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1 Introduction

A newcomer to the theory of bond pricing would be struck by the enormous variety
of models in use and by the variety of methods used to study them. We provide a
selective review and synthesis of this diverse body of work, with the goal of clarifying
differences in models and approaches. Our focus is less on theory for theory’s sake, and
more on the properties of bond yields implied by a model’s structure and parameter
values. We think of this as engineering, in contrast to the physics of more theoretical
papers. We are guided in this effort by four principles:

Principle 1: Common theoretical language. In the literature on bond pricing,
models are variously described as “arbitrage-free,” “equilibrium,” and so on. They
are developed using “state prices,” “risk-neutral probabilities,” or “pricing kernels.”
In fact, all of these approaches share a common intellectual foundation and can be
expressed in a common way. We express each in terms of a pricing kernel, but explain
differences in language and approach along the way.

Principle 2: Discrete time. Although discrete time is occasionally less elegant
than continuous time, it makes fewer technical demands on users. As a result, we can
focus our attention on the properties of a model, and not the technical issues raised
by the method used to apply it.

Principle 3: Continuous state variables. We think it’s important to let interest
rates assume a continuous range of real values, and not the discrete set of possibilities
familiar to users of binomial models. We regard this combination of discrete time and
continuous states as a convenient middle ground between the stochastic calculus of
high theory and the binomial models of classroom fame.

Principal 4: Parameter values are as important as models. Duffie (1992, pp xiii-
xiv) writes: “The decade spanning roughly 1969-79 seems like a golden age of dynamic
asset pricing theory. ... The decade or so since 1979 has, with relatively minor
exceptions, been a mopping-up operation.” While this may be true of theory, we
think finance professionals continue to make significant progress in understanding the
ability of models to explain the prices we observe in markets. In practice, the choice
of parameters is critical to a model’s performance and deserves as serious study as
the model itself. In this respect, we think we can add something to theoretical books
like Duffie’s, and thus help to bridge the gap between theorists and practitioners.

With these principles in mind, we review the basic theory of asset pricing and
its application to bonds. We express various models and approaches in a common



theoretical framework in which time is discrete and state variables are (for the most
part) continuous. The emphasis is on the use of these models by practitioners: which
model to use, how to solve it, and how to choose its parameter values. With one
exception, we do not explore the application of these models to the pricing of deriva-
tives. Although this is clearly the major use of fixed income models, both the theory
and related data issues would make this a much longer paper. Nevertheless, the
foundations laid here are a necessary first step in that direction.

After summarizing the salient features of US bond yields in Section 2, we review
the theory underlying the modern approach to asset pricing (Section 3). In Section
4, we describe the popular Vasicek and Cox-Ingersoll-Ross models and explain how
their parameters might be chosen to approximate some of the observed properties
of bond yields. Discrepancies between these models and observed bond yields moti-
vate more complex models. In Section 5, we discuss arbitrage-free models, in which
time-dependent parameters are introduced to allow models to reproduce current mar-
ket conditions, including the current yield or forward rate curve. Examples include
a Ho-and-Lee-inspired version of the Vasicek model, which can be calibrated to the
current yield or forward rate curve, and a linear application of the approach of Heath.
Jarrow, and Morton. In Section 6, we consider the popular binomial framework and
derive its implicit pricing kernel. In Section 7, we describe Das’s jump model, which
allows innovations to interest rates to follow non-Gaussian distributions. Section 8
is devoted to multifactor affine models, including two-factor versions of Vasicek and
Cox-Ingersoll-Ross, the Longstaff and Schwartz model, and models with stochastic
volatility and central tendency factors. In Section 9, we provide a short discussion of
options on zeros, emphasizing the term structure of volatility in log-normal environ-
ments in which the Black-Scholes formula holds exactly.

2 Notation and Evidence

The obvious starting point for any modeling exercise is a description of what the
models are intended to explain. The models we examine are designed to explain
prices of fixed income securities of all kinds. In principle, this includes not only the
prices of bonds, but of interest-rate derivatives: swaps and swaptions, interest rate
futures, caps and floors, and the like. We limit ourselves, however, to US treasury
bonds, whose properties are described below.

We summarize bond prices in terms of yields. One of the (small) issues that
arises when we do this in discrete time is that the time interval of the model need



not correspond to the time interval over which yields are reported. By convention,
we report yields and other interest rates as annual percentages. Our modeling time
interval, however, is one month: that is, from here on we take one period to be
one month. As a result, we must at times include translation factors of 12 or 1200,
converting monthly yields to annual yields or annual percentages, respectively.

With this detail out of the way, we denote the continuously-compounded yield or
spot rate on an n-period discount bond at date ¢t by y, defined by

yr = —n7t log b7, (1)

where b7 is the dollar price at date ¢ of a claim to one dollar at ¢ + n. One-period
forward rates are defined by

fir = log(b}/b*), (2)

so that yields are averages of forward rates:
n=1
y = n7t )y f (3)
=0

The short rate is ry = y; = f.

In practice, yields and forward rates are estimated rather than observed. From
prices of bonds for a variety of maturities, the discount function b} (viewed as a func-
tion of n at each date t) is interpolated between missing maturities n and smoothed
to reduce the impact of noise (nonsynchronous price quotes, bid/ask spreads, and so
on). We use data constructed by McCulloch and Kwon (1993) from quoted prices of
US treasury securities.

The properties of US treasury prices between January 1952 and February 1991
are summarized in Tables 1 and 2. We will return to these tables later, when we
use them to choose values for model parameters, but for now it’s worth noting their
basic features. One is the shape of the average yield curve: average yields rise with
maturity between one month and ten years, but the rate of increase falls with maturity.
This concave shape is familiar to observers of bond markets, but masks a great deal of
variety in the shape of the yield curve at specific times. Another feature is persistence:
autocorrelations of yields are well above 0.9 (monthly) for all maturities. Short-long
spreads exhibit substantially less persistence, suggesting that some of the persistence
in yields stems from something that is common to both short and long rates. A
third feature is volatility, which is apparent in all three variables: yields, spreads, and
monthly changes in yields. However, the maturity patterns of these variables differ
substantially.



3 Arbitrage and Pricing Kernels

Although the form varies, modern asset pricing theory 1s based on a single theoretical
result: that in any arbitrage-free environment, there exists a positive random variable
m that satisfies

1 = Ej(mip1 Ri), (4)
for (one-period) returns /2 on all traded assets at all dates t. We refer to m as a pricing
kernel, since prices of assets grow from it. A model consists, then, of a description of
m. The same content is sometimes expressed in terms of state prices or risk-neutral
probabilities, which we discuss in Section 6.

One of the many nice things about the pricing relation (4) is that it applies to
everything: once we have a model that values bonds, we can (in principle) use it to
value bond-related derivatives of all kinds. The catch is the qualifier, “in principle.”
The theory works fine; the challenge in practice is to approximate the m that theory
says must exist.

Bond pricing is an elegant, if straightforward, application of (4). If an arbitrary
claim to next-period cash flows c;41 costs p, now, then the return is Rip1 = cia/pe
and (4) implies

p = Eif(mipice). (5)
This takes a particularly simple and useful form with bonds. The one-period return
on an n + l-period bond is Ry = b7, b+t so the prices satisfy

bt = Ey(menbiy)- (6)

From this we can compute bond prices recursively, starting with the initial condition
b? = 1 (a dollar today costs one dollar).

4 One-Factor Models

Two of the most popular bond pricing models are those constructed by Vasicek (1977)
and Cox, Ingersoll, and Ross (1985). We describe both in this section and explain how
their parameter values might be chosen to correspond to properties of bond yields.
Each of these models has a single factor, by which we mean that prices depend on a
single state variable z (say), typically associated with the short rate r. The models
are similar, too, in having four parameters: three governing the dynamic behavior
of the state variable and one controlling the market’s valuation of risk. With these
ingredients, theory then tells us how long rates are connected to the short rate.
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4.1 Vasicek

The archetype of bond pricing models is Vasicek (1977). In discrete time, the single
state variable z follows a first-order autoregression (meaning we regress z on its own

lag):

zip1 = pz+ (1 — @) +oeip (7)
= 2+ (1 =)0 — z) + 061,

with {e;41} distributed normally and independently with mean zero and variance
one. The mean of z is . The conditional variance is ¢ and the unconditional
variance 02/(1 —?), formulas that should be familiar to those acquainted with linear
time series methods (for example, Harvey, 1993). The parameter @ controls mean
reversion: If ¢ = 1, z is a random walk and shows no tendency to return to any
specific value — hence the term “random walk.” But if 0 < ¢ <1, z is expected to
return to its mean value of 8 at rate 1 — ¢, as in the second line of equation (7). We
complete the model with the pricing kernel m, which satisfies

— log M1 = 6 + 2 + /\€t+1- (8)

We refer to ) as the price of risk, since it determines the covariance between shocks
to m and z, and thus the risk characteristics of bonds and related assets. We set
6 = A?/2 for reasons that will be apparent momentarily.

We compute bond prices recursively using the theory outlined in Section 3. The
pricing relation (6) and initial condition 82 = 1 tell us that the price of a one-period
bond is the conditional mean of the pricing kernel: b} = FEymyyq. Since the kernel
is conditionally log-normal, we need the following property of log-normal random
variables: If log z is normal with mean p and variance ¢?, then log E(z) = u + a?/2.
From equation (8) we see that log m,4; has conditional mean —(&+2;) and conditional
variance A%, so the one-period bond price satisfies

logh! = —6— 2+ A?/2 = —z.
The short rate is therefore
re = —logh, = z,

as claimed earlier. Since z is the short rate, we can base the value of the parameters
of (7) on the properties of the short rate, such as those reported in Table 1.

Prices of long bonds follow by induction. Let us guess that the price of an n-period
bond can be expressed
—logb! = A, + Brz (9)
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for some choice of coefficients {A,, B,}. Since b} = 1 we know Ag = By = 0, so
we can certainly start this process up. The expression for a one-period bond implies
A; = 0 and B; = 1. Given the coefficients for maturity n, we use (6) to evaluate the
price of an n + 1-period bond. The right side involves

lOg Mit1 + 10g b?+l = —6— 2t — )‘Et-l-l - An - ant+l
 [Aut 64 Ba(l = 9)0] = (14 Bug)z — (A4 Buolewen.

which has conditional moments
E,(logmyyr +log bl ) = — [An + 6 + Bu(1 — 9)8] — (1 4+ Bap)z

and

Vary(log meyq +logd}?) = (A + Bpo)*.
The implied bond price is therefore
—log bt = A, + 64 Bu(1 — )8 — (A + Boo)?/2+ (1 + Bay)z:.
Lining up coefficients with (9) gives us the recursions

Apsi = An+ 64 Bo(l — )0 — (A + Bno)?/2 (10)
B,yn = 1+ Bpe. (11)
These equations look complicated, but given values for (6,¢,0,1), we can easily

evaluate them on a spreadsheet. They are a closed-form solution to the model, in the
sense of being computable with a finite number of elementary operations.

Forward rates in this model take a particularly simple form, which we note for
future reference:

1 1—¢" \’
=m0+ 32— A+ 0] | +¢ma (12)
2 1—¢
This expression illustrates the impact of the short rate on long forwards (the impact
declines with n) and the form of the risk premium (ugly, but governed by A).

The recursions tell us how to compute bond prices given values for the parameters.
In practice, however, we are often interested in the reverse question: What parameter
values are indicated by observed bond prices? We choose parameters to approximate
some of the salient features of bond yields reported in Table 1. 8 is the unconditional



mean of the short rate, so we set it equal to the sample mean of the one-month yield

in Table 1: 5 314

0 = 00 = 0.004428.
(1200 converts an annual percentage rate to a monthly rate.) The mean reversion
parameter ¢ is the first autocorrelation of the short rate. In Table 1, the autocorre-
lation of y! is 0.976, so we set ¢ equal to this value. The volatility parameter o 18
the standard deviation of innovations to the short rate. We choose it to equate the

unconditional variance of the short rate equal to its value in the data:

o (3.064)2
1—¢2  \1200/ °
With o = 0.976, the implied value is o = 0.005560. Thus the values of (#,0,¢) are
chosen to match the mean, standard deviation, and autocorrelation of the short rate.

We choose the final parameter, the price of risk A, to approximate the slope of
the yield curve. A little experimentation tells us that A governs the average slope of
the yield curve, with negative values required to reproduce the upward slope we see
in the data. Mean bond yields in the model are

E(y") = n™" (Aa+ Bub). (13)

The value A = —0.0824 reproduces the mean 10-year bond yield, as we see in Figure
1. With more negative values the mean yield curve is steeper, and with less negative
(or positive) values the yield curve is flatter (or downward sloping).

We see in Figure 1 that the model generates a mean yield curve with much less
curvature than we see in the data. The problem is ¢: the time series of the short
rate indicates a value of ¢ close to one, but we need a smaller value to generate the
required concavity of the yield curve. There is no choice of this parameter (or the
others) that does both. We will see shortly that the Cox-Ingersoll-Ross model suffers
from the same deficiency.

4.2 Cox-Ingersoll-Ross

The Cox-Ingersoll-Ross (CIR) model has a similar structure. The difference lies n
the behavior of the state variable z: In the Vasicek model the conditional variance is
constant, while in CIR it varies with the state. Our version follows Sun (1992, eq 6):
z obeys the “square root process”

2 = (L= @)+ oz + 02 e, (14)
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with 0 < ¢ < 1, (L —¢)é > 02/2, and {e.} is distributed normally and independently
with mean zero and variance one. Despite the unusual form of the innovation, (14) is a
first-order autoregression. The unconditional mean of z is §. (To show this, it’s useful
to compute the conditional expectation first, then the unconditional expectation.)
The first autocorrelation is ¢ and higher-order autocorrelations are powers of ¢. The
conditional variance is

VdT‘t(ZH.l) = Zt0'2,

which has a mean of 852, The unconditional variance is Var(z) = 80?/(1 — ?).

The most interesting feature of (14) is that it guarantees nonnegative z if the time
interval is small: With the square-root process the conditional variance gets smaller as
z approaches zero, which reduces the chance of getting a negative value. With normal
£’s there is still a positive probability that 2,11 is negative, but the probability falls to
zero as the time interval shrinks. In continuous time, z is strictly positive under the
stated conditions. This is a useful feature in a bond pricing model, since the existence
of currency places a lower bound of zero on nominal interest rates.

The pricing kernel for a discrete time version of CIR is
—logmey = (1+32/2)z + Az e, (15)

so again the kernel is conditionally log-normal. We will see shortly that the coefficient
of z is a fortuitous choice, intended to make =z the short rate.

Bond pricing in this setting is similar to Vasicek: We apply the pricing relation (6)
to the pricing kernel (15) and compute bond prices recursively. The key to making
this work is that both the conditional mean and the conditional variance are linear
functions of z. As a result, bond prices are log-linear functions of z as in equation (9).
Using the same methods we applied to the Vasicek model, we find that the coefficients
of the log-linear bond price formulas satisfy the recursions,

Buy1 = 14 X2+ Boo — (XA + Buo)?/2,
starting with Ag = By = 0. Since A; =0 and B; =1, z 1s the short rate.
We choose values for parameters much as we did for the Vasicek model. We set the
autocorrelation parameter o equal to the autocorrelation of the short rate: ¢ = 0.976.

We set 8 equal to the mean short rate, which again implies § = 0.004428. We choose
o to reproduce the variance of the short rate:

fo? (3.064)2
1—2  \1200/°
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which implies o = 0.008356. Average yields follow (13). The average 10-year bond
yield implies A = —1.07. The results of this exercise are pictured in Figure 2, which
is virtually identical to Figure 1.

4.3 For Aficionados Only

With the warning that most readers should skip this section, we review a number of
(largely) technical issues.

1. Unit roots. Some have suggested that the short rate process should have a unit
root: that ¢ should be one. The evidence from short rates isn’t wildly at odds with
this idea, perhaps not at odds at all given the low power of unit root tests. What is
left out, however, is the implication of a unit root for the spread between long and
short rates: the mean spread gets increasingly negative at long enough maturities,
approaching minus infinity in the limit. In practice, this might become apparent only
at maturities beyond the interest of any practitioner.

2. Normalizations. In the pricing kernels, we chose coefficients of z equal to 1
(Vasicek) and 1+ A2/2 (CIR), both with the purpose of equating z to the short rate.
There’s nothing sacred about this. We could have easily chosen normalizations that
equated z to the 5-year forward rate, the 10-year yield, minus the short rate, or the
spread between the 10-year yield and the short rate. Since all are linear in z, they
result in linear transformations of the model. In the Vasicek model, all such versions
are observationally equivalent. In the CIR model, versions are equivalent for all rates
or spreads that are increasing in the state variable. (The square root means that z
has a sign as well as a magnitude.)

3. Intercepts in pricing kernels. If we allow é in (8) to be an additional free
parameter in the pricing kernel of the Vasicek model (earlier we set it equal to A/2),
we find that bond prices depend only on the sum § + 6. Neither parameter can be
identified separately. We chose (effectively) to drop § from the model. An equivalent
choice is to drop @ by setting it equal to zero. The two versions of the model imply
identical asset prices. In the CIR model, this isn’t the case; see Pearson and Sun

(1994).

4.4 Assessment

These one-factor models are a good place to start, but they are not a good place to
stop: there are simply too many discrepancies between them and the world around
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us. These discrepancies make greater demands on modelers, and make this a longer
paper.

One discrepancy in the Vasicek and CIR models is the shape of the mean yield
curve: If o is chosen to reproduce the autocorrelation of the short rate, the mean
yield curve is substantially less concave in the models than it is in the data. This
anomaly was pointed out by Gibbons and Ramaswamy (1993) and remains, in our
view, one of the obvious signs that one-factor models are inadequate.

Another discrepancy is the pattern of autocorrelations. Both of these models are
linear: yields of all maturities, yield spreads, and, indeed, all linear combinations of
yields are linear functions of z. As a consequence, they share with z its autocor-
relation. In the data, however, long yields and yield spreads exhibit, respectively,
higher and lower autocorrelations than the short rate. A related issue is the decline
in volatility with maturity, such as the standard deviations of one-month changes
reported in Table 2B. These models imply less variability of long rates than short
rates, but the rate of decline is greater in both models than we see in the data.

Yet another discrepancy is that innovations in z are conditionally normal. The
evidence suggests, to the contrary, that interest-rate innovations have substantial

excess kurtosis. Note, for example, the kurtosis of one-month changes in the short
rate (Table 2B).

All of these discrepancies point toward the more complex models to come.

5 Arbitrage-Free Models

Ho and Lee (1986) started a revolution in industry practice that has been carried
on by Black, Derman, and Toy (1990); Heath, Jarrow, and Morton (1992); Hull and
White (1990, 1993); and many others. The logic of most academic work, of which
Section 4 is typical, is to choose parameter values that approximate average behavior
of bond yields. For practical use this kind of approximation is inadequate. The
four parameters of the Vasicek and CIR models can be chosen to match five points
on the yield curve (four parameters plus the short rate), but cannot approximate
the complete yield curve to the degree of accuracy required by market participants.
Ho and Lee suggested that such models might include additional time-dependent
adjustment factors that could be used to “tune” them to observed asset prices. In
the most common applications, adjustment factors are used to allow the model to
match the current yield curve exactly. Such models are generally referred to (with
some violence to the language) as “arbitrage-free.”
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5.1 The Approach of Ho and Lee

Although Ho and Lee (1986) used a binomial model, we can illustrate their insight
in the Vasicek model. The result bears more than a passing resemblance to Hull and
White’s (1990, 1993) “extended Vasicek model.”

Consider a variant of the Vasicek model with state equation

Zi41l = PZt 0€i (16)

and pricing kernel
—logmHl = /\2/2 + 6t + 2z + A€t+1.

One change from the model in Section 4.1 is the elimination of #. This comes without
loss of generality, for reasons outlined in Section 4.3 (f and ¢ perform the same
function). The critical change is the presence of the time-dependent intercept 6 in
the pricing kernel. We will see shortly that we can choose (&, 8¢41,. . .) to reproduce
any observed yield curve.

Once again prices are log-linear functions of z, but the functions depend on time:
— log b:b = Ant —+ Bntzt-
The pricing relation implies

Any1p = Angpr + N2+ 6 — (M + B.io)?/2
Bpi1i: = 14 Bhip.

The boundary conditions, Bo; = 0 for all ¢, imply

By = 14+ 4" ! =

for all t. Forward rates are therefore
= Anp1t— Ant + (Baga,e — Bt) z

— 1 2 1—(Pn : n

It’s immediately apparent that we can choose the 6’s to make forward rates — and
hence yields — anything we like.

11



Ho and Lee developed this approach in a binomial model, but the idea is more
general: to add time-dependent parameters that allow users to match observed bond
yields. Since then, others have noted that other parameters might also be allowed
to vary with time. The most important of these is the volatility parameter o, which
Black, Derman, and Toy (1990) showed could be chosen to reproduce the volatility
of different parts of the yield curve. This extension was critical to the pricing of
interest-rate related options, for which volatility is a key parameter. Moreover, there
is overwhelming evidence in these markets that volatility varies with maturity as well
as time. Hull and White (1990, 1993) further refined the approach by allowing analogs
of 6 and ¢ to vary with time.

These additional parameters are clearly needed in applied work, where a model
that fails to reproduce the current yield curve can hardly be trusted to price more
complex securities. At the same time, they are no panacea: even a bad model can
be tuned to reproduce the current yield curve with enough extra parameters. What’s
needed is a balance between the fundamental parameters of the model (¢, o, A) and the
time-dependent adjustment factors (&; in our example). The modeling efforts in this
paper contribute primarily to constructing a model that is good on average. Once
this is done, practical application will almost certainly call for adjustment factors
along the lines described here.

5.2 The Approach of Heath, Jarrow, and Morton

Heath, Jarrow, and Morton (1992) owe a debt to Ho and Lee in using time-dependent
parameters, but they approach them from a novel and interesting direction: They
focus on forward rates and the movement of the entire forward rate curve from one
date to the next. Their approach exploits simplifications that stem from modeling
forward rates directly and sheds new light on the role of volatility parameters in
pricing models. We describe the implications of their approach for the pricing kernel,
and describe how it can be used to calibrate models to both the forward rate curve
and the term structure of volatility.

We illustrate the Heath, Jarrow, and Morton (HJM) approach with a linear one-
factor example. Suppose the forward rate curve evolves according to

ftT:-_11 = f;' + ant + Oni€inr (18)

for all n > 0, where {&;} is (as usual) iid normal with mean zero and variance one.
HJM pose the question: What restrictions are placed on the parameters {Qnt, Ot}
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by the assumption that movements in forward rates are free from arbitrage opportu-
nities? They attack this question by focusing directly on forward rates. If forward
rates follow (18), the return on an n + 1-period bond can be expressed

n

log Repy1 = rmi— > (fird = f)

J=1
n n
= Tt — Z a5t — Zajt5t+1
j=1 j=1
= Tt — Ant - SntEH-la (19)

with the obvious definitions of the partial sums A,; and Sp:.

At this point we take two different paths, one followed by HJM, the other more
in keeping with our focus on the pricing kernel. HJM’s path starts with the moments
of the bond return, which include

Vart (lOg Rt+1) = 52

nt?

IOg EtRH.] = Ty — Ant + Szt/2

(This trickery with logs is less troublesome in continuous time.) HJM assume that for
some specific maturity 7, the expected excess return is proportional to its standard

deviation:
- Art + S?Lt/Q = _’YtSTr (20)

They refer to the proportionality factor 4; as the market price of risk. Absence of
arbitrage opportunities then places restrictions on the parameters.

A second path is based on a pricing kernel. We replace HJM’s price of risk relation
(20) with a pricing kernel of the form

— log M1 = 6t + )‘t€t+1- (21)
Applying the pricing relation (4) to the return (19) gives us
re = &+ A — (A + Snt)2 /2

for all n > 0, with the convention Ag; = So; = 0. The difference between this equation
for n = 0 and n = 7 implies the restrictions

Arg— NS — S22 =0 (22)
forall T > 0.
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The two solution paths are readily shown to lead to the same destination. Equa-

tion (20) implies
A — ’7’tSrt - Szt/Q = 0,

which is equivalent to (22) if 3 = A, This equivalence should come as no surprise.
We know from Section 3 that absence of arbitrage opportunities implies the existence
of a pricing kernel satisfying (4). Given the linearity of the forward rate equations
(18), it should be no surprise either that the pricing kernel takes the log-linear form
of (21).

The benefits of working directly with forward rates are apparent if we compare
the HJM characterization of the solution, equations (18) and (22), to that implied
by our treatment in the previous section. Our time-dependent version of Vasicek,
summarized by equations (17,16), implies

n—1 n 1 1_(pn : 1—9971_1 ’ n—1
t+1 :ft +§ A-*—1_({;0- - /\+1—L,9- -0 + @ OEt41-

This is a special case of our HIM example with

L= it
o = @O

1 1—¢f 2 1 —¢it ?
o= = 1A — A+ .
Qjit 2[(+1_@0) (+1_¢ o

These choices satisfy (22), but the computations are substantially more complex than
(22), even in this linear setting.

One of the most useful features of the HJM approach is the ability to specify arbi-
trary volatilities. As we just saw, the Vasicek model implies geometrically declining
volatility, the direct result of mean reversion in the state variable. With HJM, we can
choose any volatilities we like, including those implied by option prices. This suggests
a sequential choice of parameter values. First, we choose volatilities ¢;; to match the
term structure of volatilities implied by (say) options on interest rate futures. Given
these choices (and a value for A), we choose “drift” parameters a to satisfy (22).
The resulting prices are arbitrage-free by construction.

6 Binomial Models

Binomial models are easily explained and implemented, which undoubtedly accounts
for their widespread use in teaching and industry. They are based, obviously, on a
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discrete state variable: the short rate either rises or falls each period by a preset
amount. They are also invariably described using state prices or risk-neutral proba-
bilities, rather than a pricing kernel. OQur purpose here is to explain the connections
between the various languages used to describe models.

6.1 Alternatives to the Pricing Kernel

In binomial models, the state can either go “up” or “down” over any unit of time.
These movements have been described in a variety of ways, but the Ho and Lee
model serves as a prototype for fixed income. In this model, as in the Vasicek and
Cox-Ingersoll-Ross models, the state variable is generally taken to be the short rate.
Between any two consecutive dates t and ¢ + 1, changes in the short rate follow

Tip1 = Tt + 0 + 041, (23)

with
S +2(1 — ) with probability =
LT —2n with probability 1 — =

This differs from equation (7) of the Vasicek model two respects: there is no mean
reversion and (this is the key) the innovation takes on only two values. The parameter
a governs the expected change or “drift” in the short rate and o governs its consitional
variance. The spread between the up and down states is 20. The variance is

Vari(ripr) = do’m(l—7),

so the standard deviation is ¢ when = = 0.5, less than o for other values. We refer
to m and 1 — 7 as the true probabilities to distinguish them from their risk-neutral
counterparts.

Our approach to pricing has been to use a pricing kernel. Suppose the cash flows
¢141 are either ¢, in the up state or ¢4 in the down state. Equation (5) tells us that
they are worth

Pt = Et(mt+1ct+1) = TMyCy + (1 - 71')mdcd» (24)
where m, and mgy represent the values of the kernel in the two states. Despite the

discreteness, the principle is the same one we outlined in Section 3.

The pricing kernel highlights the interaction of probabilities and risk. Given a
choice of m, a lower probability reduces the value of a payment in that state. Given
probabilities, m summarizes the market’s attitude toward risk. To see this, suppose
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m is constant. Since the probabilities sum to one (they’re probabilities, after all),
this constant value is just the price of a one-period bond: m, = mg = b} = exp(—r).
The pricing relation (24) then becomes

p = et [rey + (1 —7)ed] = e " Ey(cin)-

The price, in other words, is the discounted value of expected cash flows. Since only
the expected cash flow affects the price, we might regard pricing as risk neutral, this
being the way a person who didn’t care about risk would value it. In general, of
course, m is not the same in all states, and we can think of variations in m across
states as reflecting attitudes toward risk of market participants.

A second theoretical language to describe pricing is based on state prices. Let g,
be the value now of one dollar next period in the up state and g4 the analogous value
in the down state. We define these state prices by

qu = Ty
@ = (1—7)myg.

Then equation (24) can be rewritten as

Pt = GuCu + g4cd. (25)
State prices, then, are an equivalent approach to valuation.

The most common language for describing binomial models s based on risk-neutral
probabilities. We denote them by (7*,1 — 7*) and define them by

o= qu/(qu+qd) = e"'Tmy
1—7" = quif(qu+qa) = (1 —m)ma,

the second equality following from ¢, + g4 = b} = exp(—r¢). The pricing relation
becomes

p = exp(—7¢) [7ew + (1 = 7 )cd) = exp(—r¢)Ef (cre1), (26)
where E}(ci41) means the conditional expectation of ¢;41 computed from the risk-
neutral probabilities.

The terminology deserves some explanation. People refer to (77,1 — ) as proba-
bilities for one obvious reason: they are positive and they sum to one. But unless m
is constant, they are not the true probabilities. The modifier risk neutral is added to
distinguish them from the true probabilities, and because the form of (26) is the same
as our risk-neutral pricing with constant m. This is a little misleading: the effects of
risk aversion are built in.
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6.2 Pricing Risk

We now have three equivalent ways of describing models: a pricing kernel, state prices,
and risk-neutral probabilities. The choice among them is a matter of convenience.
Given the relations between them, we can address a more substantive question: In a
binomial model, what is the analog the pricing kernel? The missing ingredient here
is A\. Analogs to the other parameters are apparent from (23): 6 has been replaced
by u, ¢ has been set equal to one, and o plays similar roles in both binomial and
continuous-state models. A, however, remains a mystery.

Suppose we start, as commonly done in binomial models, with the risk neutral
probability #*. Given such a choice (one-half comes to mind), we apply (26) to value
cash flows at each date. With a little effort, we can use the definitions of risk-neutral
probabilities to compute the pricing kernel. The result is

—logmuyr = 8"+ e + Aeeq,
where §* = mlog(n/m*) + (1 — 7) log[(1 — 7)/(1 — 7*)] and

2X = log(x/7*) —log[(1 — 7)/(1 — =™)].

In words: the risk parameter A is implicit in the difference between true and risk-
neutral probabilities. This relation, moreover, is independent of the short rate process,
whose only role here is to define the true probabilities used in (24).

7 Das’s Jump Model

The original Vasicek and CIR models are based on continuous-time “diffusions” which
means, essentially, that the innovations ¢ are normal. In fact, innovations in interest
rates appear markedly non-normal, typically with fat tails indicative of kurtosis. Ta-
ble 2B is suggestive: one-month changes in the short rate exhibit excess kurtosis of
about 10. Since departures from normality can have a significant impact on prices of
options and related derivatives, we discuss them at some length.

In continuous time, departures from normality over short time intervals are mod-
eled with “point processes” or “jumps.” In discrete time, we simply choose a non-
normal distribution for the innovation &. We illustrate this idea by modifying the
Vasicek model described by equations (7) and (8). The approach is adapted from
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Das (1994) and Das and Foresi (1996). One of the simplest “abnormal” distributions
is a mixture of normals:

_ €1t41 with probability =
Sl = €9:41 with probability 1 — «,

with each ¢;; an independent draw from a normal distribution with mean zero and
variance 7;. The mean of ¢ is therefore zero and the variance is 77y + (1 — 7)72 = 1
(the latter a continuation of our unit-variance convention).

Despite the modification, bond prices remain log-linear functions of the state
variable z:

—logh® = A, + Bnz

We compute coefficients the usual way, starting with Ap = By = 0 and applying (6)
to relate (An, Bn) to (Any1, Bas1). The only difficulty involves terms of the form

Et (eCEH.l) — (1 _ 71_)6527—1/‘2 + 7_‘_6027‘2/2
for an arbitrary constant ¢. The recursions are

Awpr = An+ 6+ Bl — )0 +log [(1 = m)e /2 4 me(itBrolnl2
Bn+1 = 1 + BnQO

The choice
§ =log [(1 - 7r)e)‘2”/2 + 7re’\272/2]

delivers A; = 0 and B; = 1, and thus sets the short rate r equal to z.

This model introduces some new parameters to the model: those governing the
behavior of the mixture. Otherwise, our approach to choosing parameters is identical
to our earlier treatment of the Vasicek model. We set the mixing probability = = 0.05
in the interest of simplicity. This is not an easy parameter to estimate precisely, al-
though maximum likelihood or other methods can be applied. Our interest, however,
is in reproducing the kurtosis of short rate innovations, which we label v5. We esti-
mate this to be 9.302, a slightly smaller value than we report in Table 2B for short
rate changes. This value is computed from the residuals of a first-order autoregression
for the short rate. The kurtosis of the model’s innovation is

(1—m)+nr? B
(1 —m)+77]?

€

Y2 =

where 7 = 1,/ With m = 0.05, our estimated value of 75 implies 7 = 14.56 = 3.8152.
This means that there is a five percent chance of drawing an interest rate innovation
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from a distribution whose standard deviation is almost 4 times its usual value. Given
7, the variances 7, and 7, are chosen to produce an overall variance of one:

1l = (1l-—7m)n+rr = n(l—x+77).
The result is 7; = 0.7720% and 7, = 2.945%.

We proceed to identify the remaining parameters. As in the Vasicek model of
Section 4.1, the autocorrelation, mean, and standard deviation of the short rate de-
termine = 0.976, § = 0.004428, and o = 0.0005560. We again choose A to reproduce
the average 10-year bond yield, setting A = —0.0817. The resulting mean yield curve
is indistinguishable from that of the Vasicek model (Figure 1).

We see, then, that Das’s jump model provides a good approximation to the kurto-
sis in the short-term rate of interest and its innovations. What it cannot do is account
for differences in kurtosis of yields and yield changes for different maturities: Since
bond vields are linear functions of the same state variable z, their levels and changes
have identical excess kurtosis for all maturities. Still, it provides a useful starting
point for thinking about the role of jumps in pricing fixed income derivatives. In
related work on currencies, we have found a Gram-Charlier expansion to be a more
tractable non-normal distribution for pricing options; see Backus, Foresi, Li, and Wu
(1998). Most of that work can be translated directly to fixed income.

8 Multifactor Models

We turn now to multifactor models, in which bond yields are governed by the move-
ments in two or more state variables. The motivation for such models should be
clear from Section 4.4: single-factor models cannot account for the average shape of
the yield curve, the dynamics of interest rate spreads, or the pattern of interest-rate
volatilities across maturities. For these reasons and others, practitioners often use
models with multiple factors.

The Vasicek model is again the archetype. Its simple structure makes it relatively
easy to understand and to assign parameter values. We develop the two-factor version
at some length. We follow with a more cursory study of other multifactor “affine” or
linear models, including two-factor CIR and Longstaff and Schwartz (1992) models.
Our goal is the resolution of two discrepancies between the one-factor Vasicek and CIR
models and observed bond yields. One is the average shape of the yield curve. As we
saw in Figures 1 and 2, these one-factor models cannot simultaneously reproduce the
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observed curvature of the yield curve and persistence in the short rate. The second
is the dynamics of yield spreads. In linear one-factor models, yield spreads have the
same persistence as the short rate. In the data (Table 2), they are substantially less
persistent. A two-factor model allows improvement along both dimensions.

8.1 Multifactor Vasicek

We base a multifactor generalization of Vasicek on independent state variables or
factors z; following

Zit41 = PiZie T Oi€it41, (27)
with innovations ¢;, normally distributed with mean zero and variance one and inde-
pendent across ¢ and ¢. The pricing kernel is

—logmiyy = 6+ Z ()\?/2 + 2z + )\i€it+1) . (28)

The kernel implies that the short rate is
ry = 5 + Z Zit- (29)

Note that we have set the means of z; equal to zero. In their place, we use ¢ to
reproduce the mean of the short rate. This choice is dictated by the data: there is
only one mean and it can determine only one parameter.

As in the one-factor model, each parameter has a clear role and interpretation.
§ is the mean short rate. The variance and autocorrelation of the short rate — and
other rates, as well — are controlled by {o;} and {¢;}. Finally, the A’s govern the
correlation between innovations in the state variables and the pricing kernel: risk, in
other words.

We construct bond prices from these components by the usual method. Bond
prices remain log-linear functions of the state variables:

—logd} = A, + Z Binzis, (30)

for some choice of coefficients {A,, Bi,}. The pricing relation (6) implies that the
coefficients satisfy the recursions

1
An+1 = An + ) + '2' Z [A? - ()‘z + Binai)Q]
Biny1 = 14 Binvi,
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starting with Ag = Bjo = 0. The solution implies forward rates of

2
1 -
fr=6+5% [A?— (/\i+ 1_:;’ a,-) } + D przi (31)

Note that more persistent factors (those with larger ¢’s) have relatively greater influ-
ence on long forward rates and yields. If a particular ¢; is close to one, then its effect
is similar across maturities and state variable ¢ has little effect on a yield or forward
rate spread. In the two-factor case, we can estimate (roughly speaking) the param-
eters of the more persistent factor from long rates and those of the less persistent
factor from yield spreads.

We consider parameter values in the two-factor version, a close relative of Brennan
and Schwartz’s (1979) two-factor model. The choice of parameters follows familiar
logic, but the greater complexity of the model makes some of the steps a little more
difficult. We now have seven parameters: § and two choices of the triplet (p;, i, Ai).
We compute them from the moments in Tables 1 and 2 as follows:

o We estimate é from the mean short rate: § = 0.004428.

e We compute {o;,;} to reproduce the variances and autocorrelations of the
short rate and the spread between the short rate and the 5-year yield. The
difficulty is that volatility (o;) and persistence (y;) parameters are now inter-
twined. Theory implies that an arbitrary yield or yield spread s is a linear
function of the state variables:

8t = Cp+ 121 + C229,

with coefficients {c;} related to {A,, Bin} as indicated by (1, 30). Each spread

has variance

Var(s) = ¢ Var(z1) + ¢ Var(zz) (32)

and autocorrelation

et Var(z1) c3 Var(zz)
uto(s) cVar(z1) + ¢ Var(z;) Pt c?Var(z;) + ¢ Var(zs)

w2 (33)

Observations of variances and autocorrelations for two spreads allow us, in
principle, to compute two ¢’s and two ¢’s. The difliculty is that the parameters
must be computed simultaneously. Since B,; in this model depends only on ;.
each ¢; is a function of ; alone. We can then compute the moments of spreads in
this order. Given the ¢’s, we compute ¢; and ¢ and, from (32), the variances of
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the state variables. From them, we compute the volatility parameters o;. Given
variances of the state variables, we can compute the autoregressive parameters
{¢;} from (33). We are done when this circular path returns to the same values
of {¢;} with which we started.

The results of these computations, using “spreads” s; = r; and s; = y® —ry,
are v; = 0.997, o4 = 0.000177, 2 = 0.838, and oy = 0.000511. Note that the
first factor is the more persistent one.

e We estimate the \’s from the mean yields for maturities of 60 and 120 months.
The intermediate 60-month rate captures the curvature that the one-factor
model failed to reproduce. The implied values are A, = —0.0240 and Ay =
—0.2884.

These parameters go some ways toward resolving two of the problems with the
one-factor model. We come much closer to the curvature of the average yield curve
by using a small A on the more persistent factor (the first one) and a larger one
(in absolute value) on the second factor. This comes considerably closer to mean
vields than the one-factor model (see Figure 3). We also reproduce the difference in
autocorrelations of the short rate and the 5-year spread. The short rate is dominated
by the more persistent factor and therefore inherits its persistence. The 5-year spread,
on the other hand, emphasizes the less persistent factor and is therefore less highly
autocorrelated.

This model isn’t the last word in bond pricing, but it illustrates clearly how
multiple factors can help to account for the unusual shifts and twists of the yield
curve. Using the forward rate as a guide, equation (31) shows us that an increase in
z; is almost a parallel shift in the forward rates, since ¢} declines very slowly with
n. The second factor is much less persistent, however, so an upward shift in z; has
greater impact at short maturities (a “twist”).

8.2 Affine Models

The multifactor Vasicek model is an example of a larger class of “affine” models,
in which bond prices are log-linear functions of a vector of state variables. The
underlying theory was developed by Duffie and Kan (1996). At the risk of increasing
the level of abstraction, we summarize this class now to spare ourselves the effort of
solving special cases separately. Casual readers should turn immediately to Section
8.3.
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Expressed in discrete time, Duffie and Kan’s affine models are based on a k-
dimensional vector of state variables z that follow

Zty1 — (I - q))g + q)Zt + V(Zt)1/2€t+1, (34)
where {¢;} ~ NID(0, 1), V(z) is a diagonal matrix with typical element
vi(z) = o + Bz,

B; has nonnegative elements, and @ is stable with positive diagonal elements. The
process for z requires that the volatility functions v; be positive, which places restric-
tions on the parameters. The pricing kernel takes the form

— lOg M1 = ) + "}/TZt + /\TV(Zt)l/zéfH_l. (35)

Details are given in Duffie and Kan (1996) and translated into discrete time by Backus,
Foresi, and Telmer (1996).

The multifactor Vasicek model is a special case. The parameters are related by

Affine Model Vasicek Model

0; 0
o diag(cply cee a‘pk)
o 0'?
B 0
4 YiAl/2
Vi 1
/\1'0511-/2 /\,‘

With these choices, the affine structure reduces to the model of Section 8.1.

The primary benefit here of reviewing the general afhne model is that we can
characterize its solution once and be done with it. Bond prices are again log-linear
functions of the state:

—logb} = A, + B;zt.

Applying the pricing relation (6) generates the recursions:

An+1) = A(n)+6+ B(n)T( -%i A+ B(n);)%e;  (36)

Bn+1)" = (47 +B(n )—-é—i X+ B(n);)* 87, (37)

i=1
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starting with A(0) = 0 and B(0) = 0. Moments of bond yields follow directly from
those of the state variables. The state vector z has mean 6, so mean yields are

E(y") = n™" (A, + BJ0).
The covariance matrix for z is I'g, which can be computed as
vec(To) = (I —® @ ®)™" vec[V(8)],

where vec(A) is the vector formed from the columns of the matrix A. Autocovariance
matrices obey

I = @I,
for 7 > 0. Thus the first autocorrelation of an arbitrary linear combination z = ¢’z
can be calculated as
¢'Tye
¢ Toe
These relations allow us to compute means, variances, and autocorrelations of bond
yields and yield spreads, as needed. The details will be familiar to readers with
previous exposure to vector time series methods, mysterious to most others. The
relevant material is described in Harvey (1989, ch 8).

Corr(z,zi-1) =

None of this holds much interest for us in the abstract, but it can be applied
directly to the special cases to which we now turn.

8.3 Other Affine Examples
Two-Factor CIR

The two-factor CIR model is a special case of the affine model in which z is two-
dimensional, ® is diagonal with elements ¢;, @ = 0, 3; has a single nonzero element
o? in its ith position, § = 0, v; = 1 + A?/2, and ); corresponds to )\iﬂilin. The short
rate is then r; = 214 4 25;. We compute bond prices using (36,37).

This model has 8 parameters, one more than the two-factor Vasicek model, and
therefore requires one more feature of the data to estimate. The extra parameter is
one of §; and 6,, which was replaced by the single parameter é in the Vasicek model.
¢, and 6, are, however, notoriously hard to pin down. In the two-factor Vasicek
model, §; and 0, are not separately identified. In the CIR model, we have found
no features of the data that lead to clear and precise estimates of their values. We
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could use, for example, estimates of the conditional variance or unconditional higher
moments of the short rate. None of the alternatives are easy, and none work very
well. Interested readers might consult Chen and Scott (1993), Duffie and Singleton
(1997), or Backus, Foresi, Mozumdar, and Wu (1998).

The following models can be viewed as attempts to restrict the two-factor affine
model further, thereby simplifying the estimation process.

Longstaff and Schwartz

The Longstaff and Schwartz (1992) model is a special case of the two-factor CIR
model in which one of the risk parameters has been set equal to zero. The model
consists of the equations

2101 = (1—@1)0 + o1z + 0'12}1/251t+1
zoee1 = (1 —@2)02 + w2z + 022;{26%4-1
—logmipr = (1+ A%/Q)Zu + zo: + )\12%{251t+1-

The model implies r; = z1; + 22:. Note the absence of A, in the last equation.

Central Tendency

A model that addresses directly the difficulty of estimating the means of the two-
factor CIR model is the Balduzzi-Das-Foresi (1998) model of central tendency. Our
version consists of

2141 = (1 —@1)2ae + 121 + 012%{281&1
zotp1 = (1 —@2)fa + o222 + 02Z;{252t+1
—logmyyr = (1+ /\f/Q)th + (A§/2)22t + )\12%{2€1t+1 + /\2221>t/2E2t+1-

The short rate is r; = z1;. Balduzzi, Das, and Foresi refer to z; as the “central
tendency,” since the short rate adjusts toward it. As a result, there is no #; in the
model. That leaves us with 7 parameters: 0;, ©1, p2, 01, 02, A1, and Ay, We could
estimate them using the same features of bond yields we used to estimate the 7
parameters of the two-factor Vasicek model.
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Stochastic Volatility

Another interesting feature of the CIR model and its affine generalizations is that they
exhibit stochastic volatility. In the one-factor CIR model, the conditional variance of
the short rate is proportional to the short rate:

Vary(res1) = alry.

In the two-factor CIR and Longstaff and Schwartz models, the conditional variance
depends on both state variables:

2 2
Vari(rip) = 0121 + 0322

Here we consider a third stochastic volatility model in which the conditional variance
is a state variable in its own right:

ziee1 = (1— 01)01 + prz1e + Z;t/2n€1t+1
zoem = (1— wq)02 + p2zot + 022;{252t+1
—logmiyr = Zuet ()\3/2 + )\%/2)2% + )\1Z}t/2€1t+1 + /\2Z;t/2f2t+l-

With this structure, z; is the short rate and 2z, its conditional variance. This model,
too, has 7 parameters.

Three-Factor Models

Additional affine models can be constructed by combining elements of those listed
above or heading off in new directions. Interested readers should consult Balduzzi,
Das, Foresi, and Sundaram (1996), Chen and Scott (1993), and Dai and Singleton
(1997).

9 Introduction to Options

Thus far, we have focused our efforts on bonds, ignoring entirely the use of these
models to value fixed income derivatives. We now provide a brief overview of Euro-
pean options on zero-coupon bonds with two goals in mind. The first is to illustrate
the principles involved: we apply the same pricing relation we used for bonds. As we
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noted in Section 3, options and other derivatives are simply more complex applica-
tions of equation (5) and its successors. The second is to describe, in a log-normal
environment, the behavior of implied volatility across maturities of options and bonds.
We note, in particular, the role of mean reversion in determining the volatility of long
options and options on long bonds.

Suppose, for the sake of concreteness, that interest rate derivatives are governed
by the Vasicek model of Section 4.1. The convenient implication in this context is
that call prices obey the Black-Scholes formula. A call option on a zero must specify
three terms: the strike price k, the maturity 7 of the option, and the maturity n at
expiration of the bond on which the option is written. The price of such a call option
is

CZ'n = F, [Mi,t+7' ( tn+7- - k) +:, >

a direct application of (6) with log Miiin =37 log myy;. The expression 2+ means
the positive part of z, max(0, z). The result is

" = B*N(d) — kb N(d — v,.,), (38)

where N is the cumulative normal distribution function and

log[b7™/(b7k)] + v2,,/2

UTn

»

1 — 9927' 1— (Pn 2
v, = Varylog b .) = (1 — ) ( o ) a’. (39)

d

The tedious details of this calculation have been worked out in a number of places,
including Backus, Foresi, and Zin (1998, Appendix A.4).

Equation (39) reminds us that volatility v, is a two-dimensional array. Practi-
tioners treat it as such, most commonly in a matrix of swaption volatilities. To us,
the most interesting feature of (39) is the role of the mean reversion parameter. If
were one, volatility would be

v, = 7(no)?.
As in the original version of the Black-Scholes formula, volatility squared is propor-
tional to the maturity 7 of the option. The more complex form of (39) stems from
two distinct roles played by the mean reversion parameter ¢ in determining prices
of long bonds in the Vasicek model. Mean reversion appears, first, in the impact of
short rate innovations on future short rates:

1 — 2T
Vd?"t(ZH_T) = 0'2 (1+S‘92+(P4+(P2(7_1)) = 0'2 (l—iz ),
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a direct implication of (7). The second role of mean reversion concerns the impact
of short rate movements on long bond prices. In the Vasicek model, a unit fall in
the short rate is associated with a rise in the logarithm of the n-period bond price
of (1+@+ - +¢" 1) = (1 —-¢")/(1 —¢), which follows (with some effort) from
(12). Thus mean reversion attenuates the impact of short rate innovations on long
bond prices, an implication we see in the declining volatilities of yield changes with
maturity (Table 2B). These patterns come from a relatively simple model, but they
illustrate the challenges facing a practitioner who would like to value options that
vary across both maturities (option and bond). The details depend on the model,
but any internally consistent model will place restrictions on the two-dimensional
array of option volatilities.

Other theoretical settings introduce additional issues, including departures from
Black-Scholes associated with jumps (as in Das’s jump model) and stochastic volatility
(the CIR and multifactor affine models). We leave these issues for another time and
place.

10 Final Remarks

We have applied a single theoretical approach to a number of bond pricing models,
illustrating their solution and the choice of parameter values. The approach has
two elements, discrete time and a pricing kernel, neither of which is original to us.
The theory of Section 3 is reviewed in Duffie (1992). Applications to bond pricing
include Campbell, Lo, and MacKinlay (1997), Sun (1992), and Turnbull and Milne
(1991), as well as our work with various coauthors. The models themselves are largely
examples from the affine class, whose structure was characterized in continuous-time
by Duffie and Kan (1996). We think the affine class of models holds great promise
for practitioners. Notably, the number of parameters is linear in the maturity of the
assets, which suggests substantial computational savings over binomial models. They
also make multiple factors less burdensome.

Our catalog of models might leave a practitioner in despair at the range of choices.
The choice of models must depend, we think, on the use to which the model is
put. If one would like to value bonds, swaps, and short-dated options on them, a
relatively simple model might suffice. Practical use will probably dictate that the use
of time- or maturity-dependent drift and volatility parameters, perhaps as outlined
in our summaries of Ho and Lee (1986) or Heath, Jarrow, and Morton (1992). If
one would like to value options on fixed income instruments over a wide range of
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maturities, perhaps including options on spreads, the benefits of multifactor models
may outweigh the increase in complexity. For out-of-the-money options, jumps and
stochastic volatility may play a role. Such models are complicated, but in our view the
complications are demanded by the complexity of modern financial markets. Good

luck!
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Table 1

Properties of US Government Bond Yields

Maturity Mean St Dev Skewness Kurtosis Auto
1 month 5.314 3.064 0.886 0.789 0.976
3 months 5.640 3.143 0.858 0.691 0.981
6 months 5.884 3.178 0.809 0.574 0.982
9 months 6.003 3.182 0.776 0.480 0.982
12 months 6.079 3.168 0.730 0.315 0.983
24 months 6.272 3.124 0.660 0.086 0.986
36 months 6.386 3.087 0.621 -0.066 0.988
48 months 6.467 3.069 0.612 -0.125 0.989
60 months 6.531 3.056 0.599 -0.200 0.990
84 months 6.624 3.043 0.570 -0.349 0.991
120 months 6.683 3.013 0.532 -0.477 0.992

The data are monthly estimates of annualized continuously-compounded zero-coupon
US government bond yields computed by McCulloch and Kwon (1993), January 1952
to February 1991 (470 observations). Mean is the sample mean, St Dev the sample
standard deviation, Skewness an estimate of the skewness measure v, Kurtosis an
estimate of the kurtosis measure -2, and Autocorr the first autocorrelation. The
skewness and kurtosis measures are defined, specifically, in terms of central moments
it 1 = u3/,u“;'/2 and 72 = ps/p? — 3. Both are zero for normal random variables.

Our estimates replace population moments with sample moments.
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Table 2
Properties of Yield Spreads and Monthly Changes in Yields

Maturity Mean St Dev Skewness Kurtosis Auto

A. Spreads Over Short Rate

3 months 0.326 0.303 2.036 7.079 0.353
6 months 0.570 0.437 1.457 5.350 0.556
9 months 0.689 0.521 1.362 5.032 0.630
12 months 0.765 0.593 1.271 4.964 0.686
24 months 0.959 0.796 0.531 2.606 0.793
36 months 1.073 0.927 0.275 1.988 0.831
48 months 1.154 1.011 0.098 1.554 0.851
60 months 1.217 1.078 0.032 1.333 0.864
84 months 1.305 1.178 -0.001 1.092 0.879
120 months 1.369 1.237 -0.087 0.815 0.885

B. Monthly Changes in Yields

1 month 0.008 0.644 -1.172 10.224 0.023
3 months 0.009 0.575 -1.751 14.008 0.110
6 months 0.009 0.570 -1.619 15.618 0.150
9 months 0.009 0.571 -1.240 14.680 0.148
12 months 0.010 0.547 -0.783 12.824 0.152
24 months 0.011 0.487 -0.398 11.474 0.132
36 months 0.011 0.441 -0.032 8.128 0.100
48 months 0.011 0.409 0.052 6.359 0.087
60 months 0.011 0.382 0.077 5.142 0.077
84 months 0.012 0.340 0.040 3.548 0.069
120 months 0.012 0.309 -0.205 3.288 0.068

See Table 1 for notes.
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Figure 1
Mean Yields in the Vasicek Model
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Asterisks are mean yields on US treasury securities, as reported in Table 1. The line
represents mean yields in the Vasicek model using parameter values reported in the
text.
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Figure 2
Mean Yields in the Cox-Ingersoll-Ross Model
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Asterisks are mean yields on US treasury securities, as reported in Table 1. The
line represents mean yields in the Cox-Ingersoll-Ross model using parameter values
reported in the text.
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Figure 3
Mean Yields in One- And Two-Factor Vasicek Models
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Asterisks are mean yields on US treasury securities, as reported in Table 1. The
lines represents mean yields in the one-factor (dashed line) and two-factor (solid line)
Vasicek models using parameter values reported in the text.
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