ZeS t .  

I)~oo~. - We have at once by the inverse assumption (7.3) with e---- e0h a and so 

small enough, for )~eSa, 

1 SAg\ 

Using the assumption (7.3) once more, this proves the lemma. 

~ow let X be large enough that  both ~¥~ ~nd M~ are positive definite on S~ as in 

Lemmas 7.1 and 7.3. Consider the Galerkin equations defined by 

k k s 
A~(% V') = (~, ~) + ,~ N~(q~, V') + ~ i~(% ~), 

k k ~ 
B~(~, ~) = (~, ~) -- ~ 2G(~, ~) + ~ i~ (% ~). 

Clearly by Lemmas 7.1 and 7.3, A~ is symmetric positive definite on Sh and 

IBm(% VJ)l<a~(~)a~(V'), % y,~,S'~. 

Let now J~  be the ttilbert space defined by completion of C~(~0) with respect to 

II~ll~= (ll~ll~+~D(~,~)+ h'll~ll'+ ~ ~ ~ ~ 7l~z--vl~ 
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I t  then  follows by  Lemmas  7.1 and 7.3 and  obvious est imates tha t  (i') and  (ii') are 

val id wi th  a---- b ---- 4. 

We now tu rn  to  consistency.  We have  for v e / ~  ~, ~ e S ~ ,  

~ ( v ,  ~) = - (~v, ~),  My(v, ~} = ( ~ v ,  ~), 

and hence in the same way as above, b y  (5.1) of Le mma  5.1, 

IA~(E(k)v, y~)'--B~(v, ~P)I = 

Chs]lvI]h ~ ]]~I] < Ch~]]v]lh~ak(YJ), 4 < s <  10,  

which is (iii') wi th  b----#----4. 

For  the purpose of applying Theorem 2 it  remains only to prove the approxima- 

t ion p roper ty  (v). We have again this t ime 

~(v ,  z ) =  k.¥~(v, z) , 

and the result therefore follows with vo----0 from the following: 

L E n A  7.~:. - There is u constant  C such tha t  for v ~H" the equations 

~ v ~ ( w -  v, z) = 0 ,  z e &, 

admi t  a unique solution w = Q~v ~S~ and 

P~ooF. - By  Lemmu 7.2 it remains only to prove tha t  with ~ =  (I--Q~,)v, 

We have for a rb i t ra ry  Z e S~, 

~n 

<h~HA(v--Z)H + h~ t OA(v--x) [ ] 
~n 

Using the  inverse assumptions (7.3) and (7.4), the  last  two te rms  are majorized b y  

ChD(z -- Qav, Z -- Qav) ~ < Ch[D(g-- v, g ~ v) ½ -~ D(~, ~)½]. 
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Hence 

which completes the proof. 

A possible drawback with the above methods is the requirement of inverse as- 

sumptions. We shall now present a second order method where this demand is eli- 

minated. The price we pay for this is that  we use second order derivatives in the 

bilinear forms. 

For %, to ~ H  ~ and 7 positive we define, following BlCAI~]~LE and N ~ S C ~  [1], 

k 
Ky( % to)= D(q, ~ ) -  <% ~ )  --<~a-~n, to) + ~ (Aq~, Ato) + y[h-l@, ~> + h<~,% ~to>], 

where Vs denotes the gradient within 8~. We have the following: 

LEPTA 7.5. - There is ~ Yo such that  for y ~> ~o, Kr is positive definite. 

more, there is a positive constant c such that  

Further- 

K~(~,~)~>ckliA~]l ~, ~ e ~ .  

P~ooF. - See BRA_~BLE and NITSCItE [1]. 

With this form, we use the Galerkin equations 

k 

that  is we define 

and 

= 0 ~  

k k 
&(~, to) = (~, to) + ~ D@, V) + ~ K,(~, to), 

k k 
Bk(% to) = (% to) + ~ D(~, to) -- ~ Kv(~, to). 

z e S h ,  

I t  is aa immediate consequence of Lemma 7.5 that  A~(% q~) is positive definite 

and we also have, using the appropriate trace inequalities, 

(7.5) 

Let J~  be the completion with respect to ak(.) of C~(~). Then H~cJCk and 

hence assuming that  {Sh}e$e.~, conditions (i) and (iv) are satisfied with a = 2 .  

The stability condition in (ii) is a trivial consequence of Lemma 7.5 and Be is defined 

1 0  - A n n a l i  d i  2VIatematica 
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on/ t~  × J ~ .  In  the same w~y as in the above method we have for v e/:/~, ~ e C~(~), 

~)(v, ~) -- -- (v, ~ ) ,  

k 
K:~(v, ~ ) = - - (Av ,  ~,) ÷ ~ (Av, A~,) , 

so that 

( k k ) 
A~(v, ~,) = v - - ~  Av, ~ - -~  ,~ ,  , 

k - - ~ A w  B~,(v, tp) = v + ~ dv,  ~ 

and hence by Lemma 5.1 for 2<~s<~6, 

IA~(~(k)v, ~o)--B~(v,~o)l = It I - -5  

where we have used tha t  by  Lemmu 7.5, 

k k 

This proves tha t  the consistency condition (iii) is satisfied (with b -~ # ---- 2) so tha t  

Theorem 1 applies. 

To see tha t  also Theorem 2 ~pplies with the same JG k as above we only have to 

discuss condition (v). I n  this case 

~(~, v ) =  kK~(% V), 

and by  (7.5) the result follows with ~o~ 0 from the following: 

LE~-~V~ 7.6. - For  v~ /~  ~ given, the equations 

K~(~--v, Z)= 0, Z eS,,, 

admi t  a unique solution w = Q~,v e S~ and  

H ( ~ -  Qh)vIIh¢~ < Ch~Hv t1~. 

P~ooF. - See BlCA~BLE and NITSCItn [1]. 
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8.  - L e a s t  s q u a r e s  m e t h o d s .  

In  this section we shall describe some methods which contain as special eases 

the methods in B ~ 5 ~ L E  and T~o~]~E [3]. They have the advantage tha t  no boundary  

behavior willbe prescribed for the subspaces and no inverse assumptions will be needed. 

The class of methods will contain schemes of arbitrari ly high order of accuracy. 

We first consider a simple example where we do in fact assume tha t  the functions 

in S h vanish on the boundary.  Thus suppose tha t  {S~} ~ 82.~ and consider, for U~ 

given, the problem of minimizing 

for ~ e S~. An obvious calculation shows tha t  the unique minimizing function U~+~ 

is obtained by the Galerkin equations 

where 

A~(U.+I, z )=  B~(U., z), Z~S~, 

B ~ ( ~ , ~ ) =  Z + ~  ~, - - )  ~ . 

We have for ~v vanishing on 39,  

(8.1) I =L:} A = tI~v]I~ T kD(cf, ~) + ~ I]A~II 2 . 

In particular,  ak(~v)= Akqv, ~v) ~ defines a norm on the set of functions in C~(~) 

which vanish on ~(2. Let  ~ be the Hilbert  space obtained by completion. I t  is 

then  easy to cheek tha t  condition (i) holds with a-= 2 and tha t  the norm in ~ 

is equivalent  uniformly in k to t h a t  in /~h.  

F rom (8.1) we obtain immediately,  

I - t - ~ A  vl< I - - ~ A  v , vaJC~, 

and hence the stabil i ty condition (ii) follows easily from the definitions. 
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By Lemm~ 5.1, 

IA~(~(~)v,~)--B~(v,~)l= ~--~ ~ --~ ~ < 

< (\I--~kA) E(k)v--  ( I  -}-~kA) v a~(~fl)<Ch'l, vl[h,a~(~),• 2 < s < 6 ,  

which proves the consistency condition (iii) with b ~ #----2. 

Since we have assumed condition (iv), i t  follows tha t  Theorem 1 applies. We 

shall see tha t  ~lso Theorem 2 ~pphes. Using the same J~k as in Theorem 1 it remains 

only to prove tha t  condition (v) is s~tisfied~ with vo----0. 

We h~ve here 

G~(cf, ~p ) .~ kD(% v2 ) -k --~ (Aq~, Av2). 

We obtain ut once with Q~ the projection with respect to the inner product Gk( % ~), 

gnd 9--= (I--Q~)v~ where v ~ / t  ~, 

(8.2) g~(9)< C inf IIv-glIg~<ch~llvl]h~, 2 < s < v .  
geS';~ 

In  order to est imate ak(9) it remains now only to est imate ~ in L~(~2). We use again 

lqitsche's technique and let w be the solution of 

- - A w - ~ 9  in ~2, w : O  on ~£2. 

We obtain then,  since 9 vanishes on ~ ,  

]]~]t ~ = - ( A w ,  ~) ---- D(w, ~) = k-~V~(w, ~)--~ (Aw, A~) = k-~G~(w, v ) - - ~  (9, A~) .  

Setting ~ :  ( I -Q~)w and using the fact tha t  by  the definition of Qh, 

we obtain 

(8.3) 

G~(Q~w, 9) ~- o, 

k 1 
ti9t1~ = k-1G~(~, 9) + ~ D(9, ~) < k-Ig~(~) g,:(9) + ~ g~(9) ~ . 

Application of (8.2) with s-~ 2 to w gives 
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and we e~sily conclude f rom (8.2) and  (8.3) t h a t  

which completes the  proof. 

We shall now turn  to the general  s i tuat ion and  consider, for a ra t ional  funct ion 

with 

b (~) 
r(~) = 

a(~) = a ~  ~ , b(~) = ~ b~J, 
~=0 ~=0 

where fl < ~ and 

(8.~) a o = b o = l ,  Ib~I<a~, ~ = 1 , . . . , ~ ,  

the problem of minimizing, for ~0 ¢ S~, 

[]a(-- kA)~0 - -  b(-- kzl) U~I] 2 . 

This t ime we do not  want  to  assume t h a t  the  elements  of S~ vanish on O~ and in 

minimizing we therefore  add a boundary  t e rm to the  above expression so t h a t  we 

minimize with a certain posit ive number  ~, the size of which will be made precise 

below, 

t l ~ ( - k ~ ) ~ - b ( - k ~ )  v ,  tl ~ + ~ ~; ~ + * l ~ t  ~ . 
j = 0  

Notice t ha t  for t posit ive the exact  solution of the continuous problem not  only 

vanishes on ~Q but  t ha t  also A~u(x, t) ----- 0, x ~ ~£2, j = 1, 2, ..., so t h a t  the  require- 

ment  t ha t  cer ta in  AJ~ be small on 8s9 is natural .  

The minimizing funct ion U~+~ satisfies the Galerkin equat ions wi th  

J=O 

Obviously A k is positive definite. Let t ing  Jgk be the completion of C~(sg) with respect 

to a~(.) and  taking {Sa} e 82~.~ we find tha t  (i), (iv) are satisfied wi th  a =  2~. 

We have  for v eI:I ~, y~ E C~(~) ,  

IA~(~(k)v, 9) - -  B~(v, W)I = t(~(-- kA)E(k)v--  b(-- ~A)v, ~(-- kA)~)l < 

<~ [la(--ld)E(k)v--b(--kd)vll. []a(--kA)~011 <¢h~llvllh~ak(~o), 2fl<~s<2# if- 2, 

b y  L e m m a  5.1, which proves (iii) wi th  b = 2/3. 
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Since B~ is defined on He¢ × ;E~, in order to be able to app ly  Theorem 1 it  remains  

only ~o discuss the  s tabi l i ty  inequa l i ty  in (ii). We have  

tB,:(% w) l = I(b(-- ~A)~, ~(-- kA) ~')1 < II b(-- ,ezl )~ II" il a(--  k~) W 11. 

The s tabi l i ty  r equ i rement  is therefore  satisfied for large enough 7 b y  the  following 

l e m m a :  

LE~hri 8.1. - For  any  posi t ive  K there  is a Yo such t h a t  for a n y  ra t iona l  func- 

t ion r(z) sat isfying (8.4) and  wi th  m a x ~ a ~ < K ,  we have  for y>Yo, v~ C~(D), 

where 

!]b(--l~;A)vil2-<< 1I,~(- kA)vit ~ + y¢-½ Z s-~+qA~vI ~, 

a =  ra in  (ay--by). 
3"= 1,. . ,~ 

For  the  purpose of the  proof we int roduce some nota t ion .  F i r s t  let  

~=0 

Secondly,  for v given and  j = 1, ..., e, let  v----H~ + z,. where 

ASHj=O in D ,  A~Hj=A~v on ~D, l : = O , . . . , j - - 1 ,  

dSzj---=ASv in Q ,  A Z z j = 0  on ~ 9 ,  l = 0 ~ . . . , j - - 1  

and  set 

We  proceed to  p rove  three  lemmas .  

LE~n~i 8.2. - There is a cons tan t  C such t h a t  for a n y  s > 0 we have  wi th  

6 = (e/4C) ½, ~¢ = ½ C~e -½ t h a t  

l Ozl ~ 
~(v, Av) + &~ ~ <ek~IIzlvI1 ~ + ~k~IvI ~. 

Pt~ooF. - We have  using Green 's  fo rmula  and  the  fac t  t h a t  D(H~, z l )= 0, 

(8.5) (v, Av) = (v, Az~) = ( v, I 

\ 
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Since z~=  0 on ~O we have for any  s ~ > 0  (Lemma 4.2 in B ~ A ~ L E  and 

Tuoy~s [3]), 

(8.6) 

and hence, since Azl = Av, by  adding the appropriate  multiples of (8.5) and (8.6) 

wi th  ~ =  (e/(4C)) ½, s~= 2~Ck ½, 

~(v, Av) ÷ 2~k~ ° <e~LIAvll ~ + ~ /v  Oz~N 
\ ' $ n / '  

from which Lemm~ 8.2 follows with ~ =  (4~) -~. 

L E n A  8.3. - Wi th  ~, ~ and ~ as above we have 

k~+~(Jv, A~+~v) + ~z~<~ k~t!Jvtt ~ + ~V ~. 
5=0 ~ffil 

P~ooF. - This follows at once by  applying Lemma 8.2 to (kA)~v for j = 0 ,  ..., a - -1  

~nd adding if we notice tha t  

A Jr = AJH~+~ ÷ A%+~, 

where A~H~+~ is harmonic  and A~z~+~ vanishes on ~ .  

L ~ A  8.4. - For  ~< 1 - - 1  we have 

(A~v, A~v) = (A~+~v, A~-~v) ÷ ( ~  V) 

P~oo~. - Using Green's ~ormnla we obtain  

- 

- ,, , , ~ 1  ~ / 

Here 

D(A~v, A~-~z~) = D(AJHj+I, AZ-~z~) + D(AJz~+I, A~-lz~) = D(A~zi+I, AZ-lz~), 

since A~Hs+I is harmonic  and  A Z-~zz vanishes on ~ .  Similarly 

D(A~-~v,. A~zs+l)= D(A~-~z~, A~z~+l) , 

which completes the proof. 
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PI~OOF Ot~ LEPTA 8.1. -- Consider 

R :  I!a(--kA)vll 2 -  [ ]b(--kA)v] l~:  ~ (--k)~+Z(aja~--bjb~)(LJJv, AZv). 

For  j -~ 1 -~ 2r even we obta in  by  repea ted  use of L e m m a  8.4 ~nd Cauchy 's  inequality,  

( -  ~)~+~(~% ~ v ) >  k-Ill,vii ~ -  zV, 

and  for j + l =  2r + 1 odd we obta in  s imilar ly  

(-- k)~+~(A % A ~v) > - -  k-+~(A~v, A,+~v) - -  Z V .  

Hence there  are posi t ive  constants  e~ and  e~ such t h a t  

v = l  ~=0  

Hence  b y  L e m m a  8.3, 

R> (a- sc~) ~ k'l]~v I] ~ + c~Z ~- c~V~-- c~ZV. 
r = l  

Choose now e ~ ½a/c~. Then using the  fo rm of 5 and  ~ we obta in  

R> ½o ~ k~ll~'~ll~-r~-~v ~, 

for sufficiently large y, which completes  the  proof. 

We now tu rn  to the  appl ica t ion of Theorem 2. We shall  use the s~me space ~ ,  

as above so t ha t  i t  only remains  to discuss condit ion (v). We have  here 

~ffiO 

where 

g ( ~ ) : a ( T ) - - b ( ~ ) :  ~ g j ~ J ,  
J = l  

gj>O,  j = - l , . . . , ~ .  

L ~ A  8.5. - For  ~ sufficiently large there  is a posi t ive cons tan t  e such t h a t  

for y ~> ~, 

i -  i = 0  
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P~ooF.  - ~ the  same w a y  as in the  proof  of L e m m a  8.1 we see t h a t  

j,l f=l  

~nd the  resul t  threfore  follows a t  once. 

I t  follows t h a t  wi th  g~(v)= G~(v, v) ½ we have  

(8.7) G~(% ~) < Cg~(q~)a~(~). 

As a consequence of the  pos i t iv i ty  of G~(v, v) the  equat ions 

G~(w - -  v, Z) = 0,  Z e S~, , 

admit~ for v e /~  ~ given,  a unique solution w -~ Q~v e S~. I t  remains  to es t imate  a~(~) 

where  ~ =  (I-Q~,)v.  As a consequence of Lemma. 8.5, 

a~(v) < c(IIvli + g~(~)) • 

~[enee ,  s i n c e  

g~(~) < c inf II~- z[I4 ~ < Ch~i[vH~, 
geS~ 

i t  r emains  to obta in  a s imilar  e s t ima te  for ~ in L~(~2). 

l~or th is  purpose,  le t  w ~ / ~  ~ be the  solution of 

g(-- kA)w ~ ~ in £2, 

A Jw = 0 ,  j < ~,  on ~t2. 

This solution exists  and  is unique b y  the  pos i t iv i ty  of g. We  m a y  then  wri te  

(S.S) l]~II~ = (7, g ( - k A ) w )  = (g(--kA)~, w) + I~(~, w),  

where F~(~, w) are the  bounda ry  t e rms  ob ta ined  in the  in tegra t ion  b y  par ts .  

Consider first the  first t e r m  on the  r ight  in (8.8). I t  m a y  be  wr i t t en  

(g(-- kA)~, w) : (g(-- kA)~, a(-- kA)w) -k (g(-- kA)~, (I--a(-- kA))w) . 

l~ow b y  the  definit ion of v we have  for Z e S~,, 

(g ( -  k~)~, a ( -  ~ ) w )  = G~(~, w) = ~ ( ~ ,  w -  z) ,  
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so t ha t  by  (8.7), using Lemmas  2.7 and  2.6, 

l(g(-- kA )~, a(-- ~A )w)I<~ Cg~(~) inf a~(w - -  Z)< Cg~(~) inf Ilw - -  Z ]1~ <~ Cg~(~)h ~' Hw Ilh,~. 
geS~ Ze~ 

For  the purpose of es t imat ing the last factor  on the right we notice tha t  since 

we have  

so that 

~ tt w !1~ < c ( Z  (k~)~w~) ~ < c ( Z  g(k~)~w~) ~ < c l ie(- ~ ) w  II = cll~il , 
m 

Similarly, since 

we obtain 

and hence 

so tha t  a l together ,  

(8.9) 

l(g(-- kzJ)~, a(-- kLJ)w) t < Cgk(~) [l~ll . 

la (~) - l ]<  Cg(~), T > 0 ,  

l i ( I - a ( -  kd))wN < Cl/g(--kd)wll = Cli~ll, 

l(g(- ~A)~, w) l < Cg,o(~)]I~1t. 

We now want  to consider the boundary  t e rm F~(~, w). Assume first {Sa} e 82~,~" 

Then ~ e / ~  and T'~(~, w ) ~  0. In  this case we ma y  thus conclude from (8.8) and 

(8.9) t ha t  

and hence 

tl~tt < Vg~(~) , 

In  this case Theorem 2 applies with ~o = 0. 

Consider now the general  case {Sa} e 82~.~. We have for any  s > 0, 

i = 1  I=O [ J =0 



JA~ES It .  BI~A~IBLE - VIDAI~ Ttt0~I~E: Discrete time Galerkin methods~ etc. 151 

Bu t  since, for j <  ~, ACw~-0 on ~Y2 we have for these j, 

I ~  A~w <C[,A~+lw,, . 

Since z~+l<Cg(T) we obtain as above 

k~+l il A~+lw ][ = ( 5  (kZ~)~(~+"w~) ~ < C][q ,  

so tha t  with e a small mult iple of /~½, 

I/~(~, w)l <½11qL ~ + ck-%(~) 2. 

This gives with (8.8) and (8.9), 

lLql < ck-%(~),  

so tha t  finally 

ak(~) < Ch ~-½ t[v I[h ~ • 

In  this case Theorem 2 applies with vo = ½. 

I:~E:Y~AI~K. - Consider now the case in which we only have 

a ¢ > 0 ,  ]bjl<a~ , j-----0, ..., ~.  

This for instance is the c~se with the diagonal Pad6 approximations.  We ma y  then  

apply Lemma  8.1 to (1 + flk)a(v) and b(v) for some t3 > 0 and obtain with ~ new y, 

~--1  

l ib(-- /d)v] l  ~ << (1 +/~/¢)~[I],~(-- kA)vll ~ + r ]~ k- lA~q~] .  
5=0 

Defining this t ime 

A,(~, V) = (a(-- ~d)~, a(-- kA)~) + r ]~ k ~ ( A ~ ,  A~}, 
i = o  

we obtain with Bk as before 

[Bk(~, ~o)l ~< (1 + flk)ak(q~)a~(~). 

In  the special ease 

r(~) = 1 ½_____~,-- 

this w~s used in B~AZ~BLE ~nd T ~ O ~ E  [3] to obta in  results for the corresponding 

scheme with the assumption k h - ~ =  constant  replaced b y  k~h-~>constant .  
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